
Published as a conference paper at ICLR 2024

ADAMERGING: ADAPTIVE MODEL MERGING FOR
MULTI-TASK LEARNING

Enneng Yang1, Zhenyi Wang2∗, Li Shen3∗, Shiwei Liu4, Guibing Guo1∗, Xingwei Wang1, Dacheng Tao5

1Northeastern University, China 2University of Maryland, USA 3JD Explore Academy, China
4University of Oxford, UK 5Nanyang Technological University, Singapore
ennengyang@stumail.neu.edu.cn, zwang169@umd.edu, mathshenli@gmail.com

shiwei.liu@maths.ox.ac.uk, {guogb,wangxw}@swc.neu.edu.cn, dacheng.tao@gmail.com

ABSTRACT

Multi-task learning (MTL) aims to empower a model to tackle multiple tasks
simultaneously. A recent development known as task arithmetic has revealed that
several models, each fine-tuned for distinct tasks, can be directly merged into a
single model to execute MTL without necessitating a retraining process using the
initial training data. Nevertheless, this direct addition of models often leads to a sig-
nificant deterioration in the overall performance of the merged model. This decline
occurs due to potential conflicts and intricate correlations among the multiple tasks.
Consequently, the challenge emerges of how to merge pre-trained models more
effectively without using their original training data. This paper introduces an inno-
vative technique called Adaptive Model Merging (AdaMerging). This approach
aims to autonomously learn the coefficients for model merging, either in a task-wise
or layer-wise manner, without relying on the original training data. Specifically,
our AdaMerging method operates as an automatic, unsupervised task arithmetic
scheme. It leverages entropy minimization on unlabeled test samples from the
multi-task setup as a surrogate objective function to iteratively refine the merging
coefficients of the multiple models. Our experimental findings across eight tasks
demonstrate the efficacy of the AdaMerging scheme we put forth. Compared to the
current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a
remarkable 11% improvement in performance. Notably, AdaMerging also exhibits
superior generalization capabilities when applied to unseen downstream tasks. Fur-
thermore, it displays a significantly enhanced robustness to data distribution shifts
that may occur during the testing phase. The code is available at AdaMerging.

1 INTRODUCTION

Multi-task learning (MTL) is a technique that enables the transfer of knowledge (Wu et al., 2020;
Wang et al., 2023; Jiang et al., 2024) among multiple tasks by efficiently sharing model parameters,
leading to improvements in overall performance (Caruana, 1997; Liu et al., 2019b; Vandenhende et al.,
2021) across a variety of tasks. Consequently, it has garnered significant attention in fields such as
computer vision (Misra et al., 2016; Chen et al., 2018; 2020), natural language processing (Collobert
& Weston, 2008; Dong et al., 2015), and recommendation systems (Ma et al., 2018; Yang et al., 2023;
Song et al., 2024). In the context of foundation models, there are two key considerations. On the one
hand, it is highly inefficient to pursue the traditional MTL approach for large pre-trained models by
collecting a large volume of training data due to the high data labeling and computation cost. On
the other hand, the advent of pre-trained models’ popularity (Qiu et al., 2020) has led to a prevalent
practice among downstream tasks. These tasks independently fine-tune the same pre-trained model,
such as ViT (Dosovitskiy et al., 2021) or BERT (Devlin et al., 2019), and subsequently release these
fine-tuned models, often without disclosing the specifics of their original training data. Consequently,
there has emerged a recent trend in the research community, focused on exploring methodologies for
effectively merging multiple independently trained models without relying on their training data for
the purpose of MTL (Matena & Raffel, 2022; Jin et al., 2023; Ainsworth et al., 2023; Ilharco et al.,
2023; Huang et al., 2023; Ortiz-Jimenez et al., 2023; Yadav et al., 2023; Li et al., 2023).

∗Corresponding author

1

https://github.com/EnnengYang/AdaMerging

Published as a conference paper at ICLR 2024

Recently, a novel concept in MTL known as task arithmetic has emerged (Ilharco et al., 2023). Task
arithmetic introduces the notion of a “task vector”, which can be described as a vector of weights
fine-tuned specifically for a given task, subtracted from the corresponding pre-trained weights (as
illustrated in Fig. 2(a)). Essentially, a task vector serves as a unique representation for a particular task.
Research in this area, focusing on methods centered around task vectors (Ilharco et al., 2023; Yadav
et al., 2023), has demonstrated that by summing multiple task vectors and integrating them into a pre-
trained model, a new model can be created with the capability to handle multi-task learning effectively
(as depicted in Fig. 2(b)). However, despite the promising results, there still exists a substantial
performance gap between task vector-based MTL methods, such as Task Arithmetic (Ilharco et al.,
2023) and Ties-Merging (Yadav et al., 2023), and traditional MTL approaches, as highlighted in
Fig. 1. This disparity in performance suggests that further research and refinement are required to
bridge the existing gap and unlock the full potential of task vector-based MTL methodologies.

0.1 0.3 0.5 0.7 0.9 1.0
Coefficient

20
30
40
50
60
70
80
90

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Traditional MTL
AdaMerging (Ours)
Ties-Merging
Task Arithmetic
Weight Average

Figure 1: The impact of coefficient λ
on the average accuracy of various MTL
methods on eight tasks. Among them,
Task Arithmetic (Ilharco et al., 2023)
and Ties-Merging (Yadav et al., 2023)
based on task vectors achieved the best
average accuracy when coefficient λ =
0.3, which were 69.1% and 72.9% re-
spectively. Traditional MTL and our
AdaMerging are 88.9% and 80.1%.

A critical observation in the analysis of task vector-based
MTL methods is the significance of the merging coeffi-
cient (denoted as λ in Fig. 2(b)) associated with the task
vector. This coefficient plays a pivotal role in determin-
ing the average accuracy of the final MTL model. As
illustrated in Fig. 1, particularly in the cases of Task Arith-
metic (indicated by the yellow line) and Ties-Merging
(represented by the blue line), an ill-suited merging coef-
ficient can lead to a situation where the model struggles to
effectively perform MTL. In such scenarios, the average
accuracy across multiple tasks becomes unacceptably low.
This sensitivity to the merging coefficient may stem from
potential conflicts (Guo et al., 2020; Vandenhende et al.,
2021) or intricate relationships (Ma et al., 2018; Standley
et al., 2020) among the multiple tasks, which make the
merging process highly susceptible to the choice of this
coefficient. Consequently, one of the primary challenges
encountered in task vector-based MTL lies in determining
the appropriate task vector merging coefficients that facili-
tate the optimal integration of multiple tasks, all without relying on the original training data for each
task. Additionally, it is more desirable and flexible to fine-tune different coefficients for different
layers within the merged model. However, when dealing with a substantial number of tasks and layers,
traditional approaches such as grid search (Liashchynskyi & Liashchynskyi, 2019) or combinatorial
optimization search (Liu et al., 2020) become impractical for identifying suitable model merging
coefficients. Hence, addressing this issue efficiently and effectively remains a challenging research
problem in the field of task vector-based MTL.

In this paper, our inspiration comes from test-time adaptation schemes aimed at optimizing model
generalization when faced with previously unseen test data (Wang et al., 2021; Liang et al., 2023).
Building upon these concepts, we introduce an innovative automatic unsupervised multi-task model
merging scheme. This scheme leverages the minimization of prediction distribution entropy on
unlabeled multi-task test data as a surrogate objective to adaptively learn model merging coefficients.
The intuitive motivation of entropy minimization is to make the model produce a more deterministic
output when faced with a given input, which can lead to a more robust and accurate model. Our
approach begins with an analysis of the relationship between entropy and prediction loss across eight
tasks. As depicted in Fig. 3(a), our observations reveal that samples with lower entropy also exhibit
smaller prediction losses. Furthermore, we calculate the Spearman correlation coefficient (Myers
& Sirois, 2004) to quantify the relationship between entropy and prediction loss, as illustrated in
Fig. 3(b). The results affirm a positive correlation between entropy and prediction loss, confirming
that entropy can serve as a suitable proxy objective for optimization purposes. Subsequently, we
put forth two adaptive model merging schemes, collectively referred to as AdaMerging. These
schemes are designed to automatically learn a merging coefficient for each task vector or each layer
of each task vector, as depicted in Fig. 2(c) and (d). To update these merging coefficients, we employ
entropy minimization as a proxy objective, thereby enhancing the adaptability and performance of
the multi-task model merging process.

2

Published as a conference paper at ICLR 2024

a) Task Vectors b) Task Arithmetic c) Task-wise AdaMerging

pre

k

kT

pre pre

AT

BT AATBBT

MTLMTL
d) Layer-wise AdaMerging

pre

11
A AT

2
MTL

2
A

2
AT

1
B

1
BT

2
B

2
BT

Layer 2

Layer 1
Layer 2

1
MTL

Layer 1

preT kk)(preMTL BA TT)(preMTL BBAA TT 2
1pre

2
1MTLMTL)}({}{ l

l
B

l
B

l
A

l
A

l
l

l TT

Figure 2: (a) Definition of “task vector”, the task vector Tk is obtained by subtracting the pre-trained
weights θpre from the model weights θk fine-tuned on the data of task k. (b) Task Arithmetic (Ilharco
et al., 2023) for MTL, which assigns same merging coefficient λ to each task vector Tk (k ∈ {A,B}).
(c) Task-wise AdaMerging for MTL, which learns a distinct merging coefficient λk to each
task vector Tk (k ∈ {A,B}). (d) Layer-wise AdaMerging for MTL, which learns a distinct
merging coefficient λl

k to each layer l (l ∈ {1, 2}) of the task vector Tk (k ∈ {A,B}).

Finally, we conduct a comprehensive evaluation to ascertain the superiority of AdaMerging when
compared to existing task vector-based methods, revealing its advantages in three key aspects: (i)
Significantly Higher MTL Performance: Our extensive testing across eight task vectors demonstrated
that AdaMerging’s adaptive learning merging coefficient significantly enhances the average accuracy
across multiple tasks. For instance, on the ViT-B/32, AdaMerging improved approximately 5.0%
to 11.0% over Task Arithmetic and Ties-Merging. (ii) Substantially Improved Generalization: Our
evaluation on two sets of previously unseen downstream tasks underscored AdaMerging’s superior
generalization capabilities, resulting in improvements ranging from 4.4% to 9.1% when compared
to Task Arithmetic and Ties-Merging. (iii) Robust to Test Data Distribution Shifts: In addition to
performance gains, AdaMerging exhibited substantially enhanced robustness in multi-task testing
across seven distribution drifts, with an average improvement of 8.45% compared to Task Arithmetic.

This paper makes four significant contributions: (i) We re-examine existing task vector-based multi-
task learning (MTL) methods and unveil the substantial influence of model merging coefficients on
the average MTL performance. (ii) We introduce a novel approach called AdaMerging, which
autonomously learns merging coefficients in an unsupervised manner. This method can adaptively
determine coefficients for different task vectors (Task-wise AdaMerging) or individual layers
within different task vectors (Layer-wise AdaMerging). (iii) We establish a strong positive
correlation between entropy minimization and loss minimization on MTL’s test data. This correlation
signifies that these metrics can effectively serve as proxy objectives for optimizing the model merging
coefficients within AdaMerging. (iv) We conduct comprehensive experiments to validate our method.
The results demonstrate its substantial improvements in performance, generalization capabilities, and
robustness compared to state-of-the-art (SOTA) task vector-based model merging methods.

2 RELATED WORK

Joint Training for Multi-Task Learning. The joint training method gathers training data from
multiple tasks to learn these tasks simultaneously (Caruana, 1997) to achieve knowledge transfer (Wu
et al., 2023). Existing works mainly focus on mitigating task conflicts from a architecture (Misra
et al., 2016; Sun et al., 2020) or optimization (Sener & Koltun, 2018; Liu et al., 2021) perspective.
Architectural-based methods mitigate task interference by sparsifying (Liu et al., 2019a; Ding et al.,
2021), branching (Lu et al., 2017; Guo et al., 2020) or modularizing (Ma et al., 2018; Hazimeh et al.,
2021) shared structures. Optimization-based methods balance multiple tasks from the perspectives
of task training weights (Sener & Koltun, 2018; Liu et al., 2019a), gradient dominance (Chen et al.,
2018; He et al., 2022; Yang et al., 2023), and gradient conflicts (Yu et al., 2020; Chen et al., 2020; Liu
et al., 2021). However, the conventional approaches for collecting raw data across multiple tasks for
joint training face challenges that may render them unsuitable in the era of foundation models. This is
primarily due to either (i) their computational inefficiency stemming from the high computation cost
for updating the pre-trained models or (ii) numerous data owners refrain from releasing valuable or
privacy-sensitive raw data. Instead, they opt to share models fine-tuned on these pre-trained models.

Model Merging for Multi-task Learning. The practice of model merging has emerged as a
promising solution to enhance model generalization and facilitate MTL. The first type of research

3

Published as a conference paper at ICLR 2024

involves merging multiple models, all initially trained on the same task, with the aim of enhancing
the model’s overall generalization (Gupta et al., 2020; Cha et al., 2021; Wortsman et al., 2022; Wang
et al., 2022) or to perform federated learning (Li et al., 2019; Wang et al., 2020; Liu et al., 2022).
The other type of work attempts to merge models for different tasks to perform MTL (Matena &
Raffel, 2022; Jin et al., 2023; Ainsworth et al., 2023; Stoica et al., 2023; Ortiz-Jimenez et al., 2023;
Zhang et al., 2023; Ilharco et al., 2023; Yadav et al., 2023). This paper primarily concentrates on the
latter approach. However, simple model averaging alone can significantly deteriorate performance
across multiple tasks. Consequently, in recent years, numerous advanced techniques have surfaced to
mitigate the performance loss associated with model merging. For example, Fisher Merging (Matena
& Raffel, 2022) employs the Fisher information matrix (Fisher, 1922) to measure the importance of
individual model parameter. Subsequently, it leverages this importance metric to guide the model
merging. However, the computation of the Fisher information matrix becomes computationally and
memory-intensive when dealing with a large number of model parameters. RegMean (Jin et al.,
2023) suggests minimizing the L2 distance between the merged model and each individual model.
However, this approach necessitates the precomputation and provision of the inner product matrix
for the training dataset. This information may not be accessible if the model owner chooses not to
disclose it. In recent developments, Task Arithmetic (Ilharco et al., 2023), introduces the concept of
“task vectors”. This approach demonstrates that merging task vectors to create a consolidated model
can effectively facilitate MTL. Building upon this foundation, PEM Composition (Zhang et al., 2023)
extends the task arithmetic framework to incorporate the merging of LoRA (Hu et al., 2021) models.
Taking this a step further, Ties-Merging (Yadav et al., 2023) addresses task conflicts within the Task
Arithmetic paradigm. It accomplishes this by resetting redundant parameters, resolving sign conflicts,
and exclusively merging parameters that exhibit sign-consistency. Task vector-based studies overlook
a critical challenge encountered when dealing with a diverse collection of models, i.e., the coefficients
governing the model merging process play a pivotal role in achieving optimal merging performance.
In contrast, our work specifically emphasizes and addresses this issue to bridge the performance gap.

Overall, our work has three essential differences from existing task vector-based MTL schemes:
(i) They share a merging coefficient across all task vectors, limiting the flexibility of task vector
combinations. By contrast, our method adopts different merging coefficients across different tasks or
even different layers, substantially enhancing the flexibility of adaptations. (ii) Existing works employ
grid-searching the merging coefficients, thus lacking a guiding principle and is costly and infeasible
when the number of tasks is large, while our work takes entropy minimization as a proxy objective
to optimize the merging coefficients efficiently and automatically. (iii) We significantly improve
multi-task performance, generalization to unseen tasks, and robustness to test data distribution shifts.

3 METHODOLOGY

We define the notation and model merging problem in Sec. 3.1, and briefly describe the solution
based on task vectors. In Sec.3.2, we introduce the proposed AdaMerging method in detail.

3.1 PRELIMINARIES

Notation: Let fθ(xi) → ŷi be a neural network model parameterized by a set of weights θ =
{θ1, θ2, . . . , θL}, which takes xi ∈ Rd as an input data and outputs the predicted value ŷi ∈ RC .
Among them, θl is the weight of the l-th (l ∈ {1, 2, . . . , L}) layer, L represents the number of layers
of the network f , d represents the dimension of the input data xi, and C represents the number of
classes. Without loss of generality, we assume that the weights of a well-known pre-trained model,
e.g., ViT (Dosovitskiy et al., 2021) or BERT (Devlin et al., 2019)), are θpre = {θ1pre, θ2pre, . . . , θLpre}.

There are K tasks, and each of them has fine-tuned θpre on their own private training data {xi, yi}
Ntr

k
i=1 ,

N tr
k represents the number of training samples for task k. Consequently, the model’s weights after

fine-tuning for task k are recorded as θk = {θ1k, θ2k, . . . , θLk }.

Problem Definition: The model merging problem is defined as how to combine weights {θk}Kk=1 to
get a new weight θMTL without necessitating a retraining process using the initial task’s training data,
and ensure that fθMTL

can perform tasks 1, 2, . . . ,K simultaneously. A straightforward approach is
to perform weight averaging, i.e., θMTL = 1

K

∑K
k=1 θk, however the performance of this approach

usually drops dramatically (Ilharco et al., 2023; Yadav et al., 2023).

4

Published as a conference paper at ICLR 2024

Task Arithmetic: A recent research (Ilharco et al., 2023) defines the concept of “task vectors” and
completes various task arithmetic operations based on task vectors, such as adding multiple task
vectors to the pre-trained weight θpre to perform MTL. Specifically, as shown in Fig. 2(a), the task
vector Tk w.r.t task k is defined as a vector obtained by performing a subtraction operation with
the fine-tuned weights θk and the pre-trained weights θpre, i.e., Tk = θk − θpre. Furthermore,
multiple task vectors {Tk}Kk=1 are added and merged into the pre-trained model, θMTL = θpre +

λ
∑K

k=1 Tk, where the coefficient λ represents the importance of model merging. On this basis, Ties-
Merging (Yadav et al., 2023) shows that some parameter values in the task vector may be redundant,
or the signs of the parameters may conflict, and direct merging will cause performance losses. Based
on this assumption, they proposed to perform three steps of Trim, Elect Sign and Disjoint Merge on
merging task vectors. We combine these steps and abbreviate them as one Φ() operation. Therefore,
model merging in Ties-Merging can be expressed as θMTL = θpre + λ

∑K
k=1 Φ(Tk).

Task arithmetic is a simple and effective idea. As shown in Fig. 1, task vectors based MTL model
merging methods, i.e., Task Arithmetic (blue line), Ties-Merging (yellow line), are significantly better
than simple weight averaging scheme (pink line). However, there is still a clear gap between them
and the traditional MTL (black line). In addition, task vector-based model merging methods are very
sensitive to the merging coefficient λ. An ill-suited λ will cause the performance to be lower than the
weighted average, or even reach unacceptably low accuracy. When the number of tasks is large, grid
searching the merging coefficients for each task vector is expensive. This motivates us to conduct
further research to narrow the performance gap between task vector-based MTL and traditional MTL.

3.2 ADAPTIVE MODEL MERGING FOR MULTI-TASK LEARNING

In this section, we propose an unsupervised adaptive model merging method for task vectors
based MTL, called AdaMerging. It makes the merging coefficient of each task vector learnable
(Task-wise AdaMerging). Furthermore, different layers of a task vector can also automatically
learn different merging coefficients in AdaMerging (Layer-wise AdaMerging).

3.2.1 ADAMERGING: ADAPTIVE MODEL MERGING

Task-wise AdaMerging: As shown in Fig. 2(c), our Task-wise AdaMerging assigns a separate
merging coefficient λk to each task vector Tk, that is: θMTL = θpre +

∑K
k=1 λkTk. Task-wise

AdaMerging allows task vectors Tk that have a positive transfer to the average MTL performance to
occupy a larger proportion in θMTL, while task vector Tk′ that is harmful to MTL will reduce their
contribution to the merging weight θMTL, thereby improving the average MTL performance.

Layer-wise AdaMerging: However, Task-wise AdaMerging may not be enough to alleviate the
interference of task vectors. In the deep neural network model, the information learned by each
layer is different. For example, the lower layer may learn general features, while the higher layers
may learn task-specific features (Yosinski et al., 2014). Therefore, when merging task vectors, the
weights {T 1

k , T
2
k , . . . , T

L
k } of different layers for each task vector Tk should also have different

contributions {λ1
k, λ

2
k, . . . , λ

L
k } to the final multi-task weights θMTL. Based on this, we propose the

Layer-wise AdaMerging scheme shown in Fig. 2(d), which is formalized as: θMTL =
{
θlMTL

}L

l=1
={

θlpre +
∑K

k=1 λ
l
kT

l
k

}L

l=1
, where L represents the number of layers.

AdaMerging++: The above AdaMerging adaptively merges the original task vector Tk in the Task
Arithmetic (Ilharco et al., 2023). Naturally, it can also adaptively merge the task vector Φ(Tk)
after removing parameter redundant values and sign conflicts in Ties-Merging (Yadav et al., 2023).
We call this variant AdaMerging++, and the corresponding Task-wise AdaMerging++ and Layer-
wise AdaMerging++ versions are formalized as θMTL = θpre +

∑K
k=1 λkΦ(Tk) and θMTL ={

θlMTL

}L

l=1
=

{
θlpre +

∑K
k=1 λ

l
kΦ(T

l
k)
}L

l=1
, respectively.

Now, AdaMerging/AdaMerging++ faces a critical challenge, that is, we only have the task vector
of each task without their initial training data. How to optimize merging coefficients {λk}Kk=1 (or
{λl

k}
K,L
k=1,l=1)? Our inspiration to solve this challenge comes from test-time adaptation (Wang et al.,

5

Published as a conference paper at ICLR 2024

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

0.5

1.0

1.5

2.0

A
ve

ra
ge

 L
os

s

0.23

0.54
0.72 0.68

0.83
0.95

1.17 1.19

1.41 1.49

2.26

DTD

SUN39
7

Cars

RESIS
C45

Euro
SAT

SVHN

GTSRB

MNIS
T

ALL

Dataset

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

0.56

0.66
0.72

0.80
0.86

0.92 0.92
1.00

0.87

Figure 3: Correlation of entropy H(Ŷ) and avareage loss L(Y, Ŷ) on eight tasks (or datasets). (a)
We divided the test samples into eleven groups according to the entropy of the samples, and observed
the average prediction loss of the samples in each group. We observe that groups with smaller entropy
correspond to smaller average losses. (b) We calculated the Spearman correlation coefficient between
entropy and prediction loss on eight tasks (or datasets) and observed a high positive correlation.

2021; Niu et al., 2022; 2023), they adapt the weights of the trained model on unseen test data to cope
with the distribution shifts on the test data.

3.2.2 ENTROPY OPTIMIZATION

We use entropy minimization on multi-task unlabeled test samples as an optimization surrogate
objective function to update the merging coefficients {λk}Kk=1 (or {λl

k}
K,L
k=1,l=1) in our AdaMerging.

Entropy Minimization: For a sample xi, the predicted output of a neural network fθ(xi) is ŷi, the
corresponding Shannon entropy (Shannon, 1948) is expressed as H(ŷi) = −

∑C
c p (ŷi,c) log p (ŷi,c),

where p(ŷi,c) ∈ [0, 1] represents the probability that the input xi is predicted to be the c-th class.
Previous research on test-time adaptation (Wang et al., 2021; Niu et al., 2023) found that optimizing
the model’s parameters based on entropy minimization (Grandvalet & Bengio, 2004; Roy et al.,
2022), minH(ŷi), on test samples can make the model adapt to unseen test data distributions.

However, it is unclear whether entropy minimization can be used as an effective surrogate objective
function in multi-task model merging. To verify whether entropy minimization can be used as a proxy
objective for MTL loss, we performed the analysis on the eight tasks used in the experiment. First, we
combine the test data of the eight tasks as (X,Y) = {{xi, yi}

Nte
k

i=1}Kk=1, and compute the prediction of

the multi-task model fθMTL
on test data as Ŷ = {{fθMTL

(xi)}
Nte

k
i=1}Kk=1. Next, we calculate the loss

between the real label Y and the predicted value Ŷ case-by-case and obtain L(Y, Ŷ) = {ℓ(yi, ŷi)}|Ŷ |
i=1,

where |Ŷ | represents the total number of test samples for all tasks, and ℓ represents a loss function,
such as cross-entropy. We also calculate the entropy of each sample on the test set and get H(Ŷ) =

{H(ŷi)}|Ŷ |
i=1. Finally, we analyze the correlation between entropy H(Ŷ) and prediction loss L(Y, Ŷ)

from two aspects. (i) We divide the multi-task samples into multiple intervals based on entropy H(Ŷ)
from small to large, such as I = {I1, I2, . . . , I11} = {(0.0, 0.1], (0.1 − 0.2], . . . , (1.0,∞)}, and
count the average prediction loss of the samples contained in each interval It (t ∈ {1, 2, . . . , 11}).
As shown in Fig. 3(a), we observe that the average loss corresponding to the interval with small
entropy is also smaller. (ii) We also directly calculated the Spearman correlation coefficient (Myers &
Sirois, 2004) of entropy H(Ŷ) and prediction loss L(Y, Ŷ). As shown in Fig. 3, we observe that the
average correlation between the two on multi-task data (i.e., dark purple “ALL”) is as high as 0.87.
Therefore, we can conclude that entropy minimization (i.e., minH(Ŷ)) can serve as an effective
surrogate objective for loss minimization (i.e., minL(Y, Ŷ)) on MTL. In Fig. 10 of the Appendix,
we further verify that this correlation exists across different training stages of model merging.

Optimization Objective: Based on the above verification, we take entropy minimization as the
optimization proxy goal of the model merging coefficient in our AdaMerging/AdaMerging++. For
example, the optimization form of the merging coefficient in Task-wise AdaMerging is:

min
λ1,λ2,...,λK

K∑
k=1

∑
xi∈Bk

H(fθMTL
(xi)) , where θMTL = θpre +

K∑
k=1

λkTk,

6

Published as a conference paper at ICLR 2024

where Bk represents a batch of unlabeled test samples sampled in task k. The coefficient {λk}Kk=1
can be updated iteratively by obtaining the gradient through backpropagation. This is trivial with
automatic differentiation tools like Pytorch (Paszke et al., 2017). It should be emphasized that, on the
one hand, we do not need all test data to be available. Even if only 0.1% or 1% of unlabeled tests are
available, our method can have significant performance improvements. On the other hand, our extra
training time is also very cheap. These results are presented in the appendix.

4 EXPERIMENT

In this section, we introduce the experimental setup in Sec. 4.1 and the experimental results in Sec. 4.2.
Due to page limitations, some details and results are shown in the Appendix.

4.1 EXPERIMENT SETUP

Datasets and Models: Following Ilharco et al. (2023) and Yadav et al. (2023), we study task
vectors based multi-task model merging on eight image classification datasets: SUN397 (Xiao et al.,
2016), Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019),
SVHN (Yuval, 2011), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), DTD (Cimpoi et al.,
2014). We provide a more detailed description of the dataset in the Appendix A. In the main text, we
use the Vit-B/32 and ViT-L/14 architectures in CLIP (Radford et al., 2021) as pre-trained models to
conduct experiments. We also report the results on the Vit-B/16 architecture in the Appendix B.

Baselines and Metric: Our baselines are mainly divided into two categories, one is non-model
merging, i.e., Individual and Traditional MTL; and the other is various advanced model merging
methods, such as Weight Averaging, Fisher Merging (Matena & Raffel, 2022), RegMean (Jin et al.,
2023), Task Arithmetic (Ilharco et al., 2023) and Ties-Merging (Yadav et al., 2023). Baseline
details are provided in Appendix A. Among them, Task Arithmetic and Ties-Merging are task
vectors based MTL methods, which are also our most important baselines. In addition, our methods
include Task-wise AdaMerging, Task-wise AdaMerging++, Layer-wise AdaMerging, and Layer-wise
AdaMerging++. Unless otherwise specified, our method uses the Layer-wise version. We report the
average accuracy (i.e., Avg Acc) of MTL model on the test set of all tasks as an evaluation metric.

4.2 PERFORMANCE, GENERALIZATION, ROBUSTNESS

In this section, we demonstrate the superiority of our approach over SOTA methods for merging task
vectors by evaluating it from three key perspectives: performance, generalization and robustness.

Significantly Higher MTL Performance. We verify that the proposed AdaMerging method sig-
nificantly outperforms existing model merging methods in performance. As shown in Tab. 1 and
Tab. 2, we tested the performance of merging ViT-B/32 and ViT-L/14 on eight tasks, respectively. We
have the following observations: (i) Individual and Traditional MTL methods achieve the optimal
performance, which are 90.5% and 88.9% under ViT-B/32. However, they all rely on initial training
data for multiple tasks. Additionally, independent fine-tuning requires storing a model for each task.
(ii) Weight Averaging is the simplest model merging solution. Naturally, its performance is also
the lowest. Furthermore, Fisher Merging merged models by calculating parameter importance, and
RegMean imposed the constraint that the distance between the merged MTL model and a single model
is close. Both of them perform better compared to the Weight Averaging. (iii) Advanced task vectors

Table 1: Multi-task performance when merging ViT-B/32 models on eight tasks.
Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Pretrained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
Fisher Merging (Matena & Raffel, 2022) 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean (Jin et al., 2023) 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8

Task Arithmetic (Ilharco et al., 2023) 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
Ties-Merging (Yadav et al., 2023) 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4

Task-wise AdaMerging (Ours) 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
Task-wise AdaMerging++ (Ours) 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 73.7
Layer-wise AdaMerging (Ours) 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
Layer-wise AdaMerging++ (Ours) 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1

7

Published as a conference paper at ICLR 2024

Table 2: Multi-task performance when merging ViT-L/14 models on eight tasks.
Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Pretrained 66.8 77.7 71.0 59.9 58.4 50.5 76.3 55.3 64.5
Individual 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1 94.2
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5

Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 79.6
Fisher Merging (Matena & Raffel, 2022) 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2
RegMean (Jin et al., 2023) 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7

Task Arithmetic (Ilharco et al., 2023) 73.9 82.1 86.6 94.1 87.9 86.7 98.9 65.6 84.5
Ties-Merging (Yadav et al., 2023) 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8 86.0

AdaMerging (Ours) 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
AdaMerging++ (Ours) 79.4 90.3 91.6 97.4 93.4 97.5 99.0 79.2 91.0

Table 3: Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.
Seen Tasks Unseen Tasks

Method SUN397 Cars RESISC45 DTD SVHN GTSRB Avg Acc MNIST EuroSAT Avg Acc
Task Arithmetic (Ilharco et al., 2023) 63.3 62.4 75.1 57.8 84.6 80.4 70.6 77.2 46.2 61.7
Ties-Merging (Yadav et al., 2023) 67.8 66.2 77.2 56.7 77.1 70.9 69.3 75.9 43.3 59.6
AdaMerging (Ours) 65.2 65.9 88.5 61.1 92.2 91.5 77.4 84.0 56.1 70.0
AdaMerging++ (Ours) 68.2 67.6 86.3 63.6 92.6 89.8 78.0 83.9 53.5 68.7

Method SUN397 Cars GTSRB EuroSAT DTD MNIST Avg Acc RESISC45 SVHN Avg Acc
Task Arithmetic (Ilharco et al., 2023) 64.0 64.0 75.2 87.7 57.0 95.7 73.9 52.3 44.9 51.1
Ties-Merging (Yadav et al., 2023) 68.0 67.1 67.7 78.4 56.5 92.8 71.8 58.7 49.2 53.9
AdaMerging (Ours) 67.1 67.8 94.8 94.4 59.6 98.2 80.3 50.2 60.9 55.5
AdaMerging++ (Ours) 68.9 69.6 91.6 94.3 61.9 98.7 80.8 52.0 64.9 58.5

based multi-task merging methods (i.e., Task Arithmetic and Ties-Merging) have achieved good
performance. For example, Ties-Merging has achieved the performance in ViT-B/32 and ViT-L/14 by
72.4% and 86.0%, respectively. However, there is still a big gap between this and Traditional MTL
(i.e., 88.9% and 93.5%, respectively). (iv) Our Task-wise AdaMerging and Task-wise AdaMerging++
use unsupervised learnable coefficients to merge task vectors in Task Arithmetic and Ties-Merging
respectively, bringing 2% and 1.3% performance improvements respectively on ViT-B/32. Thanks
to the more fine-grained fusion solution, on ViT-B/32, our Layer-wise AdaMerging and Layer-wise
AdaMerging++ bring 11% and 8.7% performance improvements compared to Task Arithmetic
and Ties-Merging, while on ViT-L/14, our method brought improvements of 6.3% and 5.0%. Our
AdaMerging greatly reduces the gap between model merging and traditional MTL solutions.

Substantially Improved Generalization. MTL hopes to transfer the knowledge of old tasks to new
tasks and improve the generalization of the MTL model. To this end, we compare the performance
of AdaMerging and task vector-based model merging methods (Task Arithmetic and Ties-Merging)
on two sets of unseen tasks. In Tab. 3, we merge the task vectors corresponding to six tasks and test
on two unseen tasks (i.e. their task vectors are not merged). We observe: (i) On the six seen tasks,
AdaMerging and AdaMerging++ are significantly better than Task Arithmetic and Ties-Merging.
(ii) More importantly, AdaMerging method maintains this superiority on two unseen tasks. For
example, on the two tasks of MNIST and EuroSAT, the average performance of AdaMerging and
AdaMerging++ improved by 8.3% and 9.1%, respectively, compared with Task Arithmetic and
Ties-Merging. In addition, on the two unseen tasks of RESISC45 and SVHN, the average accuracy
improvements of AdaMerging and AdaMerging++ are 4.4% and 5.4%, respectively. These results
indicate that our AdaMerging and AdaMerging++ methods generalize better to unseen tasks.

Robust to Test Data Distribution Shifts. Considering that the model provider only releases the
fine-tuned model and does not expose the original training data, the model merger’s test data may
differ from the model owner’s training data. we tested whether AdaMerging is still effective when
the test data distribution shifts significantly. Following Hendrycks & Dietterich (2019), we created 7
corruption test data, and examples of corrupted images are shown Fig. 5 in Appendix B. The results on
ViT-B/32 are shown in Tab. 4. On clean test data, AdaMerging has an 8.2% performance improvement
compared to Task Arithmetic. On the corruption test datasets of Motion Blur, Impulse Noise, Gaussian
Noise, Pixelate, Spatter, Contrast and JPEG Compression, AdaMerging’s performance is 11.2%,
6.7%, 5.8%, 8.9%, 6.7%, 10.1% and 9.8% higher than Task Arithmetic respectively. These evidences
fully demonstrate that our AdaMerging is more robust to test data distribution shifts.

Summary: Our AdaMerging/AdaMerging++ allows us to adapt to unlabeled test data of task vectors,
unlabeled test data of unseen tasks, or unlabeled corruption data in an unsupervised way when training
model merging coefficients, thereby optimizing the best suitable model merging coefficients are used
to obtain a model with better performance, generalization or robustness.

8

Published as a conference paper at ICLR 2024

Table 4: Robustness results when merging ViT-B/32 models on four tasks.
Clean Test Set Corruption Test Set (Motion Blur)

Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 66.9 94.7 82.6 75.1 79.8 65.3 68.1 80.0 64.2 69.4
AdaMerging (Ours) 73.7 96.1 85.8 96.3 88.0 71.2 74.6 82.7 94.1 80.6

Corruption Test Set (Impulse Noise) Corruption Test Set (Gaussian Noise)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 62.1 49.1 72.7 40.4 56.1 63.6 55.4 75.9 49.4 61.1
AdaMerging (Ours) 67.2 30.8 75.9 77.5 62.8 69.9 41.2 80.6 76.0 66.9

Corruption Test Set (Pixelate) Corruption Test Set (Spatter)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 2.78 41.5 22.8 66.6 33.4 63.3 60.1 73.9 54.3 62.9
AdaMerging (Ours) 2.49 53.8 22.4 90.6 42.3 69.9 43.6 75.4 89.4 69.6

Corruption Test Set (Contrast) Corruption Test Set (JPEG Compression)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 66.0 62.9 75.9 70.6 68.9 66.5 72.3 82.2 60.0 70.3
AdaMerging (Ours) 71.7 69.8 79.3 95.1 79.0 70.9 75.8 83.6 90.1 80.1

4.3 ADAMERGING ANALYSIS

Task-wise Coefficients. In Tab. 5, we consistently observe that the merging coefficients of each task
vector are inconsistent. When the number of tasks is relatively large, it is obviously undesirable to
grid search the coefficients of each task, but our AdaMerging avoids this manual search process.

Table 5: Model merging coefficients {λk}Kk=1 change with respect to training steps on ViT-B/32.
Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Task-wise AdaMerging 0.2202 0.1413 0.2826 0.3284 0.2841 0.4003 0.1978 0.1692
Task-wise AdaMerging++ 0.3171 0.1698 0.4235 0.5198 0.4386 0.5803 0.2452 0.2885

Layer-wise Coefficients. Fig. 4 shows the merging coefficients learned by Layer-wise AdaMerging
and AdaMerging++ on ViT-B/32 respectively. We observed that: (i) The coefficients learned by
each layer of each task vector are different, which shows that the importance of each layer in the
model merging process is different. (ii) The coefficients learned by shallow layers are generally
smaller than those of deep layers, which indicates that shallow layers rely more on the weights of the
pre-trained model rather than the weights provided by task vectors, while the deep layers rely more on
the weights provided by the task vectors. This may be since the shallow layer learns general features,
which are cross-task, while the deep layer learns task-specific features (Yosinski et al., 2014).

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB
MNIST

DTD 0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB
MNIST

DTD 0.00

0.25

0.50

0.75

1.00

Figure 4: Learned model merging coefficients {λl
k}

K,L
k=1,l=1 of Layer-wise AdaMerging (Above) and

AdaMerging++ (Below) on ViT-B/32. The k-th row represents the k-th task vector, the l-th column
represents the l-th layer, and the intersection point represents the coefficient λl

k.

5 CONCLUSION AND FUTURE WORK

Advanced task arithmetic shows that new models built by merging multiple task vectors into a pre-
trained model can execute MTL without needing original training data. However, task vector-based
MTL methods are very sensitive to the merging coefficient. In this paper, we propose an adaptive
model merging scheme (abbreviated as AdaMerging) to solve this problem, which takes entropy
minimization as a surrogate objective to automatically learn the merging coefficients for each task
vector or layer. Experimental results show that the proposed AdaMerging is superior to the current
SOTA model merging methods in multi-task performance, generalization and robustness. In the
future, we plan to further explore model merging solutions for different architectures.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

Li Shen is supported by STI 2030—Major Projects (No. 2021ZD0201405). Enneng Yang and
Guibing Guo are supported by the National Natural Science Foundation of China under Grant No.
62032013, the Science and technology projects in Liaoning Province (No. 2023JH3/10200005), and
the Fundamental Research Funds for the Central Universities under Grant No. N2317002.

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In ICLR, 2023.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. NeurIPS, 34:22405–22418,
2021.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In ICML, pp. 794–803.
PMLR, 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. In NeurIPS, 2020.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, pp. 3606–3613, 2014.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In ICML, pp. 160–167, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT 2019, pp. 4171–4186.
Association for Computational Linguistics, 2019.

Ke Ding, Xin Dong, Yong He, Lei Cheng, Chilin Fu, Zhaoxin Huan, Hai Li, Tan Yan, Liang Zhang,
Xiaolu Zhang, et al. Mssm: a multiple-level sparse sharing model for efficient multi-task learning.
In SIGIR, pp. 2237–2241, 2021.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning for multiple
language translation. In ACL, pp. 1723–1732, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ICLR, 2021.

Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions
of the Royal Society of London. Series A, containing papers of a mathematical or physical character,
222(594-604):309–368, 1922.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. NeurIPS,
17, 2004.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
ICML, pp. 3854–3863. PMLR, 2020.

Vipul Gupta, Santiago Akle Serrano, and Dennis DeCoste. Stochastic weight averaging in parallel:
Large-batch training that generalizes well. In ICLR. OpenReview.net, 2020.

10

Published as a conference paper at ICLR 2024

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen,
Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-k: Differentiable selection in the mixture of
experts with applications to multi-task learning. NeurIPS, 34:29335–29347, 2021.

Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo, and James Caverlee. Metabalance:
Improving multi-task recommendations via adapting gradient magnitudes of auxiliary tasks. WWW,
pp. 2205–2215, 2022.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. ICLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In ICLR, 2021.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023.

Junguang Jiang, Baixu Chen, Junwei Pan, Ximei Wang, Dapeng Liu, Jie Jiang, and Mingsheng
Long. Forkmerge: Mitigating negative transfer in auxiliary-task learning. Advances in Neural
Information Processing Systems, 36, 2024.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. In ICLR, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In ICCV workshops, pp. 554–561, 2013.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A survey.
arXiv preprint arXiv:2309.15698, 2023.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In ICLR, 2019.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distribu-
tion shifts. arXiv preprint arXiv:2303.15361, 2023.

Petro Liashchynskyi and Pavlo Liashchynskyi. Grid search, random search, genetic algorithm: a big
comparison for nas. arXiv preprint arXiv:1912.06059, 2019.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. NeurIPS, 34:18878–18890, 2021.

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural
network fusion via graph matching with applications to model ensemble and federated learning. In
ICML, pp. 13857–13869. PMLR, 2022.

Jialin Liu, Antoine Moreau, Mike Preuss, Jeremy Rapin, Baptiste Roziere, Fabien Teytaud, and
Olivier Teytaud. Versatile black-box optimization. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, pp. 620–628, 2020.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention. In
CVPR, pp. 1871–1880. Computer Vision Foundation / IEEE, 2019a.

11

Published as a conference paper at ICLR 2024

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for
natural language understanding. In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.),
ACL, pp. 4487–4496. Association for Computational Linguistics, 2019b.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio Feris. Fully-
adaptive feature sharing in multi-task networks with applications in person attribute classification.
In CVPR, pp. 5334–5343, 2017.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. Modeling task relationships
in multi-task learning with multi-gate mixture-of-experts. In SIGKDD, pp. 1930–1939. ACM,
2018.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. NeurIPS,
35:17703–17716, 2022.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. In CVPR, pp. 3994–4003. IEEE Computer Society, 2016.

Leann Myers and Maria J Sirois. Spearman correlation coefficients, differences between. Encyclope-
dia of statistical sciences, 12, 2004.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In ICML, pp. 16888–16905. PMLR,
2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In ICLR, 2023.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In NeurIPS, 2023.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences, 63(10):
1872–1897, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763. PMLR, 2021.

Subhankar Roy, Martin Trapp, Andrea Pilzer, Juho Kannala, Nicu Sebe, Elisa Ricci, and Arno Solin.
Uncertainty-guided source-free domain adaptation. In ECCV, pp. 537–555. Springer, 2022.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In NeurIPS, pp.
525–536, 2018.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Derun Song, Enneng Yang, Guibing Guo, Li Shen, Linying Jiang, and Xingwei Wang. Multi-scenario
and multi-task aware feature interaction for recommendation system. TKDD, 2024.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In IJCNN, pp. 1453–1460. IEEE,
2011.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In ICML, pp. 9120–9132. PMLR,
2020.

George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, and Judy Hoffman. Zipit! merging
models from different tasks without training. arXiv preprint arXiv:2305.03053, 2023.

12

Published as a conference paper at ICLR 2024

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. NeurIPS, 33:8728–8740, 2020.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. TPAMI, 44(7):
3614–3633, 2021.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In ICLR, 2021.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In ICLR, 2020.

Zhenyi Wang, Xiaoyang Wang, Li Shen, Qiuling Suo, Kaiqiang Song, Dong Yu, Yan Shen, and
Mingchen Gao. Meta-learning without data via wasserstein distributionally-robust model fusion.
In UAI, pp. 2045–2055. PMLR, 2022.

Zhenyi Wang, Li Shen, Tiehang Duan, Qiuling Suo, Le Fang, Wei Liu, and Mingchen Gao. Distri-
butionally robust memory evolution with generalized divergence for continual learning. TPAMI,
2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, pp. 23965–23998. PMLR, 2022.

Chengyue Wu, Teng Wang, Yixiao Ge, Zeyu Lu, Ruisong Zhou, Ying Shan, and Ping Luo. pi-tuning:
Transferring multimodal foundation models with optimal multi-task interpolation. In ICML, pp.
37713–37727. PMLR, 2023.

Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information transfer
in multi-task learning. In ICLR. OpenReview.net, 2020.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:
Exploring a large collection of scene categories. IJCV, 119:3–22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interference
when merging models. NeurIPS, 2023.

Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and
Guibing Guo. Adatask: A task-aware adaptive learning rate approach to multi-task learning. In
AAAI, volume 37, pp. 10745–10753, 2023.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? NeurIPS, 27, 2014.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. NeurIPS, 33:5824–5836, 2020.

Netzer Yuval. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learning, 2011.

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian He. Composing parameter-efficient modules
with arithmetic operations. arXiv preprint arXiv:2306.14870, 2023.

13

Published as a conference paper at ICLR 2024

A EXPERIMENT SETTINGS

This section provides a detailed dataset description, baseline description, and training details.

Dataset Details. Following Task Arithmetic (Ilharco et al., 2023), Ties-Merging (Yadav et al., 2023),
we study multi-task model merging on eight image classification datasets below.

• SUN397 (Xiao et al., 2016) is a scene classification dataset, which contains images in 397
classes, with a total of 108,754 images, and each class has at least 100 images.

• Stanford Cars (Cars) (Krause et al., 2013) is a car classification dataset, which contains
196 classes of cars and a total of 16,185 images. Each class in the training set and test set is
divided at a ratio of 1:1.

• RESISC45 (Cheng et al., 2017) is a remote sensing image scene classification data set. It
contains 45 classes of scenes and a total of 31,500 images, of which there are approximately
700 images in each class.

• EuroSAT (Helber et al., 2019) is a satellite image classification dataset containing 27,000
labeled and geo-referenced images in 10 classes.

• SVHN (Yuval, 2011) is a real-world digital classification data set extracted from house
numbers in Google Street View images. There are 10 classes in total. The training set
contains 73,257 samples, the test set contains 26,032 samples, and 531,131 additional simple
samples can be used as additional training data.

• GTSRB (Stallkamp et al., 2011) is a traffic sign classification dataset, which contains 43
classes of traffic signs with a total sample size of more than 50,000.

• MNIST (LeCun, 1998) is a benchmark dataset for image classification. It contains grayscale
images of handwritten digits in 10 classes. The number of images in the training and test
sets is 60,000 and 10,000 respectively. The number of images in each class is balanced.

• DTD (Cimpoi et al., 2014) is a texture classification data set, which contains 47 classes, a
total of 5,640 images, and each class has approximately 120 images.

Baseline Details. Our experiments involve the following seven comparison methods and four
variations of our method.

• Individual means that each task uses an independent fine-tuned model, which has no
interference between tasks, but cannot perform multiple tasks simultaneously.

• Traditional MTL collects the original training data of all tasks together to train a multi-task
model. It can be used as a reference upper bound for model merging work.

• Weight Averaging is the simplest method of model merging, which directly averages the
parameters of multiple models. It can be used as a lower bound for model merging.

• Fisher Merging (Matena & Raffel, 2022) calculates the Fisher information matrix (Fisher,
1922) to measure the importance of each parameter when merging models, and model
merging is performed according to the guidance of this importance.

• RegMean (Jin et al., 2023) imposes a constraint when merging models, that is, the L2

distance between the merged model and a single model is required to be as small as possible.
• Task Arithmetic (Ilharco et al., 2023) first defines the concept of “task vectors” and merges

task vectors into a pre-trained model to execute multi-task learning.
• Ties-Merging (Yadav et al., 2023) further solves the task conflict problem in Task Arith-

metic (Ilharco et al., 2023). It eliminates redundant parameters and resolves symbol conflicts
through three steps: Trim, Elect Sign, and Disjoint Merge.

• Task-wise AdaMerging (Ours) is based on Task Arithmetic (Ilharco et al., 2023), which
uses an unsupervised method to automatically learn the merging coefficient of the task
vector in Task Arithmetic.

• Task-wise AdaMergign++ (Ours) is based on Ties-Merging (Yadav et al., 2023), which
uses an unsupervised approach to learn a merging coefficient for each task vector in Ties-
Merging.

• Layer-wise AdaMerging (Ours) automatically learns a merging coefficient for each layer
of each task vector in Task Arithmetic (Ilharco et al., 2023).

• Layer-wise AdaMergign++ (Ours) uses an unsupervised approach to learn a merging
coefficient for each layer of each task vector in Ties-Merging (Yadav et al., 2023).

Implementation Details. For the seven baseline methods, we follow the experimental settings in
Task Arithmetic (Ilharco et al., 2023) and Ties-Merging (Yadav et al., 2023). In our experiments,

14

Published as a conference paper at ICLR 2024

the merging coefficient λ of Task Arithmetic and Ties-Merging is set to 0.3 by default. For our four
variants, we initialize all coefficients {λk}Kk=1 (or {λl

k}
K,L
k=1,l=1) to 0.3 by default before learning

and then update them unsupervised. We use an Adam optimizer (Kingma & Ba, 2014) to update the
merging coefficients, with the learning rate set to 0.001, the momentum to (0.9, 0.999), and the batch
size to 16. To avoid significantly increasing training costs, we only trained 500 iterations to update
the merging coefficient. Pre-trained models ViT-B/32, ViT-B/16 and ViT-L/14 from CLIP (Radford
et al., 2021) like Task Arithmetic (Ilharco et al., 2023) and Ties-Merging (Yadav et al., 2023).

B EXPERIMENT RESULTS

B.1 PERFORMANCE, GENERALIZATION AND ROBUSTNESS

Performance. Tab. 6 shows the average accuracy of merging ViT-B/16 on eight tasks. We can
observe that: (i) Ties-Merging alleviates the conflict problem of task vectors in Task Arithmetic,
thus achieving a 3.2% performance improvement compared to Task Arithmetic. (ii) Our Task-wise
AdaMerging and AdaMerging++ automatically learn a merging coefficient for each task vector in
Task Arithmetic and Ties-Merging, thus bringing about 2.2% and 1.0% performance improvements,
respectively. (iii) Our Layer-wise AdaMerging and AdaMerging++ further adaptively learn a merging
coefficient for each layer of each task vector in Task Arithmetic and Ties-Merging, ultimately
achieving performance improvements of 11.1% and 8.7%. These results further demonstrate the
effectiveness of our AdaMerging scheme in multi-task model merging.

Table 6: Multi-task performance when merging ViT-B/16 models on eight tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Task Arithmetic (Ilharco et al., 2023) 61.1 65.9 74.0 76.2 88.0 73.9 98.4 53.0 73.8
Ties-Merging (Yadav et al., 2023) 69.1 72.5 80.5 84.0 85.0 71.5 98.1 54.9 77.0

Task-wise AdaMerging (Ours) 64.4 64.2 75.4 86.7 86.3 86.7 97.6 46.9 76.0
Task-wise AdaMerging++ (Ours) 67.8 70.2 79.9 89.2 87.5 79.2 98.3 51.9 78.0
Layer-wise AdaMerging (Ours) 70.2 80.7 81.6 94.8 91.6 95.8 98.5 66.2 84.9
Layer-wise AdaMerging++ (Ours) 71.8 80.8 84.1 94.3 91.9 94.5 98.7 69.8 85.7

Generalization. As shown in Tab. 7, we demonstrate the generalization of Layer-wise AdaMerging
under the ViT-B/16 architecture. In the two unseen test tasks of EuroSAT and MNIST (their
corresponding task vectors are not merged), our AdaMerging improved the average accuracy by 2.3%
compared to Task Arithmetic. On two unseen tasks, RESISC45 and SVHN, the average accuracy
increased by 1.1%. This shows that AdaMerging has better generalization properties.

Table 7: Generalization results on two unseen tasks when merging ViT-B/16 models on six tasks.

Seen Tasks Unseen Tasks

Method SUN397 Cars RESISC45 DTD SVHN GTSRB Avg Acc EuroSAT MNIST Avg Acc
Task Arithmetic 68.1 73.0 81.6 59.1 89.1 83.8 75.8 43.9 87.5 65.7
AdaMerging (Ours) 69.1 79.3 90.0 66.2 95.2 94.4 82.4 45.9 90.1 68.0

Method SUN397 Cars GTSRB EuroSAT DTD MNIST Average RESISC45 SVHN Average

Task Arithmetic 69.0 73.8 81.1 87.6 58.2 98.4 78.0 56.0 67.7 61.8
AdaMerging (Ours) 72.9 81.0 97.1 96.4 66.5 99.2 85.5 52.3 75.6 63.9

Robustness. Tab. 8 shows the robustness test of AdaMerging and Task Arithmetic based on ViT-B/16
on seven corruption test datasets. Fig. 5 shows an example of corruption. We can observe that in
the test datasets Motion Blur, Impulse Noise, Gaussian Noise, Pixelate, Spatter, Contrast and JPEG
Compression where the distribution drifts, the average accuracy of AdaMerging is 9.9%, 8.2%, 7.8%,
6.8%, 12.4%, 9.5% and 9.7% higher than that of Task Arithmetic, respectively. This shows that our
AdaMerging is more robust to test data distribution shifts than Task Arithmetic.

B.2 ANALYSIS EXPERIMENT

Task Relationship Analysis. As shown in Fig. 6(a) and (b), we show the correlation between pairs
of task vectors in ViT-B/32 and ViT-L/14, respectively. We observe a phenomenon consistent with
Task Arithmetic (Ilharco et al., 2023), that is, these task vectors are almost orthogonal to each other.

15

Published as a conference paper at ICLR 2024

Table 8: Robustness results when merging ViT-B/16 models on four tasks.

Clean Test Set Corruption Test Set (Motion Blur)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 75.3 96.3 85.3 80.5 84.3 73.5 70.9 83.9 72.2 75.1
AdaMerging (Ours) 83.4 97.2 88.6 97.5 91.7 81.3 75.9 87.4 95.6 85.0

Corruption Test Set (Impulse Noise) Corruption Test Set (Gaussian Noise)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 70.4 59.5 75.2 54.0 64.8 72.2 60.8 78.5 51.0 65.6
AdaMerging (Ours) 77.6 42.1 81.9 90.2 73.0 79.1 58.9 81.2 74.5 73.4

Corruption Test Set (Pixelate) Corruption Test Set (Spatter)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 03.8 38.0 24.8 71.3 34.5 72.1 58.4 79.9 60.1 67.6
AdaMerging (Ours) 04.1 46.4 23.6 91.3 41.3 79.3 60.9 85.8 93.7 80.0

Corruption Test Set (Contrast) Corruption Test Set (JPEG Compression)
Method Cars EuroSAT RESISC45 GTSRB Avg Acc Cars EuroSAT RESISC45 GTSRB Avg Acc
Task Arithmetic 73.4 62.5 81.3 76.9 73.5 75.1 73.1 84.8 64.7 74.4
AdaMerging (Ours) 81.4 68.1 85.8 96.8 83.0 81.9 76.0 87.3 91.0 84.1

Clean Motion Blur Contrast JPEG Compression

Spatter Pixelate Impulse Noise Gaussian Noise

Figure 5: An example of corruption data visualization, in which the corruption image generation
method refers to Hendrycks & Dietterich (2019).

In particular, there are very few task vectors with high similarity between them, such as SVHN and
MNIST, because they are both handwritten digit recognition tasks. The orthogonality of task vectors
provides good initial conditions for model merging, indicating that they have the potential to be
combined into a single model, and our results show that this is indeed the case. Further, we merge
four groups of task vectors with different correlation degrees, namely (SVHN, MNIST), (SVHN,
GTSRB), (SVHN, SUN397), and (SVHN, EuroSAT). The results are shown in Fig. 7. We observe
that under task vectors with different degrees of correlation, our AdaMerging technique is always
effective because it aims to adaptively learn optimal merging coefficients.

Impact of the Amount of Available Test Data on Performance. The AdaMerging proposed in this
paper requires an unlabeled test dataset to perform entropy minimization optimization. Having all
test data available may be unrealistic in some scenarios. In this section, we verify the performance
changes of AdaMerging when different amounts (e.g., 0.1%, 1%, 5%, 100%) of test data are available.
As shown in Fig. 8 and Tab. 9, we observed that even when only 0.1% of unlabeled test data are
available, our AdaMerging and AdaMerging++ still have a performance improvement of 4.9% and

16

Published as a conference paper at ICLR 2024

SUN39
7

Cars

RESISC45

Euro
SAT

SVHN

GTSRB

MNIST
DTD

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

1.00 0.04 0.04 0.04 0.03 0.03 0.03 0.04

0.04 1.00 0.03 0.03 0.03 0.04 0.04 0.04

0.04 0.03 1.00 0.07 0.03 0.04 0.04 0.05

0.04 0.03 0.07 1.00 0.05 0.05 0.04 0.04

0.03 0.03 0.03 0.05 1.00 0.09 0.16 0.03

0.03 0.04 0.04 0.05 0.09 1.00 0.08 0.04

0.03 0.04 0.04 0.04 0.16 0.08 1.00 0.04

0.04 0.04 0.05 0.04 0.03 0.04 0.04 1.00
0.0

0.1

0.2

0.3

0.4

0.5

(a) ViT-B/32

SUN39
7

Cars

RESISC45

Euro
SAT

SVHN

GTSRB

MNIST
DTD

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

1.00 0.02 0.03 0.02 0.02 0.03 0.02 0.03

0.02 1.00 0.02 0.02 0.02 0.03 0.03 0.02

0.03 0.02 1.00 0.05 0.02 0.03 0.03 0.03

0.02 0.02 0.05 1.00 0.04 0.04 0.04 0.03

0.02 0.02 0.02 0.04 1.00 0.06 0.12 0.02

0.03 0.03 0.03 0.04 0.06 1.00 0.06 0.03

0.02 0.03 0.03 0.04 0.12 0.06 1.00 0.03

0.03 0.02 0.03 0.03 0.02 0.03 0.03 1.00
0.0

0.1

0.2

0.3

0.4

0.5

(b) ViT-L/14

Figure 6: Cosine similarity between task vectors on ViT-B/32 and ViT-L/14.

0 100 200 300 400 500
Iterations

85

90

95

100

Ac
cu

ra
cy

 (%
)

Individual SVHN
Individual MNIST
Individual Avg

AdaMerging SVHN
AdaMerging MNIST
AdaMerging Avg

(a) SVHN and MNIST

0 100 200 300 400 500
Iterations

85

90

95

100

Ac
cu

ra
cy

 (%
)

Individual SVHN
Individual GTSRB
Individual Avg

AdaMerging SVHN
AdaMerging GTSRB
AdaMerging Avg

(b) SVHN and GTSRB

0 100 200 300 400 500
Iterations

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Individual SVHN
Individual SUN397
Individual Avg

AdaMerging SVHN
AdaMerging SUN397
AdaMerging Avg

(c) SVHN and SUN397

0 100 200 300 400 500
Iterations

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Individual SVHN
Individual EuroSAT
Individual Avg

AdaMerging SVHN
AdaMerging EuroSAT
AdaMerging Avg

(d) SVHN and EuroSAT
Figure 7: Merging of task vectors with different correlations on the ViT-B/32 model. Note that when
iteration=0, it also represents the performance of Task Arithmetic (Ilharco et al., 2023) (λ = 0.3).

5.5%, respectively, compared to Task Arithmetic and Ties-Merging. In addition, when 5% of the data
are available, it can almost achieve a performance comparable to 100% of the data. This shows that
our AdaMerging is valuable and can bring significant performance improvements even with a small
amount of data.

Table 9: Impact of the amount of available test data on performance when merging ViT-B/32 models.
Method Available TestSet SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Task Arithmetic (Ilharco et al., 2023) 0.00% 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
Layer-wise AdaMerging (Ours) 0.10% 62.5 59.7 71.2 69.5 89.4 84.2 98.2 57.5 74.0
Layer-wise AdaMerging (Ours) 1.00% 61.9 66.3 81.8 86.0 88.6 85.8 97.4 52.5 77.5
Layer-wise AdaMerging (Ours) 5.00% 63.7 68.6 79.1 93.3 86.5 91.7 97.2 61.9 80.1
Layer-wise AdaMerging (Ours) 100.0% 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1

Ties-Merging (Yadav et al., 2023) 0.00% 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4
Layer-wise AdaMerging++ (Ours) 0.10% 70.0 66.2 74.6 79.9 89.3 83.6 98.4 61.2 77.9
Layer-wise AdaMerging++ (Ours) 1.00% 66.9 68.6 81.4 91.8 89.2 87.1 98.1 61.8 80.6
Layer-wise AdaMerging++ (Ours) 5.00% 66.4 68.4 81.5 92.9 90.0 89.0 98.2 61.5 81.0
Layer-wise AdaMerging++ (Ours) 100.0% 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1

Supervised AdaMerging Analysis. This paper uses unsupervised entropy minimization as a proxy
objective for supervised cross-entropy loss to optimize model merging coefficients. Therefore,
AdaMerging trained with supervised cross-entropy loss should be an upper bound on our unsupervised
AdaMerging. As shown in Fig. 9 and Tab. 10, we observe that the performance of our unsupervised
AdaMerging version is very close to that of the supervised AdaMerging version. For example, the
Avg Acc of supervised Task-wise AdaMerging is 71.3%, while the Avg Acc of our unsupervised
Task-wise AdaMerging is 71.1%. This also further verifies that it is reasonable for us to use entropy
minimization as a proxy for cross-entropy loss in merging coefficients learning.

17

Published as a conference paper at ICLR 2024

0 100 200 300 400 500
Iterations

70

75

80

85

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Task Arithmetic
AdaMerging(0.1%)
AdaMerging(1%)
AdaMerging(5%)
AdaMerging(100%)

(a) Task Arithmetic and AdaMerging

0 100 200 300 400 500
Iterations

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
) TIES-Merging

AdaMerging++(0.1%)
AdaMerging++(1%)
AdaMerging++(5%)
AdaMerging++(100%)

(b) Ties-Merging and AdaMerging++

Figure 8: Impact of the amount of available test data (e.g., 0.1%, 1%, 5%, 100%) on performance
when merging ViT-B/32 models.

Table 10: Performance comparison between supervised and unsupervised versions of AdaMerging.
Method Label SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Task Arithmetic (Ilharco et al., 2023) - 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1

Task-wise AdaMerging Supervised 58.4 56.4 74.8 81.2 81.5 77.4 88.3 52.3 71.3
Task-wise AdaMerging Unsupervised 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
Layer-wise AdaMerging Supervised 66.8 68.4 85.3 92.4 88.7 89.8 95.9 65.6 81.6
Layer-wise AdaMerging Unsupervised 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1

Ties-Merging (Yadav et al., 2023) - 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4

Task-wise AdaMerging++ Supervised 61.6 59.3 77.8 80.1 84.8 79.1 91.5 55.1 73.7
Task-wise AdaMerging++ Unsupervised 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 73.7
Layer-wise AdaMerging++ Supervised 68.2 69.8 84.8 93.4 89.3 89.1 97.3 64.3 82.0
Layer-wise AdaMerging++ Unsupervised 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1

Parameter Cost Analysis. As shown in Tab. 11, our AdaMerging introduces very few coefficients
that need to be updated. The total number of parameters of the eight task vectors is 907,589,640,
and our Task-wise AdaMerging only added 8 parameters, and Layer-wise AdaMerging added 1,248
parameters.

Time Cost Analysis. As shown in Tab. 12, we show the performance that AdaMerging can achieve un-
der different training costs (based on a single GeForce RTX 3090). We observed that our AdaMerging
brought about a 2% performance improvement when it took 7.5 minutes longer than Task Arithmetic.
When training for 50 minutes, AdaMerging brought an 8% performance improvement. This shows
that AdaMering is very cost-effective and can bring significant performance improvements with only
a small amount of training time.

Merging Coefficients Visualization. Fig. 11 shows the changes during the iteration process of
merging coefficient optimization of each task vector in Task-wise AdaMerging and AdaMerging++,
which is shown every ten steps. In addition, Fig. 12 and Fig. 13 show the merging coefficients of
eight task vectors learned by Layer-wise AdaMerging and AdaMerging++ on ViT-B/16 respectively.
Finally, Fig. 14 and Fig. 15 show the coefficients learned under ViT-L/14. We can clearly observe that
in different layers of different task vectors, the learned merging coefficients are different. Finding the
merging coefficients of so many layers through grid search is almost impossible.

Visualization of Spearman’s Correlation Coefficient Between Entropy and Loss. As shown
in Fig. 10, we show the correlation changes of unsupervised entropy minimization and supervised
cross-entropy loss at different training stages (i.e., the number of iterations are {0, 100, 200, 300,
400, 500} respectively). We observe that in the merging coefficients learning process of AdaMerging,
entropy minimization and cross-entropy loss always have a high correlation. Therefore, entropy
minimization can be used as a surrogate objective to optimize model merging coefficients.

Visualization of Correlation between Entropy and Loss. As shown in Fig. 16, we analyze the
correlation between the entropy and the model’s prediction loss for eight tasks (or datasets) on the
initial merged model. As described in Sec. 3.2.2, in each dataset, we sort the entropy on the test
samples from small to large into eleven groups and observe the average loss of sample prediction
within each group. We observe that groups with smaller entropy generally have smaller average losses.
Therefore, it is reasonable to take Shannon entropy minimization as an unsupervised optimization
surrogate objective for loss (e.g., cross-entropy) minimization.

18

Published as a conference paper at ICLR 2024

0 100 200 300 400 500
Iterations

70

75

80

85

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Task Arithmetic
Task-wise AdaMerging (supervised)
Task-wise AdaMerging (unsupervised)
Task-wise AdaMerging (supervised)
Task-wise AdaMerging (unsupervised)

(a) AdaMerging

0 100 200 300 400 500
Iterations

75

80

85

Av
er

ag
e

Ac
cu

ra
cy

 (%
) TIES-Merging

Task-wise AdaMerging++ (supervised)
Task-wise AdaMerging++ (unsupervised)
Task-wise AdaMerging++ (supervised)
Task-wise AdaMerging++ (unsupervised)

(b) AdaMerging++

Figure 9: Supervised and Unsupervised AdaMerging/AdaMerging++ merging ViT-B/32 models.

Table 11: Parameter cost of model merging for AdaMering on ViT-B/32.
Method Task Arithmetic Ties-Merging Task-wise AdaMerging Layer-wise AdaMerging

Total number of model merging parameters (all task vectors) 907,589,640 907,589,640 907,589,640 907,589,640
Total number of trainable model merging coefficients - - 8 1,248

Table 12: Time cost of model merging for AdaMering on ViT-B/32.
Training Time Base +7.5 min +12.5 min +25 min +50 min +100 min +125 min

Avg Acc of Layer-wise AdaMerging 69.1 71.1 72.1 74.5 77.1 79.7 80.1
Avg Acc of Layer-wise AdaMerging++ 72.4 74.1 74.8 76.3 78.3 80.5 81.1

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

0.9

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.87
0.89 0.91 0.91 0.92 0.92

ALL

0 100 200 300 400 500
Iteration

0.50

0.55

0.60

0.65

0.70

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.56 0.56
0.59

0.61

0.64
0.66

DTD

0 100 200 300 400 500
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.66

0.70
0.71 0.72 0.73 0.73

SUN397

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.72

0.77
0.80 0.81 0.82 0.83

Cars

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

0.9

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.80
0.84

0.86 0.87 0.88 0.89

RESISC45

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.86

0.96 0.98 0.98 0.97 0.97

EuroSAT

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

0.9

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.92 0.94 0.94 0.94 0.94 0.93

SVHN

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

0.92
0.95

0.98 0.99 0.99 0.99

GTSRB

0 100 200 300 400 500
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n

C
oe

ffi
ci

en
t

1.00 1.00 1.00 1.00 1.00 1.00

MNIST

Figure 10: Spearman correlation coefficient between entropy H(Ŷ) and avareage loss L(Y, Ŷ) on
eight tasks (or datasets) at different stages of training(e.g., Iteration={0, 100, 200, 300, 400, 500}),
and we observed a high positive correlation.

0 10 20 30 40 50
iteration(×10)

0.0

0.2

0.4

0.6

k

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB

MNIST
DTD

0 10 20 30 40 50
iteration(×10)

0.0

0.2

0.4

0.6

0.8

k

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB

MNIST
DTD

Figure 11: Model merging coefficients {λk}Kk=1 change with respect to training steps on ViT-B/32:
(a) Task-wise AdaMerging; (b) Task-wise AdaMerging++. Each line represents the change process
of the coefficient λk of a task vector Tk (k ∈ {1, 2, . . . ,K}).

19

Published as a conference paper at ICLR 2024

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

Layers

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB
MNIST

DTD

Ta
sk

 V
ec

to
rs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Learned model merging coefficients of Layer-wise AdaMerging on ViT-B/16. The k-th row
represents the k-th task vector, the l-th column represents the l-th layer, and the intersection point represents the
coefficient λl

k.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

15
2

15
6

Layers

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB
MNIST

DTD

Ta
sk

 V
ec

to
rs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Learned model merging coefficients of Layer-wise AdaMerging++ on ViT-B/16. The k-th row
represents the k-th task vector, the l-th column represents the l-th layer, and the intersection point represents the
coefficient λl

k.

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

20
3

21
0

21
7

22
4

23
1

23
8

24
5

25
2

25
9

26
6

27
3

28
0

28
7

29
4

30
1

Layers

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB
MNIST

DTD

Ta
sk

 V
ec

to
rs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: Learned model merging coefficients of Layer-wise AdaMerging on ViT-L/14. The k-th row
represents the k-th task vector, the l-th column represents the l-th layer, and the intersection point represents the
coefficient λl

k.

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

20
3

21
0

21
7

22
4

23
1

23
8

24
5

25
2

25
9

26
6

27
3

28
0

28
7

29
4

30
1

Layers

SUN397
Cars

RESISC45
EuroSAT

SVHN
GTSRB
MNIST

DTD

Ta
sk

 V
ec

to
rs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Learned model merging coefficients of Layer-wise AdaMerging++ on ViT-L/14. The k-th row
represents the k-th task vector, the l-th column represents the l-th layer, and the intersection point represents the
coefficient λl

k.
20

Published as a conference paper at ICLR 2024

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

1.0

1.5

2.0

2.5
A

ve
ra

ge
 L

os
s

0.86

1.18
1.26

1.35
1.48

1.38

1.61 1.60
1.76

1.86

2.66

SUN397

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

 L
os

s

0.09

0.50

0.82
0.71 0.71

0.94 1.04 1.09
1.27

1.49

2.30

Cars

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

 L
os

s

0.42

0.93

1.30
1.43

1.10
1.25

1.52
1.38

1.99 1.93

2.41

RESISC45

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

0.5

1.0

1.5

A
ve

ra
ge

 L
os

s

0.34

0.61
0.49

0.35

0.51

0.70

0.96

1.15 1.20
1.28

1.47

EuroSAT

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

0.0

0.5

1.0

1.5

A
ve

ra
ge

 L
os

s

0.15

0.54

0.73 0.74 0.71 0.77
0.93 0.97

1.12 1.12

1.68

SVHN

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

 L
os

s

0.04 0.05 0.11 0.15 0.21
0.31 0.36

0.47
0.68

0.80

2.12

GTSRB

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

0.0

0.5

1.0

A
ve

ra
ge

 L
os

s

0.01
0.08 0.11 0.11

0.23
0.35

0.49 0.50

0.73
0.84

1.21

MNIST

(0-
0.1

]

(0.
1-0

.2]

(0.
2-0

.3]

(0.
3-0

.4]

(0.
4-0

.5]

(0.
5-0

.6]

(0.
6-0

.7]

(0.
7-0

.8]

(0.
8-0

.9]

(0.
9-1

.0] >1
.0

Entropy

1.0

1.5

2.0

2.5

A
ve

ra
ge

 L
os

s

1.06

1.55

0.77

1.90

2.17
2.05

2.57

2.28

2.80

2.57 2.64

DTD

Figure 16: Correlation analysis of entropy and average loss on eight tasks (or datasets). We can
observe that there is a high positive correlation between entropy and prediction loss on each dataset.

21

	Introduction
	Related Work
	Methodology
	Preliminaries
	Adaptive Model Merging for Multi-Task Learning
	AdaMerging: Adaptive Model Merging
	Entropy Optimization

	Experiment
	Experiment Setup
	Performance, Generalization, Robustness
	AdaMerging Analysis

	Conclusion and Future Work
	Experiment Settings
	Experiment Results
	Performance, Generalization and Robustness
	Analysis Experiment

