
When Does Translation Require Context?
A Data-driven, Multilingual Exploration

Anonymous ACL submission

Abstract
Although proper handling of discourse phe-001
nomena significantly contributes to the quality002
of machine translation (MT), improvements003
on these phenomena are not adequately mea-004
sured in common translation quality metrics.005
Recent works in context-aware MT attempt to006
target a small set of these phenomena during007
evaluation. In this paper, we propose a method-008
ology to identify translations that require con-009
text systematically, and use this methodology010
to both confirm the difficulty of previously011
studied phenomena as well as uncover new012
ones that have not been addressed in previ-013
ous work. We then develop the Multilingual014
Discourse-Aware (MuDA) benchmark, a se-015
ries of taggers for these phenomena in 14 dif-016
ferent language pairs, which we use to evaluate017
context-aware MT. We find that state-of-the-018
art context-aware MT models make marginal019
improvements over context-agnostic models,020
which suggests current models do not handle021
these ambiguities effectively. We will release022
code and data to invite the MT research com-023
munity to increase efforts on context-aware024
translation on discourse phenomena and lan-025
guages that are currently overlooked.026

1 Introduction027

In machine translation (MT), information from pre-028

vious utterances has been found crucial to ade-029

quately translate a number of discourse phenomena030

including anaphoric pronouns, lexical cohesion,031

and discourse markers (Guillou et al., 2018; Läubli032

et al., 2018; Toral et al., 2018). However, while033

generating proper translations of these phenomena034

is important, they represent only a small portion of035

the words in natural language data. Because of this,036

common metrics such as BLEU (Papineni et al.,037

2002) do not provide a clear picture of whether038

they are appropriately captured or not.039

Recent work on neural machine translation040

(NMT) models that attempt to incorporate extra-041

sentential context (Tiedemann and Scherrer, 2017;042

Dataset Lang. Phenomena
Müller et al. (2018) EN→ DE Pronouns

Bawden et al. (2018) EN→ FR Pronouns, Coherence
Lexical Consistency

Voita et al. (2018)
Voita et al. (2019b) EN→ RU

Pronouns
Deixis, Ellipsis

Lexical Consistency

Jwalapuram et al. (2020)
DE→ EN
ZH→ EN
EN→ RU

Pronouns, Coherence
Lexical Consistency

Discourse

Our Work 14 Pairs (§5)

Pronouns, Ellipsis
Formality

Lexical Consistency
Verb Forms

Table 1: Some representative works on contextual ma-
chine translation that perform evaluation on discourse
phenomena, contrasted to our work. For a more com-
plete review see Maruf et al. (2021).

Miculicich et al., 2018; Maruf and Haffari, 2018, 043

inter alia) often perform targeted evaluation of 044

certain discourse phenomena, mostly focusing on 045

lexical cohesion (Voita et al., 2019b,a) and pro- 046

noun translation (Müller et al., 2018; Bawden et al., 047

2018; Lopes et al., 2020). However, only a lim- 048

ited set of discourse phenomena for a few language 049

pairs have been studied (see summary in Table 1). 050

The difficulty of broadening these studies stems 051

from the reliance of previous work on introspec- 052

tion and domain knowledge to identify the relevant 053

discourse phenomena, which then requires engi- 054

neering language-specific methods to create test 055

suites or manually designing data for evaluation. 056

In this paper, we fill this gap by proposing a 057

data-driven, semi-automatic methodology for iden- 058

tifying salient phenomena that require context for 059

translation, and we apply this method to create 060

a multilingual benchmark testing these discourse 061

phenomena. This is done through several steps. 062

First, we develop P-CXMI (§2) as a metric to iden- 063

tify when context is helpful in MT, or more broadly 064

text generation in general. Then, we perform a 065

systematic analysis of words with high P-CXMI to 066

find categories of translations where context is use- 067

ful (§3). This allows us to identify novel discourse 068

phenomena that to our knowledge have not been 069
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addressed previously (e.g. consistency of formal-070

ity and verb forms), without requiring language-071

specific domain knowledge. Finally, we design a072

series of methods to automatically tag words be-073

longing to the identified classes of ambiguities (§4)074

and we evaluate existing translation models for dif-075

ferent categories of ambiguous translations (§5).076

We perform our study on a parallel corpus span-077

ning 14 language pairs, measuring translation am-078

biguity and model performance. We find that the079

context-aware methods, while improving on stan-080

dard evaluation metrics, only perform better than081

the context-agnostic baselines for certain discourse082

phenomena in our benchmark, while on other phe-083

nomena, context-aware models do not observe sig-084

nificant improvements. Our benchmark therefore085

provides a more fine-grained evaluation of transla-086

tion models and reveals the weaknesses of context-087

aware models, such as verb form cohesion. We088

also find that DeepL, a commercial document-level089

translation system, does better in our benchmark090

than its sentence-level ablation and Google Trans-091

late. We hope that the released benchmark and092

code, as well as our findings, will spur targeted093

evaluation of discourse phenomena in MT to cover094

more languages and more phenomena in the future.095

2 Measuring Context Usage096

2.1 Cross-Mutual Information097

While document-level MT models can be compared098

using standard translation metrics such as BLEU099

(Papineni et al., 2002), they do not provide a clear100

picture of whether models are performing better101

due to improvements in processing context or other102

improvements (Kim et al., 2019). Another com-103

mon evaluation paradigm is contrastive evaluation,104

which evaluates contextual models’ ability to dis-105

tinguish between correct and incorrect translations106

of specific discourse phenomena, such as anaphora107

resolution (Müller et al., 2018) and lexical cohesion108

(Bawden et al., 2018). However, this provides only109

a limited measure of context usage on a limited set110

of ambiguous phenomena defined by the creators of111

teh dataset, not capturing other unanticipated ways112

in which the model might need context (Vamvas113

and Sennrich, 2021). We are therefore interested in114

devising a metric that is able to capture all context115

usage by a model, beyond a predefined set.116

Conditional Cross-Mutual Information (CXMI)
(Bugliarello et al., 2020; Fernandes et al., 2021)
measures the influence of context on model predic-

tions. CXMI is defined as:

CXMI(C → Y |X) =

HqMTA
(Y |X)− HqMTC

(Y |X,C),

where X and Y are a source and target sentence,
respectively, C is the context, HqMTA

is the entropy
of a context-agnostic MT model, and HqMTC

refers
to a context-aware MT model. This quantity can
be estimated over a held-out set with N sentence
pairs and the respective context as:

CXMI(C → Y |X) ≈

− 1

N

N∑
i=1

log
qMTA

(y(i)|x(i))
qMTC

(y(i)|x(i), C(i))

Importantly, the authors find that training a sin- 117

gle model qMT as both the context-agnostic and 118

context-aware model ensures that non-zero CXMI 119

values are due to context and not other factors (see 120

Fernandes et al. (2021) and §3.1 for details). 121

2.2 Context Usage Per Sentence and Word 122

CXMI measures the context usage by a model 123

by comparing the log-likelihood ratio of samples 124

across the whole corpus. However, for our pur- 125

poses, we are interested in measuring how much 126

the context is helpful for single sentences or even 127

just particular words in a sentence. 128

Pointwise Mutual Information (P-MI) (Church
and Hanks, 1990) measures the association be-
tween two random variables for specific outcomes.
Mutual information can be seen as the expected
value of P-MI over all possible outcomes of the vari-
ables. Taking inspiration from this, we define the
Pointwise Cross-Mutual Information (P-CXMI)
for a source, target, context triplet (x, y, C) as:

P-CXMI(y, x, C) = − log
qMTA

(y|x)
qMTC

(y|x,C)

Intuitively, P-CXMI measures how much more 129

(or less) likely a target sentence y is when it is 130

given context C, compared to not being given that 131

context. Note that this is estimated according to 132

the models qMTA
and qMTC

since, just like CXMI, 133

this measure depends on their learned distributions. 134

We can also apply P-CXMI at word-level (as
opposed to sentence-level) to measure how much
more likely a particular word in a sentence is when
it is given the context, by leveraging the auto-
regressive property of the neural decoder. Given
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Avelile’s mother had HIV virus. Avelile had the virus, she was born with the virus.
Lexical Cohesion

阿维利尔的母亲是携有艾滋病病毒。阿维利尔也有艾滋病病毒。她一生下来就有。

Your daughter? Your niece? Formality
Votre fille ? Votre nièce ? (T-V)

Roger. I got’em. Two-Six, this is Two-Six , we’re mobile. Formality
了解捕捉した。 2-6こちら移動中だ。 (Honorifics)

Our tools today don’t look like shovels and picks. They look like the stuff we walk around with.
Pronouns

As ferramentas de hoje não se parecem com pás e picaretas. Elas se parecem com as coisas que usamos.

Louis XIV had a lot of people working for him. They made his silly outfits, like this.
Verb Form

Luis XIV tenía un montón de gente trabajando para él. Ellos hacían sus trajes tontos, como éste.

They’re the ones who know what society is going to be like in another generation. I don’t.
Ellipsis

Ancak onlar başka bir nesilde toplumun nasıl olacağını biliyorlar. Ben bilmiyorum.

Table 2: Examples of high P-CXMI tokens and corresponding linguistic phenomena. Contextual sentences are
italicized. The high P-CXMI target token is highlighted in pink, source and contextual target tokens related to the
high P-CXMI token are highlighted in blue and green respectively.

the triplet (x, y, C) and the word index i, we can
measure the P-CXMI for that particular word as:

P-CXMI(i, y, x, C) = − log
qMTA

(yi|yt<i, x)

qMTC
(yi|yt<i, x, C)

Note that nothing constrains the form of C or even135

x and P-CXMI can, in principle, be applied to any136

conditional language modelling problem.137

Using this metric, we now ask: what kind of138

words tend to see their likelihood increase when139

given the context? Such words should have a high140

P-CXMI, which we examine in the following §3.141

3 Which Translation Phenomena Benefit142

from Context?143

To identify salient translation phenomena that re-144

quire context, we perform a thematic analysis145

(Braun and Clarke, 2006), examining words with146

high P-CXMI across different language pairs and147

manually identifying patterns and categorizing148

them into phenomena where context is useful for149

translation. To do so, we systematically examined150

(1) the mean P-CXMI per POS tag, (2) the vocab-151

ulary items with the highest P-CXMI, and (3) the152

individual tokens with the highest P-CXMI.153

3.1 Data & Model154

To compare linguistic phenomena that arise during155

document-level translation across various language156

pairs, we need a dataset that is document-level,157

rich in context-dependent discourse phenomena,158

and parallel in multiple languages. We, therefore,159

perform our study on transcripts of TED talks and160

their translations (Qi et al., 2018). We choose to161

study translation between English and Arabic, Ger-162

man, Spanish, French, Hebrew, Italian, Japanese,163

Korean, Dutch, Portuguese, Romanian, Russian,164

Turkish and Mandarin Chinese. These 14 target 165

languages are chosen for their high availability 166

of TED talks and linguistic tools, as well as for 167

the diversity of language types in our comparative 168

study (Table 7 in Appendix A). In total, our dataset 169

contains 113,711 parallel training sentences from 170

1,368 talks, 2,678 development sentences from 41 171

talks, and 3,385 testing sentences from 43 talks. 172

To obtain the P-CXMI for words in the data, we 173

train a small Transformer (Vaswani et al., 2017) 174

model for every target language and incorporate 175

the target context by concatenating it to the current 176

target sentence (Tiedemann and Scherrer, 2017). 177

We train the model with dynamic context size (Fer- 178

nandes et al., 2021), by sampling between 0 and 179

3 target context sentences and estimate P-CXMI 180

by using this model both qMTA
and qMTC

(more 181

training details in Appendix D). 182

3.2 Analysis Procedure 183

We adopt a top-down approach and start our analy- 184

sis by studying POS tags with high mean P-CXMI. 185

In Appendix B, we report the mean P-CXMI for 186

selected POS tags on our test data. Some types of 187

ambiguity, such as dual form pronouns (§3.3), can 188

be linked to a single POS tag and be identified at 189

this step, whereas others require finer inspection. 190

Next, we inspect the vocabulary items with high 191

mean P-CXMI. At this step, we can detect phenom- 192

ena that are reflected by certain lexical items that 193

consistently benefit from context for translation. 194

Finally, we examine individual tokens that ob- 195

tain the highest P-CXMI. In doing so, we iden- 196

tify patterns that do not depend on lexical features, 197

but rather on syntactic constructions for example. 198

In Table 2, we provide selected examples of to- 199

kens that have high P-CXMI and the discourse 200

phenomenon we have identified from them. 201
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3.3 Identified Phenomena202

Through our thematic analysis of P-CXMI, we iden-203

tified various types of translation ambiguity. Unlike204

previous work, our method requires no prior knowl-205

edge of the languages to find relevant discourse phe-206

nomena and easily scales to new languages (§4.4).207

First, we find relatively high P-CXMI for proper208

nouns (PROPN) for most languages. As in the first209

row of Table 2, proper nouns may have multiple210

possible translations , but the same entity should211

be referred to by the same word in a translated212

document for lexical cohesion (Carpuat, 2009).213

We find high P-CXMI for second-person pro-214

nouns (PRON.2) in languages with T-V distinction215

(Appendix A, “Pronouns Politeness”). While En-216

glish uses the same second-person pronouns for217

everyone, in these languages, certain pronouns de-218

pend on the level of formality and relationship be-219

tween the speaker and addressee. We also find220

high P-CXMI for verbs in Japanese and Korean.221

These two languages use honorifics, where pre-222

fixes and suffixes of certain words and the verb223

lemma depend on the interlocutors’ relationship224

and on the formality of the discourse. Moreover,225

Japanese has relatively high P-CXMI on auxiliary226

verbs (AUX) and particles (PART) which also often227

control the formality and tone of the sentence.228

In English, only the 3rd person singular pronoun229

is gendered and gender is assigned based solely230

on semantic rules (Appendix A, “Gendered Pro-231

nouns”, “Gender Assignment”). We find several232

languages with high P-CXMI on pronouns (PRON),233

and these languages use gendered pronouns for pro-234

nouns other than the 3rd person singular or assign235

gender using formal rules (German, French, He-236

brew, Italian, Portuguese, Russian, and Chinese).237

When translating a gender-neutral English pronoun238

to a gendered target pronoun, context is therefore239

needed to determine the gender of the antecedent.240

We find high P-CXMI for certain verb forms,241

such as the imperfect form in Spanish, French,242

Italian, and Romanian. While English verbs may243

have five forms (e.g. write, writes, wrote, written,244

writing), other languages often have a more fine-245

grained verb morphology. For example, English246

has only a single form for the past tense, while the247

French past tense consists of five verb forms. Verbs248

must be translated using the verb form that reflects249

the tone, mood and cohesion of the document.250

Finally, among the individual tokens with the251

highest P-CXMI, we find that many are due to252

ellipsis in the English sentence that does not occur 253

on the target side. For example, in the last row of 254

Table 2, the English text does not repeat the verb 255

know in the second sentence as it can be understood 256

from the previous sentence. However, in Turkish, 257

there is no natural way to translate the verb-phrase 258

ellipsis and must infer that “don’t” refers to “don’t 259

know”, and translate the verb accordingly. 260

4 Cross-phenomenon MT Evaluation 261

After identifying a set of linguistic phenomena 262

where context is useful to resolve ambiguity dur- 263

ing translation, we develop a series of methods 264

to automatically tag tokens belonging to these 265

classes of ambiguous translations and propose 266

the Multilingual Discourse-Aware (MuDA) bench- 267

mark for context-aware MT models. 268

4.1 MT Evaluation Framework 269

Given a pair of parallel source and target docu- 270

ments (X,Y ), our MuDA tagger assigns a set of 271

discourse phenomena tags {t1i , · · · , tni } to each tar- 272

get token yi ∈ Y . Then, using the compare-mt 273

toolkit (Neubig et al., 2019), we compute the mean 274

word f-measure of system outputs compared to the 275

reference for each tag. This allows us to identify 276

which discourse phenomena models can translate 277

more or less accurately. 278

4.2 Automatic Tagging 279

In this section, we describe our taggers for each 280

discourse phenomenon we identified. In doing so, 281

we create more reliable and informative taggers 282

for each phenomenon, rather than using P-CXMI 283

directly to identify ambiguous words, as P-CXMI 284

is fairly noisy and uninterpretable. 285

Lexical Cohesion To tag words that re- 286

quire lexical cohesion, we first extract 287

word alignments from a parallel corpus 288

D = {(X1, Y1), · · · , (X|D|, Y|D|)}, where 289

(Xm, Ym) denote the source and target reference 290

document pair. We use the AWESOME aligner 291

(Dou and Neubig, 2021) to obtain: 292

Am = {〈xi, yj〉 | xi ↔ yj , xi ∈ Xm, yj ∈ Ym},

where each xi and yj are the lemmatized content 293

source and target words and↔ denotes a bidirec- 294

tional word alignment. Then, for each target word 295

yj that is aligned to source word xi, if the alignment 296

pair 〈xi, yj〉 occurred at least 3 times already in the 297

current document, excluding the current sentence, 298

we tag yj for lexical cohesion. 299
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Formality For languages with T-V distinction, we300

tag the target pronouns containing formality distinc-301

tion in their various forms, if there has previously302

been a word pertaining to the same formality level303

in the same document. Some languages such as304

Spanish often drop the subject pronoun, and T-V305

distinction is instead reflected in the verb form. For306

these languages, we use spaCy (Honnibal and Mon-307

tani, 2017) and Stanza (Qi et al., 2020) to find POS308

tags and detect verbs with a second-person subject309

in the source, and conjugated in the second (T) or310

third (V) person in the target. For languages with a311

more complex honorifics system, such as Japanese,312

we construct a word list of common honorifics-313

related words to tag (details in Appendix C).314

Pronoun Choice To find pronouns in English that315

have multiple translations, we manually construct316

a list P` = {〈ps,pt〉} for each language (Appendix317

C), where each ps is an English pronoun and pt the318

list of possible translations of ps in the language `.319

Then, for each aligned token pair 〈xi, yj〉, if xi, yj320

are both pronouns with 〈xi,pt|yj ∈ pt〉 ∈ P`, and321

the antecedent of xi is not in current sentence, we322

tag yj as an ambiguous pronoun. To obtain antence-323

dents, we use AllenNLP (Gardner et al., 2017)’s324

coreference resolution module.325

Verb Form For each target language, we define a326

list V` = {v1, · · · , vk} of verb forms (Appendix C)327

where vi ∈ V` if there exists a verb form in English328

uj and an alternate verb form vk 6= vi in the target329

language such that an English verb with form uj330

may be translated to a target verb with form vi331

or vk depending on the context. Then, for each332

target token yj , if yj is a verb of form vj ∈ V`, and333

another verb with form vj has appeared previously334

in the same document, we tag yj as ambiguous.335

Ellipsis To detect translation ambiguity due to336

ellipsis, we look for instances where the ellipsis337

occurs on the source side, but not on the target338

side, which means that the ellipsis must be resolved339

during translation. Since existing ellipsis models340

are limited to specific types ellipsis, we first train341

an English (source-side) ellipsis detection model.342

To do so, we extract an ellipsis dataset from the343

English data in the Penn Treebank (Marcus et al.,344

1993) and train a BERT text classification model345

(Devlin et al., 2019), which achieves 0.77 preci-346

sion and 0.73 recall (see Appendix C for training347

details). Then, for each sentence pair where the348

source sentence is predicted to contain an ellipsis,349

we tag the word yj in the target sentence Ym if: (1)350

ar de es fr he it ja ko nl pt ro ru tr zh
Target Language

0
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3000

3500

# 
ta

gs

pronouns
formality
verb form
ellipsis
lexical

Figure 1: Number of MuDA tags on TED test data.

lexical formality pronouns verb form ellipsis

es 1.00 0.92 1.00 1.00 0.53
fr 1.00 1.00 1.00 0.94 0.43
ja 1.00 1.00 1.00 – 0.41
ko 1.00 0.94 – – 0.26
pt 0.99 0.88 1.00 – 0.31
ru 1.00 1.00 – 1.00 0.50
tr 1.00 1.00 – 1.00 0.57
zh 1.00 1.00 – – 0.78

Table 3: Precision of MuDA tags on 50 utterances.

yj is a verb, noun, proper noun or pronoun; (2) yj 351

has occurred in the previous target sentences of the 352

same document; (3) yj is not aligned to any source 353

words, that is, 6 ∃xi ∈ Xm s.t. 〈xi, yj〉 ∈ Am. 354

4.3 Evaluation of Automatic Tags 355

We apply the MuDA tagger to the reference trans- 356

lations of our TED talk data. In Appendix B we 357

report the mean P-CXMI for each language and 358

MuDA tag. Overall, we find higher P-CXMI on to- 359

kens with a tag compared to those without, which 360

provides empirical evidence that models indeed 361

rely on context to predict words with MuDA tags. 362

Figure 1 shows that the frequency of tags varies 363

significantly across languages. Overall, ellipses are 364

infrequent, as only 4.5% of the English sentences 365

have been marked for ellipsis which gives an upper 366

bound for the number of ellipsis tags. Further, lan- 367

guages from a different family than English have a 368

relatively high number of ellipsis tags. Korean and 369

especially Japanese have more formality tags than 370

those with T-V distinction, which is aligned with 371

our intuition that register is more often important 372

when translating to languages with honorifics. 373

Manual Evaluation To evaluate our tagger, we 374

asked native speakers with computational linguis- 375

tics backgrounds to manually verify MuDA tags for 376

8 languages on 50 randomly selected utterances as 377

well as all words tagged with ellipsis in our corpus. 378

Table 3 reports the tags’ precision. 379
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For all languages, we obtain high precision for380

all tags except ellipsis, confirming that the method-381

ology can scale to languages where no native speak-382

ers were involved in developing the tags. For ellip-383

sis, false positives often come from one-to-many or384

non-literal translations, where the aligner does not385

align all target words to the corresponding source386

word. We believe that the ellipsis tagger is still387

useful in selecting difficult examples that require388

context for translation; despite the low precision,389

we find a significantly higher P-CXMI on ellipsis390

words for many languages (Appendix B).1391

4.4 Extension to New Languages392

While MuDA currently supports 14 language pairs,393

our methodology can be easily extended to new lan-394

guages. The lexical and ellipsis tags can be directly395

applied to other languages provided a word aligner396

between English and the new target language. The397

formality tag can be extended by adding a list of398

pronouns or verb forms related to formality in the399

new language. Similarly, the pronouns and verb400

forms tag can also be extended by providing a list401

of ambiguous pronouns and verb forms.402

Exhaustively listing all relevant phenomena in403

document-level MT is extremely complex and be-404

yond the scope of our paper. To identify new dis-405

course phenomena on other languages, our the-406

matic analysis can be reused as follows: (1) Train a407

model with dynamic context size on translation be-408

tween the new language pair; (2) Use the model to409

compute P-CXMI for words in a parallel document-410

level corpus of the language pair; (3) Manually411

analyze the POS tags, vocabulary items and indi-412

vidual tokens with high P-CXMI; (4) Link patterns413

of tokens with high P-CXMI to particular discourse414

phenomena by consulting linguistic resources.415

5 Exploring Context-aware MT416

Next, we use our MuDA benchmark to perform417

an initial exploration of context usage across 14418

languages pairs and 4 models, including those we419

trained ourselves and commercial systems.420

5.1 Trained Models421

We train a sentence-level and document-level small422

transformer (base) for every target language. For423

the context-aware model, the major difference from424

1Also note that wrongly assigned tags will also not pe-
nalize a system greatly as it will give a low score only if the
translation does not match the falsely tagged word.

§3.1 is that we use a static context size of 3, since 425

we are not using these models to measure P-CXMI. 426

While simple, concatenation approaches have been 427

shown to outperform more complex models when 428

properly trained (Lopes et al., 2020). 429

To evaluate stronger models, we additionally 430

train a large transformer model (large) that was 431

pretrained on a large, sentence-level corpora, for 432

German, French, Japanese and Chinese. Further 433

training details can be found in Appendix D. 434

5.2 Commercial Models 435

To assess if commercially available machine trans- 436

lation engines are able to leverage context and 437

therefore do well in the MuDA Benchmark, we 438

consider two engines:2 (1) the Google Cloud Trans- 439

lation v2 API. In early experiments, we assessed 440

that this model only does sentence-level transla- 441

tion, but included it due to its widespread usage 442

and recognition; (2) the DeepL v2 API. This model 443

advertises its usage of context as part of their trans- 444

lations and our experiments confirm this. Early 445

experimentation with other providers (Amazon and 446

Azure) indicated that these are not context-aware 447

so we refrained from evaluating them. 448

To obtain provider translations, we feed the docu- 449

ments into an API request. To re-segment the trans- 450

lation into sentences, we include special marker 451

tokens in the source that are preserved during trans- 452

lation and split the translation on those tokens. We 453

also evaluate a sentence-level version of DeepL 454

where we feed each sentence separately to compare 455

with its document-level counterpart. 456

5.3 Results and Discussion 457

Table 4 shows the results for base models, 458

trained either without context (no-context) or 459

with context, and for the latter with either pre- 460

dicted context (context) or reference context 461

(context-gold) during decoding. Results are 462

reported with respect to standard MT metrics such 463

as BLEU (Papineni et al., 2002) and COMET (Rei 464

et al., 2020), as well as the MuDA benchmark. 465

First, we find that BLEU are highest for 466

context-gold models for most language pairs, 467

but context-agnostic models have higher COMET 468

scores. Moreover, in terms of mean word f-measure 469

overall, we do not find significant differences be- 470

tween the three systems. It is therefore difficult to 471

2translate.google.com, deepl.com
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ar de es fr he it ja ko nl pt ro ru tr zh

BLEU
no-context 17.25 28.02 35.72 37.74 32.70 32.30 7.10 6.80 32.22 39.03 25.36 17.00 12.32 15.96

context 16.92 28.24 36.00 37.23 32.92 32.11 4.48 3.77 32.67 39.10 25.37 17.14 11.97 15.01
context-gold 18.61 28.60 36.27 37.96 33.41 32.37 5.96 6.92 32.73 39.55 28.49 17.70 12.49 16.05

COMET
no-context 0.0002 0.1841 0.3809 0.3087 0.0948 0.2608 -0.5366 -0.0275 0.3105 0.4562 0.3826 0.0033 0.2113 -0.1419

context -0.0066 0.1846 0.3875 0.2811 0.0887 0.2496 -0.7728 -0.3339 0.3238 0.4444 0.3747 -0.0190 0.1831 -0.1917
context-gold 0.0025 0.1886 0.3879 0.2821 0.0922 0.2467 -0.6827 -0.1000 0.3218 0.4506 0.3805 -0.0173 0.1871 -0.1274

all
no-context 0.477 0.612 0.665 0.663 0.598 0.621 0.338 0.301 0.646 0.686 0.552 0.469 0.432 0.372

context 0.474 0.615 0.665 0.661 0.600 0.623 0.267 0.200 0.648 0.686 0.554 0.472 0.432 0.333
context-gold 0.495 0.618 0.667 0.666 0.603 0.625 0.313 0.289 0.649 0.689 0.586 0.477 0.433 0.382

ellipsis
no-context 0.374 0.387 0.210 0.400 0.439 0.259 0.123 0.169 0.400 0.342 0.333 0.255 0.165 0.145

context 0.325 0.323 0.333 0.406 0.389 0.400 0.021 0.033 0.471 0.450 0.270 0.292 0.240 0.135
context-gold 0.388 0.296 0.300 0.435 0.371 0.381 0.025 0.150 0.444 0.450 0.306 0.226 0.187 0.154

formality
no-context – 0.607 0.370 0.792 – 0.429 0.443 0.399 0.682 0.599 0.434 0.464 0.097 0.691

context – 0.639 0.351 0.791 – 0.462 0.414 0.397 0.694 0.600 0.405 0.469 0.083 0.695
context-gold – 0.661 0.443 0.803 – 0.464 0.431 0.425 0.697 0.622 0.440 0.492 0.182 0.741

lexical
no-context 0.639 0.762 0.819 0.826 0.723 0.766 0.615 0.574 0.821 0.853 0.661 0.624 0.671 0.645

context 0.630 0.736 0.833 0.830 0.722 0.772 0.572 0.524 0.825 0.851 0.689 0.624 0.647 0.644
context-gold 0.675 0.737 0.832 0.832 0.727 0.773 0.614 0.593 0.828 0.857 0.713 0.625 0.647 0.676

pronouns
no-context 0.660 0.613 0.576 0.774 – 0.548 0.473 – – 0.452 0.356 – – –

context 0.691 0.614 0.538 0.771 – 0.549 0.377 – – 0.451 0.414 – – –
context-gold 0.700 0.624 0.550 0.788 – 0.530 0.428 – – 0.485 0.432 – – –

verb form
no-context – – 0.263 0.435 0.227 0.308 – – 0.477 – 0.292 0.215 0.128 –

context – – 0.287 0.442 0.229 0.282 – – 0.479 – 0.292 0.215 0.094 –
context-gold – – 0.272 0.435 0.229 0.285 – – 0.487 – 0.328 0.238 0.120 –

Table 4: BLEU, COMET, and Word f-measure per tag for base context-aware models. Best BLEU and COMET
are bolded, word f-measures higher than no-context by > 0.025 are underlined.

de fr ja zh

BLEU
no-context 36.09 45.64 15.55 22.15

context 35.86 45.40 12.68 22.68
context-gold 36.69 46.60 16.60 22.98

COMET
no-context 0.5256 0.6332 0.0602 0.1160

context 0.5337 0.6425 0.0753 0.2705
context-gold 0.5427 0.6529 0.1808 0.2809

all
no-context 0.669 0.714 0.456 0.419

context 0.667 0.713 0.401 0.431
context-gold 0.675 0.720 0.458 0.442

ellipsis
no-context 0.429 0.462 0.126 0.254

context 0.518 0.393 0.068 0.230
context-gold 0.444 0.444 0.144 0.209

formality
no-context 0.642 0.824 0.510 0.747

context 0.640 0.810 0.513 0.739
context-gold 0.692 0.820 0.537 0.739

lexical
no-context 0.773 0.864 0.704 0.661

context 0.776 0.868 0.699 0.671
context-gold 0.796 0.875 0.740 0.696

pronouns
no-context 0.633 0.790 0.493 –

context 0.635 0.795 0.541 –
context-gold 0.665 0.801 0.536 –

verb form
no-context – 0.526 – –

context – 0.532 – –
context-gold – 0.534 – –

Table 5: Word f-measure per tag for large models.
Best BLEU and COMET are bolded, word f-measure
higher than no-context by > 0.025 are underlined.

see which system performs the best on document-472

level ambiguities using only corpus-level metrics.473

For words tagged by MuDA as requiring context474

for translation, context-aware models often achieve475

higher word f-measure than context-agnostic mod-476

els on certain tags such as ellipsis and formality, but477

on other tags such as lexical and verb form, they do478

not significantly outperform the context-agnostic479

models. This demonstrates how MuDA allows us480

to identify what kind of inter-sentential ambiguities 481

context-aware models are able to resolve or not. 482

For the pretrained large models (Table 5), 483

context-aware models perform better than the 484

context-agnostic on corpus-level metrics, espe- 485

cially COMET. On words tagged with MuDA, 486

context-aware models generally obtain the highest 487

f-meas as well, particularly when given reference 488

context, especially on phenomena such as lexical 489

and pronouns, but the improvements are less pro- 490

nounced than on corpus-level evaluation. 491

Among commercial engines (Table 6), DeepL 492

seems to outperform Google on most metrics and 493

language pairs. Also, the sentence-level ablation of 494

DeepL performs worse that its document-level sys- 495

tem for most MuDA tags, which further suggests 496

DeepL is able to process context to some extent. 497

Overall, current context-aware MT systems seem 498

to translate some inter-sentential discourse phenom- 499

ena well, but they are still unable to consistently ob- 500

tain considerable improvements over their context- 501

agnostic counterparts on challenging MuDA data. 502

6 Related Work 503

Because examples requiring context to translate ac- 504

curately is sparse in document-level datasets, stan- 505

dard MT metrics such as BLEU or COMET are 506

not sensitive enough to gains in context-aware MT. 507

Thus, several works resort to measuring the per- 508

formance of context-aware models targeted to dis- 509

course phenomena that require context. 510
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ar de es fr he it ja ko nl pt ro ru tr zh

BLEU
Google 11.73 34.76 43.47 30.77 10.77 31.34 12.98 8.77 38.51 38.49 28.54 24.79 18.22 28.92

DeepL (sent) x 34.29 42.00 42.57 x 35.41 14.88 x 37.58 37.37 28.98 25.67 x 27.94
DeepL (doc) x 36.75 43.06 43.43 x 36.04 15.66 x 38.29 37.76 29.79 26.53 x 27.34

COMET
Google 0.3862 0.5480 0.7694 0.6655 0.3666 0.6707 0.2116 0.4721 0.6401 0.7925 0.7437 0.5121 0.7254 0.3697

DeepL (sent) x 0.5750 0.7680 0.7121 x 0.6951 0.2973 x 0.6321 0.7513 0.8026 0.5501 x 0.3739
DeepL (doc) x 0.5848 0.7882 0.7267 x 0.7049 0.2343 x 0.6357 0.7572 0.8121 0.5495 x 0.2453

all
Google 0.512 0.667 0.719 0.662 0.594 0.663 0.444 0.369 0.692 0.723 0.591 0.547 0.514 0.513

DeepL (sent) x 0.662 0.709 0.709 x 0.688 0.456 x 0.681 0.709 0.596 0.554 x 0.507
DeepL (doc) x 0.68 0.719 0.716 x 0.694 0.459 x 0.687 0.716 0.605 0.562 x 0.479

ellipsis
Google 0.343 0.667 0.500 0.306 0.359 0.468 0.279 0.352 0.389 0.632 0.405 0.367 0.236 0.323

DeepL (sent) x 0.417 0.400 0.422 x 0.500 0.275 x 0.500 0.421 0.458 0.385 x 0.303
DeepL (doc) x 0.435 0.526 0.493 x 0.553 0.208 x 0.500 0.359 0.532 0.385 x 0.295

formality
Google – 0.621 0.404 0.738 – 0.458 0.489 0.300 0.638 0.633 0.479 0.512 0.367 0.599

DeepL (sent) x 0.641 0.419 0.733 x 0.455 0.487 x 0.610 0.625 0.533 0.533 x 0.729
DeepL (doc) x 0.670 0.446 0.785 x 0.503 0.520 x 0.641 0.614 0.526 0.534 x 0.664

lexical
Google 0.665 0.786 0.854 0.827 0.697 0.794 0.602 0.611 0.825 0.860 0.700 0.635 0.677 0.693

DeepL (sent) x 0.773 0.840 0.860 x 0.805 0.657 x 0.799 0.848 0.714 0.653 x 0.660
DeepL (doc) x 0.776 0.841 0.872 x 0.812 0.640 x 0.802 0.846 0.713 0.649 x 0.657

pronouns
Google 0.670 0.648 0.626 0.757 – 0.511 0.486 – – 0.488 0.326 – – –

DeepL (sent) x 0.608 0.538 0.737 x 0.543 0.526 x – 0.483 0.394 – x –
DeepL (doc) x 0.706 0.588 0.789 x 0.551 0.557 x – 0.513 0.472 – x –

verb form
Google – – 0.415 0.529 0.311 0.450 – – 0.554 – 0.358 0.314 0.167 –

DeepL (sent) x – 0.390 0.553 x 0.478 – x 0.562 – 0.400 0.327 x –
DeepL (doc) x – 0.426 0.562 x 0.445 – x 0.567 – 0.411 0.349 x –

Table 6: Scores for commercial models. Best BLEU and COMET are bolded, DeepL (doc) where word f-measure
is higher than DeepL (sent) by >0.025 are underlined.

Some works have attempted to do an automatic511

evaluation of discourse without relying on a con-512

trastive dataset. The first example of discourse phe-513

nomena evaluations was done by Hardmeier et al.514

(2010), which evaluated the automatically preci-515

sion and recall of pronoun translation in statistical516

MT systems. Jwalapuram et al. (2019) proposed517

evaluating models on pronoun translation based on518

a pairwise comparison between translations that519

were generated with and without context, and later520

Jwalapuram et al. (2020) extended this work to521

include more languages and phenomena in their522

automatic evaluation/test set creation. While these523

works rely on prior domain knowledge and intu-524

itions to identify context-aware phenomena, we525

instead take a systematic, data-driven approach and526

find additional phenomena in doing so.527

Most works have focused on evaluating perfor-528

mance in discourse phenomena through the use of529

contrastive datasets instead. Müller et al. (2018)530

automatically create a dataset for anaphoric pro-531

noun resolution to evaluate MT models in EN →532

DE. Bawden et al. (2018) manually creates a533

dataset for both pronoun resolution and lexical534

choice in EN → FR. Voita et al. (2018, 2019b)535

creates a dataset for anaphora resolution, deixis, el-536

lipsis and lexical cohesion in EN→ RU. However,537

Yin et al. (2021) suggest that the task of translat-538

ing and disambiguating between two contrastive539

choices are inherently different, which motivates540

our approach in measuring direct translation per-541

formance through evaluation of word f-measure. 542

7 Conclusions and Future Work 543

In this work, we investigate the types of ambiguous 544

translations where MT models benefit from con- 545

text using our proposed P-CXMI metric. Our data- 546

driven thematic analysis helps us identify context- 547

sensitive discourse phenomena that has not been 548

addressed in prior works on context-aware MT, 549

such as ellipsis, formality and verb forms, for 14 550

language pairs. The advantages of our approach is 551

that it is systematic, and does not require domain 552

knowledge in language to identify these phenom- 553

ena, so we believe that our methodology can be eas- 554

ily extended to other language pairs. P-CXMI can 555

also be used to identify types of context-dependent 556

words for tasks outside MT. Based on our findings, 557

we then construct the MuDA benchmark that tags 558

words in a given parallel corpus and evaluate mod- 559

els on 5 context-dependent discourse phenomena. 560

We find that ellipsis is the most challenging to tag 561

with high precision and we leave improvements to 562

model cross-lingual ellipsis for future work. 563

Our evaluation of models on MuDA reveals that 564

both context-aware and commercial translation sys- 565

tems achieve small improvements over context- 566

agnostic models on some of the discourse-aware 567

translations, and we encourage using MuDA to 568

benchmark the development of models that address 569

these ambiguities. 570
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Language Family Word Order Pronouns Politeness Gendered Pronouns Gender Assignment

Arabic Afro-Asiatic VSO None 1 and/or 2 and 3 Semantic-Formal
English Indo-European SVO None 3.Sing Semantic
German Indo-European SOV/SVO Binary 3.Sing Semantic-Formal
Spanish Indo-European SVO Binary 1 and/or 2 and 3 Semantic-Formal
French Indo-European SVO Binary 3.Sing Semantic-Formal
Hebrew Afro-Asiatic SVO None 1 and/or 2 and 3 Semantic-Formal
Italian Indo-European SVO Binary 3.Sing Semantic-Formal

Japanese Japonic SOV Avoided 3 None
Korean Koreanic SOV Avoided 3.Sing None
Dutch Indo-European SOV/SVO Binary 3.Sing Semantic-Formal

Portuguese Indo-European SVO Binary 3.Sing Semantic-Formal
Romanian Indo-European SVO Multiple 3.Sing Semantic-Formal
Russian Indo-European SVO Binary 3.Sing Semantic-Formal
Turkish Turkic SOV Binary None None

Mandarin Sino-Tibetan SVO Binary 3.Sing None

Table 7: Properties of the languages in our study.

A Language Properties835

Table 7 summarizes the properties of the languages analyzed in this work.836

B P-CXMI Results837

Table 8 presents the average P-CXMI value per POS tag and per MuDA tag.838

C Tagger Details839

C.1 Formality Words840

Table 9 gives the list of words related to formality for each target language.841

C.2 Ambiguous Pronouns842

Table 10 provides English pronouns and the list of possible target pronouns.843

C.3 Ambiguous Verbs844

Table 11 lists verb forms that may require disambiguation during translation.845

C.4 Ellipsis Classifier846

We train a BERT text classification model (Devlin et al., 2019) on data from the Penn Treebank, where we847

labeled each sentence containing the tag ‘*?*’ as containing ellipsis (Bies et al., 1995). We obtain 248,596848

sentences total, with 2,863 tagged as ellipsis. Then, our model using HuggingFace Transformers (Wolf849

et al., 2020). To address the imbalance in labels, we up-weight the loss for samples tagged as ellipsis by a850

factor of 100.851

D Training details852

The transformer-small model has hidden size of 512, feedforward size of 1024, 6 layersa and 8 attention853

heads. The transformer-large model has hidden size of 1024, feedforward size of 4096, 6 layers, 16854

attention heads.855

As in Vaswani et al. (2017), we train using the Adam optimizer with β1 = 0.9 and β2 = 0.98 and856

use an inverse square root learning rate scheduler, with an initial value of 10−4 for large model and857

5× 10−4 for the base and multi models, with a linear warm-up in the first 4000 steps.858

For the pretrained models we used Paracrawl (Esplà et al., 2019) for German and French, JParacrawl859

(Morishita et al., 2020) for Japanese and the Backtranslated News from WMT2021 for Chinese.860
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ar de es fr he it ja ko nl pt ro ru tr zh

CXMI 0.073 0.008 0.011 0.011 0.021 0.015 0.067 0.035 0.005 0.009 0.051 0.015 0.016 0.081
P-CXMI 0.075 0.005 0.011 0.021 0.023 0.016 0.059 0.038 0.002 0.013 0.049 0.015 0.014 0.057

ADJ 0.017 -0.014 -0.011 0.000 -0.037 -0.008 0.001 -0.002 -0.006 -0.005 0.020 0.015 -0.006 0.007
ADP 0.017 -0.001 -0.004 -0.004 -0.006 -0.005 0.005 0.014 -0.005 -0.001 0.011 -0.003 -0.005 -0.001
ADV 0.038 -0.011 0.008 0.002 0.007 0.005 0.005 -0.006 0.001 0.011 0.062 0.023 -0.013 0.009
AUX 0.053 0.010 0.002 0.010 0.008 0.036 0.012 0.032 0.010 0.010 0.048 0.045 0.055 0.007

CCONJ 0.044 0.025 0.024 0.005 0.012 0.043 0.034 -0.020 0.010 0.009 0.165 0.042 -0.007 -0.023
DET 0.006 0.004 0.006 0.002 -0.004 0.001 0.011 0.043 -0.007 0.002 0.046 0.018 0.011 0.008
INTJ -0.066 -0.024 0.013 0.010 -0.015 -0.087 0.004 0.037 -0.019 0.031 -0.041 -0.009

NOUN 0.012 -0.010 0.000 0.010 -0.001 0.000 -0.008 0.003 -0.011 -0.003 0.044 -0.010 -0.006 -0.002
NUM 0.011 -0.005 -0.005 -0.008 0.002 0.017 0.019 -0.046 -0.002 0.009 0.008 0.025 -0.000 0.004
PART 0.025 -0.007 0.029 0.063 -0.718 0.006 0.018 0.016 -0.006
PRON 0.019 0.014 -0.002 0.021 0.039 0.003 -0.009 0.047 0.006 0.013 0.029 0.023 0.000 0.023

PRON.1 0.015 0.011 0.009 0.015 0.043 0.021 0.008 0.015 0.046 0.015 -0.012 0.025
PRON.1.Plur 0.027 0.007 -0.002 0.008 0.082 0.004 0.045 0.012 0.013 -0.022 0.033
PRON.1.Sing -0.036 0.014 0.017 0.020 0.016 0.037 0.001 0.075 0.015 -0.006

PRON.2 0.040 0.222 -0.020 0.037 0.108 0.015 0.013 0.171 -0.017 0.103 -0.026 0.009
PRON.2.Plur 0.075 -0.055 -0.019 -0.008 0.088 0.011 -0.008 0.069 -0.024
PRON.2.Sing 0.009 0.226 -0.021 0.357 0.125 0.052 0.171 -0.033 0.412 -0.038

PRON.3 0.018 0.026 -0.009 0.024 0.031 -0.020 0.004 0.033 0.029 0.042 0.008 0.045
PRON.3.Dual 0.057
PRON.3.Plur 0.016 0.017 -0.021 0.037 0.050 0.024 0.058 0.062 0.038 0.047 0.038
PRON.3.Sing 0.017 0.032 0.000 0.030 0.026 0.009 0.014 0.046 0.044 -0.001
PRON.Plur 0.001 0.018 0.096 0.021 0.003 -0.027
PRON.Sing 0.002 -0.005 0.025 -0.004 0.005 0.002 0.007

PROPN 0.016 -0.014 -0.002 0.018 0.017 -0.016 -0.018 0.003 -0.005 -0.013 0.007 0.021 -0.014 0.005
PUNCT 0.129 0.007 0.012 0.001 0.019 0.019 0.353 0.017 0.018 0.021 0.005 0.017 0.022 0.106
SCONJ 0.137 -0.001 0.017 0.001 0.007 -0.000 0.004 0.005 0.005 0.003 0.044 -0.001
SYM 0.050 0.081 0.136 0.152 0.017 -0.034 -0.014 -0.010 -0.071 -0.040 0.015
VERB 0.042 0.006 0.004 0.003 0.007 0.004 0.008 0.036 0.002 0.005 0.047 0.015 0.014 0.015

VERB.Fut 0.043 0.004 0.019 0.008 -0.001 -0.018 0.007
VERB.Imp 0.039 0.010 0.057 0.029 0.069
VERB.Past 0.041 0.011 0.009 0.008 0.007 -0.001 0.005 -0.009 0.064 0.010
VERB.Pres 0.013 0.001 -0.001 -0.006 0.011 0.014 0.039 0.002 0.016

X 0.042 0.024 0.131 -0.013 0.028 0.179 0.242 0.019

ellipsis 0.052 -0.053 -0.111 0.055 0.071 0.019 0.020 0.022 0.037 -0.070 0.111 -0.020 -0.041 0.082
formality 0.038 0.077 0.040 0.048 0.036 0.022 0.014 0.008 0.008 0.107 -0.073 0.012

lexical -0.006 0.003 0.011 -0.001 0.003 0.001 -0.007 -0.008 -0.004 0.002 0.034 -0.002 0.008 0.004
no tag 0.041 0.001 0.003 0.005 0.005 0.006 0.011 0.013 0.002 0.005 0.036 0.009 0.003 0.017

pronouns 0.028 0.068 -0.002 0.055 0.006 -0.027 0.055 0.008
verb form 0.042 0.009 0.009 0.041 -0.002 0.046 0.065 0.013
with tag -0.001 0.024 0.018 0.021 0.005 0.013 0.023 0.005 0.001 0.010 0.034 0.056 0.002 0.009

Table 8: P-CXMI for all POS tags and our ambiguity tags. In the top two rows, CXMI is the average of P-CXMI
for each sentence across the corpus, and P-CXMI is the average of P-CXMI over all tokens in the corpus. Per-tag
values are the average of P-CXMI for each token with the tag.

Due to the sheer number of experiments, we use a single seed per experiment. 861

We base our experiments on the framework Fairseq (Ott et al., 2019). 862
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de
du
sie

es
tú, tu, tus, ti, contigo, tuyo, te, tuya

usted, vosotros, vuestro, vuestra, vuestras, os

fr
tu, ton,ta, tes, toi, te, tien, tiens, tienne, tiennes

vous, votre, vos

it
tu, tuo, tua, tuoi

lei, suo, sua, suoi

ja
だ,だっ,じゃ,だろう,だ,だけど,だっ

ござい,ます,いらっしゃれ,いらっしゃい,ご覧,伺い,伺っ,存知,です,まし

ko
제가,저희,나

댁에,성함,분,생신,식사,연세,병환,약주,자제분,뵙다,저

nl
jij, jouw, jou, jullie, je

u, men, uw

pt
tu, tua, teu, teus, tuas, te

você, sua, seu, seus, suas, lhe

ro
tu, el, ea, voi, ei, ele, tău, ta, tale, tine

dumneavoastră, dumneata, mata,matale,dânsul, dânsa dumnealui,dumneaei, dumnealor

ru
ты, тебя, тебе, тобой, твой, твоя, твои,тебе

вы, вас, вам, вами, ваш, ваши

tr
sen, senin
siz, sizin

zh
你
您

Table 9: Words related to formality for each target language.
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ar
you AÒ

�
J
	
K


@ , AÒ

�
J
	
K


@ ,ñ

�
J
	
K @ ,

	á�
�
	
K


@ , Õ

�
æ

	
K


@ , ú

�
æ

	
K @ ,

�
I
�

	
K @ ,

��
I

	
K@ ,

�
I

	
K@

it ù


ë ,ñë

they, them AÒë , 	áë , Ñë

de it er, sie, es

es

it él, ella
they, them ellos, ellas

this ésta, éste, esto
that esa, ese

these estos, estas
those aquellos, aquellas, ésos, ésas

fr

it il, elle, lui
they, them ils, elles

we nous, on
this celle, ceci
that celle, celui

these, those celles, ceux

it

it esso, essa
them ellos, ellas
this questa, questo
that quella, quello

these queste, questi
those quelle, quelli

ja I 私,僕,俺

pt

it ele, ela, o, a
them eles, elas, os, as
they eles, elas

this, that este, esta, esse, essa
these, those estes, estas, esses, essas

ro
it el, ea

they, them ei, ele

Table 10: Ambiguous pronouns w.r.t. English for each target language.
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es Imperfect, Pluperfect, Future

fr Imperfect, Past, Pluperfect

he Imperfect, Future, Pluperfect

it Imperfect, Pluperfect, Future

nl Past

pt Pluperfect

ro Imperfect, Past, Future

ru Past

tr Pluperfect

Table 11: Ambiguous verb forms w.r.t. English for each target language.
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