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ABSTRACT

Topic models have been prevalent for decades with various applications like au-
tomatic text analysis due to their effectiveness and interpretability. However, ex-
isting topic models commonly suffer from the notorious topic collapsing issue:
the discovered topics semantically collapse towards each other, leading to highly
repetitive topics, insufficient topic discovery, and damaged model interpretability.
In this paper, we propose a new neural topic model, Embedding Clustering Regu-
larization Topic Model (ECRTM), to solve the topic collapsing issue. In addition
to the reconstruction error of existing work, we propose a novel Embedding Clus-
tering Regularization (ECR), which forces each topic embedding to be the center
of a separately aggregated word embedding cluster in the semantic space. Instead
of collapsing together, this makes topic embeddings away from each other and
cover different semantics of word embeddings. Thus our ECR enables each pro-
duced topic to contain distinct word semantics, which alleviates topic collapsing.
Through jointly optimizing our ECR objective and the neural topic modeling ob-
jective, ECRTM generates diverse and coherent topics together with high-quality
topic distributions of documents. Extensive experiments on benchmark datasets
demonstrate that ECRTM effectively addresses the topic collapsing issue and con-
sistently surpasses state-of-the-art baselines in terms of topic quality, topic distri-
butions of documents, and downstream classification tasks.

(a) ETM (b) NSTM (c) WeTe (d) ECRTM

Figure 1: t-SNE visualization (van der Maaten & Hinton, 2008) of word embeddings (•) and topic
embeddings (N) under 50 topics. These show that while the topic embeddings mostly collapse
together in previous state-of-the-art models (ETM (Dieng et al., 2020), NSTM (Zhao et al., 2021b),
and WeTe (Wang et al., 2022)), our ECRTM successfully avoids the collapsing by forcing each topic
embedding to be the center of a separately aggregated word embedding cluster.

1 INTRODUCTION

Topic models have achieved great success in document analysis via discovering latent semantics.
They have various downstream applications (Boyd-Graber et al., 2017), like content recommen-
dation (McAuley & Leskovec, 2013), summarization (Ma et al., 2012), and information retrieval
(Wang et al., 2007). Current topic models can be roughly classified as two lines: conventional topic
models based on probabilistic graphical models (Blei et al., 2003) or matrix factorization (Kim et al.,
2015; Shi et al., 2018) and neural topic models (Miao et al., 2016; 2017; Srivastava & Sutton, 2017).
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Topic#1: just show even come time one good really going know
Topic#2: just even really something come going like actually things get
Topic#3: just one even something come way really like always good
Topic#4: just get going come one know even really something way
Topic#5: just like inside get even look come one everything away

Table 1: Top related words of the discovered topics by
NSTM (Zhao et al., 2021b) on IMDB. These topics seman-
tically collapse towards each other with many uninformative
and repetitive words. Repetitions are underlined.

However, despite the current achieve-
ments, existing topic models com-
monly suffer from topic collapsing:
the discovered topics tend to seman-
tically collapse towards each other
(Srivastava & Sutton, 2017), as ex-
emplified in Table 1. We see these
collapsed topics include many unin-
formative and repetitive words. Topic
collapsing brings about several is-
sues: (1) Topic collapsing results in
highly repetitive topics, which are less useful for downstream applications (Nan et al., 2019; Wu
et al., 2020b). (2) Topic collapsing incurs insufficient topic discovery. Many latent topics are
undisclosed, making the topic discovery insufficient to understand documents (Dieng et al., 2020).
(3) Topic collapsing damages the interpretability of topic models. It becomes difficult to infer the
real underlying topics that a document contains (Huynh et al., 2020). In consequence, topic collaps-
ing impedes the utilization and extension of topic models; therefore it is crucial to overcome this
challenge for building reliable topic modeling applications.

To address the topic collapsing issue and achieve robust topic modeling, we in this paper propose a
novel neural topic model, Embedding Clustering Regularization Topic Model (ECRTM). First,
we illustrate the reason for topic collapsing. Figure 1 shows topic embeddings mostly collapse to-
gether in the semantic space of previous state-of-the-art methods. This makes discovered topics
contain similar word semantics and thus results in the topic collapsing. Then to avoid the collapsing
of topic embeddings, we propose the novel Embedding Clustering Regularization (ECR) in addition
to the reconstruction error of previous work. ECR considers topic embedding as cluster centers
and word embeddings as cluster samples. To effectively regularize them, ECR models the clustering
soft-assignments between them by solving a specifically defined optimal transport problem on them.
As such, ECR forces each topic embedding to be the center of a separately aggregated word embed-
ding cluster. Instead of collapsing together, this makes topic embeddings away from each other and
cover different semantics of word embeddings. Thus our ECR enables each produced topic to con-
tain distinct word semantics, which alleviates topic collapsing. Regularized by ECR, our ECRTM
achieves robust topic modeling performance by producing diverse and coherent topics together with
high-quality topic distributions of documents. Figure 1d shows the effectiveness of ECRTM. We
conclude the main contributions of our paper as follows:

• We propose a novel embedding clustering regularization that avoids the collapsing of topic embed-
dings by forcing each topic embedding to be the center of a separately aggregated word embedding
cluster, which effectively mitigates topic collapsing.

• We further propose a new neural topic model that jointly optimizes the topic modeling objec-
tive and the embedding clustering regularization objective. Our model can produce diverse and
coherent topics with high-quality topic distributions of documents at the same time.

• We conduct extensive experiments on benchmark datasets and demonstrate that our model effec-
tively addresses the topic collapsing issue and surpasses state-of-the-art baseline methods with
substantially improved topic modeling performance.

2 RELATED WORK

Conventional Topic Models Conventional topic models (Hofmann, 1999; Blei et al., 2003; Blei
& Lafferty, 2006; Mimno et al., 2009; Boyd-Graber et al., 2017) commonly employ probabilistic
graphical models to model the generation process of documents with topics as latent variables. They
infer model parameters with MCMC methods like Gibbs Sampling (Steyvers & Griffiths, 2007) or
Variational Inference (Blei et al., 2017). Another line of work uses matrix factorization to model
topics (Yan et al., 2013; Kim et al., 2015; Shi et al., 2018). Conventional topic models usually need
model-specific derivations for different modeling assumptions.

Neural Topic Models Due to the success of Variational AutoEncoder (VAE, Kingma & Welling,
2014; Rezende et al., 2014), several neural topic models have been proposed (Miao et al., 2016;
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2017; Srivastava & Sutton, 2017; Burkhardt & Kramer, 2019; Wu et al., 2020a; 2021; Dieng et al.,
2019; 2020; Meng et al., 2020; Zhao et al., 2021a). Neural topic models commonly optimize the
KL divergence and the reconstruction error between input and output by gradient back-propagation.
Some studies directly cluster pre-trained word or sentence embeddings to produce topics (Sia et al.,
2020; Zhang et al., 2022), but they are not topic models since they cannot infer the topic distributions
of documents as required. Recent NSTM (Zhao et al., 2021b) and WeTe (Wang et al., 2022) measure
the reconstruction error with optimal (conditional) transport distance. However, despite the different
reconstruction error measurements, they still suffer from the topic collapsing, producing repetitive
and less useful topics (see experiments in Sec. 4.2). Different from these, our proposed model aims
to address the topic collapsing issue and substantially improve topic modeling performance. In ad-
dition to the reconstruction error of these previous work, our model proposes a novel embedding
clustering regularization that avoids the collapsing of topic embeddings by forcing each topic em-
bedding to be the center of a separately aggregated word embedding cluster. Then our model learns
topics under this effective regularization and particularly addresses the topic collapsing issue.

3 METHODOLOGY

3.1 PROBLEM SETTING AND NOTATIONS

We recall the problem setting of topic modeling following LDA (Blei et al., 2003). Consider a
document collection X with V unique words (vocabulary size), and each document is denoted
as x. We require to discover K topics from this document collection. The k-th latent topic is
defined as a distribution over all words (topic-word distribution), denoted as βk ∈RV . We have
β=(β1, . . . ,βK)∈RV×K as the topic-word distribution matrix of all topics. The topic distribution
of a document (doc-topic distribution) refers to what topics it contains, noted as θ∈∆K . 1

3.2 WHAT CAUSES TOPIC COLLAPSING?

Despite the current achievements, most topic models suffer from topic collapsing: topics semanti-
cally collapse towards each other (see Table 1). We illustrate what causes topic collapsing by analyz-
ing a kind of recently proposed state-of-the-art neural topic models (Dieng et al., 2020; Zhao et al.,
2021b). These models compute the topic-word distribution matrix with two parameters: β=W>T.
Here W=(w1, . . . ,wV )∈RD×V are the embeddings of V words and T=(t1, . . . , tK)∈RD×K
are the embeddings of K topics, all in the same D-dimensional semantic space. They can facilitate
learning by initializing W with pre-trained embeddings like GloVe (Pennington et al., 2014).

However, topic collapsing commonly happens in these models. We believe the reason lies in that
their reconstruction error minimization incurs the collapsing of topic embeddings. Specifically, these
models learn topic and word embeddings by minimizing the reconstruction error between topic dis-
tribution θ and word distribution x of a document. For example, to measure reconstruction error,
ETM (Dieng et al., 2020) uses expected log-likelihood, and recent NSTM (Zhao et al., 2021b) and
WeTe (Wang et al., 2022) use optimal (conditional) transport distance. In fact, words in a docu-
ment collection commonly are long-tail distributed following Zipf’s law (Reed, 2001; Piantadosi,
2014)—roughly speaking, few words are high frequency and most are low frequency. Therefore
the reconstruction is biased as it mainly reconstructs high-frequency words regardless of the recon-
struction error measurements. Since topic and word embeddings are learned by minimizing recon-
struction error, this biased reconstruction pushes most topic embeddings close to the embeddings of
these high-frequency words in the semantic space. As a result, topic embeddings collapse together
as shown in Figure 1. The topic-word distributions become similar to each other, making discovered
topics contain similar word semantics. This leads to topic collapsing.

3.3 WHAT IS AN EFFECTIVE CLUSTERING REGULARIZATION ON EMBEDDINGS?

In this section, we explore how to design an effective clustering regularization to address the topic
collapsing issue. Our analysis in Sec. 3.2 indicates topic collapsing happens because the recon-
struction error minimization incurs the collapsing of topic embeddings in existing work. To solve

1Here ∆K denotes a probability simplex ∆K=
{
θ ∈ RK

+ |
∑K

k=1θk=1
}

.
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Figure 2: t-SNE visualization (a-e) of word embeddings (•) and topic embeddings (N) under 50
topics (K=50). (a): DKM cannot form separately aggregated clusters. (b): DKM + Entropy forms
clusters but has a trivial solution that clusters of most topic embeddings are empty. (c,d,e): Our
ECR forms clusters and also avoids the trivial solution of empty clusters with a small ε. (f): This
quantitatively shows that while most cluster size proportions are zero in DKM + Entropy, our ECR
successfully avoids this trivial solution with fulfilled preset cluster size constraints. Here all cluster
size proportions of topic embeddings are preset equal as 1/K=0.02.

this issue, we propose to design a clustering regularization in addition to the reconstruction error
of existing work. Considering topic embeddings as cluster centers and word embeddings as cluster
samples, we require the regularization to force each topic embedding to be the center of a sepa-
rately aggregated word embedding cluster. So instead of collapsing together, topic embeddings will
be away from each other and cover different semantics of word embeddings in the space. This
will make each discovered topic contain distinct word semantics and thus alleviate topic collapsing.
However, it is non-trivial to achieve such an effective clustering regularization, and we explore its
requirements as follows.

Supporting Joint Optimization As we regularize on neural topic models, we require the cluster-
ing regularization to support joint optimization on topic and word embeddings along with a neural
topic modeling objective. Some studies (Sia et al., 2020) apply classical clustering algorithms, e.g.,
KMeans and GMM, to produce topics by clustering pre-trained word embeddings. We clarify that
they are not topic models as they only produce topics and cannot learn doc-topic distributions as re-
quired (but we compare them in experiments). We do not adopt these classical clustering algorithms
and some other work (Song et al., 2013; Huang et al., 2014; Xie et al., 2016; Hsu & Lin, 2017; Yang
et al., 2017) as our clustering regularization, because we cannot jointly optimize them along with a
neural topic modeling objective.

Producing Sparse Soft-assignments We also require the clustering regularization to produce
sparse soft-assignments. Even supporting joint optimization, existing clustering methods may still
lead to topic collapsing. For example, we propose to employ the state-of-the-art deep clustering
method, Deep KMeans (DKM, Fard et al., 2020) that supports joint optimization. The clustering
objective of DKM is to minimize the total Euclidean distance between centers and samples weighted
by soft-assignments. We use DKM as a clustering regularization on topic and word embeddings:

min
W,T,p

V∑
j=1

K∑
k=1

‖wj − tk‖2pjk, where pjk =
e−‖wj−tk‖2/τ∑K

k′=1 e
−‖wj−tk′‖2/τ

. (1)

Here pjk denotes the clustering soft-assignment of word embedding wj assigned to topic embedding
tk, which is modeled as a softmax function of the Euclidean distance between wj and all topic
embeddings (τ is a temperature hyper-parameter). Unfortunately, DKM still incurs topic collapsing
(quantitative results are in Sec. 4.3). We see from Figure 2a that DKM cannot form separately
aggregated clusters, so the topic embeddings (centers) cannot be separated but collapse together. To
solve this issue, we require the clustering regularization to produce sparse soft-assignments—each
word embedding is mainly assigned to only one topic embedding and rarely to others, which pushes
each word embedding only close to one topic embedding and away from all others in the semantic
space. This way can form separately aggregated word embedding clusters with topic embeddings as
centers, which encourages topic embeddings to be away from each other.

Fulfilling Preset Cluster Size Constraints We further require the clustering regularization to ful-
fill preset cluster size constraints. Only producing sparse soft-assignments may still result in topic
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Algorithm 1 Training algorithm for ECRTM.
Input: document collection X, preset cluster size constraint s,
number of epochs nepoch;
Output: model parameters Θ, W, T;

1: for 1 to nepoch do
2: for each mini-batch (x(1),x(2), . . . ,x(N)) from X do
3: // Sinkhorn’s algorithm;
4: Cjk = ‖wj − tk‖2 ∀ j, k;
5: M = exp(−C/ε);
6: Initialize b← 1K ;
7: while not converged and not reach max iterations do
8: a← 1

V
1V

Mb , b← s
M>a

;
9: end while

10: Compute π∗ε ← diag(a)Mdiag(b);
11: Compute LTM + λECRLECR (Eq. (6));
12: Update Θ, W, T with a gradient step;
13: end for
14: end for

Semantic Space

cluster center  with size 

Figure 3: Illustration of ECR. ECR
clusters word embeddings wj (•) as
samples and topic embeddings tk
(N) as centers with soft-assignment
π∗ε,jk. The cluster size of center tk
is constrained as nk. Here ECR
pushes w1 close to t1 and away
from t3 and t5. It is similar for w2.

collapsing. To make the soft-assignments sparse, we propose DKM + Entropy that jointly min-
imizes the entropy of soft-assignments,

∑V
j=1

∑K
k=1−pjk log pjk with the clustering objective of

DKM (Eq. (1)). However, this way still leads to topic collapsing (quantitative results are in Sec. 4.3).
Figure 2b shows this way indeed forms separately aggregated clusters for some topic embeddings,
but unfortunately the clustering solution is trivial—the clusters of most topic embeddings are empty,
as quantitatively shown in Figure 2f. As a result, the topic embeddings of these empty clusters can-
not be separated to cover distinct semantics but only collapse to others in the space. To avoid such
trivial solutions of empty clusters, we propose to preset constraints on the size of each cluster (must
not be empty) and require the clustering regularization to fulfill these constraints.

3.4 EMBEDDING CLUSTERING REGULARIZATION

To meet the above requirements, we in this section introduce a novel method, Embedding Cluster-
ing Regularization (ECR). Figure 3 illustrates ECR, and Figure 2e shows its effectiveness.

Presetting Cluster Size Constraints We first preset the cluster size constraints to be fulfilled to
avoid trivial solutions of empty clusters. Recall that we have K topic embeddings as centers and
V word embeddings as samples. We denote the cluster size of topic embedding tk as nk and the
cluster size proportion as sk=nk/V . We have s = (s1, . . . , sK)>∈∆K as the vector of all cluster
size proportions. In our experiments, we set all cluster sizes as equal, nk=V/K, so s is uniform,
s=(1/K, . . . , 1/K)>. This is because we often lack prior knowledge about cluster sizes, and it is
reasonable to assume each cluster (topic) includes the same amount of semantic information without
loss of generality. 2 Experiments also show this assumption works well (see Sec. 4.2).

Embedding Clustering Regularization (ECR) To meet the above requirements, we propose
ECR that models clustering soft-assignments with the transport plan of a specifically defined op-
timal transport problem. Specifically, we define two discrete measures of topic (tk) and word em-
beddings (wj): γ=

∑V
j=1

1
V δwj

and φ=
∑K
k=1 skδtk , where δx denotes the Dirac unit mass on x.

We formulate the entropic regularized optimal transport problem between γ and φ as

arg min
π∈RV×K

+

LOTε
(γ, φ), LOTε

(γ, φ) =

V∑
j=1

K∑
k=1

‖wj − tk‖2πjk +

V∑
j=1

K∑
k=1

επjk(log(πjk)− 1),

s.t. π1K =
1

V
1V and π>1V = s. (2)

2Note that s can be determined by prior knowledge from experts, and we leave this as future work.
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Here the first term is the original optimal transport problem, and the second term is the entropic reg-
ularization with hyper-parameter ε to make this problem tractable (Canas & Rosasco, 2012). Eq. (2)
is to find the optimal transport plan π∗ε that minimizes the total cost of transporting weight from
word embeddings to topic embeddings. We measure the transport cost between word embedding
wj and topic embedding tk by Euclidean distance: Cjk=‖wj − tk‖2, and the transport cost matrix
is C∈RV×K . The two conditions in Eq. (2) restrict the weight of each word embedding wj as 1

V
and each topic embedding tk as sk, where 1K (1V ) is a K (V ) dimensional column vector of ones.
πjk denotes the transport weight from wj to tk; π∈RV×K+ is the transport plan that includes the
transport weight of each word embedding to fulfill the weight of each topic embedding.

To meet the requirements of an effective clustering regularization, we model clustering soft-
assignments with the optimal transport plan π∗ε: the soft-assignment of wj to tk is the transport
weight between them, π∗ε,jk. Then we formulate our ECR objective by minimizing the total distance
between word and topic embeddings weighted by these soft-assignments:

LECR =

V∑
j=1

K∑
k=1

‖wj − tk‖2π∗ε,jk, where π∗ε = sinkhorn(γ, φ, ε) ≈ arg min
π∈RV×K

+

LOTε(γ, φ). (3)

Here we compute π∗ε through Sinkhorn’s algorithm (Sinkhorn, 1964; Cuturi, 2013, Algorithm 1),
a fast iterative scheme suited to the execution of GPU (Peyré et al., 2019). By doing so, π∗ε is a
differentiable variable parameterized by transport cost matrix C (Salimans et al., 2018; Genevay
et al., 2018). Due to this, minimizing π∗ε,jk increases transport cost Cjk, i.e., the distance between
wj and tk; otherwise maximizing it decreases the distance (Genevay et al., 2019). Thus we can
exactly model π∗ε as differentiable clustering soft-assignments between topic and word embeddings.

ECR is an Effective Clustering Regularization As shown in Figures 2e and 2f, ECR is an effec-
tive clustering regularization that meets the requirements in Sec. 3.2. First, ECR supports joint
optimization since π∗ε is differentiable as aforementioned. Second, ECR produces sparse soft-
assignments. It is proven that π∗ε converges to the optimal solution of the original optimal transport
problem when ε→0, which leads to a sparse transport plan (Peyré et al., 2019). Hence ECR (Eq. (3))
produces sparse soft-assignments under a small ε. With sparse soft-assignments, ECR pushes each
word embedding only close to one topic embedding and away from all others, which forms sepa-
rately aggregated clusters. We illustrate this property in Figures 2c to 2e. Last, ECR fulfills preset
cluster size constraints. In Eq. (2), the transport plan is restricted by two conditions indicating the
weight of each word embedding wj is 1

V and each topic embedding tk is sk. These ensure the
sparse optimal transport plan π∗ε needs to transport nk word embeddings to topic embedding tk to
balance the weight, such that nk×1

V =sk. Accordingly, ECR fulfills the preset cluster size constraints
with π∗ε as clustering soft-assignments, which avoids trivial clustering solutions of empty clusters as
shown in Figure 2f. To sum up, our effective ECR forces each topic embedding to be the center of a
separately aggregated word embedding cluster. This makes topic embeddings away from each other
and cover different semantics of word embeddings in the space, which alleviates topic collapsing.

3.5 NEURAL TOPIC MODELING WITH EMBEDDING CLUSTERING REGULARIZATION

In this section, we propose a novel neural topic model, Embedding Clustering Regularization
Topic Model (ECRTM) that jointly optimizes the topic modeling objective and our proposed ECR
objective. Algorithm 1 shows the training algorithm of ECRTM.

Inferring Topic Distributions We devise the prior and variational distribution following VAE
(Kingma & Welling, 2014) to infer topic distributions. Since it is difficult to directly apply the
reparameterization trick of VAE on a Dirichlet distribution as in LDA, we employ a logistic normal
prior to avoid this issue (Srivastava & Sutton, 2017). In detail, we draw a latent variable, r, from
a logistic normal distribution: p(r) = LN (µ0,Σ0), where µ0 and Σ0 are the mean and diagonal
covariance matrix. Then we use an encoder network that outputs parameters of the variational
distribution, the mean vector µ=fµ(x) and covariance matrix Σ=diag(fΣ(x)). So the variational
distribution is qΘ(r|x) =N (µ,Σ) where Θ denotes the parameters of fµ and fΣ. By applying the
reparameterization trick (Kingma & Welling, 2014), we sample r=µ + Σ1/2ε where ε ∼ N (0, I).
We obtain the topic distribution θ with a softmax function as θ=softmax(r).
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Reconstructing Documents We then reconstruct the input documents with topic-word distribu-
tion matrix β ∈ RV×K . Recall that β indicates the weights between all topics and words. Previous
methods commonly model β as the product of topic and word embeddings. Differently, our model
uses the proposed ECR as a clustering regularization on topic and word embeddings, so β also needs
to reflect the learned clustering assignments between them. We do not directly model β with the soft-
assignments π∗ε of our ECR. This is because this way cannot provide sufficient weight information
between topics and words for reconstruction since π∗ε is very sparse as aforementioned (most values
are close to zero). Experiments also show this way is ineffective. Hence we need a less sparse β for
reconstruction. To this end, we propose to model β with the less sparse soft-assignments following
DKM (Fard et al., 2020):

βjk =
e−‖wj−tk‖2/τ∑K

k′=1 e
−‖wj−tk′‖2/τ

(4)

where τ is a temperature hyper-parameter. This formulation can reflect the learned clustering assign-
ments between topic and word embeddings and is less sparse to provide sufficient information for
reconstruction. With the topic distribution θ and the topic-word distribution matrix β, we routinely
sample the reconstructed document from a Multinomial distribution Multi(softmax(βθ)).

Overall Objective Function Given a mini-batch of N documents (x(1), . . . ,x(N)), we formulate
the topic modeling objective function following VAE as

LTM =
1

N

N∑
i=1

−x(i)> log(softmax(βθ(i))) + KL
[
qΘ(r(i)|x(i))‖p(r(i))

]
. (5)

The first term is the reconstruction error, and the second term is the KL divergence between the prior
and variational distribution. ECRTM learns topics regularized by our ECR. We define the overall
objective function of ECRTM as a combination of LTM (Eq. (5)) and LECR (Eq. (3)):

min
Θ,W,T

LTM + λECR LECR (6)

where λECR is a weight hyper-parameter. This overall objective enables ECRTM to aggregate the
embeddings of related words to form separate clusters with topic embeddings as centers and avoids
the collapsing of topic embeddings. Thus our ECRTM can alleviate the topic collapsing issue and
learn coherent and diverse topics together with high-quality doc-topic distributions at the same time.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets We adopt the following benchmark document datasets for experiments: (i) 20 News
Groups (20NG, Lang, 1995) is one of the most popular datasets for evaluating topic models, in-
cluding news articles with 20 labels; (ii) IMDB (Maas et al., 2011) is the movie reviews containing
two labels (positive and negative); (iii) Yahoo Answer (Zhang et al., 2015) is the question titles,
contents, and the best answers from the Yahoo website with 10 labels. (iv) AG News (Zhang et al.,
2015) contains news titles and descriptions, divided into 4 categories like Sports and Business. The
preprocessing details are described in Appendix A.1.

Evaluation Metrics We evaluate topic models concerning topic and doc-topic distribution qual-
ity (perplexity is not considered since it disagrees with human interpretability (Chang et al., 2009;
Hoyle et al., 2021)). For topic quality, we consider Topic Coherence and Topic Diversity. Topic
coherence measures whether the top words of discovered topics are coherent (Newman et al., 2010;
Wang & Blei, 2011). We employ the widely-used topic coherence metric, Coherence Value (CV )
(Röder et al., 2015). Besides, topic diversity measures the differences between discovered topics to
verify if topic collapsing happens. We use Topic Diversity (TD, Dieng et al., 2020) to evaluate topic
diversity, which computes the proportion of unique words in the discovered topics. Additionally, we
conduct document clustering tasks to evaluate doc-topic distribution quality following Zhao et al.
(2021b); Wang et al. (2022). We use the most significant topics in the topic distributions of test-
ing documents as their document clustering assignments and adopt the commonly-used Purity and
NMI (Manning et al., 2008) for evaluation. Note that our intention is not to achieve state-of-the-art
document clustering results but compare doc-topic distribution quality.
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Table 2: Topic quality of topic coherence (CV ) and topic diversity (TD) under 50 and 100 topics
(K=50 and K=100). The best scores are in bold. ‡ means the gain of ECRTM is statistically
significant at 0.05 level.

Model

20NG IMDB

K=50 K=100 K=50 K=100
CV TD CV TD CV TD CV TD

LDA ‡0.385±0.005 ‡0.655±0.024 ‡0.387±0.004 ‡0.622±0.027 ‡0.347±0.004 ‡0.788±0.033 ‡0.342±0.006 ‡0.691±0.053

KM ‡0.251±0.008 ‡0.204±0.017 ‡0.294±0.013 ‡0.317±0.017 ‡0.213±0.008 ‡0.219±0.011 ‡0.244±0.003 ‡0.302±0.006

WLDA ‡0.378±0.007 ‡0.375±0.023 ‡0.369±0.004 ‡0.273±0.018 ‡0.311±0.007 ‡0.053±0.008 ‡0.320±0.003 ‡0.069±0.003

ETM ‡0.375±0.007 ‡0.704±0.024 ‡0.369±0.001 ‡0.573±0.016 ‡0.346±0.005 ‡0.557±0.014 ‡0.341±0.005 ‡0.371±0.017

NSTM ‡0.395±0.005 ‡0.427±0.017 ‡0.391±0.003 ‡0.473±0.025 ‡0.334±0.003 ‡0.175±0.010 ‡0.340±0.003 ‡0.255±0.012

WeTe ‡0.383±0.007 ‡0.949±0.003 ‡0.352±0.008 ‡0.742±0.025 ‡0.368±0.008 ‡0.931±0.021 ‡0.293±0.018 ‡0.638±0.024

ECRTM 0.431±0.013 0.964±0.009 0.405±0.006 0.904±0.028 0.395±0.005 0.979±0.020 0.373±0.006 0.887±0.019

Model

Yahoo Answer AG News

K=50 K=100 K=50 K=100
CV TD CV TD CV TD CV TD

LDA ‡0.359±0.007 ‡0.843±0.012 ‡0.359±0.005 ‡0.602±0.030 ‡0.364±0.006 ‡0.864±0.027 ‡0.349±0.005 ‡0.696±0.018

KM ‡0.271±0.018 ‡0.242±0.008 ‡0.297±0.006 ‡0.345±0.008 ‡0.241±0.015 ‡0.264±0.026 ‡0.289±0.007 ‡0.395±0.016

WLDA ‡0.333±0.007 ‡0.322±0.024 ‡0.338±0.006 ‡0.292±0.021 ‡0.384±0.004 ‡0.410±0.018 ‡0.378±0.004 ‡0.323±0.035

ETM ‡0.354±0.003 ‡0.719±0.022 ‡0.353±0.002 ‡0.624±0.024 ‡0.364±0.002 ‡0.819±0.017 ‡0.371±0.005 ‡0.773±0.019

NSTM ‡0.390±0.009 ‡0.658±0.011 0.387±0.001 ‡0.659±0.005 ‡0.411±0.011 ‡0.873±0.019 0.421±0.003 ‡0.832±0.010

WeTe ‡0.367±0.010 ‡0.878±0.020 ‡0.353±0.007 ‡0.544±0.019 ‡0.383±0.007 ‡0.945±0.004 ‡0.363±0.005 ‡0.827±0.023

ECRTM 0.405±0.004 0.985±0.013 0.389±0.006 0.903±0.033 0.466±0.012 0.961±0.009 0.416±0.003 0.981±0.012

Table 3: Document clustering of Purity and NMI under 50 and 100 topics (K=50 and K=100). The
best scores are in bold. ‡ means the gain of ECRTM is statistically significant at 0.05 level.

Model

20NG IMDB

K=50 K=100 K=50 K=100
Purity NMI Purity NMI Purity NMI Purity NMI

LDA ‡0.367±0.024 ‡0.364±0.016 ‡0.364±0.011 ‡0.346±0.005 ‡0.614±0.006 ‡0.041±0.008 ‡0.600±0.009 ‡0.037±0.007

WLDA ‡0.233±0.008 ‡0.157±0.007 ‡0.292±0.009 ‡0.207±0.008 ‡0.589±0.008 ‡0.011±0.002 ‡0.602±0.005 ‡0.013±0.001

ETM ‡0.347±0.026 ‡0.319±0.027 ‡0.394±0.013 ‡0.339±0.010 ‡0.660±0.004 ‡0.038±0.002 ‡0.648±0.009 ‡0.037±0.002

NSTM ‡0.354±0.032 ‡0.356±0.015 ‡0.383±0.021 ‡0.363±0.015 ‡0.658±0.008 ‡0.040±0.002 ‡0.659±0.010 ‡0.039±0.003

WeTe ‡0.268±0.012 ‡0.304±0.009 ‡0.338±0.032 ‡0.348±0.028 ‡0.587±0.014 ‡0.031±0.006 ‡0.589±0.006 ‡0.025±0.001

ECRTM 0.560±0.037 0.524±0.025 0.555±0.018 0.494±0.009 0.690±0.009 0.056±0.007 0.694±0.006 0.049±0.002

Model

Yahoo Answer AG News

K=50 K=100 K=50 K=100
Purity NMI Purity NMI Purity NMI Purity NMI

LDA ‡0.288±0.017 ‡0.144±0.013 ‡0.297±0.019 ‡0.148±0.007 ‡0.640±0.028 ‡0.193±0.017 ‡0.654±0.012 ‡0.194±0.006

WLDA ‡0.255±0.007 ‡0.084±0.005 ‡0.303±0.010 ‡0.127±0.010 ‡0.580±0.011 ‡0.151±0.010 ‡0.653±0.005 ‡0.188±0.004

ETM ‡0.405±0.015 ‡0.192±0.008 ‡0.428±0.006 ‡0.208±0.005 ‡0.679±0.012 ‡0.224±0.015 ‡0.674±0.006 ‡0.204±0.006

NSTM ‡0.395±0.022 ‡0.241±0.009 ‡0.405±0.013 ‡0.242±0.011 ‡0.719±0.041 ‡0.324±0.022 ‡0.764±0.018 ‡0.359±0.008

WeTe ‡0.389±0.019 ‡0.252±0.015 ‡0.444±0.016 ‡0.269±0.012 ‡0.641±0.023 ‡0.268±0.013 ‡0.699±0.008 ‡0.271±0.009

ECRTM 0.550±0.013 0.295±0.009 0.563±0.007 0.311±0.003 0.802±0.009 0.367±0.013 0.812±0.020 0.428±0.016

Baseline Models We consider the following state-of-the-art models for comparison: (i) LDA (Blei
et al., 2003), one of the most widely-used probabilistic topic models; (ii) KM (Sia et al., 2020),
directly clustering word embeddings to produce topics. Note that we cannot use it for document
clustering since it does not infer the doc-topic distributions. (iii) WLDA (Nan et al., 2019), a WAE-
based topic model; (iv) ETM (Dieng et al., 2020), a neural topic model which models the topic-word
distribution matrix with word and topic embeddings; (v) NSTM (Zhao et al., 2021b), using the
optimal transport distance to measure reconstruction error. (vi) WeTe (Wang et al., 2022), following
NSTM and using conditional transport distance as reconstruction error.

4.2 MAIN RESULT OF TOPIC AND DOC-TOPIC DISTRIBUTION QUALITY

Table 2 reports the topic quality results concerning CV and TD, and Table 3 summarizes doc-topic
distribution quality results concerning Purity and NMI of document clustering. We have the follow-
ing observations: (i) ECRTM effectively addresses the topic collapsing issue and outperforms
baselines in topic quality. In Table 2, the much lower TD scores imply baselines generate repet-
itive topics and thus suffer from topic collapsing. As aforementioned, these repetitive topics are
less useful for downstream tasks and damage the interpretability of topic models. In contrast, we
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Table 4: Ablation study. While DKM, DKM + Entropy,
w/o ECR all have low TD, our ECRTM achieves much
higher TD with better Purity and NMI. The low TD scores
mean most topics are repetitive and less useful, making
high CV scores meaningless. ‡ means the gain of ECRTM
is statistically significant at 0.05 level.

Model
20NG Yahoo Answer

Purity NMI CV TD Purity NMI CV TD

DKM ‡0.510 ‡0.471 0.448 ‡0.577 ‡0.507 ‡0.282 0.403 ‡0.631
DKM + Entropy ‡0.222 ‡0.148 0.469 ‡0.503 ‡0.252 ‡0.092 0.433 ‡0.592
w/o ECR ‡0.504 ‡0.446 0.461 ‡0.548 ‡0.498 ‡0.262 0.435 ‡0.608

ECRTM 0.560 0.524 0.431 0.964 0.550 0.295 0.405 0.985
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Figure 4: Text classification results.
The improvements of ECRTM are all
statistically significant at 0.01 level.

see our ECRTM achieves significantly higher TD scores across all datasets and mostly the best CV
scores meanwhile. We emphasize although the CV of ECRTM is slightly higher than NSTM (0.389
v.s. 0.387) on Yahoo Answer, ECRTM completely outperforms on TD (0.903 v.s. 0.659). These
results demonstrate that ECRTM produces more coherent and diverse topics than state-of-the-art
baselines. These improvements are because our ECRTM makes topic embeddings away from each
other and cover different semantics of word embeddings in the space instead of collapsing together
as some baselines. (ii) ECRTM surpasses baselines in inferring high-quality doc-topic distribu-
tions. Table 3 shows our ECRTM consistently outperforms the baseline models by a large margin
in terms of Purity and NMI. For example, ECRTM reaches 0.560 and 0.524 for Purity and NMI
on 20NG, while the runner-up only has 0.354 and 0.356. These manifest that ECRTM not only
achieves higher-quality topics but also better doc-topic distributions as document representations.
See Appendices A.3 and A.4 for topic examples and more visualizations.

4.3 ABLATION STUDY

We conduct ablation studies and show the necessity of our proposed Embedding Clustering Reg-
ularization (ECR). Specifically, we remove the ECR from our ECRTM, denoted as w/o ECR. We
also compare with the state-of-the-art deep clustering method, DKM (Fard et al., 2020) and DKM
with minimizing entropy (DKM + Entropy, see Sec. 3.3). Table 4 shows DKM, DKM + Entropy,
and w/o ECR all suffer from topic collapsing as indicated by their much lower TD scores. Al-
though they have high CV , their terrible TD scores mean most topics are repetitive and less useful
for downstream tasks, making the high CV scores meaningless (see examples in Appendix A.3 for
illustrations). Conversely, our ECRTM improves TD scores by a large margin and achieves the best
document clustering performance with much higher Purity and NMI. This is because our ECR, as an
effective regularization, can avoid the collapsing of topic embeddings while DKM, DKM + Entropy,
and w/o ECR cannot. These results demonstrate our ECR is effective and necessary to address the
topic collapsing issue and achieve robust topic modeling performance.

4.4 TEXT CLASSIFICATION

To evaluate extrinsically, we further conduct text classification experiments as downstream tasks.
Specifically, we use the doc-topic distributions learned by topic models as document features and
train SVMs to predict the class of each document. As reported in Figure 4, ECRTM significantly
outperforms baseline models on all datasets. These results demonstrate that our ECRTM can be
better utilized in the classification downstream task.

5 CONCLUSION

In this paper, we propose the novel Embedding Clustering Regularization Topic Model (ECRTM)
to address the topic collapsing issue. ECRTM learns topics under the new Embedding Clustering
Regularization that forces each topic embedding to be the center of a separately aggregated word
embedding cluster. Extensive experiments demonstrate that ECRTM successfully alleviates topic
collapsing and consistently achieves state-of-the-art performance in terms of producing high-quality
topics and topic distributions of documents. We hope our work can contribute to building more
reliable topic modeling applications.
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A APPENDIX

Table 5: Top 10 related words of discovered topics from IMDB. Repetitive words are underlined.

ETM

like better good especially end look much done way just
like just one way made much times really even feel
one like around sort looking kind good main look just

NSTM

just show even come time one good really going know
just even really something come going like actually things get
just one even something come way really like always good

WeTe

hitchcocks couldve wouldve shouldve familys wifes anyones everyones itll hollywood
hitchcocks anyones wouldve everyones wifes couldve familys itll shouldve hollywood
hitchcocks couldve wouldve shouldve wifes familys anyones everyones itll hollywood

DKM

christmas disney musical songs bill timeless prince art rock holiday
christmas santa childrens holiday betty age ann adult children toy
fantasy christmas magic effects magical santa special holiday childrens child

DKM + Entropy

funny day physical semi ever way old due seen zone
funny ever day old seen way physical due semi relationship
funny ever day semi seen physical way old due psychological

ECRTM

jackie martial chan kung arts kong hong stunts bruce fight
nominated nancy academy award awards oscar oscars jake nomination dracula
vampires vampire freddy zombies zombie nightmare serial halloween killer slasher

(a) ETM (b) NSTM (c) WeTe (d) ECRTM

Figure 5: t-SNE (van der Maaten & Hinton, 2008) visualization of word embeddings (•) and topic
embeddings (N) under 100 topics. Topic embeddings commonly collapse together in state-of-the-art
models (ETM (Dieng et al., 2020), NSTM (Zhao et al., 2021b), and WeTe (Wang et al., 2022)). In
contrast, ECRTM can avoid the collapsing by forcing each topic embedding to be the center of a
separately aggregated word embedding cluster.

A.1 DATASET

We follow the dataset preprocessing steps of Card et al. (2018): (1) documents are tokenized and
converted to lower case; (2) remove punctuation; (3) remove tokens that include numbers; (4) re-
move tokens less than 3 characters; (5) remove stop words.

A.2 IMPLEMENTATION DETAIL

For pre-trained word embeddings, we employ 200-dimensional GloVe (Pennington et al., 2014). For
the Sinkhorn’s algorithm of ECRTM, we set the maximum number of iterations as 1,000, the stop
tolerance 0.005 and ε 0.05 following Cuturi (2013). For ECRTM, the prior distribution is specified
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Figure 6: Visualization of discovered topics in the semantic space.

with Laplace approximation (Hennig et al., 2012) to approximate a symmetric Dirichlet prior as
µ0,k = 0 and Σ0,kk = (K − 1)/(αK) with hyperparameter α. The α in the prior distribution is 1.0
following Card et al. (2018). Besides, τ is 0.2, and λECR is 250, 100, 60 and 5 for 20NG, IMDB,
Yahoo Answer and AG News respectively. Our encoder network is the same as Srivastava & Sutton
(2017): a MLP that has two linear layers with softplus activation function, concatenated with two
single layers each for the mean and covariance matrix. We use Adam optimizer (Kingma & Ba,
2014) to optimize the model parameters.

A.3 EXAMPLES OF DISCOVERED TOPICS

Table 5 shows randomly selected examples of discovered topics by different models from IMDB. We
observe that ETM and NSTM both have highly uninformative and similar topics including common
words like “just”, “like”, or “something”. WeTe produces some exactly the same topics with words
“couldve”, “wouldve”, and “shouldve”. DKM and DKM + Entropy also generate repetitive topics
with words “chirstmas”, “holiday”, and “funny”. We see the topic collapsing issue commonly exists
in these methods. These collapsed topics are uninformative and redundant, which are less useful
for downstream applications and damage the interpretability of topic models. In contrast, the topics
discovered by ECRTM are more distinct instead of repeating each other. Besides, they are relatively
more coherent, such as the first topic with relevant words like “jackie”, “chan”, and “stunts”. These
examples show that our ECRTM generates higher-quality topics.

A.4 VISUALIZATION OF EMBEDDINGS

We visualize the learned topic and word embeddings with t-SNE (van der Maaten & Hinton, 2008)
under 100 topics (Figure 1 is under 50 topics). Figure 5 shows while the topic embeddings mostly
collapse together in the state-of-the-art baselines, our ECRTM avoids the collapsing of topic embed-
dings by forcing each topic embedding to be the center of a separately aggregated word embedding
cluster. This illustrates that our ECR works effectively under a larger number of topics.
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We further annotate the semantic space with the top related words of discovered topics by ECRTM
as shown in Figure 6. We see that each word embedding cluster represents a diverse and coherent
topic. This verifies that our ECRTM effectively clusters the embeddings of coherent words by
jointly optimizing the neural topic modeling objective with the embedding clustering regularization
objective.

A.5 RUNTIME ANALYSIS

We train our model with NVIDIA GPU and use PyTorch for implementations. It takes about less
than 0.5 GPU hours to train our model on datasets.

16


	Introduction
	Related Work
	Methodology
	Problem Setting and Notations
	What Causes Topic Collapsing?
	What is An Effective Clustering Regularization on Embeddings?
	Embedding Clustering Regularization
	Neural Topic Modeling with Embedding Clustering Regularization

	Experiment
	Experiment Setup
	Main Result of Topic and Doc-Topic Distribution Quality
	Ablation Study
	Text Classification

	Conclusion
	Appendix
	Dataset
	Implementation Detail
	Examples of Discovered Topics
	Visualization of Embeddings
	Runtime Analysis


