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ABSTRACT

An important paradigm of natural language processing consists of large-scale pre-
training on general domain data and adaptation to particular tasks or domains. As
we pre-train larger models, full fine-tuning, which retrains all model parameters,
becomes less feasible. Using GPT-3 175B as an example – deploying independent
instances of fine-tuned models, each with 175B parameters, is prohibitively expen-
sive. We propose Low-Rank Adaptation, or LoRA, which freezes the pre-trained
model weights and injects trainable rank decomposition matrices into each layer of
the Transformer architecture, greatly reducing the number of trainable parameters
for downstream tasks. Compared to GPT-3 175B fine-tuned with Adam, LoRA
can reduce the number of trainable parameters by a factor of 10,000 and the GPU
memory requirement by a factor of 3. LoRA performs on-par or better than fine-
tuning in model quality on RoBERTa, DeBERTa, GPT-2, and GPT-3, despite hav-
ing fewer trainable parameters, a higher training throughput, and, unlike adapters,
no additional inference latency. We also provide an empirical investigation into
rank-deficiency in language model adaptation, which sheds light on the efficacy of
LoRA. We release a package that facilitates the integration of LoRA with PyTorch
models and provide our implementations and model checkpoints for RoBERTa,
DeBERTa, and GPT-2 at https://github.com/microsoft/LoRA.
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Figure 1: Our reparametriza-
tion. We only train A and B.

Many applications in natural language processing rely on adapt-
ing one large-scale, pre-trained language model to multiple down-
stream applications. Such adaptation is usually done via fine-tuning,
which updates all the parameters of the pre-trained model. The ma-
jor downside of fine-tuning is that the new model contains as many
parameters as in the original model. As larger models are trained
every few months, this changes from a mere “inconvenience” for
GPT-2 (Radford et al., b) or RoBERTa large (Liu et al., 2019) to a
critical deployment challenge for GPT-3 (Brown et al., 2020) with
175 billion trainable parameters.1

Many sought to mitigate this by adapting only some parameters or
learning external modules for new tasks. This way, we only need
to store and load a small number of task-specific parameters in ad-
dition to the pre-trained model for each task, greatly boosting the
operational efficiency when deployed. However, existing techniques
often introduce inference latency (Houlsby et al., 2019; Rebuffi et al., 2017) by extending model
depth or reduce the model’s usable sequence length (Li & Liang, 2021; Lester et al., 2021; Ham-

∗Equal contribution.
1While GPT-3 175B achieves non-trivial performance with few-shot learning, fine-tuning boosts its perfor-

mance significantly as shown in Appendix A.
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bardzumyan et al., 2020; Liu et al., 2021) (Section 3). More importantly, these method often fail to
match the fine-tuning baselines, posing a trade-off between efficiency and model quality.

We take inspiration from Li et al. (2018a); Aghajanyan et al. (2020) which show that the learned
over-parametrized models in fact reside on a low intrinsic dimension. We hypothesize that the
change in weights during model adaptation also has a low “intrinsic rank”, leading to our proposed
Low-Rank Adaptation (LoRA) approach. LoRA allows us to train some dense layers in a neural
network indirectly by optimizing rank decomposition matrices of the dense layers’ change during
adaptation instead, while keeping the pre-trained weights frozen, as shown in Figure 1. Using GPT-3
175B as an example, we show that a very low rank (i.e., r in Figure 1 can be one or two) suffices even
when the full rank (i.e., d) is as high as 12,288, making LoRA both storage- and compute-efficient.

LoRA possesses several key advantages.

• A pre-trained model can be shared and used to build many small LoRA modules for dif-
ferent tasks. We can freeze the shared model and efficiently switch tasks by replacing the
matrices A and B in Figure 1, reducing the storage requirement and task-switching over-
head significantly.

• LoRA makes training more efficient and lowers the hardware barrier to entry by up to 3
times when using adaptive optimizers since we do not need to calculate the gradients or
maintain the optimizer states for most parameters. Instead, we only optimize the injected,
much smaller low-rank matrices.

• Our simple linear design allows us to merge the trainable matrices with the frozen weights
when deployed, introducing no inference latency compared to a fully fine-tuned model, by
construction.

• LoRA is orthogonal to many prior methods and can be combined with many of them, such
as prefix-tuning. We provide an example in Appendix H.

Terminologies and Conventions We make frequent references to the Transformer architecture
and use the conventional terminologies for its dimensions. We call the input and output di-
mension size of a Transformer layer dmodel. We use Wq , Wk, Wv , and Wo to refer to the
query/key/value/output projection matrices in the self-attention module. W or W0 refers to a pre-
trained weight matrix and ∆W its accumulated gradient update during adaptation. We use r to
denote the rank of a LoRA module. We follow the conventions set out by (Vaswani et al., 2017;
Brown et al., 2020) and use Adam (Loshchilov & Hutter, 2019; Kingma & Ba, 2017) for model
optimization and use a Transformer MLP feedforward dimension dffn = 4× dmodel.

2 PROBLEM STATEMENT

While our proposal is agnostic to training objective, we focus on conditional language modeling
as our motivating use case. Below is a brief description of the language modeling problem and, in
particular, the maximization of conditional probabilities given a task-specific prompt.

Suppose we are given a pre-trained autoregressive language model PΦ(y|x) parametrized by Φ.
For instance, PΦ(y|x) can be a generic multi-task learner such as GPT (Radford et al., b; Brown
et al., 2020) based on the Transformer architecture (Vaswani et al., 2017). Consider adapting this
pre-trained model to downstream conditional text generation tasks, such as summarization, machine
reading comprehension (MRC), and natural language to SQL (NL2SQL). Each downstream task is
represented by a training dataset of context-target pairs: Z = {(xi, yi)}i=1,..,N , where both xi and
yi are sequences of tokens. For example, in NL2SQL, xi is a natural language query and yi its
corresponding SQL command; for summarization, xi is the content of an article and yi its summary.

During full fine-tuning, the model is initialized to pre-trained weights Φ0 and updated to Φ0 + ∆Φ
by repeatedly following the gradient to maximize the conditional language modeling objective:

max
Φ

∑
(x,y)∈Z

|y|∑
t=1

log (PΦ(yt|x, y<t)) (1)
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One of the main drawbacks for full fine-tuning is that for each downstream task, we learn a different
set of parameters ∆Φ whose dimension |∆Φ| equals |Φ0|. Thus, if the pre-trained model is large
(such as GPT-3 with |Φ0| ≈ 175 Billion), storing and deploying many independent instances of
fine-tuned models can be challenging, if at all feasible.

In this paper, we adopt a more parameter-efficient approach, where the task-specific parameter
increment ∆Φ = ∆Φ(Θ) is further encoded by a much smaller-sized set of parameters Θ with
|Θ| � |Φ0|. The task of finding ∆Φ thus becomes optimizing over Θ:

max
Θ

∑
(x,y)∈Z

|y|∑
t=1

log
(
pΦ0+∆Φ(Θ)(yt|x, y<t)

)
(2)

In the subsequent sections, we propose to use a low-rank representation to encode ∆Φ that is both
compute- and memory-efficient. When the pre-trained model is GPT-3 175B, the number of train-
able parameters |Θ| can be as small as 0.01% of |Φ0|.

3 AREN’T EXISTING SOLUTIONS GOOD ENOUGH?

The problem we set out to tackle is by no means new. Since the inception of transfer learning, dozens
of works have sought to make model adaptation more parameter- and compute-efficient. See Sec-
tion 6 for a survey of some of the well-known works. Using language modeling as an example, there
are two prominent strategies when it comes to efficient adaptations: adding adapter layers (Houlsby
et al., 2019; Rebuffi et al., 2017; Pfeiffer et al., 2021; Rücklé et al., 2020) or optimizing some forms
of the input layer activations (Li & Liang, 2021; Lester et al., 2021; Hambardzumyan et al., 2020;
Liu et al., 2021). However, both strategies have their limitations, especially in a large-scale and
latency-sensitive production scenario.

Adapter Layers Introduce Inference Latency There are many variants of adapters. We focus
on the original design by Houlsby et al. (2019) which has two adapter layers per Transformer block
and a more recent one by Lin et al. (2020) which has only one per block but with an additional
LayerNorm (Ba et al., 2016). While one can reduce the overall latency by pruning layers or exploit-
ing multi-task settings (Rücklé et al., 2020; Pfeiffer et al., 2021), there is no direct ways to bypass
the extra compute in adapter layers. This seems like a non-issue since adapter layers are designed
to have few parameters (sometimes <1% of the original model) by having a small bottleneck di-
mension, which limits the FLOPs they can add. However, large neural networks rely on hardware
parallelism to keep the latency low, and adapter layers have to be processed sequentially. This makes
a difference in the online inference setting where the batch size is typically as small as one. In a
generic scenario without model parallelism, such as running inference on GPT-2 (Radford et al., b)
medium on a single GPU, we see a noticeable increase in latency when using adapters, even with a
very small bottleneck dimension (Table 1).

Batch Size 32 16 1
Sequence Length 512 256 128

|Θ| 0.5M 11M 11M

Fine-Tune/LoRA 1449.4±0.8 338.0±0.6 19.8±2.7

AdapterL 1482.0±1.0 (+2.2%) 354.8±0.5 (+5.0%) 23.9±2.1 (+20.7%)
AdapterH 1492.2±1.0 (+3.0%) 366.3±0.5 (+8.4%) 25.8±2.2 (+30.3%)

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds, av-
eraged over 100 trials. We use an NVIDIA Quadro RTX8000. “|Θ|” denotes the number of trainable
parameters in adapter layers. AdapterL and AdapterH are two variants of adapter tuning, which we
describe in Section 5.1. The inference latency introduced by adapter layers can be significant in an
online, short-sequence-length scenario. See the full study in Appendix C.

This problem gets worse when we need to shard the model as done in Shoeybi et al. (2020); Lep-
ikhin et al. (2020), because the additional depth requires more synchronous GPU operations such as
AllReduce and Broadcast, unless we store the adapter parameters redundantly many times.
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Directly Optimizing the Prompt is Hard The other direction, as exemplified by prefix tuning (Li
& Liang, 2021), faces a different challenge. We observe that prefix tuning is difficult to optimize
and that its performance changes non-monotonically in trainable parameters, confirming similar
observations in the original paper. More fundamentally, reserving a part of the sequence length for
adaptation necessarily reduces the sequence length available to process a downstream task, which
we suspect makes tuning the prompt underperform other methods. We defer the study on task
performance to Section 5.

4 OUR METHOD

We describe the simple design of LoRA and its practical benefits. The principles outlined here apply
to any dense layers in deep learning models, though we only focus on certain weights in Transformer
language models in our experiments as the motivating use case.

4.1 LOW-RANK-PARAMETRIZED UPDATE MATRICES

A neural network contains many dense layers which perform matrix multiplication. The weight ma-
trices in these layers typically have full ranks. When adapting to a specific task, Aghajanyan et al.
(2020) shows that the pre-trained language models have a low “instrisic dimension” and can still
learn efficiently despite a random projection to a smaller subspace. Inspired by this, we hypothe-
size the updates to the weights also have a low “intrinsic rank” during adaptation. For a pre-trained
weight matrix W0 ∈ Rd×k, we constrain its update by representing the latter with a low-rank de-
composition W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r � min(d, k).
During training,W0 is frozen and does not receive gradient updates, whileA andB contain trainable
parameters. Note both W0 and ∆W = BA are multiplied with the same input, and their respective
output vectors are summed coordinate-wise. For h = W0x, our modified forward pass yields:

h = W0x+ ∆Wx = W0x+BAx (3)

We illustrate our reparametrization in Figure 1. We use a random Gaussian initialization for A and
zero for B, so ∆W = BA is zero at the beginning of training. We then scale ∆Wx by α

r , where α
is a constant in r. When optimizing with Adam, tuning α is roughly the same as tuning the learning
rate if we scale the initialization appropriately. As a result, we simply set α to the first r we try
and do not tune it. This scaling helps to reduce the need to retune hyperparameters when we vary
r (Yang & Hu, 2021).

A Generalization of Full Fine-tuning. A more general form of fine-tuning allows the training of a
subset of the pre-trained parameters. LoRA takes a step further and does not require the accumulated
gradient update to weight matrices to have full ranks during adaptation. This means that when
applying LoRA to all weight matrices and training all biases2, we roughly recover the expressiveness
of full fine-tuning by setting the LoRA rank r to the rank of the pre-trained weight matrices. In
other words, as we increase the number of trainable parameters 3, training LoRA roughly converges
to training the original model, while adapter-based methods converges to an MLP and prefix-based
methods to a model that cannot take long input sequences.

No Additional Inference Latency. When deployed in production, we can explicitly compute and
store W = W0 + BA and perform inference as usual. Note that both W0 and BA are in Rd×k.
When we need to switch to another downstream task, we can recover W0 by subtracting BA and
then adding a different B′A′, a quick operation with very little memory overhead. Critically, this
guarantees that we do not introduce any additional latency during inference compared to a fine-tuned
model by construction.

4.2 APPLYING LORA TO TRANSFORMER

In principle, we can apply LoRA to any subset of weight matrices in a neural network to reduce the
number of trainable parameters. In the Transformer architecture, there are four weight matrices in

2They represent a negligible number of parameters compared to weights.
3Inevitable when adapting to hard tasks.
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the self-attention module (Wq,Wk,Wv,Wo) and two in the MLP module. We treatWq (orWk,Wv)
as a single matrix of dimension dmodel×dmodel, even though the output dimension is usually sliced
into attention heads. We limit our study to only adapting the attention weights for downstream
tasks and freeze the MLP modules (so they are not trained in downstream tasks) both for simplicity
and parameter-efficiency.We further study the effect on adapting different types of attention weight
matrices in a Transformer in Section B.1. We leave the empirical investigation of adapting the MLP
layers, LayerNorm layers, and biases to a future work.

Practical Benefits and Limitations. The most significant benefit comes from the reduction in
memory and storage usage. For a large Transformer trained with Adam, we reduce that VRAM
usage by up to 2/3 if r � dmodel as we do not need to store the optimizer states for the frozen
parameters. On GPT-3 175B, we reduce the VRAM consumption during training from 1.2TB to
350GB. With r = 4 and only the query and value projection matrices being adapted, the check-
point size is reduced by roughly 10,000× (from 350GB to 35MB)4. This allows us to train with
significantly fewer GPUs and avoid I/O bottlenecks. Another benefit is that we can switch between
tasks while deployed at a much lower cost by only swapping the LoRA weights as opposed to all
the parameters. This allows for the creation of many customized models that can be swapped in
and out on the fly on machines that store the pre-trained weights in VRAM. We also observe a 25%
speedup during training on GPT-3 175B compared to full fine-tuning5 as we do not need to calculate
the gradient for the vast majority of the parameters. See Appendix L for how to calculate gradient
when using LoRA.

LoRA also has its limitations. For example, it is not straightforward to batch inputs to different tasks
with differentA andB in a single forward pass, if one chooses to absorbA andB intoW to eliminate
additional inference latency. Though it is possible to not merge the weights and dynamically choose
the LoRA modules to use for samples in a batch for scenarios where latency is not critical.

5 EMPIRICAL EXPERIMENTS

We evaluate the downstream task performance of LoRA on RoBERTa (Liu et al., 2019), De-
BERTa (He et al., 2021), and GPT-2 (Radford et al., b), before scaling up to GPT-3 175B (Brown
et al., 2020). Our experiments cover a wide range of tasks, from natural language understanding
(NLU) to generation (NLG). Specifically, we evaluate on the GLUE (Wang et al., 2019) benchmark
for RoBERTa and DeBERTa. We follow the setup of Li & Liang (2021) on GPT-2 for a direct com-
parison and add WikiSQL (Zhong et al., 2017) (NL to SQL queries) and SAMSum (Gliwa et al.,
2019) (conversation summarization) for large-scale experiments on GPT-3. See Appendix D for
more details on the datasets we use. We use NVIDIA Tesla V100 for all experiments.

5.1 BASELINES

To compare with other baselines broadly, we replicate the setups used by prior work and reuse
their reported numbers whenever possible. This, however, means that some baselines might only
appear in certain experiments. We point out that for most tasks, our goal is not to compete with
SOTA because 1) for tasks such as WikiSQL, SOTA uses specialized SQL-aware decoders, and; 2)
SOTA makes frequent use of techniques such as ensembling and adversarial training, which might
confound our study on adaptation. Thus, we focus on a scenario where we are given a powerful
pre-trained autoregressive language model and use as few task-specific modifications as possible.
See Appendix E for how we count the number of trainable parameters for different baselines.

Fine-Tuning (FT) is a common approach for adaptation. During fine-tuning, the model is initialized
to the pre-trained weights and biases, and all model parameters undergo gradient updates.A simple
variant is to update only some layers while freezing others. We include one such baseline reported
in prior work (Li & Liang, 2021) on GPT-2, which adapts just the last two layers (FTTop2).

4We still need the 350GB model during deployment; however, storing 100 adapted models only requires
350GB + 35MB * 100 ≈ 354GB as opposed to 100 * 350GB ≈ 35TB.

5For GPT-3 175B, the training throughput for full fine-tuning is 32.5 tokens/s per V100 GPU; with the same
number of weight shards for model parallelism, the throughput is 43.1 tokens/s per V100 GPU for LoRA.
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Model & Method # Trainable
Parameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

RoBbase (FT)* 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
RoBbase (BitFit)* 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoBbase (AdptD)* 0.3M 87.1±.0 94.2±.1 88.5±1.1 60.8±.4 93.1±.1 90.2±.0 71.5±2.7 89.7±.3 84.4
RoBbase (AdptD)* 0.9M 87.3±.1 94.7±.3 88.4±.1 62.6±.9 93.0±.2 90.6±.0 75.9±2.2 90.3±.1 85.4
RoBbase (LoRA) 0.3M 87.5±.3 95.1±.2 89.7±.7 63.4±1.2 93.3±.3 90.8±.1 86.6±.7 91.5±.2 87.2

RoBlarge (FT)* 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
RoBlarge (LoRA) 0.8M 90.6±.2 96.2±.5 90.9±1.2 68.2±1.9 94.9±.3 91.6±.1 87.4±2.5 92.6±.2 89.0

RoBlarge (AdptP)† 3.0M 90.2±.3 96.1±.3 90.2±.7 68.3±1.0 94.8±.2 91.9±.1 83.8±2.9 92.1±.7 88.4
RoBlarge (AdptP)† 0.8M 90.5±.3 96.6±.2 89.7±1.2 67.8±2.5 94.8±.3 91.7±.2 80.1±2.9 91.9±.4 87.9
RoBlarge (AdptH)† 6.0M 89.9±.5 96.2±.3 88.7±2.9 66.5±4.4 94.7±.2 92.1±.1 83.4±1.1 91.0±1.7 87.8
RoBlarge (AdptH)† 0.8M 90.3±.3 96.3±.5 87.7±1.7 66.3±2.0 94.7±.2 91.5±.1 72.9±2.9 91.5±.5 86.4
RoBlarge (LoRA)† 0.8M 90.6±.2 96.2±.5 90.2±1.0 68.2±1.9 94.8±.3 91.6±.2 85.2±1.1 92.3±.5 88.6

DeBXXL (FT)* 1500.0M 91.8 97.2 92.0 72.0 96.0 92.7 93.9 92.9 91.1
DeBXXL (LoRA) 4.7M 91.9±.2 96.9±.2 92.6±.6 72.4±1.1 96.0±.1 92.9±.1 94.9±.4 93.0±.2 91.3

Table 2: RoBERTabase, RoBERTalarge, and DeBERTaXXL with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. † indicates runs configured in a setup
similar to Houlsby et al. (2019) for a fair comparison.

Bias-only or BitFit is a baseline where we only train the bias vectors while freezing everything else.
Contemporarily, this baseline has also been studied by BitFit (Zaken et al., 2021).

Prefix-embedding tuning (PreEmbed) inserts special tokens among the input tokens. These spe-
cial tokens have trainable word embeddings and are generally not in the model’s vocabulary. Where
to place such tokens can have an impact on performance. We focus on “prefixing”, which prepends
such tokens to the prompt, and “infixing”, which appends to the prompt; both are discussed in Li &
Liang (2021).

Prefix-layer tuning (PreLayer) is an extension to prefix-embedding tuning. Instead of just learning
the word embeddings (or equivalently, the activations after the embedding layer) for some special
tokens, we learn the activations after every Transformer layer. The activations computed from pre-
vious layers are simply replaced by trainable ones.

Adapter tuning as proposed in Houlsby et al. (2019) inserts adapter layers between the self-
attention module (and the MLP module) and the subsequent residual connection. There are two
fully connected layers with biases in an adapter layer with a nonlinearity in between. We call this
original design AdapterH. Recently, Lin et al. (2020) proposed a more efficient design with the
adapter layer applied only after the MLP module and after a LayerNorm. We call it AdapterL. This
is very similar to another deign proposed in Pfeiffer et al. (2021), which we call AdapterP. We also
include another baseline call AdapterDrop (Rücklé et al., 2020) which drops some adapter layers for
greater efficiency (AdapterD). We cite numbers from prior works whenever possible to maximize
the number of baselines we compare with; they are in rows with an asterisk (*) in the first column.

LoRA adds trainable pairs of rank decomposition matrices in parallel to existing weight matrices.
As mentioned in Section 4.2, we only apply LoRA toWq andWv in most experiments for simplicity.

5.2 ROBERTA BASE/LARGE

RoBERTa (Liu et al., 2019) optimized the pre-training recipe originally proposed in BERT (Devlin
et al., 2019a) and boosted the latter’s task performance without introducing many more trainable
parameters. While RoBERTa has been overtaken by much larger models on NLP leaderboards
such as the GLUE benchmark (Wang et al., 2019) in recent years, it remains a competitive and
popular pre-trained model for its size among practitioners. We take the pre-trained RoBERTa base
(125M) and RoBERTa large (355M) from the HuggingFace Transformers library (Wolf et al., 2020)
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Model & Method # Trainable E2E NLG Challenge
Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL)* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (AdapterL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (AdapterH) 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01

GPT-2 M (FTTop2)* 25.19M 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M 70.4±.1 8.85±.02 46.8±.2 71.8±.1 2.53±.02

GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL) 0.88M 69.1±.1 8.68±.03 46.3±.0 71.4±.2 2.49±.0
GPT-2 L (AdapterL) 23.00M 68.9±.3 8.70±.04 46.1±.1 71.3±.2 2.45±.02
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 0.77M 70.4±.1 8.89±.02 46.8±.2 72.0±.2 2.47±.02

Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable
or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates
numbers published in prior works.

and evaluate the performance of different efficient adaptation approaches on tasks from the GLUE
benchmark. We also replicate Houlsby et al. (2019) and Pfeiffer et al. (2021) according to their
setup. To ensure a fair comparison, we make two crucial changes to how we evaluate LoRA when
comparing with adapters. First, we use the same batch size for all tasks and use a sequence length
of 128 to match the adapter baselines. Second, we initialize the model to the pre-trained model for
MRPC, RTE, and STS-B, not a model already adapted to MNLI like the fine-tuning baseline. Runs
following this more restricted setup from Houlsby et al. (2019) are labeled with †. The result is
presented in Table 2 (Top Three Sections). See Section F.1 for details on the hyperparameters used.

5.3 DEBERTA XXL

DeBERTa (He et al., 2021) is a more recent variant of BERT that is trained on a much larger
scale and performs very competitively on benchmarks such as GLUE (Wang et al., 2019) and Su-
perGLUE (Wang et al., 2020). We evaluate if LoRA can still match the performance of a fully
fine-tuned DeBERTa XXL (1.5B) on GLUE. The result is presented in Table 2 (Bottom Section).
See Section F.2 for details on the hyperparameters used.

5.4 GPT-2 MEDIUM/LARGE

Having shown that LoRA can be a competitive alternative to full fine-tuning on NLU, we hope to
answer if LoRA still prevails on NLG models, such as GPT-2 medium and large (Radford et al.,
b). We keep our setup as close as possible to Li & Liang (2021) for a direct comparison. Due
to space constraint, we only present our result on E2E NLG Challenge (Table 3) in this section.
See Section I.1 for results on WebNLG (Gardent et al., 2017) and DART (Nan et al., 2020). We
include a list of the hyperparameters used in Section F.3.

5.5 SCALING UP TO GPT-3 175B

As a final stress test for LoRA, we scale up to GPT-3 with 175 billion parameters. Due to the high
training cost, we only report the typical standard deviation for a given task over random seeds, as
opposed to providing one for every entry. See Section F.4 for details on the hyperparameters used.

As shown in Table 4, LoRA matches or exceeds the fine-tuning baseline on all three datasets. Note
that not all methods benefit monotonically from having more trainable parameters, as shown in Fig-
ure 2. We observe a significant performance drop when we use more than 256 special tokens for
prefix-embedding tuning or more than 32 special tokens for prefix-layer tuning. This corroborates
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Model&Method # Trainable WikiSQL MNLI-m SAMSum
Parameters Acc. (%) Acc. (%) R1/R2/RL

GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5
GPT-3 (BitFit) 14.2M 71.3 91.0 51.3/27.4/43.5
GPT-3 (PreEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 (AdapterH) 7.1M 71.9 89.8 53.0/28.9/44.8
GPT-3 (AdapterH) 40.1M 73.2 91.5 53.2/29.0/45.1

GPT-3 (LoRA) 4.7M 73.4 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37.7M 74.0 91.6 53.4/29.2/45.1

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form
validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on
SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results
on WikiSQL have a fluctuation around ±0.5%, MNLI-m around ±0.1%, and SAMSum around
±0.2/±0.2/±0.1 for the three metrics.

similar observations in Li & Liang (2021). While a thorough investigation into this phenomenon
is out-of-scope for this work, we suspect that having more special tokens causes the input distri-
bution to shift further away from the pre-training data distribution. Separately, we investigate the
performance of different adaptation approaches in the low-data regime in Section I.3.
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Figure 2: GPT-3 175B validation accuracy vs. number of trainable parameters of several adaptation
methods on WikiSQL and MNLI-matched. LoRA exhibits better scalability and task performance.
See Section I.2 for more details on the plotted data points.

6 RELATED WORKS

Transformer Language Models. Transformer (Vaswani et al., 2017) is a sequence-to-sequence
architecture that makes heavy use of self-attention. Radford et al. (a) applied it to autoregressive lan-
guage modeling by using a stack of Transformer decoders. Since then, Transformer-based language
models have dominated NLP, achieving the state-of-the-art in many tasks. A new paradigm emerged
with BERT (Devlin et al., 2019b) and GPT-2 (Radford et al., b) – both are large Transformer lan-
guage models trained on a large amount of text – where fine-tuning on task-specific data after pre-
training on general domain data provides a significant performance gain compared to training on
task-specific data directly. Training larger Transformers generally results in better performance and
remains an active research direction. GPT-3 (Brown et al., 2020) is the largest single Transformer
language model trained to-date with 175B parameters.

Prompt Engineering and Fine-Tuning. While GPT-3 175B can adapt its behavior with just a
few additional training examples, the result depends heavily on the input prompt (Brown et al.,
2020). This necessitates an empirical art of composing and formatting the prompt to maximize a
model’s performance on a desired task, which is known as prompt engineering or prompt hacking.
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Fine-tuning retrains a model pre-trained on general domains to a specific task Devlin et al. (2019b);
Radford et al. (a). Variants of it include learning just a subset of the parameters Devlin et al. (2019b);
Collobert & Weston (2008), yet practitioners often retrain all of them to maximize the downstream
performance. However, the enormity of GPT-3 175B makes it challenging to perform fine-tuning in
the usual way due to the large checkpoint it produces and the high hardware barrier to entry since it
has the same memory footprint as pre-training.

Parameter-Efficient Adaptation. Many have proposed inserting adapter layers between existing
layers in a neural network (Houlsby et al., 2019; Rebuffi et al., 2017; Lin et al., 2020). Our method
uses a similar bottleneck structure to impose a low-rank constraint on the weight updates. The
key functional difference is that our learned weights can be merged with the main weights during
inference, thus not introducing any latency, which is not the case for the adapter layers (Section 3).
A comtenporary extension of adapter is COMPACTER (Mahabadi et al., 2021), which essentially
parametrizes the adapter layers using Kronecker products with some predetermined weight sharing
scheme. Similarly, combining LoRA with other tensor product-based methods could potentially
improve its parameter efficiency, which we leave to future work. More recently, many proposed
optimizing the input word embeddings in lieu of fine-tuning, akin to a continuous and differentiable
generalization of prompt engineering (Li & Liang, 2021; Lester et al., 2021; Hambardzumyan et al.,
2020; Liu et al., 2021). We include comparisons with Li & Liang (2021) in our experiment section.
However, this line of works can only scale up by using more special tokens in the prompt, which
take up available sequence length for task tokens when positional embeddings are learned.

Low-Rank Structures in Deep Learning. Low-rank structure is very common in machine learn-
ing. A lot of machine learning problems have certain intrinsic low-rank structure (Li et al., 2016;
Cai et al., 2010; Li et al., 2018b; Grasedyck et al., 2013). Moreover, it is known that for many
deep learning tasks, a heavily over-parametrized neural network will exhibit low-rank properties af-
ter training (Oymak et al., 2019). Some prior works even explicitly impose the low-rank constraint
when training the original neural network (Sainath et al., 2013; Povey et al., 2018; Zhang et al.,
2014; Jaderberg et al., 2014; Zhao et al., 2016; Khodak et al., 2021; Denil et al., 2014); however,
to the best of our knowledge, none of these works considers low-rank update to a frozen model
for adaptation to downstream tasks. In theory literature, it is known that neural networks outper-
form other classical learning methods, including the corresponding (finite-width) neural tangent
kernels (Allen-Zhu et al., 2019; Li & Liang, 2018) when the underlying concept class has certain
low-rank structure (Ghorbani et al., 2020; Allen-Zhu & Li, 2019; Allen-Zhu & Li, 2020a). Another
theory result in Allen-Zhu & Li (2020b) suggests that low-rank adaptations can be useful for adver-
sarial training. In sum, we believe that our proposed low-rank adaptation update is well-motivated
by the literature.

7 CONCLUSION AND FUTURE WORK

Fine-tuning enormous language models is prohibitively expensive in terms of the hardware required
and the storage/switching cost for hosting independent instances for different tasks. We propose
LoRA, an efficient adaptation strategy that neither introduces inference latency nor reduces input
sequence length while retaining high model quality. Importantly, it allows for quick task-switching
when deployed as a service by sharing the vast majority of the model parameters. While we focused
on Transformer language models, the proposed principles are generally applicable to any neural
networks with dense layers.

There are many directions for future works. 1) LoRA can be combined with other efficient adapta-
tion methods, potentially providing orthogonal improvement. 2) The mechanism behind fine-tuning
or LoRA is far from clear – how are features learned during pre-training transformed to do well
on downstream tasks? We believe that LoRA makes it more tractable to answer this than full fine-
tuning. 3) We mostly depend on heuristics to select the weight matrices to apply LoRA to. Are
there more principled ways to do it? 4) Finally, the rank-deficiency of ∆W suggests that W could
be rank-deficient as well, which can inspire future works.
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