VENN: RESOURCE MANAGEMENT FOR COLLABORATIVE LEARNING JOBS

Jiachen Liu! Fan Lai’ Ding Ding' Yiwen Zhang! Mosharaf Chowdhury '
ABSTRACT

In recent years, collaborative learning (CL) has emerged as a promising approach for machine learning (ML) and
data science across distributed edge devices. As the deployment of CL jobs increases, they inevitably contend for
limited resources. However, efficient resource scheduling in this context is challenging because of the ephemeral
nature and resource heterogeneity of devices, coupled with the overlapping resource requirements of diverse CL
Jjobs. Existing resource managers often assign devices to CL jobs randomly for simplicity and scalability, but this
approach compromises job efficiency.

In this paper, we present Venn, a CL resource manager that efficiently schedules ephemeral, heterogeneous devices
among multiple CL jobs to reduce the average job completion time (JCT). Venn formulates the Intersection
Resource Scheduling (IRS) problem to identify complex resource contention among multiple CL jobs. It then
proposes a contention-aware scheduling heuristic to minimize the average scheduling delay. Furthermore, it
proposes a resource-aware device-to-job matching heuristic to optimize response collection time by mitigating
stragglers. Our evaluation shows that, compared to the state-of-the-art CL resource managers, Venn improves the

average JCT by up to 1.88%. The code is available at https://github.com/SymbioticLab/Venn.

1 INTRODUCTION

Collaborative learning (CL) enables distributed edge de-
vices to perform collaborative machine learning (ML) with-
out moving raw data into the cloud (Bonawitz et al., 2019;
Ramage & Mazzocchi, 2020). CL has been adopted by
many large corporations including Apple, Meta, Google,
and LinkedIn to protect user data privacy while improving
user experience. For example, Google adopts CL for a wide
range of applications such as speech recognition (Warden,
2018), healthcare study (Sadilek et al., 2021), next-word
prediction (Hard et al., 2019; Xu et al., 2023), emoji pre-
diction (Ramaswamy et al., 2019), and query suggestion
on keyboard (Yang et al., 2018). Each CL training job in
practice often requires 1000~10000 device participants in
each training round and takes 4~8 days to finish (Yang et al.,
2018). As the number of CL applications continues to grow,
efficient edge resource management has become the key to
fast and resource-efficient CL.

Unlike cloud resources, CL resources are not accessible
all the time; they only become available for training when
they are connected to WiFi and charging (Bonawitz et al.,
2019). Moreover, they are highly heterogeneous in terms
of hardware capacity, software versions, and training data

! Computer Science and Engineering, University of Michigan,
Michigan, USA ? Computer Science and Engineering, University
of Illinois at Urbana-Champaign, Illinois, USA. Correspondence
to: Jiachen Liu <amberljc @umich.edu>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

@ scheduling Delay @ Response Collection Time

Computation
- Computation’s - - - \- ===\ <= -- ==
0 7 \
Computation ,\, ,,,,,,,,
& - 5
o Update Model

Figure 1. Composition of the completion time of one round of a
CL job.

availability (§2.1). Even when running on the same client
population, different CL jobs often compete for different
subsets of devices, based on their specific model character-
istics and training objectives. The resource heterogeneity
and job’s resource requirement diversity lead to complex
multi-resource contentions among ongoing CL jobs, where
eligible resources for each job are not only limited but also
may overlap, contain, or be within those of one or more
other jobs.

However, existing CL efforts often overlook resource con-
tention among coexisting CL jobs, assuming that sufficient
resources are always available (Bonawitz et al., 2019). For
example, many recent works (Lai et al., 2021a; Abdel-
moniem et al., 2023; Lai et al., 2021b; Balakrishnan et al.,
2022) primarily focus on optimizing the response collection
time of individual CL jobs. In practice, however, multiple
CL jobs may run concurrently and compete for a subset
of devices, leading to resource contention (Bonawitz et al.,
2019). As a result, existing works fail to account for schedul-

https://github.com/SymbioticLab/Venn

ing delay (§2.2)—the time needed to acquire all necessary
resources for a CL job—as a key factor influencing job
completion time (JCT) (Figure 1).

With the proliferation of CL in production, large corpora-
tions such as Apple (Paulik et al., 2021), Meta (Huba et al.,
2022), and Google (Bonawitz et al., 2019) have developed
their own CL infrastructures to manage multiple jobs at
scale. However, despite their low-level differences, these
CL resource managers can largely be characterized as ran-
dom device-to-job matching in various forms. We observe
that such random matching can result in higher scheduling
delays and longer response collection times as an increasing
number of CL jobs compete for a shared pool of devices.

In this paper, we present Venn, a CL resource manager de-
signed to minimize the average JCT of multiple CL jobs
competing for a large pool of edge resources. First, Venn
models the complex resource contention among CL jobs as
an instance of the Intersection Resource Scheduling (IRS)
problem (§4.2), where a job’s resource demands may over-
lap with, contain, or fall within those of other jobs. Venn
then introduces a contention-aware scheduling heuristic that
prioritizes jobs requiring scarce resources and lower overall
demand to minimize the average scheduling delay. Sec-
ond, Venn employs a resource-aware device-to-job match-
ing heuristic to mitigate the effect of stragglers on response
collection time (§4.3). Together, these techniques jointly op-
timize the average JCT of multiple CL jobs operating under
dynamically changing and uncertain resource conditions.

We have implemented and evaluated Venn across various
CL workloads derived from real-world scenarios (§5). Com-
pared to state-of-the-art CL resource allocation solutions
(Bonawitz et al., 2019; Huba et al., 2022; Paulik et al., 2021),
Venn improves the average JCT by up to 1.88x.

Overall, we make the following contributions in this paper:

1. We introduce Venn, a CL resource manager designed to
enable efficient sharing of heterogeneous devices across
a large number of CL jobs.

2. To minimize the average JCT of CL jobs, we propose a
job scheduling and client matching joint solution to opti-
mize both the scheduling delay and response collection
time. Our approach achieves a logarithmic-linear time
complexity and is supported by theoretical analysis.

3. We have implemented and evaluated Venn, along with
its scheduling and matching algorithms, demonstrating
improvements in the average JCT compared to the state-
of-the-art across various real-world CL workloads.

2 BACKGROUND AND MOTIVATION

w
o
1

~—— MobileNet
Yy VideoSR
& MobileBERT

" Qualified

devices

Percent of Clients (%)
=
vl
Norm. Memory Score
0.5

o
o
0

24 48 72 96
Timeline (h)

o

0.5 1
Norm. CPU Score

(a) Diurnal device availability. (b) Device hardware heterogeneity.

Figure 2. CL resources exhibit both high variance in availability
and capacity.

2.1 Collaborative Learning

Collaborative learning (CL) has been widely adopted in in-
dustry to train ML models on diverse datasets stored on edge
devices without transferring raw data to the cloud. Example
applications include healthcare study, speech recognition,
next-word prediction, etc. However, CL introduces unique
resource management challenges due to the distinct charac-
teristics of edge devices and the jobs that rely on them.

Single CL Job’s Resource Management: CL resources
often refer to edge devices with limited capacities, including
smartphones, laptops, and Internet of Things (IoT) devices.
A major challenge of resource management in CL stems
from the unique characteristics of CL resources in terms of
availability and heterogeneity.

Dynamic availability. Unlike cloud resources (e.g., GPUs)
that are accessible on demand, edge devices in CL are only
available for training under specific conditions, such as
when they are charging and connected to WiFi. We ana-
lyze a real-world client availability trace (Lai et al., 2021a),
which encompass 180 million trace items of devices be-
havior over a week. Figure 2a shows that the number of
available devices (charging and connected to WiFi) changes
over time with diurnal pattern. This fluctuation creates in-
herent scheduling delays, as CL jobs must wait for enough
devices to become available before training can begin.

Device heterogeneity. Edge devices in CL vary widely in
hardware capabilities, including memory and CPU capacity,
as well as in data availability and software version, lead-
ing to inconsistent response times. Figure 2b showcases
this heterogeneity, focusing on variations in memory and
CPU capacities among edge devices, based on data from
Al Benchmark (Ignatov et al., 2019). It also annotates the
minimum hardware requirements needed to execute three
popular on-device ML models within a reasonable time.
Additionally, CL jobs often target specific device subsets
based on factors like data availability, software version, or
hardware capacity. These subsets can overlap, nest, or be
mutually exclusive, leading to complex resource contention
patterns where jobs compete for the same devices.

Together, dynamic availability and device heterogeneity

/ Job ID [Training Data| # Devices
100% 1 Keyboard 3
i Keyboard
Job 1 2 4
4 3 .
(a) Setup.

Jime (Devnces check-in over tlme)

LT

Job 3

(b) Random Matching (JCT'=12).

Jime (Devnces check-in over tlme)

LT

e LT

S|

Job 3

(c) Shortest remaining service first (SRSF) (JCT=11).

Time (Dezvices ch4eck—in over time) . .

S aasage

v 1% v

(d) Optimal (JC’T=9.3).

Figure 3. Toy example showing three resource schedules across
multiple CL jobs. Job demands and resource eligibility are shown
in the top row. Devices check in at a constant rate. Eligible devices
only for Emoji jobs are marked with blue; all devices are eligible
for the Keyboard job. The label of each client indicates its job
assignment. Random Matching and SRSF inefficiently allocate
scarce Emoji-eligible devices to Job 1, which already has sufficient
Keyboard-eligible resources. In contrast, the optimal schedule allo-
cates these scarce resources to Job 2 followed by Job 3, minimizing
the average JCT.

slow down CL training, prompting solutions like client selec-
tion (Lai et al., 2021b; Abdelmoniem et al., 2023; Balakrish-
nan et al., 2022), quantization (Reisizadeh et al., 2020), and
model aggregation (He et al., 2023) to optimize single-job
performance.

2.2 Multiple CL Jobs’ Resource Management

To orchestrate multiple CL jobs, several CL resource man-
agers have been proposed with three primary designs.

1. Apple’s CL resource management (Paulik et al., 2021)
is driven by clients, where each client independently
samples from a list of CL jobs they are able to execute.

[\

. Meta’s CL resource manager (Huba et al., 2022) is cen-
tralized, where it randomly matches each client with one
eligible CL job.

08 — 250

g e @200 \\.————'74
."
So7{ /7 e ~N 2
3 [LT e~ - £ 150
< P it [
700 Ie — 1job 3100
2 I 5 jobs a —— Scheduling Delay
gao S5¢¢ 10 jobs :% 50 —— Resp. T?me - Tes.t
< I — = 20 jobs e Resp. Time - Train
0
0'40 25 50 75 100 10 20
Round Number of Jobs

Figure 5. JCT breakdown in a
single round.

Figure 4. Impact of resource
contention.
3. Google’s CL resource manager (Bonawitz et al., 2019)
is driven by jobs, where each job independently samples
from available clients.

Despite the seeming variety in their designs, existing re-
source managers all rely on random device-to-job matching.
This approach works when devices are abundant but fails
to address resource contention when demand exceeds sup-
ply, resulting in longer scheduling delays and inefficient
resource use.

2.3 Limitation and Opportunities

Limitations of the state-of-the-art. To highlight the
shortcomings of existing methods, consider the toy exam-
ple in Figure 3, which compares three scheduling strategies
for three CL jobs—“Emoji Prediction Job 1,” “Emoji Job
2,” and a “Keyboard Prediction Job”—competing for de-
vices with varying eligibility. We assume all jobs arrive
simultaneously and clients with different eligibilities be-
come online constantly over time. Both random matching
and SRSF waste scarce resources (i.e., Emoji clients) on the
Keyboard job, which has ample device options, while the
optimal schedule prioritizes efficiency, reducing JCT to 9.3
time units. Note that the contention patterns in real-world
scenarios are often more complex and larger in scale than
the one presented in this example.

Impact of resource contention. Single-job FL optimiza-
tions, such as client selection (Lai et al., 2021b; Abdel-
moniem et al., 2023; Balakrishnan et al., 2022), often as-
sume that CL jobs have access to sufficient number of on-
line devices at any time. However, in practice, there could
be multiple CL jobs running at the same time and com-
peting for the same set of devices, leading to resource con-
tention (Bonawitz et al., 2019). This can significantly impact
the performance of CL jobs, such as accuracy and end-to-
end training time.

We analyze the impact of resource contention on CL jobs’
performance in Figure 4. In this experiment, the resource
pool is evenly partitioned and managed by each job, who
aims to train a ResNet-18 model with 100 clients per round
on the FEMNIST dataset (Cohen et al., 2017). We vary the
number of concurrently running jobs to observe its impact.

Yenn
Contention-aware Resource-aware
Scheduling Matching
A T@ Request
2 CLJob1 S CLJob2
{Data: Emoji, {Data: Dictation,
Amount: 100} Amount: 20}

Device Pool

Figure 6. Venn system overview.

As more jobs share the same device pool, the available
device choices for each job become increasingly constrained,
leading to a noticeable degradation in the round-to-accuracy
performance. Hence, evenly partitioning resource pool for
each CL job is no better than a shared device pool in terms
of participant diversity.

Breakdown of request completion time. While most
existing CL efforts, such as quantization (Reisizadeh et al.,
2020) and client selection (He et al., 2023), predominantly
focus on model convergence rate or response collection
time—i.e., the time needed to collect a sufficient number
of responses——they often overlook a critical component:
scheduling delay, as depicted in Figure 1.

Figure 5 breaks down JCT for a single training round under
varying contention levels, using the same setup as Figure 4.
Utilizing the same experimental setup as in Figure 4, we
quantify both the average scheduling delay and response
collection time with random device-to-job matching during
one round of training and testing. The shaded regions cover
the duration for each individual job. As our results in Fig-
ure 5 indicate, scheduling delay can significantly impact
overall JCT, especially when resource supply falls short of
demand.

3 VENN OVERVIEW

Venn serves as a standalone CL resource manager that op-
erates at a layer above all CL jobs, and it is responsible
for allocating each checked-in resource to individual jobs.
Figure 6 illustrates Venn’s workflow and its role within the
lifecycle of an CL job.

In each execution round, a job submits resource requests
to Venn, specifying its device requirements (e.g., minimum
CPU capacity) and resource demands (the number of de-

vices needed per round) ((0)). Meanwhile, edge devices
continuously check in with Venn as they become available
over time ((I)). Based on the real-time resource demand and
supply, Venn generates a resource allocation plan to assign
one CL job to each checked-in device until the job’s needs
are met ((2)). Upon receiving the task assignment from Venn,
each device adheres to the allocation plan and participates
in the corresponding job (). The device then retrieves
the computation plan from the job and performs on-device
training or inference (Lv et al., 2022; CoreML) (3) and @).
Finally, devices either submit their training results to the job
or disconnect if their availability changes (e.g., battery runs

low) (®).

Steps @) to O follow standard CL protocols between jobs
and devices, while Venn focuses on optimizing the job-to-
device assignment in Step (). This allocation step is critical
for managing resource contention and reducing scheduling
delays. A detailed breakdown of responsibilities is provided
in Appendix A.

4 RESOURCE SCHEDULING IN VENN

In this section, we outline the resource scheduling algorithm
in Venn, starting with defining the scheduling problem in
CL (§4.1). Next, we present our scheduling algorithm in
two parts: determining the job scheduling order to minimize
scheduling delay (§4.2) and matching devices to jobs to op-
timize response collection time (§4.3). Finally, we describe
enhancements for real-world deployment (§4.4).

4.1 Problem Statement

Given a collection of CL jobs—along with their device
requirements and resource demands—and a set of heteroge-
neous devices that arrive and depart over time, Venn should
efficiently assign devices to CL jobs in order to reduce the
average job completion time (JCT). The scheduling problem
can be mathematically modeled as a multi-commodity flow
(MCEF) problem with integer constraints, where each CL job
is modeled as a distinct commodity and each device serves
as an intermediate vertex between the source and sink of its
corresponding eligible CL job. Then the goal of this inte-
ger MCF problem is to minimize the average JCT of jobs,
which is known to be NP-hard (Even et al., 1975). Even
for its linear approximation, the time complexity is exacer-
bated by the planetary scale of devices involved and diverse
device requirements from jobs, making existing solutions
computationally infeasible.

Problem definition. LetJ = Jy,Jo,...,J,, be the set of
jobs, with resource demands D = Dy, Do, ..., D,,, where
D; is the number of devices required by job J;. Let S =
S1US; U---U S, be the set of available devices, where
Sy is the subset of devices eligible for jobs with specific

requirements (e.g., hardware capacity), and f(J;) = Sk
maps job J; to its eligible device subset. The goal is to match
each checked-in device s € Sj with one job J;, where
f(J;) = Sk, Vs € S, in order to minimize average JCT,
which consists of scheduling delay and response collection
time.

Tradeoff between scheduling delay and response collec-
tion. Minimizing scheduling delay often conflicts with
minimizing response collection time. Assigning devices
quickly reduces delay but may involve slower devices, in-
creasing response time, since the response collection time
is usually determined by the final responding device among
the target number of participants. Waiting for faster devices,
however, reduces response time at the cost of higher delay.

At its core, Venn aims to find a sweet spot in the trade-off in
order to optimize average JCT. Specifically, we decouple the
CL resource allocation problem as following two questions:

1. How should jobs be ordered to minimize scheduling
delay? (§4.2)

2. How should devices be matched to jobs to minimize
response collection time while optimizing JCT? (§4.3)

4.2 Intersection Resource Scheduling (IRS)

We now tackle the first question, minimizing the scheduling
delay. Directly matching jobs to devices can be computation-
ally expensive, especially when dealing with the immense
scale of devices and jobs. The challenges posed by this prob-
lem are not solely due to its scale; they are also compounded
by the diverse resource requirements of CL jobs. Their var-
ious requirements introduce intricate resource contention
patterns, further complicating the scheduling.

To this end, Venn introduces the Intersection Resource
Scheduling (IRS) problem to account for this resource con-
tention. Basically, each CL job J; € J may compete for a
subset of devices Sy, € S, denoted as f(J;) = S, where
these resource subsets can exhibit relationships that are in-
clusive, overlapping, or nested. We created an integer linear
programming (ILP) formulation (Appendix B) to optimally
allocate resources to minimize scheduling delay and propose
a heuristic to tackle the problem.

To tackle the scale of devices and jobs, Venn aims to deter-
mine a job scheduling order, where each checked-in device
is assigned to the first eligible job in the order, rather than
scattering resources across multiple jobs. Such a fixed job
order can minimize the scheduling delay while reducing
computational complexity.

With the objective of determining a job scheduling order,
Venn first groups jobs J into Resource-Homogeneous Job
Groups G = {G1,Ga,...,G,} by their resource require-

Algorithm 1 Intersection Resource Scheduling

1: Input: Job Groups G, Devices S
FunctionVenn-SchedJob Groups G, Devices S
> Sort within job group (§4.2.1)

2: for G in G do

3t Sort J; by D; in ascending order, V.J; € G
4: end for
>Generate initial allocation S for each group G
5: 8= U?zlSj
6: Sort G, by |S;| in ascending order, VG; € G
7: for G in G do
8 S;=5N8;85=5\5]
9: end for

>Allocate resource S for each group G
10: Sort G; by |S;| in descending order, VG; € G
11: for G; in G do
12: if |S}| > 0 then
13: fOI‘GkEGI‘Sk|<|5j|,5kﬂ5j7é®d0

14: m’, mj, = get—queue-1len()
15: if 5 > 12k then

16: S = 85U (S; N Sk)

17: S, =S — S;»

18: else

19: break

20: end if

21: end for

22: end if

23: end for

24: Return {G,[0], S7},Vj € [1,n]

ments, where each job group G; = {J;| f(J;) = S;,VJ; €
J}%, contains all jobs with the same resource requirement.
Venn addresses the problem using a two-step approach, with
each step occurring at a different level of scheduling granu-
larity, as outlined in Algorithm 1: (i) Ordering within a job
group to optimize local resource scheduling (§4.2.1). (ii)
Merging orders across job groups to ensure global schedul-
ing efficiency (§4.2.2). Venn invokes Algorithm 1 on job’s
request arrival and completion. By breaking down the over-
all problem into two steps, we further reduce the problem’s
complexity without affecting the scheduling efficiency. We
provide theoretical insights to show the effectiveness of this
problem decomposition in Appendix C.

4.2.1 Intra-Job Group Scheduling

Within each job group that shares the same device specifi-
cations, Venn prioritizes jobs based on their remaining re-
source demand (Algorithm 1 line 3). This ordering strategy
aims to minimize the intra-group scheduling delay. Prioritiz-
ing jobs with smaller remaining resource demands has been
shown to be effective in similar scheduling problems (Garey
et al., 1976). We choose this locally optimal scheduling
strategy with the observation that it aligns well with the

goal of achieving a globally optimal scheduling order. By
default, the remaining resource demand refers to the needs
of a single request within one round. However, it can also
encompass the total remaining demand for all upcoming
rounds, provided such data is available.

4.2.2 Inter-Job Group Scheduling

Addressing the scheduling problem across multiple job
groups introduces an additional layer of complexity due
to the intricate patterns of resource contention. Traditional
scheduling algorithms, such as Random Matching and Short-
est Remaining Service First (SRSF), are not designed to
account for resource contention across job groups, leading
to poor average JCT.

An effective scheduler should recognize and adapt to the
resource contention patterns among jobs. Venn prioritizes
groups with scarce resources (fewer eligible devices) to pre-
vent delays from resource-rich groups. Additionally, when
a particular resource type is in high demand, the scheduler
should judiciously allocate intersected resources to the job
group with a longer queue, as this group contributes more
significantly to the average scheduling delay.

To achieve this, Venn allocates the intersected resources
across different job groups based on two factors related to
average scheduling delay:

1. Amount of eligible resources allocated: the job group
with smaller amount of eligible resources may have a
longer scheduling delay under the same condition.

2. Queue length: the job group with a longer queue length
contributes more to the average scheduling delay as
more jobs are waiting for the same type of resources.

Algorithm 1 outlines the steps Venn takes to allocate the
current resource across job groups. First, Venn initializes
resource allocation among job groups by starting to allocate
resources to the job group with the most scarce resources
(line 6). This results in an initial allocation plan with no
resource sharing across job groups (lines 5-9), setting the
stage for subsequent cross-group allocations.

To determine how to allocate intersected resources across
job groups, Venn greedily evaluates whether a job group
with more abundant resources should acquire intersected
resources from groups demanding more scarce resources
with the objective of minimizing the average scheduling
delay. This evaluation starts with the job group possessing
the most abundant resources (line 10). If the resources al-
located to this group remain unclaimed by other groups
(line 12), Venn will decide how much resources from sub-
sequent job groups should be allocated to it. Specifically,
Venn prioritizes job groups with longer queue lengths and
fewer allocated resources, guided by a ratio that balances

the number of affected jobs against the amount of allocated

resources (line 15). If this ratio ITZ\ is larger than the one for
the target resource group \%’5’ Venn reallocates resources
accordingly (lines 16—17). Otherwise, the algorithm ceases
to allocate additional resources to the current job group from
remaining groups (line 19). The reason is that if this job
group needs more resources, it should first take the resources
from job groups with relatively abundant resources.

Function get —queue-1en() (line 14) would return the
number of jobs m’ whose JCT would be delayed by potential
group prioritization. For example, the affected queue length
m’ may contain jobs from other job groups that have been
deprioritized previously. An easier way to approximate m’
is to use the group queue length. If intersected resources
have been decided to be allocated to job group G; over
Gk, Venn accumulates and updates their current resource
allocation S}, S} and queuing length m’; (line 16-17).

The time complexity of Algorithm 1 is max(O(m logm),
O(n?)), where m is the number of ongoing jobs and n is the
number of job groups. We illustrate the theoretical insight
behind the scheduling algorithm in Appendix D to illustrate
the effectiveness of Venn’s approach.

4.3 Device Matching

Now we focus on minimizing the response collection time, a
significant contributor to the overall JCT, particularly when
resource contention is low. Existing cluster-level device-to-
job matching solutions, either stick to a certain job order
such as FIFO and SRSF, or match devices without a strate-
gic algorithm such as random match, where none of them
optimizes the job response collection time.

Response collection time is usually determined by the last
successfully responding devices. Hence, it can be reduced by
allocating devices with similar higher capacity to the CL job.
Meanwhile, these high-end devices have lower probability
to fail due to their quick task execution.

However, as mentioned in Section 4.1, there is a trade-off
between scheduling delay and response collection time. In-
tuitively, with limited device influx, priority should be given
to minimizing the scheduling delay, which dominates the
average JCT. On the other hand, with sufficient device influx
to fulfill a job request within a short period, we should con-
sider minimizing the response collection time while obeying
the scheduling order given by Section 4.2.

To this end, we propose a resource-aware tier-based device-
to-job matching solution to reduce the response collection
time for each job as illustrated in Algorithm 2.

The matching algorithm is activated only for jobs that are
currently served, as scheduled by Algorithm 1. For each

Algorithm 2 Device Matching
1: Input: Jobs J;, Devices S} € Venn—SCHED(G,S)

S ={S',52,...,8V} > Evenly partition devices
Gy = %,Vv € [1, V] > Response time speed-up
Function: Venn-Match(Job .J;, Resource S})

tresponse

¢; = okoms > Assign tiers in a rotating manner
> Decide whether to trigger tier-based matching
u = randint(0,V)>
ifV + g, X¢; <c¢; +1then
Update S} = S; N S* > Assign tier u devices to J;
end if
10: Return: {J;, S’}

LR

such job, Venn partitions the eligible devices into V' tiers
based on their hardware capabilities, where V' denotes the
granularity of this partitioning. If a job has been served
before, Venn adaptively sets the tier partition thresholds
based on the hardware capacity distribution of the devices
that participated in earlier rounds. Otherwise, Venn forgoes
tier-based matching and profiles the devices allocated to the
job’s current request to inform future device tier partitioning.

For each served job request, Venn randomly selects a device
tier, denoted as S*, to the job (Algorithm 2 line 5). This
randomized tier assignment aims to expose each CL job
to a diverse set of devices, rather than confining them to
high-end devices. Given that the response collection time is
determined by the slowest responding participant, tier-based
assignment does not adversely affect this metric.

As illustrated in Figure 7, while tier-based matching may
increase the scheduling delay by a factor of V' > 1, it can
concurrently reduce the response collection time by a factor
of g < 1. The algorithm proceeds to perform such tier-based
device-to-job matching for the job J; only if its JCT can be
reduced, i.e., 1 + ¢; > V + ¢;g, (line 7). If the condition
holds, Venn allocates device tier .S,, to the job, effectively
updating the set to S N S*. Meanwhile the leftover device
tiers would be allocated to subsequent jobs in the job group,
maximizing the utilization of available resources.

To determine the response time speed-up factor g for tier-
based matching, we note that the device response time dis-
tribution adheres to a log-normal distribution (Wang et al.,
2023). We use the 95th percentile as the statistical tail la-
tency to account for the overall response collection time,
thereby excluding failures and stragglers. Venn profiles and
estimates the response collection time for each device tier
v € [1,.., V] and subsequently computes the speed-up fac-
tor g, = % relative to a non-tiered scenario (line 3).

JCT JoT
A

S / . ' Assign ! . !
T2 B & top-1tier - — & b
8 - ;
© ? V gc

scheduling response

c
scheduling response
delay collection time

delay collection time

Figure 7. Visualized tier-based device-to-job matching condition.
4.4 Enhancements

Dynamic resource supply. As shown in Figure 2a, the
total available CL resources change significantly over time.
To address this, Venn continuously records each device eli-
gibility through a time-series database. This database is then
queried for resource eligibility distribution from the past
time window. However, relying solely on momentary eligi-
ble resource rates for input into the scheduling algorithm
is inaccurate. This is primarily due to the varying resource
arrival patterns, as demonstrated in Figure 2a. Since CL jobs
span multiple days with diurnal resource patterns, Venn av-
erages eligibility over 24 hours for robust scheduling. As a
result, the scheduler can become both farsighted and robust,
effectively accommodating the dynamic nature of resource
availability.

Starvation prevention. Our heuristic can lead to larger
CL jobs being starved due to the preference given to smaller
jobs. This is not acceptable especially when the jobs are
initiated by different CL developers who require perfor-
mance guarantees. Venn grants fairness to jobs to avoid
such starvation. Specifically, our goal is to guarantee that
the scheduling latency of a job .J; is no worse than fair shar-
ing, which is defined as T; = M * sd;, where M is the
number of simultaneous CL jobs and sd; represents the JCT
without contention. Then, we adjust each job demand to be
d; =d; x (%)E to ensure fairness within a job group, and
adjust each group queue length ¢/, = ¢; x (M)E to
J 7 ZJiEG 3 ti
ensure fairness across job groups. ¢; is the time usage of job
J; at the moment and € € [0, co) is a fairness control knob.
When e = 0, the algorithm is identical to the one in Sec-
tion 4.2. As € — o0, the fairness multiplier dominates the
scheduling, resulting in maximum fairness. We show that
Venn improves JCT over its counterparts with our starvation

design (§5.5).

S EVALUATION

In this section, we evaluate the effectiveness of Venn through
event-driven simulation and testbed experiments. Our key
takeaways are:

* Venn reduces average job completion time (JCT) by up
to 1.88x compared to state-of-the-art baselines, with-

- o .
o
® e
é Memory-Rich High-Perf. g
(2] - @O
£ s 1 g8l .
[ChTe) = 0
=c Ci te-Rich E
£ ompute-RICn P ol e o w cees o .
5 #* 13 .
=z L[] L] .
- ‘ ° R . o
0 0.5 1 0 2000 4000
Norm. CPU Score # Rounds
(a) Device eligibility trace. (b) CL job demand trace.

Figure 8. Device and job trace used in experiments. (a) Devices
are stratified into four regions to explore different overlap patterns.
(b) The diverse workloads in experiments are derived from the job
demand trace based on demand characteristics.
out compromising model accuracy, across diverse real-
world CL workloads (§5.2).

* Venn outperforms its counterparts by intelligently
scheduling jobs and matching devices to jobs, lever-
aging different design components (§5.3).

* Venn’s benefits are robust under a wide range of CL
workloads and environment setups (§5.5).

5.1 Experiment Setup

Testbed. To rigorously evaluate Venn, we employ a two-
pronged approach. First, we have developed a high-fidelity
simulator that replays client and job traces, effectively em-
ulating the dynamics of the scheduling environment for
large-scale evaluations. Second, we deploy real CL systems
to execute actual CL jobs at a smaller scale of devices.

Resources. To faithfully emulate heterogeneous device
runtimes, networking, and availability, we use device traces
from FedScale (Lai et al., 2021a) (Figure 2) and Al Bench-
mark (Ignatov et al., 2019) (Figure 8a). Each unique device
trace is limited to one CL job per day for realism.

CL jobs. We evaluate Venn over multiple synchronous
CL jobs (Yang et al., 2018), where each successful training
round requires a minimum of 80% target participants to re-
port back within a deadline, which is set to be S5min - 15min
depending on the round demand. Our approach also extends
to asynchronous CL jobs, as scheduling decisions depend
solely on remaining resource demand, not request submis-
sion timing. Jobs are drawn from diverse real-world CL
applications (Xu et al., 2023; Yang et al., 2018; Hard et al.,
2019; Ramaswamy et al., 2019; Warden, 2018; Sadilek et al.,
2021), whose resource demand is depicted in Figure 8b. In
the real CL experiment, each job aims to train a ResNet-
18 (He et al., 2016) and MobileNet-V2 (Sandler et al., 2018)
on FEMNIST dataset.

Workloads. Our evaluation includes five workload sce-
narios that sample differently from the job trace in Fig-
ure 8b to rigorously evaluate Venn’s performance. Even:

FIFO SRSF Venn
Even 1.38x 1.69x 1.87x
Small 148x 1.68x 1.78x
Large 1.64x 1.57x 1.72x
Low 1.55x 1.66x 1.88x
High 142x 141x 1.63x

Table 1. Summary of improvements on average JCT over random
matching on different CL workloads.

Sampled from all jobs, which is the default trace. Small:
Uniformly sampled only from jobs with below-average total
demand. Large: Uniformly sampled only from jobs with
above-average total demand. Low: Uniformly sampled only
from jobs with below-average demand per round. High: Uni-
formly sampled only from jobs with above-average demand
per round. Default simulation and real-world workloads con-
tain 50 and 20 jobs, respectively. Jobs arrive via a Poisson
process with a 30-min average inter-arrival.

Device requirements are stratified into four categories based
on the CPU and memory capacities (Figure 8a) to create
various resource contention patterns where the eligible re-
sources for each job may overlap, contain, or be within
the eligible resources of other jobs. By default, each job
is randomly mapped to one category among General re-
sources, Compute-Rich resources, Memory-Rich resources,
High-Performance resources.

Baselines. We compare Venn against FIFO, SRSF, and an
optimized random matching. The random matching algo-
rithm typically assigns devices to eligible jobs randomly but
is optimized here to schedule jobs in a randomized order,
reducing round abortions under contention and establishing
a stronger baseline. Note that we only run Venn with the
starvation prevention strategy in Section 5.5.

Metrics. Our primary performance metrics include the
average job completion time (JCT). Note that while Venn
does not explicitly optimize for CL job accuracy, it does not
adversely affect it either.

5.2 End-to-End Performance

Venn achieves better average JCT Improvement. We as-
sess the performance of different scheduling algorithms by
evaluating its performance over different workloads. We re-
port the average JCT speed-up for each scheduling algorithm
compared to the random scheduling in Table 1. We observe
that our scheduling algorithm consistently provides stable
improvements in the average JCT across various workloads,
which underscores the robustness of Venn.

Venn achieves faster convergence without affecting ac-
curacy. We report the final model test accuracy of CL jobs
under different schedules with the help of our CL system at
a smaller experiment scale. As shown in Figure 9, we ob-

R 8 1.0

s S
>
g 23 08@
SO 3 £
9~ %o =
z° o 063
k] oo e
IS S < L
58 g 04%
>0 o
< N

=3 D) 0.2

©5000 10000 15000 20000 25000 500 1000

e Time (s) # Jobs
Figure 9. Venn does not affect Figure 10. Venn introduces

the average test accuracy. negligible overhead at scale.

N
N

Avg. JCT Impr.
o N

Avg. JCT Impr.
o -

el
wl

o e yent

Ra“doﬂ\ \:\Fg!o sG:‘\Edo et yent
en

O
ando™ FIFO oon
et Wi gan w! ® ot W9 g0

N

(a) Low workload. (b) High workload.

Figure 11. Average JCT improvement breakdown.

25th 50th 75th
Even | 11.5x 7.2x 5.6
Small | 6.8x 52x 4.3x
Large | 3.7x 29x 2.7x
Low | 11.6x 7.5x 4.7x
High 5.0Ix 33x 3.1x

Table 2. Breakdown of average JCT improvement across jobs with
lowest 25%, 50%, and 75% of total demands. Venn benefits more
on smaller jobs.

General. Compute. Memory. High-perf.
Even 1.5x% 7.2 5.3% 3.9%
Small 0.9% 6.0x 2.8 2.6x
Large 0.9x 3.7x 1.8 % 2.6%
Low 0.8x 3.4x 2.1x 8.7x
High 0.8x 2.2x 2.2x% 5.6%

Table 3. Breakdown of average JCT improvement across jobs that
ask for General resources, Compute-rich resources, Memory-rich
resources and High-performance resources. Venn benefits more on
jobs that ask for scarcer resources.

serve that Venn does not affect the final model test accuracy
but speeds up the overall convergence process.

Venn has negligible overhead. We emulated a large number
of CL jobs and groups to evaluate the scheduler’s scalability.
Our results in Figure 10 demonstrate that the latency in-
curred by one-time triggering for scheduling and matching
remains low, even with a substantial increase in job and
group numbers. This is due to its low time complexity of
max(O(mlogm), O(n?)), where m is the number of jobs
and n is the number of device groups.

FIFO SRSF Venn
General 1.46x 1.78x 1.94x
Compute-heavy 1.73x 2.08x 2.23x
Memory-heavy 1.68x 2.05x 227X
Resource-heavy 1.65x 1.90x 2.01x

Table 4. Average JCT improvement on four biased workloads.

5.3 Performance Breakdown

We present a performance breakdown of Venn, which con-
sists of two parts: a job scheduling algorithm that determines
the job order to minimize the scheduling delay, and a device-
to-job matching algorithm to reduce the response collection
time. We evaluate the performance of Venn with only the
scheduling algorithm (Venn w/o matching), Venn with only
matching algorithm and FIFO (Venn w/o scheduling), and
Venn with both algorithms (Venn). We show the improve-
ment of the average JCT over the default random scheduling
for each component. As shown in Figure 11, the tier-based
device-to-job matching algorithm primarily benefits low
workload where the resource contention is small, which is
aligned with our original design intention. The reason is that
when resource supply is sufficient, the response collection
time would dominate the JCT, which can be optimized by
our matching algorithm.

To analyze the impact of Venn on different types of jobs,
we break down jobs by their total demands and device re-
quirements (Figure 8a), and then analyze the average JCT
improvement for each type. Table 2 and Table 3 quantifies
how Venn improves average JCT across varying total de-
mands (25th, 50th, 75th percentiles) and eligibility types
(General, Compute-rich, Memory rich, High-performance
). Notably, jobs with smaller total demands and scarcer re-
sources benefit the most from Venn.

5.4 Case Study on Biased Workload

This section delves into an in-depth analysis of Venn’s adapt-
ability and performance across four distinct workloads, each
characterized by a specific bias in job resource require-
ments. These workloads include General, Compute-Heavy,
Memory-Heavy, and Resource-Heavy categories. For exam-
ple, the Compute-Heavy workload is structured such that
half of its jobs are predominantly geared towards compute-
intensive resources, with the rest evenly distributed across
the other three resource types. This setup introduces varied
queue lengths in different job groups, providing a robust
testbed for evaluating Venn’s capability in effectively man-
aging these variations.

The design of these workloads aims to scrutinize Venn’s
proficiency in navigating diverse resource requirement dis-
tributions, while maintaining uniformity in job demands as
illustrated in Figure 8b. The outcomes of these experiments
are systematically presented in Table 4, offering insights into

Avg. JCT Impr.
(9]
Avg. JCT Impr.
(9]

25 50 75 T 2 3 4

Number of Jobs Number of Tiers

Figure 12. Venn outperforms
FIFO and SRSF across differ-
ent numbers of jobs.

Figure 13. Venn’s improve-
ment across different numbers
of tiers.

Avg. JCT Impr.
(4]

Jobs with JCT

< fair JCT (%)
[
o

N
o

o3

N
o

4 6
& &

o
N
N
[}

(a) Venn’s improvement over (b) Ratio of jobs meet the fair-
different ¢. share JCT.

Figure 14. Fairness knob.

the algorithm’s performance under each workload scenario.

5.5 Ablation Study

Impact of number of jobs. We evaluate Venn with differ-
ent numbers of CL jobs arriving over time. As the number
of jobs increases, resource contention becomes more pro-
nounced, highlighting the importance of efficient schedul-
ing under such conditions. We present the average JCT
speed-up with different numbers of jobs in even workload to
demonstrate the effectiveness of our algorithm. As shown in
Figure 12, Venn consistently provides improvement across
various numbers of jobs, with its benefits becoming more
pronounced as the number of jobs increases.

Impact of number of tiers. We evaluate the matching
algorithm’s performance across varying numbers of client
tiers, ranging from a single tier to multiple. Figure 13 shows
that increased tier granularity enhances device-to-job match-
ing and improves performance. However, the gains plateau
beyond a certain point, as finer tiers increase scheduling
delay without yielding further reductions in response collec-
tion time. Thus, optimizing the number of tiers is crucial for
balancing scheduling efficiency and JCT improvement.

Impact of fairness knob. We incorporated a fairness knob
(e) to strike a balance between performance and fairness.
We tune the value of € and report the average JCT speed-up
against these values in Figure 14a. The results demonstrate
that, as e increases, the JCT speed-up tends to decrease.
As shown in Figure 14b, the percentage of jobs that meet
the fair-share JCT increases with the €, where € =2 gives
69% of jobs receive their fair-share JCT. This observation
highlights the trade-off between performance and fairness
within our CL resource scheduling algorithm, which can be

fine-tuned by adjusting the value of e.

6 RELATED WORK

Cluster resource managers. There are many cluster
resource managers that schedule resources with con-
straints (Thinakaran et al., 2017; Ghodsi et al., 2013;
Narayanan et al., 2020). Existing ML cluster resource man-
agers mainly focus on managing the stable data-center re-
sources like GPU and CPU (Xiao et al., 2018; Mohan et al.,
2022) in order to improve JCT, utilization and fairness (Peng
et al., 2018; Chaudhary et al., 2020). Some research delves
into GPU-specific optimizations (Gu et al., 2019; Yu et al.,
2021; Hwang et al., 2021), while others co-design resource
managers with the specific characteristics of ML work-
loads (Qiao et al., 2021; You et al., 2023). However, they are
mostly designed for data center and fail to capture the level
of availability and heterogeneity of CL resources, nor do
they consider both scheduling delay and response collection
time of CL jobs.

CL client selectors. Several recent works have studied
client selection at the single CL job level. In addition to
enforce device requirements including software version,
hardware capacity and data quality, they further cherry-pick
clients based on their state, system and statistical utility (Lai
et al., 2021b; Abdelmoniem et al., 2023; Balakrishnan et al.,
2022; Jee Cho et al., 2022; Chai et al., 2020; He et al., 2023)
to speed up the training. However, they solely focus on re-
sponse collection time (Liu et al., 2022a;b) and overlook the
time required to acquire adequate resources. Additionally,
optimizing individual CL job performance is insufficient as
the deployment scale of CL applications continues to grow.

CL resource managers. Large companies including Apple,
Meta and Google have proposed their CL infrastructures;
however, CL resource management is not their primary fo-
cus. These resource managers simply adopt random device-
to-job matching in various forms, resulting in suboptimal
scheduling delays and response collection times.

7 CONCLUSION

In this paper, we present Venn, our CL resource manager de-
signed to efficiently share large-scale heterogeneous device
resources among multiple CL jobs with diverse require-
ments. Venn features a contention-aware job scheduling
algorithm and a resource-aware device-to-job matching al-
gorithm, aiming to minimize the average job completion
time (JCT) for CL workloads. Our evaluation using a range
of real-world CL workloads demonstrates that Venn im-
proves average JCT by up to 1.88x.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for valuable feedback.
This work was supported in part by NSF grant CNS-
2106184 and a grant from Cisco.

REFERENCES

Abdelmoniem, A. M., Sahu, A. N., Canini, M., and Fahmy,
S. A. Resource-efficient federated learning. EuroSys,
2023.

Balakrishnan, R., Li, T., Zhou, T., Himayat, N., Smith, V.,
and Bilmes, J. Diverse client selection for federated
learning via submodular maximization. In /CLR, 2022.

Bonawitz, K., Eichner, H., and et al. Towards federated
learning at scale: System design. In MLSys, 2019.

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A., and
Seth, K. Practical secure aggregation for federated learn-
ing on user-held data. In NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Baracaldo,
N., Zhou, Y., Ludwig, H., Yan, F., and Cheng, Y. Tifl: A
tier-based federated learning system. In Proceedings of
the 29th international symposium on high-performance
parallel and distributed computing, 2020.

Chaudhary, S., Ramjee, R., Sivathanu, M., Kwatra, N., and
Viswanatha, S. Balancing efficiency and fairness in het-
erogeneous gpu clusters for deep learning. In EuroSys,
pp. 1-16, 2020.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. EM-
NIST: an extension of MNIST to handwritten letters. In
arxiv.org/abs/1702.05373, 2017.

CoreML. Apple core ml. https://developer.
apple.com/documentation/coreml.

Even, S., Itai, A., and Shamir, A. On the complexity of
time table and multi-commodity flow problems. In 16th
annual symposium on foundations of computer science
(sfes 1975), pp. 184—193. IEEE, 1975.

Garey, M. R., Johnson, D. S., and Sethi, R. The complexity
of flowshop and jobshop scheduling. Mathematics of
operations research, 1976.

Geyer, R. C., Klein, T., and Nabi, M. Differentially private
federated learning: A client level perspective. 2017.

Ghodsi, A., Zaharia, M., Shenker, S., and Stoica, I. Choosy:
Max-min fair sharing for datacenter jobs with constraints.
In Proceedings of the 8th ACM European Conference on
Computer Systems, 2013.

Gu, J., Chowdhury, M., Shin, K. G., Zhu, Y., Jeon, M., Qian,
J., Liu, H., and Guo, C. Tiresias: A GPU cluster manager
for distributed deep learning. In NSDI, pp. 485-500,
Boston, MA, February 2019. USENIX Association. ISBN
978-1-931971-49-2. URL https://www.usenix.
org/conference/nsdil9/presentation/gu.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction,
2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

He, S., Yan, Q., Wu, F.,, Wang, L., Lécuyer, M., and
Beschastnikh, I. Gluefl: Reconciling client sampling and
model masking for bandwidth efficient federated learning.
MLSys, 2023.

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,
Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas,
H., et al. Papaya: Practical, private, and scalable federated
learning. MLSys, 2022.

Hwang, C., Kim, T., Kim, S., Shin, J., and Park, K. Elastic
resource sharing for distributed deep learning. In NSDI,
2021.

Ignatov, A., Timofte, R., Kulik, A., Yang, S., Wang, K.,
Baum, F., Wu, M., Xu, L., and Van Gool, L. Ai bench-
mark: All about deep learning on smartphones in 2019. In
2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), pp. 3617-3635. IEEE, 2019.

Jee Cho, Y., Wang, J., and Joshi, G. Towards understanding
biased client selection in federated learning. In AISTATS,
2022.

Lai, F., Dai, Y., Zhu, X., and Chowdhury, M. Fedscale:
Benchmarking model and system performance of fed-
erated learning. CoRR, abs/2105.11367, 2021a. URL
https://arxiv.org/abs/2105.11367.

Lai, F.,, Zhu, X., Madhyastha, H. V., and Chowdhury, M.
Oort: Efficient federated learning via guided participant
selection. In OSDI 21, July 2021b.

Liu, J., Jia, J., Ma, B., Zhou, C., Zhou, J., Zhou, Y., Dai,
H., and Dou, D. Multi-job intelligent scheduling with
cross-device federated learning. IEEE Transactions on
Parallel and Distributed Systems, 34(2):535-551, 2022a.

Liu, J., Lai, F, Dai, Y., Akella, A., Madhyastha, H., and
Chowdhury, M. Auxo: Heterogeneity-mitigating feder-
ated learning via scalable client clustering. arXiv preprint
arXiv:2210.16656, 2022b.

%20https://developer.apple.com/documentation/coreml
%20https://developer.apple.com/documentation/coreml
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/gu
https://arxiv.org/abs/2105.11367

Lv, C., Niu, C., Gu, R,, Jiang, X., Wang, Z., Liu, B., Wu,
Z., Yao, Q., Huang, C., Huang, P., et al. Walle: An {End-
to-End},{General-Purpose}, and {Large-Scale} produc-
tion system for {Device-Cloud} collaborative machine
learning. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 22), pp. 249-265,
2022.

Mohan, J., Phanishayee, A., Kulkarni, J., and Chidambaram,
V. Looking beyond {GPUs} for {DNN} scheduling on
{Multi-Tenant} clusters. In OSDI, 2022.

Narayanan, D., Santhanam, K., Kazhamiaka, F., Phan-
ishayee, A., and Zaharia, M. Heterogeneity-aware cluster
scheduling policies for deep learning workloads. In Pro-
ceedings of the 14th USENIX Conference on Operating
Systems Design and Implementation, pp. 481-498, 2020.

Paulik, M., Seigel, M., Mason, H., Telaar, D., Kluivers, J.,
van Dalen, R., Lau, C. W., Carlson, L., Grangvist, F.,
Vandevelde, C., et al. Federated evaluation and tuning for
on-device personalization: System design & applications.
arXiv preprint arXiv:2102.08503, 2021.

Peng, Y., Bao, Y., Chen, Y., Wu, C., and Guo, C. Optimus:
an efficient dynamic resource scheduler for deep learning
clusters. In EuroSys, pp. 1-14, 2018.

Qiao, A., Choe, S. K., Subramanya, S. J., Neiswanger, W.,
Ho, Q., Zhang, H., Ganger, G. R., and Xing, E. P. Pollux:
Co-adaptive cluster scheduling for goodput-optimized
deep learning. In OSDI, 2021.

Ramage, D. and Mazzocchi, S. Federated analytics:
Collaborative data science without data collection.
https://blog.research.google/2020/05/
federated—-analytics-collaborative-data.
html, 2020.

Ramaswamy, S., Mathews, R., Rao, K., and Beaufays, F.
Federated learning for emoji prediction in a mobile key-
board. arXiv preprint arXiv:1906.04329, 2019.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In AISTATS, 2020.

Sadilek, A., Liu, L., Nguyen, D., Kamruzzaman, M.,
Serghiou, S., Rader, B., Ingerman, A., Mellem, S.,
Kairouz, P., Nsoesie, E. O., et al. Privacy-first health
research with federated learning. NPJ digital medicine, 4
(1):132, 2021.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

Thinakaran, P., Gunasekaran, J. R., Sharma, B., Kandemir,
M. T., and Das, C. R. Phoenix: A constraint-aware sched-
uler for heterogeneous datacenters. In 2017 IEEE 37th
International Conference on Distributed Computing Sys-
tems (ICDCS). IEEE, 2017.

Wang, E., Kannan, A., Liang, Y., Chen, B., and Chowdhury,
M. Flint: A platform for federated learning integration.
MLSys, 2023.

Warden, P. Speech commands: A dataset for
limited-vocabulary speech recognition. In
arxiv.org/abs/1804.03209, 2018.

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M., Kwatra,
N., Han, Z., Patel, P., Peng, X., Zhao, H., Zhang, Q.,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In OSDI, pp. 595-610, 2018.

Xu, Z., Zhang, Y., Andrew, G., Choquette-Choo, C. A.,
Kairouz, P., McMahan, H. B., Rosenstock, J., and Zhang,
Y. Federated learning of gboard language models with
differential privacy. arXiv preprint arXiv:2305.18465,
2023.

Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong, N.,
Ramage, D., and Beaufays, F. Applied federated learning:
Improving google keyboard query suggestions. arXiv
preprint arXiv:1812.02903, 2018.

You, J., Chung, J.-W., and Chowdhury, M. Zeus: Under-
standing and optimizing gpu energy consumption of dnn
training. NSDI, 2023.

Yu, P, Liu, J., and Chowdhury, M. Fluid: Resource-aware
hyperparameter tuning engine. MLSys, 2021.

%20https://blog.research.google/2020/05/federated-analytics-collaborative-data.html
%20https://blog.research.google/2020/05/federated-analytics-collaborative-data.html
%20https://blog.research.google/2020/05/federated-analytics-collaborative-data.html

