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Reproducibility Summary1

This article describes our attempts to reproduce the work presented in the paper - Interactive Two-Stream Decoder for2

Accurate and Fast Saliency Detection which published in CVPR2020, as part of the ML Reproducibility Challenge3

2020. Our work consists of three parts: (1) evaluation using the provided pre-trained models from the original paper;4

(2) evaluation using our retrained models; (3) parameters analysis.5

Scope of Reproducibility6

There are two main objectives of our report: (1) evaluation using the provided pre-trained models from the original7

paper; (2) evaluation using our retrained models8

Methodology9

We used publicly available source code provided by the authors. Minor changes were made to the source code in order10

to load the model weight properly. The reproducibility experiments followed the protocal as described in the original11

paper. We performed the training on a machine with two GTX2080TI GPUs. The training and validation took about 512

and 7.5 hours for ResNet-based and VGG-based models, respectively.13

Results14

The reproducibily using authors’ pretrained model was of no success and we recorded the discrepancy of as high as15

11.4%. While for the retrained models, the difference was observed to be as high as 8.6%. Therefore, we carried out16

statistical test to further confirm the reproducibility of the investigated work. We failed to reject the null hypothesis,17

which implies that there is no signfiicant difference between the reported results and our results.18

What was easy19

The pretrained models have been shared by authors. One can try out the models with little effort as minor changes to20

the name of the parameter keys of the provided PyTorch models are expected.21

What was difficult22

We observed some differences between the reported results. We spent longer time to look into the issue and also had23

discussion with the authors. We repeated the experiments several times for each model to ensure the correctness of24

our results. Despite all the challenges, we finally come to the conclusion that the investigated work is reproducible, as25

evidenced by the statistical test.26

Communication with original authors27

We raised and discussed some issues via GitHub. We also discussed some technical details and also about the result28

discrepancy with the authors via emails.29
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1 Introduction30

Saliency detection is a mechanism to detecting visually attentive objects or regions in an image. To better discover31

the visually distinctive objects or regions, the saliency detection methods are expected to understand both the global32

and local features Qin et al. [2019]. The global features are essential to provide high-level semantic information for33

identifying salient objects while the local features are exploited for features refinement. The investigated paper –34

Interactive Two-Stream Decoder for Accurate and Fast Saliency Detection (ITSD) Zhou et al. [2020b] explores the35

correlation between saliency (global) and contour (local) information by introducing interactive connections between36

the saliency and contour streams in the decoder. An adaptive contour loss is also introduced in the saliency stream to37

weight more on near boundary pixels of the salient objects, thus improves the network capability to handling the salient38

object boundary. The method was evaluated on six publicly available saliency datasets and encouraging results were39

reported.40

41

2 Scope of reproducibility42

The investigated work is considered lightweight and able to achieve real-time inference speed at about 88 FPS based on43

our evaluation. Furthermore, the reported results on six benchmark datasets are also quite encouraging, which achive44

comparable performance as compared to several SOTA methods. Our reproduction of work consists of the following:45

• Reproduce the reported results using the pretrained models as made available by the authors46

• Reproduce the reported results by training the models following the exact protocol described in the original47

paper48

• Evaluation of various parameters as reported in the original paper49

3 Methodology50

The authors have made the source code associated with the paper publicly available on GitHub as well as links to51

download their pretrained VGG-based and ResNet-based models Zhou et al. [2020a]. In order to properly load the52

model weights, a minor modification is expected to make to the name of the parameter keys in the given PyTorch53

models as the parameter names are inconsistent with the model definition. To retrain the ITSD models, we followed the54

training protocol as described in the original paper. The VGG and ResNet, which pretrained on ImageNet dataset, were55

employed as the backbone of the model. Data augmentation such as random flipping, random cropping and scaling was56

applied on the DUTS-TR dataset with the aim to increase variability in the dataset. The models were trained on two57

GTX2080TI GPUs using SGD at the learning rate of 0.01 for the first 20k iterations and decayed by a factor of 0.1 for58

the remaining 5k iterations.59

3.1 Model descriptions60

The ITSD employs an encoder-decoder network architecture. The backbone of the encoder can be either of a pretrained61

VGG or ResNet. In order to keep the model lightweight, two measures are adopted: (1) the fully-connected (FC) layers62

in the standard VGG network is truncated with the aim to reduce the model size while there is no such need for the63

ResNet-based encoder since it has no FC layer; (2) channel pooling is applied to each of the encoded feature maps. To64

better recover the saliency map, the decoder of the network employs a two-stream structure, which comprises of five65

cascaded Feature Correlation Module (FCF) modules. The FCF provides interactive connection (fusion stream) which66

allows the respective saliency and contour information to be transmitted across the stream, and therefore encourages the67

network to learn the correlation. To generate the final saliency map, all of the intermediate features from the saliency68

stream are first up-sampled to the input image size followed by concatenation operation. An adaptive contour loss69

(ACT) which leverages on the contour information is proposed to provide adaptive weight to the saliency stream, which70

allows the model to pay more attention to those pixels near to the salient object boundary.71

72
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3.2 Datasets73

Following the original paper, six commonly used publicly available benchmark datasets, namely, DUTS, SOD, PASCAL-74

S, ECSSD, HKU-IS and DUTS-OMRON were employed in our reproduction work. The number of images for each75

dataset is summarized in Table 1.76

Datasets Number of Images Remarks
DUTS-TR 10553 Training
DUTS-TE 5019 Testing

SOD 300
PASCAL-S 850

ECSSD 1000
HKU-IS 4447

DUTS-OMRON 5168
Table 1: Training and testing datasets

3.3 Hyperparameters77

As our primary object was to evaluate the reproducibility of the investigated work, we employed the default parameters78

reported in the original paper, i.e., input image size = 288× 288, λ = 1, m = 4, and batch size = 8, to train the ITSD79

models. In additional, we also carried out further analysis on various parameters as reported in the paper.80

3.4 Experimental setup81

All the experiments conducted in this work followed the exact protocol as described in the original paper, which we82

hoped to mitigate the possible differences in some software libraries/packages, in order to reproduce the results as83

similarly to the reported values. We used the recommended settings from the original paper, as also described in Secs. 384

& 3.3 for the training. Furthermore, we used the source code as made publicly available by the authors to perform both85

the training and the evaluation, which ensure there exists no bias in the implementation. All the training and evaluation86

were performed on the same machine with two Nvdia GTX2080TI GPUs, except for the inference speed evaluation87

which was done using single GPU. Our source code is also made publicly available at GitHub.88

3.5 Computational requirements89

The ResNet-based and VGG-based ITSD models had different requirements on the computational expectations.90

According to our evaluations, the times required to perform the training and validation were around 5 and 7.5 hours,91

respectively for ResNet-based and VGG-based models. The overall required time to perform training and validation92

was observed to be shorter for the ResNet-based model, which may be attributed to its efficient bottleneck architecture.93

4 Results94

In this section, we provide our evaluation results obtained from: (1) the pretrained models as shared by the authors; (2)95

the retrained ITSD models according to the described protocol and (3) evaluation of various parameters. We presented96

the evaluation results using two commonly used performance metrics, i.e., Fβ and MAE.97

4.1 Performance evaluation using pretrained models98

As can be observed from Table 2 and 3, the evaluation results in terms of Fβ were close to the reported values, with the99

neglectable differences of up to 1%. However, the degree of differences in terms of MAE was quite noticeable, with100

the difference as high as 11.4% was observed.101

4.2 Performance evaluation using retrained models102

Table 4 and 5 summarize our evaluation results using the retrained ITSD models. It can be observed that the degree of103

differences can be as high as 2.4% in Fβ and 8.6% in MAE. In order to quantitatively justifying the reproducibility of104

3

https://github.com/chunweit/ITSD-pytorch-RC2020


Datasets Fβ MAE
Our results Reported Difference (%) Our results Reported Difference (%)

ECSSD 0.946 0.947 0.11 0.034 0.035 2.86
DUTS-TE 0.885 0.883 0.23 0.039 0.041 4.88

DUT-OMRON 0.819 0.824 0.61 0.059 0.061 3.28
PASCAL-S 0.876 0.871 0.57 0.064 0.071 9.86

SOD 0.872 0.880 0.91 0.092 0.095 3.16
HKU-IS 0.936 0.934 0.21 0.029 0.031 6.45

Table 2: Evaluation results using the pretrained ResNet-based model

Datasets Fβ MAE
Our results Reported Difference (%) Our results Reported Difference (%)

ECSSD 0.939 0.939 0.00 0.039 0.040 2.50
DUTS-TE 0.880 0.877 0.34 0.041 0.042 2.38

DUT-OMRON 0.805 0.813 0.98 0.059 0.063 6.35
PASCAL-S 0.871 0.871 0.00 0.067 0.074 9.46

SOD 0.860 0.869 1.04 0.106 0.100 6.00
HKU-IS 0.931 0.927 0.43 0.031 0.035 11.43

Table 3: Evaluation results using the pretrained VGG-based model

the results, we carried out statistical analysis using paired t-test at significance level of 0.05 to verify our null hypothesis105

if there was no significant difference between our evaluation results and the reported results in the article. The paired106

t-test statistics value can be calculated as follows:107

t =
d̄

s/
√
nd

(1)

where d̄ is the mean differences, s is the standard deviation and nd is the number of observations, i.e., number of the108

employed benchmark datasets. The p-value obtained from the calculated t-score is given in the Table 6.109

Datasets
Fβ MAE

Our results Reported Difference (%) Our results Reported Difference (%)
(best epoch result) (best epoch result)

ECSSD 0.945 (0.947) 0.947 0.21 0.035 (0.034) 0.035 0.00
DUTS-TE 0.883 (0.883) 0.883 0.00 0.040 (0.039) 0.041 2.44

DUT-OMRON 0.823 (0.824) 0.824 0.12 0.057 (0.055) 0.061 6.56
PASCAL-S 0.870 (0.872) 0.871 0.11 0.068 (0.066) 0.071 4.23

SOD 0.859 (0.875) 0.880 2.39 0.099 (0.091) 0.095 4.21
HKU-IS 0.935 (0.935) 0.934 0.11 0.029 (0.029) 0.031 6.45

Table 4: Evaluation results using the retrained ResNet-based model

Datasets
Fβ MAE

Our results Reported Difference (%) Our results Reported Difference (%)
(best epoch result) (best epoch result)

ECSSD 0.937 (0.941) 0.939 0.21 0.039 (0.037) 0.040 2.50
DUTS-TE 0.874 (0.879) 0.877 0.34 0.042 (0.041) 0.042 0.00

DUT-OMRON 0.801 (0.804) 0.813 1.48 0.062 (0.059) 0.063 1.59
PASCAL-S 0.869 (0.875) 0.871 0.23 0.068 (0.066) 0.074 8.11

SOD 0.863 (0.866) 0.869 0.69 0.103 (0.093) 0.100 3.00
HKU-IS 0.929 (0.932) 0.927 0.22 0.032 (0.030) 0.035 8.57

Table 5: Evaluation results using the retrained VGG-based model

p-value
ResNet-based VGG-based

Fβ 0.2956 0.1050
MAE 0.4261 0.3276

Table 6: Statistical test at significance level of 0.05
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(a) (b)

(c)

Figure 1: Performance of different input image sizes and inference speed. The recommended image size 288× 288
appear to be a better choice which balances the saliency and the inference performance. (a) Fβ . (b) MAE

(c) inference speed.

4.3 Additional results not present in the original paper110

In this section, we provide further analysis on various parameters that had not been elaborated in the original paper to111

provide more insights which may be deemed benefit for those working in the field. All the experiments conducted in112

this section employed the ResNet-based ITSD model, with all the training parameters kept unchanged (see Section 3.3)113

unless specified otherwise.114

4.3.1 Image sizes and inference speed115

We have seen different input image sizes were employed for the saliency detection, such as Liu et al. [2019], Zhao et al.116

[2019], Qin et al. [2019]. Ref. Zhou et al. [2020b] arbitrary chosen an input image size of 288× 288 which motivates117

us to determine the impact of varying input image sizes on the performance of the ITSD model. We performed the118

evaluation using the models which trained with input image sizes of 160×160, 192×192, 224×224, 256×256, 288×119

288, 320× 320. Generally, the performance was better by using larger input image size, as can be observed from the120

evaluation results as shown in Fig. 1(a) and (b). In addition, we also provide the evaluation of inference speed with121

different input image sizes on a single GPU, as can be observed from Fig. 1(c). The default input image size 288× 288122

reported the inference speed ran at around 88 FPS while the inference speed for the input image size of 160 × 160123

achieved 89 FPS, at the expense of the saliency performance. The input image size of 288× 288 emerges to be a better124

choice which balances the saliency performance and the inference speed.125

4.3.2 Hard examples factor m126

The hard examples factor m in the saliency loss function serves to emphasize the boundary pixels so the model can127

better handling the boundary of the salient regions. However, the effect of such parameter had not been discussed in the128
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(a) (b)

Figure 2: Effect of different hard example factor (a) Fβ . (b) MAE

original paper. Fig. 2 shows our evaluation results of using various models respectively trained with m = {1, 2, 3, 4, 5}.129

On average, some marginal gains were observed in both metrics with the hard examples factor m = 2.130

4.3.3 Dilation and erosion131

The contour map is obtained by computing the difference between the saliency maps produced by two morphological132

operations, i.e., dilation and erosion. The resultant from such operation is a contour map with the border width133

determined by the morphological kernel size, which in turn affecting how the model learn about the hard example pixels134

near the salient object boundary. In the original authors’ implementation, morphological kernel size of 5× 5 was used.135

In order to study the effect of different morphological kernel sizes, we considered 1× 1, 3× 3, 5× 5, 7× 7, 9× 9 in136

our experiments. Fig 3 shows samples of contour maps generated using different morphological kernel sizes. Note that137

no contour information is produced by using the morphological kernel size of 1× 1 and therefore the Eq. 12 (refer to138

original paper) will be solely depend on the P c to weight the saliency loss function. As can be observed from Fig. 4,139

the morphological kernel size of 3× 3 can generally provide better performance than the default kernel size, but such140

improvement are only marginal.141

4.3.4 Lambda, λ142

The λ in the total loss function serves to balance between the saliency and contour losses, which was set to λ = 1 in the143

original paper. In other words, one can determine how much emphasis to be placed on the contour loss by adjusting the144

λ. In our experiments, we performed evaluation for a range of values, i.e., λ = [0.0, 1.6], with a step size of 0.2. Based145

on the average results from our evaluation, the λ = 0.6 had shown to achieve better performance, which suggested146

that the model is biased towards the saliency information as such information is more crucial, while complemented by147

the contour information for further performance gain. The λ = 0 totally suppresses the contour loss, which can be148

considered as a special case of the total loss function, where only saliency information is considered.149

4.3.5 Optimized vs. default parameters150

Optimized Default
Input image size 288× 288 288× 288

Morphological kernel size 3× 3 5× 5
Hard examples factor, m 2 4

Lambda, λ 0.6 1
Table 7: Optimized vs. default parameters
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(a) (b) (c)

(d) (e) (f)

Figure 3: Contour maps generated using different morphological kernels (a) mask, (b) 1× 1, (c) 3× 3, (d) 5× 5, (e)
7× 7, (f) 9× 9

(a) (b)

Figure 4: Effect of morphological kernel size (a) Fβ . (b) MAE
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(a) (b)

Figure 5: Effect of lambda (a) Fβ . (b) MAE

(a) (b)

Figure 6: Marginal performance improvement is observed with our optimized parameters as compared to the default
parameters. (a) Fβ . (b) MAE

Sections 4.3.1 - 4.3.4 show our evaluations on the various parameters of the ITSD model, and each individual parameter151

has been shown to induce certain degree of improvement on the average performance metrics. As such, we carried152

out experiment by using the optimized parameters, as summarized in Table 7. Fig. 6 presents the average results of153

the comparison between the models trained with optimized and the default parameters, which only marginal gain was154

observed. Our primary intention to carry out the experiments in Sections 4.3.1 - 4.3.4 was to study the implication of155

each parameter towards the saliency detection performance. Therefore, each of the experiment conducted only evaluated156

the parameter of concerned while other parameters were kept unchanged in order to better facilitate the analysis. One157

should consider a proper parameter optimization approach such as grid search to exhaustively searches through the158

parameter spaces to better estimate the best parameters’ combination.159
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(a) (b)

Figure 7: Constrained lambda. (a) Fβ . (b) MAE

4.4 Constrained lambda160

Although the free parameter, i.e., λ in the total loss function was analyzed in Section 4.3.4, it is still uncertain which of161

the losses contribute more towards the optimization of the network. In order to further analyze the importance of each162

loss term, we imposed constraint to the toal loss function by considering a weighted sum rule, as given as follows:163

L(P s, P c, Gs, Gc) =

5∑
i=0

(1− λ)Ls(P si , P
c
i , G

s
i , G

c
i ) + λ

5∑
j=1

Lc(P cj , G
c
j)

s.t. 0 ≤ λ ≤ 1

(2)

By constraining the lambda would enable us to analyze the correlation between the saliency and contour losses, as can164

be observed from average performance metrics in Fig. 7. The best saliency detection performance was achieved when165

the λ = 0.5, which suggested that both the saliency and contour losses contributed equally and complemented each166

other. While the worst performance was reported when the λ = 1.0, which implied that the contour loss alone appeared167

to be suboptimal for optimizing the model.168

5 Discussion and conclusion169

We had some issues to get the published code working initially but those issues were solved after some discussion with170

the authors. One of the major issues was the inconsistent use of the name of the parameter keys in the given PyTorch171

models, which resulted in failing to load the model weight. The issue can be solved by updating the name of the172

parameter keys to be compatible with the defined models.173

174

Despite of all the challenges we faced during the work reproduction, we eventually managed to reproduce the work of175

the investigated paper, i.e., ITSD. Our reproduction attempts were mainly comprised of two parts: (1) reproduction176

using the pretrained models as shared by the authors; (2) reproduction by training the models. Our attempt using the177

pretrained models was of no success to reproduce the exact results as reported in the original paper, as can be observed178

in Table 2 and 3. After seeking clarification from the authors, one of the possible causes of such discrepancy may be179

due to the environment settings. Another possible reason may be due to the best epoch results were reported in the180

paper, while the shared models represented the final training artifacts. Our assumption was evidenced by carrying out181

the experiments to capture the best epoch results, which we successfully obtained either similar or better performance182

as compared to the reported results. Our second reproduction attempt was to perform the retraining of the ITSD models.183

Despite differences in the experimental results, we carried out statistical test, i.e., paired t-test, to further confirmed the184
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reproducibility of the presented work in the studied paper. Further to our reproduction attempts, we had also carried185

out experiments to perform evaluation on the various parameters which had not been elaborated in the original paper.186

We hope that our reproduction work can be beneficial to those working in the same direction, as well as serving as a187

recognition to the contributions of the original authors.188
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