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Abstract. Many countries have adopted payment for ecosystem services (PES) programs to
reduce deforestation. Empirical evaluations find such programs, which pay forest owners to
conserve forest, can lead to anywhere from no impact to a 50% reduction in deforestation lev-
el. To better understand the potential effectiveness of PES contracts, we use a principal–agent
model, in which the agent has an observable amount of initial forest land and a privately
known baseline conservation level. Commonly used conditional contracts perform well
when the environmental value of forest is sufficiently high or sufficiently low, but can do ar-
bitrarily poorly compared with the optimal contract for intermediate values. We identify a
linear contract with a distribution-free per-unit price that guarantees at least half of the opti-
mal contract payoff. A numerical study using U.S. land use data supports our findings and il-
lustrates when linear or conditional contracts are likely to bemore effective.
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1. Introduction
The world has been losing tropical forests at an annu-
al rate of 10 million hectares in the last two decades
(Butler 2019). These alarming levels are driven largely
by land use changes such as deforestation and agricul-
tural expansion, which generate almost a quarter of the
total greenhouse gas emissions worldwide (Hawken
2017). To mitigate climate change and to halt environ-
mental degradation, there has been an emergence of
programs that pay owners of natural assets to con-
serve their environmental resources. These payment
for ecosystem services (PES) programs are widely
implemented by governments and nongovernmental
organizations (NGOs) seeking cost-effective methods
to slow down deforestation and to combat climate
change (Stern et al. 2006). Two prominent examples of
forest PES programs are the Pago por Servicios Ambi-
entales (PSA) program run by the national govern-
ment of Costa Rica, which pays private forest owners

$640 per hectare over 10 years in exchange for forest
protection (Porras et al. 2017), and the Reducing Emis-
sions from Deforestation and Forest Degradation
(REDD+) program run by the United Nations. There
are now more than 550 PES programs in the world,
with combined annual payments over $36 billion
(Salzman et al. 2018).

Governments and NGOs are typically interested in
how much additional forest is conserved because of
the payment scheme. However, such information is
difficult to obtain, as forest owners have private infor-
mation about their opportunity costs and the amount
they plan to deforest in the absence of any incentives.
Empirical studies have found mixed results regarding
the effectiveness of PES programs, finding the pay-
ments led to anywhere from no impact to a 50%
reduction in deforestation (for a survey, see Borner
et al. 2017). This suggests PES can be a potentially
promising tool to achieve environmental goals, but its
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effectiveness is context dependent. Ferraro (2008) ar-
gues for the need to study asymmetric information in
PES, yet theory is still limited in this space.

Most commonly used contracts in PES programs
are conditional contracts, which pay forest owners in
exchange for conserving their forests fully (Engel et al.
2008, Muñoz-Piña et al. 2008, Porras et al. 2017).1 It is
natural to ask when conditional contracts are effective,
and whether other simple contracts could perform
better.

We address these questions by studying a principal–
agent model similar to that in Mason and Plantinga
(2013). The model captures an important information
asymmetry—the agent (forest owner) has private infor-
mation about their baseline conservation amount absent
any incentives. In addition, the agent cannot conserve
more forest than their initial forest area. The principal
(program designer) seeks to maximize the environmen-
tal value for the amount of conserved forest net pay-
ments. We use the optimal contract payoff (second best
solution) as a benchmark to evaluate the performances
of simple and practical contracts.

Conditional contracts work well when the principal
has a relatively high value for forests. However, we
show that for some parameter regimes they can per-
form arbitrarily poorly. In such regimes, conditional
contracts may exclude a large population who find
full conservation too costly even with the PES pay-
ments, leading to low levels of take-up.

In addition, we consider linear contracts, a class of
simple yet intuitive contracts that pay the agent a
fixed amount per unit of forest conserved. We identify
a per-unit price independent of the baseline conserva-
tion distribution, with which a linear contract always
yields at least half of the optimal contract payoff. This
implies the best linear contract has the same approxi-
mation guarantee, regardless of the principal’s envi-
ronmental value or the agent’s conservation behavior.

In a numerical exercise, we use empirically calibrated
baseline conservation distributions and conservation
cost functions from U.S. land use data to illustrate and
discuss the performance of simple contracts. Three pa-
rameter regimes are of interest. First, when the environ-
mental value is relatively low, neither simple contract
can improve upon the baseline scenario; we find this re-
gime applies to the majority of regions in the United
States. Second, when the environmental value is rela-
tively high, the best conditional contract achieves
higher payoff than linear contracts. Finally, when the
environmental value is in an intermediate regime, lin-
ear contracts can improve upon conditional contracts
substantially if the baseline conservation level is low.
We argue that this parameter regime is relevant for
developing countries with high baseline deforestation
levels and recommend PES designers consider linear
contracts in this context.

Finally, we consider a generalization of both condi-
tional and linear contracts. A conditional linear contract
pays the agent a linear price in the conserved forest
area but only if the conserved area exceeds a prespeci-
fied threshold. Such contracts allow the principal to
adjust both the price and the stringency level. We
identify a distribution-free conditional linear contract
with an intermediate level of stringency that further
improves upon the linear contract with the constant
approximation guarantee.

1.1. Relation to the Literature
The first paper that uses a principal–agent framework
to study optimal contracting in the PES context is
Mason and Plantinga (2013). We extend their model
to account for boundary solutions that naturally arise
in this setting. In addition to characterizing the opti-
mal contract completely, we analyze the performance
of simple and practical contracts relative to the opti-
mal one. Furthermore, Mason and Plantinga (2013)
were the first to empirically calibrate the baseline
conservation distributions and cost functions for the
United States. We use their calibrations in our numeri-
cal exercise.

This paper contributes to the environmental eco-
nomics and land use literature on PES by bringing
in a new angle of contract design. Comprehensive
reviews about PES programs implemented in practice
are given by Pattanayak et al. (2010), Engel et al.
(2016), and Alix-Garcia and Wolff (2014). Teytelboym
(2019) reviews market design approaches used in the
natural capital context and highlights the challenge of
effectively designing and implementing PES con-
straints due to heterogeneity among landowners.
Borner et al. (2017) reviews empirical results on evalu-
ating PES programs. Using a field experiment, Jaya-
chandran et al. (2017) found that paying landowners
not to deforest led to a 50% reduction in deforestation
level. Several papers address other frictions arising in
PES programs: Jack and Jayachandran (2019) demon-
strate the need for better targeting to alleviate ineffi-
ciencies due to self-selection, Peterson et al. (2015)
study transaction costs of PES programs with uncer-
tainty about the agent’s willingness to enroll, and
Harstad and Mideksa (2017) discuss theoretically how
conservation policies can be affected by property
rights.

The analysis of the principal–agent model is based
on a well-established literature studying optimal
mechanisms and contracts (Mirrlees 1971, Myerson
1979). Optimal contracts often require detailed knowl-
edge of system parameters and distributions by the
principal, and thus can be difficult to use in practice.
Recent studies consider robust contract design and
find simple contracts can provide approximation
guarantees for the worst case outcome, when the
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principal has limited distributional information (Carroll
2015, Dütting et al. 2019, Yu and Kong 2020). We take a
similar approach in analyzing linear contracts and, spe-
cifically in the PES setting, provide guarantees on
performance when the principal has no distributional
information on the agent’s type.

Our work broadly contributes to the study of con-
tract design in operations management (OM) and sus-
tainable OM. The OM community has long studied
optimal contracts and their approximations in the con-
text of supply chain contracts (Corbett et al. 2004,
Perakis and Roels 2007, Kim and Netessine 2013,
Bolandifar et al. 2018). The sustainable OM literature
has flourished in recent years (see, e.g., Lee and Tang
2018, Atasu et al. 2020) and has studied information
asymmetry in environmental disclosure policies (Kim
2015, Plambeck and Taylor 2016, Wang et al. 2016), as
well as environmentally responsible sourcing strate-
gies, which can alleviate deforestation pressure
(Orsdemir et al. 2019, de Zegher et al. 2019). We bring
together these strands of literature in designing ap-
proximately optimal contracts to combat deforestation
and offer directions for future study at this intersection.

1.2. Organization of This Paper
Section 2 describes the model and the optimal con-
tract. Conditional contracts are studied in Section 3.
Linear contracts are studied in Section 4. A numerical
analysis using U.S. data are given in Section 5. We dis-
cuss extensions in Section 6 and conclude with future
directions in Section 7. Omitted proofs are in the
appendices, and a more in-depth description of the
numerical analysis is given in the e-companion to this
paper.

2. Model
The agent has an initial forest area a0, which is public-
ly observable.2 The principal seeks to incentivize the
agent to conserve their forest area. The agent has a pri-
vately known baseline conservation proportion θ,
drawn independent and identically distributed from a
publicly known distribution F(θ) with support
[θ,θ] ⊆ [0, 1]. That is, in the baseline scenario absent
incentives, the agent will conserve θa0 forest area. The
agent can choose their conservation action, a ∈ [0,a0],
and incurs a convex conservation cost c(a−θa0).3 The
conservation cost function c(·) captures the opportuni-
ty cost of not deforesting. It is costless for the agent
to conserve up to the baseline amount θa0, but it
becomes increasingly costly for the agent to conserve
beyond the baseline amount. We assume that, for
x :� a−θa0 ≥ 0, c(x) � h

2x
2, where h > 0, and for x < 0,

c(x) � 0. Section 6 generalizes c(x) to general convex
functions.

The principal, who does not own the land, has envi-
ronmental value $k per unit area of conserved forest.
This can be interpreted as the carbon sequestration value
or the biodiversity value of the forest.4 Based on the prin-
cipal’s knowledge of a0 and F(θ), the principal can offer
a contract to the agent that specifies a payment for each
conservation action, P(a). We only consider contracts
with limited liability; that is, payments are assumed to
be nonnegative.5 The principal’s objective is to design a
contract that maximizes the following expected payoff

Eθ[ka−P(a)],
which captures the environmental value from con-
served forest minus the amount paid to the agent.

The agentwith typeθ is risk neutral and chooses a con-
servation action a ∈ [0,a0] tomaximize their net utility

P(a) − c(a−θa0):
There is no loss of generality to restrict attention to
payment rules that are nondecreasing in the conserva-
tion amount. We assume that when indifferent, the
agent chooses the conservation action that is preferred
by the principal. The utility-maximizing action a∗ is
weakly greater than the baseline conservation level
θa0 for any such payment schemes. Observe that the
principal’s optimization problem is equivalent to max-
imizing the environmental value from the additional
conservation amount net pay, kE a−θa0[ ] −EP(a),
where E a−θa0[ ] is the additional conservation amount
induced by the contract.

2.1. The Optimal Contract
The optimal contract maximizes the principal’s payoff
given incentive compatibility (IC) and individual
rationality (IR) constraints. We consider the space of
direct revelation contracts, {(a(θ),P(θ))}θ∈[θ,θ], where
a(θ) and P(θ) are the conservation amount and the
payment level of an agent with type θ.6 The optimal
contract offers the agent a continuum menu of
choices. Formally, the principal’s optimization prob-
lem is given by

ObjOPT � max
{(a(θ),P(θ))}

θ∈[θ,θ]
Eka(θ) −P(θ)

s:t: P(θ) − c(a(θ) −θa0) ≥ 0, ∀θ, (IR)
θ � arg max

θ′∈[θ,θ]
P(θ′) − c(a(θ′) −θa0), ∀θ: (IC)

Standard analysis (e.g., Mirrlees 1971) shows that
the principal’s expected payoff is equivalent to the fol-
lowing expression that integrates the IC constraint
into the objective:∫

θ�θ

θ

ka(θ) − c(a(θ) − θa0) − 1 − F(θ)
f (θ) a0c′(a(θ) − θa0)

[ ]
f (θ)dθ: (1)
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In the optimal contract, the lowest type agent has a
binding IR constraint; the optimal conservation quan-
tity for each type, aOPT(θ), is solved to maximize
J(θ) ≡ ka(θ) − c(a(θ) −θa0) − 1−F(θ)

f (θ) a0c′(a(θ) −θa0). For
ease of exposition, we state the results assuming F(θ)
has a monotone hazard rate, that is, 1−F(θ)

f (θ) is nonin-
creasing in θ.7 Taking the boundary condition of a(θ)
∈ [θa0,a0] into account, we have the following result.

Lemma 1. The optimal direct revelation contract (a(θ),
P(θ)) is given by

a(θ) �
θa0, if θ ≤ θ̂1,

θa0 + k
h
− 1− F(θ)

f (θ) a0, if θ ∈ (θ̂1, θ̂2),
a0, if θ ≥ θ̂2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where θ̂1 is defined by 1−F(θ̂1)

f (θ̂1) � k
ha0

if 1
f (θ) ≥ k

ha0
, and other-

wise is given by θ̂1 � θ, and θ̂2 is defined by 1− θ̂2 +
1−F(θ̂2)
f (θ̂2) � k

ha0
if 1−θ+ 1

f (θ) ≥ k
ha0
, and otherwise is given by

θ̂2 � θ. In each θ interval, the payment level is given by

P(θ) � c(a(θ) −θa0) +
∫
τ�θ

θ

a0c′(a(τ) − τa0)dτ:

Lemma 1 shows that in the optimal solution, the
agent type space is divided into three regions. The top
types in the interval (θ ∈ [θ̂2,θ]) are pooled and con-
serve the maximal amount. Moreover, it may be opti-
mal to pool the bottom types in the interval
(θ ∈ [θ, θ̂1]) and have them conserve at their baseline
levels without payments. The optimal contract screens
the middle types, where their conservation amounts
are interior solutions. The quantity k

ha0
measures how

much the principal values the forest relative to the
agent’s conservation cost (and will be used through-
out this paper). Both thresholds θ̂1 and θ̂2 decrease as
k
ha0

increases.
The optimal contract, as shown next, can also be im-

plemented via a menu of affine contracts {p(θ),T(θ)}θ,
where each option is composed of a linear price p(θ)
as well as a lump sum transfer T(θ) that is indepen-
dent of the agent’s conservation quantity (see, e.g.,
Laffont and Tirole 1986). So an agent that chooses op-
tion (p(θ),T(θ)) and conserves an amount a of forest
receives a total payment of p(θ)a+T(θ). For this re-
sult, we assume F(θ) has a monotone hazard rate for
ease of exposition.

Lemma 2. If 1−F(θ)f (θ) is nonincreasing in θ, the optimal allo-
cation can be implemented via a menu of affine contracts
{p(θ),T(θ)}θ, where

p(θ) �
0, if θ ≤ θ̂1,

k− ha0
1− F(θ)
f (θ) , if θ ∈ (θ̂1, θ̂2),

h(1− θ̂2)a0, if θ ≥ θ̂2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
and

T(θ) �

0, if θ ≤ θ̂1,

− 1
2h

k− ha0
1− F
f

(θ)
( )2

+
∫ θ

θ1

a0 k− ha0
1− F
f

(τ)
( )

dτ, if θ ∈ (θ̂1, θ̂2),
h
2
(1−θ2)2a20 − h(1−θ2)a20
+
∫ θ2

θ1

a0 k− ha0
1− F
f

(τ)
( )

dτ, if θ ≥ θ̂2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Here θ̂1 is defined implicitly by 1−F(θ̂1)

f (θ̂1) � k
ha0

if 1
f (θ) ≥ k

ha0
, and

otherwise is given by θ̂1 � θ, and θ̂2 is defined implicitly

by 1− θ̂2 + 1−F(θ̂2)
f (θ̂2) � k

ha0
if 1−θ+ 1

f (θ) ≥ k
ha0
, and otherwise is

given by θ̂2 � θ. Furthermore, the principal’s payoff is
identical to that in the optimal direct revelation contract.

Observe that optimal contracts require an infinite
number of options. In practice, PES contracts between
landowners and NGOs/governments are typically
very simple; contracts offering a menu with even a few
options are considered complex and unlikely to be im-
plemented, especially in developing countries. Further-
more, any optimal contract requires the principal to
know the baseline conservation distribution F(θ),
which is unrealistic. With this in mind, we turn to ana-
lyzing simpler contracts and let the optimal contract
serve as a benchmark in our analysis of these contracts.

3. Conditional Contracts
A conditional contract is parametrized by a price p
per unit area conserved. The principal pays a lump
sum amount pa0 if and only if the agent conserves the
full amount a � a0.

The agent with type θ can choose to either conserve
all the forest they own, receiving utility pa0 − h

2 (1−θ)2
a20, or continue with baseline activity, receiving utility

zero. Define θ̂(p) ≡ 1−
���
2p
ha0

√
to be the threshold type

indifferent between the two options. If θ ≤ θ̂(p), the
agent conserves a(θ) � θa0; otherwise, a(θ) � a0.

The principal’s objective can now be written as

max
p

ObjC(p) � k
∫
θ

θ̂
θa0f (θ)dθ + (k − p)∫ θ

θ̂
a0f (θ)dθ: (2)

Denote by ObjC
∗
the payoff of the best conditional con-

tract with price pC
∗
. In this section, we assume F(θ)
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has a monotone hazard rate in order to tractably char-
acterize the outcome of the best conditional contract.

When the environmental value is sufficiently high
relative to the conservation cost parameter h, the best
conditional contract and the optimal contract both pay
the agent for full conservation regardless of their type.
The best conditional price is set to fully compensate
the agent with the lowest baseline conservation level
for their conservation cost.

Lemma 3. If k
ha0

≥ (1−θ) + 1
f (θ), the optimal contract and

the best conditional contract coincide; thus, ObjC
∗ �ObjOPT.

Every agent type θ conserves fully, that is, a(θ) � a0,
and receives a payment of h2 (1−θ)2a20.

When the relative environmental value k
ha0

is suffi-
ciently low, the best conditional contract is the
baseline scenario. This is because the principal is not
incentivized to set the price high enough to induce
any additional conservation from the agent.

Lemma 4. If k
ha0

≤ 1
2 (1−θ), the best conditional contract

is the baseline scenario; that is, ObjC
∗ � kE[θ]a0 and

pC
∗ � 0.

Next, we demonstrate that there exists baseline dis-
tributions such that the best conditional contract can
perform arbitrarily poorly compared with the optimal
contract.

Example 1. When there is only one agent type, θ � 0,
that is, F(θ) � δ(0), the best conditional contract has
objective value ObjC

∗ �max 0,ka0 − h
2a

2
0

{ }
, because the

principal will either ask the agent to conserve fully
and compensate their conservation cost or not offer a
conditional contract at all. The optimal contract is to
maximize the socially efficient objective ka− h

2 a
2,

where a is the conservation amount of the agent type

0. Thus, a(0) �min k
h ,a0
{ }

,P(0) �min k2
2h ,

h
2 a

2
0

{ }
, resulting

in positive payoff ObjOPT � k2
2h. When k

ha0
≤ 1

2 , ObjC
∗ � 0,

and the best conditional contract recovers 0% of the
optimal contract payoff.

The poor performance of conditional contracts can
occur for general F(θ) distributions with information
asymmetry (i.e., more than one agent type) where the
expectation of baseline conservation is small at inter-
mediate relative environmental values, as demonstrat-
ed below.

Example 2. Let F(θ) � 1−exp (−λθ)
1−exp (−λ) be a bounded expo-

nential distribution with parameter λ with its support
on [0, 1]. At an intermediate relative environmental
value, k

ha0
� 1

2, as λ tends to infinity, that is, the ex-
pected baseline conservation amount E[θ]a0 tends to
zero, the ratio between the best conditional contract
and the optimal contract tends to zero. (See Appendix
C for more details.)

The poor performance of the conditional contract
manifests itself in low levels of take-up even with a
seemingly attractive conditional price. This is because
when k

ha0
is intermediate, the optimal contract achieves

higher payoff than the baseline scenario by capturing
intermediate levels of additional conservation; in the
conditional contract, for baseline distributions that are
left skewed, the expected fraction of the population
that commits to full conservation is still very low. As a
result, the best conditional contract payoff is not that
different from the baseline scenario.

In practice, the principal may not be aware of the
conditional contract’s potentially significant inefficien-
cy due to lack of take-up. First, the conditional con-
tract price may not be optimized; second, empirical
studies often estimate the additional conservation
from landowners who opt into the PES program rela-
tive to their estimated baseline conservation levels,
but not the relative performance between the condi-
tional contract and the optimal contract outcome.

Next we consider another simple class of contracts
that overcome the drawbacks of conditional contracts.

4. Linear Contracts
A linear contract pays the agent a fixed price p per
unit area conserved without any conditionality re-
quirement and can be viewed as a uniform subsidy.
Linear contracts are rare in practice, as conditionality
is often required in PES schemes (Engel et al. 2016).

The agent’s best response to a linear contract with
price p is to choose a conservation amount a that maxi-
mizes pa− h

2 (a−θa0)2. Solving this yields that the
agent of type θ chooses to conserve an additional
amount of p

h beyond their baseline, or fully if their
baseline conservation proportion θ is high enough
that the boundary condition is met.

Denote the lowest agent type that will conserve the
full amount by θ̃(p) ≡ 1− p

ha0
. The principal’s objective

can be written as

max
p

ObjL(p) �max
p

(k− p)
∫
θ

min{θ̃,θ}
θa0 + p

h

( )
f (θ)dθ

(

+
∫
min{θ̃ ,θ}

θ
a0f (θ)dθ

)
: (3)

We let ObjL
∗
denote the objective of the best linear con-

tract with price pL
∗
.

Analogous to Lemma 4, when k is relatively small, a
positive linear price is not sufficient to incentivize
enough additional conservation:

Lemma 5. When k
ha0

≤ E[θ], the best linear contract is the
baseline scenario; thus, ObjL

∗ � kE[θ]a0 and pL∗ � 0.

Recall that when the baseline conservation level is
at its worst case (i.e., E[θ] � 0), the best conditional
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contract recovers 0% of the optimal contract payoff
(Example 1). In contrast to conditional contracts where
a large fraction of population may not participate, lin-
ear contracts always induce every agent to enroll and
to conserve beyond their baseline level (except for the
type θ � 1, who already conserves fully). We study
the linear contract for the same distribution.

Example 3. When there is only one agent type, θ � 0,
the ratio between the best linear contract and the opti-
mal contract payoff is 0.5 regardless of the relative en-
vironmental value k

ha0
. The optimal contract is a(0) �

min k
h , a0
{ }

,P(0) �min k2
2h ,

h
2 a

2
0

{ }
(equivalent to a per-unit

price of k
2 when k < ha0), leading to an objective value

ObjOPT � k2
2h. The best linear contract is a(0) � k

2h with a
per-unit price pL

∗ � k
2, leading to an objective value

ObjL
∗ � k2

4h, which is half of the optimal payoff.

The next result shows that a linear contract with
price p � k

2 always achieves at least half of the optimal
contract payoff for any environmental value k and any
distribution F(θ). Thus, the best linear contract always
guarantees at least half the payoff of the optimal con-
tract. The minimal ratio between the two contracts
occurs when there is only one agent type, type 0. The
intuition for why this is the worst case is because
when there is only a single agent type, there is no in-
formation asymmetry, so the optimal contract is fully
efficient, which maximizes the gap between the two
contracts. (Because of the convexity of the cost func-
tion, linear contracts cannot recover full efficiency
even with no information asymmetry.)

Theorem 1. For all k > 0 and any F(θ), a linear contract
with price pL � k

2 achieves at least half of the optimal con-
tract payoff. Therefore, the best linear contract always yields
at least half of the optimal contract payoff.

Proof Sketch. We provide a proof sketch assuming
F(θ) has a monotone hazard rate; a proof without this
assumption is given in Appendix D. First, we con-
struct an upper bound for the optimal payoff, denoted

by Obj
OPT

, which is the environmental outcome at the
optimal contract minus the agent’s conservation cost
(i.e., the optimal payoff without the information rent).
Using Equation (1), we have

ObjOPT �
∫
θ�θ

θ
[
kaOPT(θ) − c(aOPT(θ) −θa0)

− 1− F(θ)
f (θ) a0c′(aOPT(θ) −θa0)

]
f (θ)dθ (4)

≤
∫
θ�θ

θ

kaOPT(θ) − c(aOPT(θ) −θa0)
[ ]

× f (θ)dθ ≡Obj
OPT

: (5)

Explicitly substituting the optimal contract solution
aOPT(θ) from Lemma 1 (which holds when F(θ) satis-
fies the monotone hazard rate assumption) and sim-
plifying the optimal payoff upper bound leads to

Obj
OPT �

∫
θ

θ̂1

kθa0f (θ)dθ+
∫ θ̂2

θ̂1

kθa0 + k2

2h

− h
2
1− F(θ)
f (θ) a0

( )2
f (θ)dθ+

∫ θ

θ̂2

ka0

− h
2
(1−θ)2a20 f (θ)dθ: (6)

Next, applying Equation (3) with a price of p � k
2 to ob-

tain the linear contract payoff and doubling both sides
of the equation, we obtain

2ObjL p � k
2

( )
�
∫
θ

θ̃

kθa0 + k2

2h

( )
f (θ)dθ+

∫ θ

θ̃

ka0f (θ)dθ:

(7)

Then, we show that, for any agent type θ, the inte-
grand in Equation (7) is weakly larger than the inte-
grand in Equation (6). When F(θ) does not have a
monotone hazard rate, the optimal allocation aOPT(θ)
is still continuous in θ, allowing us to show that the
integrand in (7) is weakly larger than the optimal pay-
off for any agent type. This completes the proof. w

In addition to guaranteeing a constant fraction of
the optimal payoff, this simple linear contract with
price k

2 is robust to misspecifications of the model pa-
rameters {F(θ),h, a0}, which are often difficult for the
principal to know precisely. The linear price k

2 is inde-
pendent of the agent type distribution F(θ), the
agent’s opportunity cost, and the initial land size a0.
Furthermore, Theorem 1 naturally generalizes to a
model where the agents are endowed with different
levels of initial forest areas.8 This is particularly useful
because the PES designer can use a single contract
uniformly even when agents are heterogeneous in the
amounts of forest land they own.

5. A Numerical Study Using U.S. Land
Use Data

The theory suggests that there are three interesting
regimes for comparing the performance of conditional
and linear contracts. These regimes depend on the
value of k

ha0
, which measures the value of conserving

forest relative to its opportunity cost. Recall that in all
these regimes, the linear contract provides a 0.5-
approximation to the optimal contract (Theorem 1);
however, the relative performance of the linear and
conditional contracts varies. In this section, we discuss
the implications of the theory and illustrate which
contract is desirable via a numerical study, which uses
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baseline conservation distributions and conservation
cost functions calibrated using U.S. land use data.

The distributions and cost functions we consider
are based on empirically calibrated data from Mason
and Plantinga (2013) for 140 regions in the United
States classified into four land qualities. Land quality
class indicates the level of opportunity costs of foresta-
tion and is a rough measure of how profitable it may be
to develop the land into nonforest uses. Higher (lower)
land quality class regions have higher (lower) conserva-
tion costs and lower (higher) baseline conservation
levels, and hence higher (lower) baseline deforestation
levels. We directly apply the baseline conservation dis-
tributions in Mason and Plantinga (2013), and calibrate
the parameter h in the conservation cost function c(x) �
h
2x

2 using their cost functions. A detailed explanation of
the baseline distributions and the cost functions is given
in the e-companion (Section EC.1).

The environmental value of forests, k (per unit
area), used in this numerical study is roughly twice
the price of carbon per ton.9 Although we can evalu-
ate the performance of simple contracts in terms of
any environmental value k, we center our discussion
around the social cost of carbon, as most PES pro-
grams are implemented by national governments. The
social cost of carbon instated by the Biden administra-
tion in 2021 is $50 per ton of carbon, equivalent to
$k � 100 (Chemnick 2021). If the principal is a carbon
buyer from the private sector, it is also reasonable to
use the prevailing carbon price in a carbon market as
the environmental value k. For example, in the Cali-
fornia cap-and-trade auction, the carbon price is about
$20/ton which is equivalent to k � $40.

5.1. Small Relative Value for Conservation
In the first regime, when k

ha0
is very small, neither of

the simple contracts can improve upon the baseline
scenario, where the agent continues with their base-
line conservation amount and no incentives are intro-
duced (Lemmas 4 and 5). At an environmental value
of k � $100 per unit area, 130 (119) of the 140 regions
in the United States fall in the small k

ha0
regimes where

conditional (linear) contracts cannot improve upon
the baseline. We show the performance of simple con-
tracts for such regions in the e-companion (Section
EC.2) and verify that they do not improve upon the
baseline scenario. The small k

ha0
regime is likely to be

less relevant in developing countries, where land
development revenue is lower relative to the United
States.

5.2. Large Relative Value for Conservation
In the second regime, when k

ha0
is large, the best condi-

tional contract is equivalent to the optimal contract
(Lemma 3). Figure 1 plots the percentages of the opti-
mal contract payoff that the two simple contracts, as

well as the baseline scenario, are able to achieve, for
high and low land quality classes in Montana. In the
high land quality class (Figure 1(a)), the best condi-
tional contract coincides with the optimal contract for
sufficiently large k (larger than $500 per unit area) and
outperforms the best linear contract for k larger than
$350 per unit area. Similarly, in the low land quality
class (Figure 1(b)), the best conditional contracts coin-
cide with the optimal contracts when k is larger than
$280 per unit area, and outperform the best linear con-
tracts when k is larger than $150 per unit area.

5.3. Intermediate Relative Value for Conservation
Finally, in the intermediate parameter region of k

ha0
and when baseline conservation is low, we have
shown that conditional contracts can perform arbi-
trarily poorly, whereas linear contracts are guaranteed
to provide at least half of the optimal contract payoff
(Theorem 1). This can be seen in the high land quality
region in Montana: In Figure 1(a), for k between $45 to
$350 per unit area (the grey region), the best linear
contracts outperform the best conditional contracts.
The best conditional contract achieves only about 30%
of the optimal contract payoff, whereas the best linear
contract always achieves more than 50%. More states
that exhibit similar patterns are provided in the
e-companion (Section EC.2).

Ideally, one would repeat the above exercise for
many other countries. This requires empirical estima-
tion of the value k of environmental conservation,
as well as reliable estimates of the distribution of
baseline conservation and other conservation cost
parameters. The former is enabled by high-quality
fine-grained data on the global carbon stock and bio-
diversity benefits, which are becoming increasingly
available (Strassburg et al. 2020). However, the latter
requires sophisticated econometric analysis using de-
tailed parcel-level land use data, as done in Lubowski
et al. (2006). As data on conservation costs and defor-
estation activity are often reported in aggregate on a
regional level, aside from the data set for the United
States provided in Mason and Plantinga (2013), simi-
lar data sets for other countries are not currently
available.

Nevertheless, back-of-the-envelope calculations can
still provide some helpful benchmarks. We take as an
example Brazil, a developing country that continues
to experience high levels of deforestation despite
having forest conservation programs in place. By com-
paring the total agricultural land size and agricultural
revenue of Brazil to those of the United States
(public data from the Organisation for Economic
Co-operation and Development land cover data set
and the World Bank), we estimate that Brazil’s conser-
vation cost function parameter h is scaled down by a
factor of more than two relative to the United States.10
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At an environmental value of k ≈ $100 per unit area,
halving the conservation cost parameter h is equiva-
lent to scaling k up to $200 per unit area. If we assume
that Brazil’s baseline conservation distribution is simi-
lar to that of U.S. regions with high land quality, k

ha0
will be in the intermediate regime (see Figure 1(a) at
k ≈ $200).

There are reasons to believe that many regions, like
Brazil, currently experience the intermediate regime
of k

ha0
. On one hand, governments recognize the urgen-

cy of climate change and have joined international
efforts to mitigate climate change (e.g., the REDD+
program), suggesting that k

ha0
is large enough to induce

some government action. On the other hand, we still
observe high rates of deforestation in countries that al-
ready have PES programs set up (Hansen et al. 2013),
suggesting that not every country is able to pay for
full conservation. In this intermediate regime, condi-
tional contracts can perform poorly and can be sub-
stantially improved upon by linear contracts.

6. Extensions
In this section, we consider two natural extensions to
our theory, for which we provide robustness results.

6.1. Conditional Linear Contracts
Both the conditional contracts and the linear contracts
belong to a class of simple contracts, which we term
conditional linear contracts. Conditional linear con-
tracts pay the agent a linear price p per unit area con-
served, as long as the conserved area a is above a
prespecified threshold wa0, where w ∈ [0, 1]. When
w � 1, this contract is the conditional contract; when
w � 0, this contract is the linear contract. This contract
allows the principal to adjust both the price paid and
the level of stringency of the contract.

Our running example with a single agent type illus-
trates the benefit from a conditional linear contract.
Detailed analysis of the example and conditional line-
ar contracts can be found in Appendix E.

Example 4. When there is only one agent type θ � 0,
if k

ha0
≤ 1, the best conditional linear contract is w � k

ha0

with price p � k
2; otherwise, the best conditional linear

contract is w � 1 with price p � ha0
2 . Furthermore, this

best conditional linear contract achieves 100% of the
optimal contract payoff. However, that the best linear
and the best conditional contracts guarantee only 50%
and 0% of the optimal contract payoff, respectively.

We build on the guarantees provided by linear con-
tracts (Theorem 1) by showing that a distribution-free
conditional linear contract improves upon the
distribution-free linear contract.

Theorem 2. For all k > 0 and any F(θ), the conditional
linear contract with w �min{ k

ha0
, 1} and p �min{k2 , ha02 }

always achieves higher payoff than the linear contract with
price k

2, and guarantees at least half of the payoff of the opti-
mal contract.

When k is relatively small, this distribution-free
conditional linear contract uses the same price as
the distribution-free linear contract suggested in
Theorem 1 but with an intermediate level of stringen-
cy; as k gets larger, this conditional linear contract be-
comes a conditional contract that pays enough so that
any agent type conserves fully.

Figure 2 plots the simulated performances of the
distribution-free conditional linear contracts identified
in Theorem 2 and the best conditional linear contracts
in the high land quality region of Montana. The best
conditional linear contracts perform significantly bet-
ter than both the best conditional and the best linear

Figure 1. (Color online) Ratios Between Simple Contracts and OPT at Different Values of k in Montana

(a) (b)
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contracts. Both the conditional and linear contracts
have only a single parameter (the price), but the con-
ditional linear contracts have two parameters without
sacrificing much simplicity. As the principal increases
the number of parameters to be optimized in a con-
tract, the principal can get closer to the optimal payoff.
More importantly, the distribution-free conditional
linear contracts significantly improve upon both the
best conditional and the best linear contracts in the re-
gion k ≥ 100.

6.2. General Convex Cost Function
The model assumes the cost function to be quadratic.
We discuss here how the results change under a more
general convex function c(x) with a bounded second
derivative, that is, c′′(x) ∈ [l,u], for all x ∈ [0,a0], where
u > l > 0.

First, when k
ua0

is large enough, the best conditional
contract still coincides with the optimal contract.

Lemma 6. When k
ua0

≥ (1−θ+ 1
f (θ)), the optimal contract

and the best conditional contract coincide; thus, ObjC
∗ �

ObjOPT. Every agent type θ conserves fully, that is, a(θ) �
a0, and receives a payment of u2 (1−θ)2a20.

Next, when k
la0

is small enough, both kinds of simple
contracts do not improve upon the baseline scenario.

Lemma 7. When k
la0

≤ 1−θ
2 , the best conditional contract is

the baseline scenario; thus, ObjC
∗ � kE[θ]a0. When k

la0
≤ E[θ],

the best linear contract is the baseline scenario; thus,
ObjL

∗ � kE[θ]a0.
The above two lemmas are simple extensions of

Lemmas 3–5, where we bound the objectives using
the appropriate u or l terms.

Finally, selecting the best contract out of the two
kinds of simple contracts guarantees a constant-factor
approximation to the optimal payoff.

Theorem 3. For all k > 0 and F(θ), one of the simple con-
tracts achieves at least l

2u of the optimal contract payoff.
Furthermore, there exists a threshold k∗ ≡ 2u2

u+l a0 such that
i. if k ≤ k∗, the linear contract with price pL � k

2 yields at
least l

2u of the optimal contract;
ii. if k > k∗, the conditional contract with price pC �

ua0
2 (1−θ)2 yields at least l

2u of the optimal contract.

In the general convex cost setting, in contrast with
Theorem 1, a linear contract can no longer offer the
approximation guarantee when k is large. Moreover,
the approximation factor depends on the curvature of
the cost function c(·).

The simple contracts in Theorem 3 are able to
achieve the approximation guarantee with prices that
are not optimized to the specific parameters in the
model. The linear contract price pL � k

2 is the same as
that used in Theorem 1, which is independent of the
baseline conservation distribution; the conditional
contract price pC � ua0

2 (1−θ)2 is the generalized ver-
sion of pC � h

2 (1−θ)2a0 in the base model, which is the
price used to induce full conservation regardless of
the agent type.

7. Conclusion
This paper compares the performance of conditional
and linear contracts for payments for ecosystem serv-
ices. We find that the commonly used conditional con-
tracts can have mixed outcomes: they can perform
poorly when the relative environmental value is inter-
mediate. Linear contracts are often overlooked, but
we show that they have desirable robustness proper-
ties and can sometimes improve upon conditional
contracts. In particular, a linear contract with an easily
constructed per-unit price guarantees half the optimal
contract payoff. Existing contracts with full condition-
ality should not be assumed to be a panacea for PES

Figure 2. (Color online) Ratios Between the Simple Contracts and OPT at Different Values of k in the High Land Quality Region
of Montana
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programs; relaxing the conditionality requirement can
actually improve conservation outcomes.

We believe that there is an abundance of research
opportunity in using theoretical modeling to help in-
form program design for disincentivizing deforesta-
tion. Our model abstracts away from numerous
features of potential interest. Contracts are typically
offered over a long time period, over which the con-
servation costs can be stochastic. Lessons from the
development economics literature can be helpful in
better modeling agent behavior; for example, small-
holder farmers in developing countries typically
face complex and stochastic financial constraints
(Jayachandran 2013, Lansing 2017). Monitoring con-
servation activities is still costly in practice at the mo-
ment, suggesting the use for robust contract design
(Carroll 2015, Dütting et al. 2019, Yu and Kong 2020).
Moreover, the value of natural assets are often hetero-
geneous and complementary; conserving one contigu-
ous parcel of forest is better than conserving two
noncontiguous parcels of half the size. Another im-
portant direction is to incorporate a richer action space
to include sustainable land management practices, in-
stead of a single dimensional deforestation quantity;
such an approach will be especially valuable for
achieving the UN Sustainable Development Goals. All
of these directions merit future exploration. Finally, to
identify the potential payoff of contracts, there is need
for additional empirical research estimating conserva-
tion costs in high-deforestation regions across the
world.

It is our hope that future interdisciplinary work can
bring theoretical techniques from operations manage-
ment together with empirical and practical insights
from environmental and development economics to
more holistically address problems at the heart of en-
vironmental sustainability.
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Appendix A. Analysis of the Optimal Contract
First, we provide the version of Lemma 1 with explicit
expressions of payment levels when F(θ) has a monotone
hazard rate (i.e., 1−F(θ)

f (θ) is weakly decreasing in θ). In the

proof, we show how to apply the ironing technique on
the region where 1−F(θ)

f (θ) is not weakly decreasing in θ.

Lemma A.1 (Full Version of Lemma 1). The optimal con-
tract (when F(θ) has a monotone hazard rate) is given by

(a(θ),P(θ))

�

θa0, 0( ) if θ ≤ θ̂1,

θa0 + k
h
− 1− F(θ)

f (θ) a0,
h
2

k
h
− 1− F(θ)

f (θ) a0

( )2(

+
∫ θ

θ̂1

ha0
k
h
− 1− F(τ)

f (τ) a0

( )
dτ
)

if θ ∈ (θ̂1, θ̂2),

a0, min
h
2

k
h
− 1− F(θ̂2)

f (θ̂2)
a0

( )2⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎝
+
∫ θ̂2

θ̂1

ha0
k
h
− 1− F(τ)

f (τ) a0

( )
dτ,h(1−θ)2a20

})
if θ ≥ θ̂2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where θ̂1 is defined by 1−F(θ̂1)

f (θ̂1) � k
ha0

if 1
f (θ) ≥ k

ha0
and otherwise is

given by θ̂1 � θ, and θ̂2 is defined by 1− θ̂2 + 1−F(θ̂2)
f (θ̂2) � k

ha0
if 1−

θ+ 1
f (θ) ≥ k

ha0
, and otherwise is given by θ̂2 � θ.

Proof of Lemma A.1. Standard analysis (e.g., Mirrlees
1971) shows the principal’s problem is equivalent to solv-
ing the following:

a(θ) � arg max
a(θ)∈[θa0, a0]

∫
θ�θ

θ

[ka(θ) − c(a(θ) − θa0)

− 1 − F(θ)
f (θ) a0c′(a(θ) − θa0)] f (θ)dθ, (A.1)

P(θ) � c(a(θ) − θa0) +
∫
τ�θ

θ

a0c′(a(τ) − τa0)dτ, (A.2)

along with the monotonicity constraint that da(θ)
dθ ≥ 0. For

each θ, a(θ) maximizes J(θ, a) ≡ ka− c(a−θa0) − 1−F(θ)
f (θ) a0c′

(a−θa0). When 1−F(θ)
f (θ) is nonincreasing in θ (monotone haz-

ard rate), a(θ) can be determined by its first order condi-
tion because δJ(θ, a)=δa is nondecreasing in θ. Explicitly,

δJ(θ)
δa

� k− c′(a−θa0) − 1− F(θ)
f (θ) a0c′′(a−θa0)

� k− h(a−θa0) − ha0
1− F(θ)
f (θ) : (A.3)

The boundary solution a � θa0 appears when θ ≤ θ̂1,
where θ̂1 solves δJ(θ)

δa |a�θ̂a0 � k− ha0
1−F(θ)
f (θ) � 0 if k− ha0 1

f (θ) ≤ 0,

and otherwise θ̂1 � θ. The other boundary solution a � a0
appears when θ ≥ θ̂2, where θ̂2 solves δJ(θ)

δa |a�a0 � k− h (1−
θ)a0 − ha0

1−F(θ)
f (θ) � 0 if k− h(1−θ)a0 − ha0 1

f (θ) ≤ 0, and other-

wise θ̂2 � θ. The interior solution has the first order
condition δJ(θ)

δa � 0, leading to a(θ) � θa0 + k
h− 1−F(θ)

f (θ) a0.
In the region of θ without a monotone hazard rate, we

cannot set δJ(θ)
δa � 0 because otherwise a(θ) is decreasing in

θ, thus violating the monotonicity constraint of a(θ). In-
stead, we apply standard ironing techniques, identifying
an interval [θ1,θ2] on which the monotonicity constraint

Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES
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is binding, that is, a pooling solution a(θ) � â for all
θ ∈ [θ1,θ2]. The interval (θ1,θ2) is determined via∫ θ2

θ1

δJ(θ, â)
δâ

f (θ)dθ � 0:

Explicitly, the optimal solution is pooling on the interval
(θ1,θ2), that is, a(θ1) � a(θ2) � â, for all θ ∈ (θ1,θ2). If θ1 <
θ̂1 or θ2 > θ̂2, we can update the boundary solutions of θ̂1
and θ̂2 so that they are the largest θ such that a(θ) � θa0
and the smallest θ such that a(θ) � a0, respectively.

Finally, calculating the payment rules for each interval of
a(θ) using Equation (A.2) gives the stated payment levels. w

Proof of Lemma 2. First, the principal’s optimization
problem when using a menu of affine contracts {p(θ),
T(θ)}θ is given by

ObjAFF � max
{p(θ),T(θ)}

E[ka(θ) − p(θ)a(θ) +T(θ)( )]
s:t: p(θ)a(θ) +T(θ) − c(a(θ) −θa0) ≥ 0, (IR)

θ � arg max
θ′∈[0,1]

p(θ′)a(θ′ | θ) +T(θ′) − c(a(θ′ | θ) −θa0), (ICI)

a(θ′ | θ) � arg max
a∈[θa,a0]

p(θ′)a+T(θ′) − c(a−θa0), ∀θ, ∀θ′:

(ICII)

The first IC constraint states that the agent of type θ most
prefers the affine contract {p(θ),T(θ)}. The second IC con-
straint states that the agent θ, having picked any contract
{p(θ′),T(θ′)}, maximizes their utility by choosing the best
a(θ′ | θ). Together, both IC constraints ensure a(θ′ | θ) � a(θ).

First, we find a(θ′ | θ) by solving (ICII). When an interi-
or solution exists, we get

d
da

p(θ′)a+T(θ′) − c(a−θa0)( ) � p(θ′) − c′(a−θa0)
� p(θ′) − h(a−θa0) � 0,

⇒ a(θ′ | θ) � 1
h
p(θ′) +θa0:

Again, we integrate the constraint (ICI) into the objective
to determine the exact pairs of {p(θ),T(θ)} via information
rent, that is, first using Equation (1) to rewrite the objective
and then establishing the payment by

p(θ)a(θ) +T(θ) � c(a(θ) −θa0) +
∫
τ�θ

θ

a0c′(a(τ) − τa0)dτ: (A.4)

Plugging in the solution of a(θ) into Equation (1),

ObjAFF �
∫
θ

θ1

kθa0dF(θ) +
∫ θ2

θ1

k
1
h
p(θ) +θa0

( )
− h
2

1
h
p(θ′)

( )2
− 1− F(θ)

f (θ) a0p(θ)dF(θ) +
∫ θ

θ2

ka0 − h
2
(1−θ)2a20

− 1− F(θ)
f (θ) h(1−θ)a20dF(θ),

where θ1,θ2 are the boundaries where the agent type is
not at an interior solution.

For each θ, the optimal linear price p(θ) is set by maxi-
mizing the integrand of ObjAFF at θ. When an interior so-
lution exists,

d
dp

k
1
h
p(θ) +θa0

( )
− h
2

1
h
p(θ′)

( )2
− 1− F(θ)

f (θ) a0p(θ)

� k
h
− p
h
− a0

1− F(θ)
f (θ) � 0,

⇒ p(θ) � k− ha0
1− F(θ)
f (θ) :

The boundary solutions are established by

θ̂1 : p(θ̂1) � 0⇒ k
h
− 1− F(θ̂1)

f (θ̂1)
a0 � 0,

θ̂2 :
1
h
p(θ̂2) + θ̂2a0 � a0 ⇒ k

h
− (1− θ̂2)a0 − 1− F(θ̂2)

f (θ̂2)
a0 � 0:

Note that θ̂1, θ̂2 are exactly the same boundaries that we
established in the optimal allocation in Lemma 1. Further-
more, when θ ≤ θ̂1, p(θ) � p(θ̂1) � 0, and when θ ≥ θ̂2,
p(θ) � p(θ̂2).
Now we can establish T(θ) for each θ using Equation

(A.4):
• When θ ≤ θ̂1, p(θ̂1)θa0 +T(θ) � 0. Recall p(θ̂1) � 0, and

thus T(θ) � 0. In this region, no one participates.
• When θ ∈ (θ̂1, θ̂2), p(θ)a(θ) +T(θ) � h

2
p(θ)2
h2 + ∫ θ

θ̂1

a0p(τ)dτ.
Thus,

T(θ) � 1
2h

p2(θ) − p(θ)a(θ) +
∫ θ

θ̂1

a0p(τ)dτ:

•When θ ≥ θ̂2, similarly, we have

T(θ) � h
2
(1−θ)2a20 − p(θ̂2)a0 +

∫ θ̂2

θ1

a0p(τ)dτ+
∫ θ

θ̂2

h(1− τ)a20dτ

� h
2
(1−θ)2a20 − a20h(1−θ2) +

∫ θ̂2

θ̂1

a0 k− ha0
1− F
f

(τ)
( )

dτ

+
∫ θ

θ̂2

h(1− τ)a20dτ

� 1
2
ha20(1− θ̂2)2 − (1− θ̂2)ha20 +

∫ θ̂2

θ̂1

a0 k− ha0
1− F
f

(τ)
( )

dτ:

Furthermore, this menu of affine contracts implements
the optimal allocation because the conservation quantity
a(θ) and the payment P(θ) � p(θ)a(θ) +T(θ) are the same
as those in Lemma 1. w

Appendix B. Structure of Simple Contracts
We show that both simple contracts have quasiconcave or
concave objectives, which considerably simplifies our
analysis of the best prices and best possible payoffs for
each contract.
For the next lemma on the objective of conditional con-

tracts, we assume F(θ) has a monotone hazard rate.

Lemma B.1. When 1−F(θ)
f (θ) is nonincreasing in θ, the condi-

tional contract objective ObjC is quasiconcave in p. Hence, there
exists a unique price p ∈ [h(1−θ)2a0,h(1−θ)2a0] that maxi-
mizes the conditional contract objective.

Proof of Lemma B.1. Recall that θ̂(p) � 1−
���
2p
ha0

√
is the

threshold type at which the agent is indifferent between
choosing full conservation and baseline conservation. We

Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES
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can rewrite the conditional objective (Equation (2)) using
Equation (1) by inserting the agent’s best response to a
conditional contract, a(θ) � θa0 for θ ≤ θ̂ and a(θ) � a0 for
θ > θ̂, leading to

ObjC(θ̂) �
∫
θ

θ̂

kθa0f (θ)dθ

+
∫ θ

θ̂

ka0 − h
2
(1−θ)2a20 − h(1−θ)1− F(θ)

f (θ) a20

( )
f (θ)dθ

� ka0Eθ+
∫ θ

θ̂

a0X(θ)(1−θ)f (θ)dθ,

where X(θ) ≡ k− h
2 (1−θ)a0 − h 1−F(θ)

f (θ) a0. Observe that X(θ) is
nondecreasing in θ when 1−F(θ)

f (θ) is nonincreasing in θ.
To show that ObjC(p) is quasiconcave on p ∈ [h2 (1−θ)2a0,

h
2 (1−θ)2a0], it is equivalent to show that ObjC(θ̂) is quasi-
concave on θ̂ ∈ [θ,θ], that is, for any θ < τ1 < τ2 ≤ θ,

ObjC(θ̂ � λτ1 + (1−λ)τ2) >min{ObjC(τ1),ObjC(τ2)}:
The first order condition of the conditional contract objec-
tive is the following:

d
dθ̂

ObjC(θ̂) � −a0X(θ̂)(1− θ̂)f (θ̂) � 0:

The first order condition is satisfied at at most one point
in (θ,θ) when X(θ̂) � 0, because X(θ̂) is nondecreasing. Set
τ such that X(τ) � 0. We know that when θ̂ < τ, the condi-
tional contract objective increases because d

dθ̂
ObjC(θ̂) > 0;

when θ̂ > τ, the conditional contract objective decreases
because d

dθ̂
ObjC(θ̂) < 0. Thus, the conditional contract objec-

tive is quasiconcave. Furthermore, there exists a unique
price that maximizes the conditional objective. The best
conditional price has an interior solution pC

∗ ∈
(h2 (1−θ)2a0, h2 (1−θ)2a0) when X(θ̂(pC∗ )) � 0; otherwise, it is
a boundary solution. w

Lemma B.2. The linear contract objective ObjL is concave in
p ∈ [0,h(1−θ)a0].
Proof of Lemma B.2. We show that the objective’s sec-
ond order derivative is negative. Recall that, depending
on the price p, there may be agents whose conservation
amount meets the boundary condition a � a0 in the linear
contract objective (Equation (3)). Thus, we need to consid-
er two cases:

i. If p ∈ [0,h(1−θ)a0], all agents have a(θ) � θa0 + p
h,

dObjL

dp �
1
h (k− 2pL

∗ ) −Eθa0, and
d2ObjL

dp2 � − 2
h < 0.

ii. Otherwise, all agents with θ ≤ θ̃(p) have conservation
action a(θ) � θa0 + p

h, and all other agents with θ > θ̃(p) have
a(θ) � a0. Differentiating the objective, we have dObjL

dp � 1
h (k− p)

F(θ̃) − a0

(∫
θ

θ̃
θdF(θ) + 1− θ̃F(θ̃)

)
; the second order derivative

is

d2ObjL

dp2
� 1
h
(k− p)f (θ̃)dθ̃

dp
− F(θ̃)

( )
− a0 θ̃f (θ̃) − θ̃f (θ̃) − F(θ̃)
( )dθ̃

dp

� −1
h

1
ha0

(k− p)f (θ̃) + 2F(θ̃)
( )

≤ 0:

Hence, the objective is concave in p. w

Lemmas B.1 and B.2 imply that to find the optimal
price for each type of contract, it suffices to find the price
that satisfies the first order condition (and to pick a
boundary price if no such price exists). Moreover, the op-
timal price for each type of contract is unique.

Corollary B.1. The best conditional and linear contracts are
given by prices satisfying the following first order conditions if
an interior solution exists, and a boundary solution otherwise.
The best conditional price pC

∗ ∈ [h2 (1−θ)2a0, h2 (1−θ)2a0] has
an interior solution that solves the following equation:

dObjC

dp

∣∣∣∣
pC∗

� a0f (θ̂) k
ha0

− 1
2

������
2pC∗

ha0

√
− 1− F(θ̂)

f (θ̂)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ � 0, (B.1)

where θ̂ � θ̂(pC∗ ) � 1−
�����
2pC∗

ha0

√
. The best linear price pL

∗ ∈ [0,
h(1−θ)a0] has an interior solution that solves the following
equation:

dObjL

dp

∣∣∣∣
pL∗

�

1
h
(k− pL

∗ )F(θ̃)

−a0
∫
θ

θ̃
θdF(θ) + 1− θ̃F(θ̃)

( )
� 0, if pL

∗ ≥ h(1−θ)a0,
1
h
(k− 2pL

∗ ) −Eθa0 � 0, if pL
∗
< h(1−θ)a0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(B.2)

where θ̃(p) � 1− p
ha0
.

Appendix C. Proofs for Section 3
(Conditional Contracts)

Proof of Lemma 3. Recall that in Lemma 1, the optimal
solution will pool agents with highest types θ ∈ [θ̂2,θ] to
fully conserve. When k

ha0
is large enough so that θ̂2 � θ,

the optimal contract will pool the entire population to ful-
ly conserve. Explicitly, when k

ha0
≥ (1−θ) + 1

f (θ), the optimal

contract solution is a(θ) � a0,p(θ) � h(1−θ)2a20 for all θ.
Similarly, in the conditional contract, if k

ha0
is large enough

so that θ̂ � θ, the best conditional price will be high
enough such that the entire population will fully con-
serve. Using Corollary B.1, when k

ha0
≥ 1

2 (1−θ) + 1
f (θ), the

best conditional contract has pC
∗ � h

2 (1−θ)2a0, thus θ̂(pC∗ )
� θ. Thus, the solutions to the optimal contract and the
best conditional contract overlap when k

ha0
≥ (1−θ)

+ 1
f (θ). w

Proof of Lemma 4. In a conditional contract, if the price
is less than h

2 (1−θ)2a0, then no agent will participate in
the conditional contract, thus resulting in the baseline sce-
nario. To identify the sufficient condition when the opti-
mal conditional price is at most at pC

∗ � h
2 (1−θ)2a0, we

use the first order condition of the conditional contracts in

Corollary B.1: when k
ha0

≤ 1
2 (1−θ), dObjC

dp p�h
2(1−θ)2a0 � f (θ)

∣∣∣
( k
ha0

− 1−θ
2 ) ≤ 0: w

Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES
12 Management Science, Articles in Advance, pp. 1–17, © 2022 The Author(s)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

17
1.

66
.1

3.
55

] 
on

 0
5 

O
ct

ob
er

 2
02

3,
 a

t 1
3:

34
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Proof of Example 2. Given an exponential distribution
with support bounded by [0, 1], F(θ) � 1−exp (−λθ)

1−exp (−λ) , we show

that lim λ→∞ ObjC
∗

ObjOPT � 0 for k
ha0

� 1
2.

First, we write out the optimal contract payoff by plug-
ging the solution from Lemma 1 into Equation (A.1) and
then simplifying it:

ObjOPT �
∫ θ̂1

0
kθa0f (θ)dθ +

∫ 1

θ̂2

ka0 − h
2
(1 − θ)2a20

(
− h(1 − θ) 1 − F(θ)

f (θ) a20

)
f (θ)dθ

+
∫ θ̂2

θ̂1

k
(
θa0 + k

h
− 1 − F(θ)

f (θ) a0

)
− h
2

k
h
− 1 − F(θ)

f (θ) a0

( )2(

− h
k
h
− 1 − F(θ)

f (θ) a0

)
1 − F(θ)
f (θ) a0

( )
f (θ)dθ

� ka0E[θ] +
∫ θ̂2

θ̂1

h
2

k
h
− 1 − F(θ)

f (θ) a0

( )2
f (θ)dθ

+
∫ 1

θ̂2

(1 − θ)a0 k − h
2
(1 − θ)a0 − h

1 − F(θ)
f (θ) a0

( )
f (θ)dθ:

The objective for the conditional contract (Equation (2)) can be

also bewritten as a function of the threshold θ̂(p) � 1−
���
2p
ha0

√
:

ObjC(θ̂) � ka0
∫ θ̂

0
θf (θ)dθ+ k− h

2
(1− θ̂)2a0

( )∫ 1

θ̂

f (θ)dθ

� ka0E[θ] + a0
∫ 1

θ̂

k(1−θ) − h
2
(1− θ̂)2a0

( )
f (θ)dθ:

When λ→∞, E[θ] tends to zero, and 1−F(θ)
f (θ) � 1

λ 1− exp (−λ)
exp (−λθ)

( )
approaches zero pointwise. Recall that the optimality con-
dition of the conditional contract (Corollary B.1) in terms

of θ̂ is 1−θ̂
2 + 1−F(θ̂)

f (θ̂) � k
ha0

� 1
2. This implies that when λ→

∞, θ̂ approaches zero from the right. In the best conditional

contract, a0
∫ 1

0
(k(1−θ) − h

2
(1− θ̂)2a0)f (θ)dθ goes to zero.

Furthermore, recall that in the optimal solution (Lemma

1), θ̂2 satisfies 1− θ̂2 + 1−F(θ̂2)
f (θ̂2) � k

ha0
� 1

2 : This implies that

when λ→∞, θ̂2 approaches 1
2 from the left; because 1−F(0)

f (0)

< k
ha0
, θ̂1 � 0 (Lemma 1). In the optimal contract,

∫ 1
2

0
h
2

k
h−
(

1−F(θ)
f (θ) a0)2f (θ)dθ goes to k2

2h and the rest of the terms go to

zero. Together we have that ObjC
∗

ObjOPT goes to zero. w

Appendix D. Proofs for Section 4
(Linear Contracts)

Proof of Lemma 5. We show that the optimal linear
contract only beats the baseline when k is large enough.
We need the sufficient condition when θ̃ � 1 satisfies the
first order condition of the linear contract and p � 0 be-
comes the best linear price. According to Corollary B.1,

when k
ha0

≤ Eθ, dObjL

dp p�0 � k
h−Eθa0 ≤ 0

∣∣ . w

Proof of Theorem 1. We show that ObjL(p � k
2) ≥ 1

2ObjOPT

for all k > 0 and any F(θ).
Let Obj

OPT
denote an upper bound for the optimal

payoff, given by considering the payoff from the optimal
contract quantities specified in Lemma 1 with a reduced
payment that covers only the agent’s cost of conservation
(i.e., the payment does not cover the agent’s information

rent). This upper bound Obj
OPT

will allow us to simplify
our analysis of the payoff for the second-best contract. In
order to show the result is true regardless of F(θ), we
show that, pointwise at every θ, the integrand without the
f (θ) term in 2ObjL(p � k

2) from Equation (7), which we de-
note by 2L(θ), is more than the integrand without the f (θ)
term in Obj

OPT
from Equation (5), which we denote by

OPT(θ). We can scale down both integrands by f (θ) be-
cause it appears in every term.
By explicitly substituting the optimal contract solution

aOPT(θ) from Lemma 1 into Equation (5), we have the
following:

•When θ ∈ [θ, θ̂1], aOPT(θ) � θa0 andOPT(θ) � kθa0.
• When θ ∈ [θ̂1, θ̂2], there are two cases. When it is a sepa-

rating solution without ironing (θ ∉ [θ1,θ2]), plug in
aOPT(θ) � θa0 + k

h− 1−F(θ)
f (θ) a0 to get

OPT(θ) � k θa0 + k
h
− 1− F(θ)

f (θ) a0

( )
− h
2

k
h
− 1− F(θ)

f (θ) a0

( )2
� kθa0 + k2

2h
− h
2
1− F(θ)
f (θ) a0

( )2
:

When F(θ) satisfies the monotone hazard rate, this is
the only case we need to consider. Otherwise, on the pool-
ing interval of the ironing solution (θ ∈ [θ1,θ2]), aOPT(θ) �
â � aOPT(θ1) � aOPT(θ2) and OPT(θ) �OPT(θ1) �OPT(θ2).

• When θ ∈ [θ̂2,θ], aOPT(θ) � a0 and OPT(θ) � ka0
− h

2 (1−θ)2a20.
With the price p � k

2, the linear contract payoff is given by
Equation (3), then doubling:

•when θ ∈ [θ, θ̃], 2L(θ) � 2(k− k
2)(θa0 + k

2h) � kθa0 + k2
2h;

•when θ ∈ [θ̃,θ], 2L(θ) � 2(k− k
2)a0 � ka0.

All of the following six cases need to be considered
because each θ can be at one of the three intervals in the
optimal contract (i.e., [θ, θ̂1], [θ̂1, θ̂2], and [θ̂2,θ]) as well
as one of the two intervals in the best linear contract (i.e.,
[θ, θ̃] and [θ̃,θ]):

i. If θ ∈ [θ, θ̂1] and θ ∈ [θ, θ̃], then 2L(θ) −OPT(θ) �
kθ0 + k2

2h

( )
− kθa0 � k2

2h > 0:

ii. If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ, θ̃], there are two cases: when θ

is outside the pooling interval [θ1,θ2], 2L(θ) −OPT(θ) �
h
2

1−F(θ)
f (θ) a0
( )2

> 0; otherwise, 2L(θ) −OPT(θ) � 2L(θ) −OPT(θ1)
� kθa0 + k2

2h− kθ1a0 − k2
2h+ h

2
1−F(θ1)
f (θ1) a0
( )2 � k(θ−θ1)a0 + h

2
1−F(θ1)
f (θ1) a0
( )2

> 0

because θ ≥ θ1.
iii. If θ ∈ [θ̂2,θ] and θ ∈ [θ, θ̃], then 2L(θ) −OPT(θ) �

kθa0 + k2
2h− ka0 + h

2 (1−θ)2a20 � h
2

k
h− (1−θ)a0
( )2

> 0:

iv. If θ ∈ [θ, θ̂1] and θ ∈ [θ̃,θ], then 2L(θ) −OPT(θ) � ka0
− kθa0 > 0:

Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES
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v. If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ̃,θ], again, there are two cases
to consider. When θ is not in the pooling interval [θ1,θ2],

2L(θ) −OPT(θ) � ka0 − kθa0 − k2

2h
+ h
2
1− F(θ)
f (θ) a0

( )2
≥ k(1−θ)a0 − k2

2h
+ h
2

k
h
− (1− θ̂2)a0

( )2
� k(1−θ)a0 − k(1− θ̂2)a0 + h

2
(1− θ̂2)2a20 > 0:

The first inequality uses the fact that F(θ) has the mono-
tone hazard rate on this interval as well as the definition
of θ̂2 in Lemma 1. The last inequality is due to θ ≤ θ̂2. On
the pooling interval [θ1,θ2], 2L(θ) −OPT(θ) � 2L(θ) −
OPT(θ2) ≥ 0 because a(θ) is continuous and we have
shown that 2L(θ2) −OPT(θ2) ≥ 0.

vi. If θ ∈ [θ̂2,θ] and θ ∈ [θ̃,θ], then 2L−OPT(θ) � h
2

(1−θ)2a20 > 0:
Together, these show that 2L(θ) ≥OPT(θ) for all θ, and

so twice the payoff from the linear contract with price k
2 is

at least the optimal payoff; equivalently, 2ObjL(pL � k
2) ≥

Obj
OPT ≥ObjOPT. w

Appendix E. Extensions

E.1. Analysis for Section 6.1
Given a conditional linear contract (w, p), where the prin-
cipal pays p per unit area as long as the conservation
amount a is larger than w, the agent’s best response is the
following:

• When θ is very small, the agent does not conserve be-
yond the baseline: if pwa0 − c((w−θ)a0) < 0, then a(θ) � θa0.

• As θ increases, the agent will conserve at the minimal re-
quirement wa0: if pwa0 − c((w−θ)a0) > 0, then a(θ) � wa0.

• As θ increases further, the agent will conserve an addi-
tional amount beyond the minimal requirement by choosing
a to maximize pa− c(a−θa0)2: if θa0 + p

h ≥ wa0, then a(θ) �
θa0 + p

h.• The top types of θ conserves fully: if θa0 + p
h ≥ a0, then

a(θ) � a0.
The thresholds that divide the above four regions are as

follows:
• w−

����
2wp
ha0

√
is the type at which the agent indifferent be-

tween baseline conservation and conserving the minimal re-
quirement wa0;

• w− p
ha0

is the largest θ type conserving the minimal re-
quirement wa0;

• 1− p
ha0

is the smallest θ type conserving the full amount,
which is the same with θ̃ defined for a linear contract with
price p.

Thus, the objective of the conditional linear contract
(w, p) can be written as

ObjCL(p) � k
∫
θ

w−
���
2wp
ha0

√
θ

a0f (θ)dθ + k − p
( ) ∫ w− p

ha0

w−
���
2wp
ha0

√ wa0f (θ)dθ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
∫ 1− p

ha0

w− p
ha0

θa0 + p
h

( )
f (θ)dθ +

∫
1− p

ha0
θa0

f (θ)dθ
)
:

In the example of F(θ) � δ(0), when k
ha0

≤ 1, the principal

can set w � 2p
ha0

and then maximize (k− p)wa0 � (k− p) 2ph , ar-
riving to p � k

2 , w � k
ha0
, and recovering the optimal payoff

(k− p)wa0 � k2
2h; otherwise, the principal can set w � 1 and

pay pa0 � h
2a

2
0.

Proof of Theorem 2. When k
ha0

≤ 1, simplify the objective
of the conditional linear contract with w � k

h ,p � k
2 to

ObjCL w � k
ha0

,p � k
2

( )
� k
2

∫
θ

k
2ha0 k

h
f (θ)dθ+

∫ 1− k
2ha0

k
2ha0

θa0 + k
2h

( )
f (θ)dθ+

∫ θ

1− k
2ha0

a0f (θ)dθ
( )

�
∫
θ

k
2ha0 k2

2h
f (θ)dθ+

∫ 1− k
2ha0

k
2ha0

k
2
θa0 + k2

4h

( )
f (θ)dθ+

∫ θ

1− k
2ha0

k
2
a0f (θ)dθ:

Next we show that ObjCL(w � k
ha0

,p � k
2) >ObjL(p � k

2) at ev-
ery integrand of θ, where

ObjL
(
p � k

2

)
�
∫
θ

1− k
2ha0 k

2
θa0 + k2

4h

( )
f (θ)dθ+

∫ θ

1− k
2ha0

k
2
a0f (θ)dθ:

Observe that when θ > k
2ha0

, the integrands of both ObjCL

and ObjL are identical; this is because both types of con-
tracts use the same linear price, inducing the same conser-
vation actions from the agents with θ > k

2ha0
. Thus, we only

need to compare their integrands when θ ∈ [0, k
2ha0

]. We
have

k2

2h
− kθa0

2
− k2

4h
� k2

4h
− kθa0

2
≥ k2

4h
− k2

4h
� 0:

The inequality comes from θ ≤ k
2ha0

. When the agent’s base-
line conservation level is small, the conditional linear con-
tract induces the agent to conserve more than the linear
contract because of the required stringency level. At the
same time, this conditional linear contract is not as strin-
gent as a conditional contract so that any agent still con-
serves more than their baseline level.
When k

ha0
> 1, it is easy to observe that the conditional

linear contract with w � 1 and p � ha0
2 achieves a higher

payoff than the linear contract with p � k
2. This is because

the former has payoff ka0 − h
2a

2
0, and the latter has payoff

k
2E[θ]a0. We have ka0 − h

2 a
2
0 >

k
2a0 ≥ k

2E[θ]a0, where the first
inequality comes from k

ha0
> 1 and the second one comes

from E[θ] ≤ 1. w

E.2. Proofs for Section 6.2

Proof of Lemma 6. To get a sufficient condition such
that the optimal solution will have θ̂2 � θ, we can use the
upper bound of the cost function and treat h in the base
model as u; that is, when k

ua0
≥ (1−θ) + 1

f (θ), the optimal

contract solution is a(θ) � a0,p(θ) � u
2 (1−θ)2a20 for all θ.

Applying the same upper bound will get us a sufficient
condition such that the best conditional contract is to have
all agents conserve fully; that is, when k

ua0
≥ 1

2 (1−θ) + 1
f (θ),

Dai Li, Ashlagi, and Lo: Simple and Approximately Optimal Contracts for PES
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the best conditional contract has θ̂ � θ. Thus, the solutions
to the optimal contract and the conditional contract over-
lap when k

ua0
≥ (1−θ) + 1

f (θ). w

Proof of Lemma 7. This result is an extension of Lemma
4 and Lemma 5. It is sufficient to lower bound the cost
function by treating l as h in the base model. w

Proof of Theorem 3. Theorem 3 follows from the follow-
ing two lemmas, which show that for low values of k, the
linear contract with per-unit price k

2 approximates the opti-
mal payoff, and for high values of k, the conditional contract
with per-unit price ua0

2 approximates the optimal payoff.

Lemma E.1. When k
a0
≤ 2u2

u+l , ObjL(pL � k
2) ≥ l

2uObjOPT.

Lemma E.2. When k
a0
≥ 2u2

u+l , ObjC(pC � ua0
2 (1−θ)2) ≥ l

2uObjOPT.

Proof of Lemma E.1. This proof follows the same struc-
ture as the proof of Theorem 1. We first provide a lower
bound on the objective of the linear contract with price
pL � k

2 by treating u equivalently to h in Equation (3):

ObjL pL � k
2

( )
≥
∫
θ

θ̃

k− k
2

( )
θa0 + k

2u

( )
f (θ)dθ+

∫ θ

θ̃

k− k
2

( )
a0f (θ)dθ:

We then upper bound the payoff of the optimal contract
by removing the information rent terms and treating l as
the h in Lemma 1. We write the proof assuming that F(θ)
has a monotone hazard rate, but as in the proof of Theo-
rem 1, this assumption is not necessary. We have

Obj
OPT ≤

∫ θ̂1

θ

kθa0dF+
∫ θ̂2

θ̂1

kθa0 + k2

2l
− l
2
1− F(θ)
f (θ) a0

( )2
f (θ)dθ

+
∫ θ

θ̂2

ka0 − l
2
(1−θ)2a20 f (θ)dθ: (E.1)

We again compare the payoff from the linear contract and
the upper bound on the optimal payoff by directly com-
paring the integrands pointwise for each θ without f (θ),
denoted by L(θ) and OPT(θ), respectively. We show that
2u
l L(θ) −OPT(θ) ≥ 0 in each of the following six cases:
i. If θ ∈ [θ, θ̂1] and θ ∈ [θ, θ̃], then 2u

l L(θ) −OPT(θ)
≥ k2

2l + (ul − 1)θka0 > 0:
ii. If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ, θ̃], then 2u

l L(θ) −OPT(θ) ≥
(ul − 1)θka0 + l

2 (1−F(θ)f (θ) a0)2 > 0:
iii. If θ ∈ [θ̂2,θ] and θ ∈ [θ, θ̃], then 2u

l L(θ) −OPT(θ) ≥
k2
2l − (1− u

l θ)ka0 + l
2 (1−θ)2 a20 � 1

2l [(k− l(1−θ)a0)2 + 2ka0θ(u− l)] > 0.
iv. If θ ∈ [θ, θ̂1] and θ ∈ [θ̃,θ], then 2u

l L(θ) −OPT(θ)
� (ul −θ)ka0 > 0:

v. If θ ∈ [θ̂1, θ̂2] and θ ∈ [θ̃,θ], then

2u
l
L(θ) −OPT(θ)

≥ u
l
ka0 − kθa0 − k2

2l
+ l
2
1− F(θ)
f (θ) a0

( )2
≥ u

l
−θ

( )
ka0 − k2

2l
+ l
2

k
c′′((1− θ̂2)a0)

− c′((1− θ̂2)a0)
c′′((1− θ̂2)a0)

( )2
≥ k

u
l
−θ

( )
a0 − k2

2l
+ lk2

2u2
− l
2
k(1− θ̂2)a0

u
+ l
2
(1− θ̂2)2a20

≥ u
l
− 1+ 1− l

2u

( )
(1− θ̂2)

[ ]
ka0 + k2

2l
l2

u2
− 1

( )
+ l
1
(1− θ̂2)2a20

≥ u
l
− 1

( )
ka0 + k2

2l
l2

u2
− 1

( )
≥ 0:

The second inequality uses the monotone hazard rate as-
sumption as well as the definition of θ̂2 in Lemma 1. The
third inequality uses the bounds of c′′(x). The fourth in-
equality uses θ ≤ θ̂2. The fifth inequality uses θ̂2 ≤ θ. The
last inequality comes from the assumption that k

a0
≤ 2u2

u+l.
vi. If θ ∈ [θ̂2,θ] and θ ∈ [θ̃,θ], then 2u

l L(θ) −OPT(θ) �
(ul − 1) ka0 + l

2 (1−θ)2a20 > 0: w

Proof of Lemma E.2. When pC � ua0
2 (1−θ)2, the best

response to this conditional contract is a(θ) � a0 for all θ.
Thus, the payoff of this conditional contract is ObjC(pC � ua0

2

(1−θ)2) � ka0 − ua20
2 . We can lower bound the conditional con-

tract using the assumption that k
a0
≥ 2u2

u+l as follows:

2u
l
ObjC pC � ua0

2

( )
� ua0

l
(2k− ua0) ≥ ua0

l
2k− u+ l

2u
k

( )
� ka0

3u
2l

− 1
2

( )
:

Again we upper bound the optimal contract the same way
we did in Lemma E.2 and Equation (E.1). Denote the inte-
grands of the conditional and the optimal contract without
the f (θ) term by C(θ) and OPT(θ) for every θ. We show
2u
l C(θ) −OPT(θ) ≥ 0 pointwise by considering the follow-
ing three cases:

i. If θ ∈ [θ, θ̂1], 2u
l C(θ) −OPT(θ) ≥ ka0(3u2l − 1

2−θ) > 0.

ii. If θ ∈ [θ̂1, θ̂2],
2u
l
C(θ) −OPT(θ)

≥ ka0
3u
2l

− 1
2
−θ

( )
− k2

2l
+ l
2
1− F(θ)
f (θ) a0

( )2
≥ ka0

3u
2l

− 1
2
−θ

( )
+ k2

2l
l2

u2
− 1

( )
+ l
2
(1− θ̂2)2a20 −

l
2u

(1− θ̂2)ka0

≥ ka0
3
2
u
l
− 1

( )
+ 1− l

2u

( )
(1− θ̂2)

( )
+ k2

2l
l2

u2
− 1

( )
+ l
2
(1− θ̂2)2a20

≥ 3
2
ka0

u
l
− 1

( )
+ k2

2l
l2

u2
− 1

( )
≥ ka0

3
2
u
l
− 1

( )
+ 2u2

2l(u+ l)
l2

u2
− 1

( )( )
� 1
2
ka0

u
l
− 1

( )
> 0:

The second inequality comes from the definition of θ̂2.
The third inequality comes from θ < θ̂2. The fourth in-
equality comes from θ̂2 ≤ θ. The last inequality comes
from the assumption that k

a0
≥ 2u2

u+l.
iii. If θ ∈ [θ̂2,θ], 2u

l C(θ) −OPT(θ) ≥ ka0(3u2l − 1
2− 1) + l

2 (1−θ)2
a20 > 0. w

Endnotes
1 The requirement of full conservation in order to receive payments
is termed conditionality in the PES literature (Engel et al. 2008).
2 Assuming that the forest area is observable captures the recent ad-
vancement in satellite imaging technology, which allows formonitoring
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forests and tree coverage at the level of individual landowners (Hansen
et al. 2013, Jean et al. 2019, Lütjens et al. 2019).
3 We can equivalently normalize a0 but do not do so in order to em-
phasize the dependence of contracts on a0.
4 We assume the environmental value of forest is linear in the forest
area; this is a nontrivial ecological assumption. The linear assump-
tion is reasonable if we consider only the carbon storage value of
the forest and abstract away its biodiversity value. The biodiversity
value of the forest is often heterogeneous and complementary, and
thus nonlinear in the forest area. The k in our model can be inter-
preted as the social cost of carbon, or as the carbon price transacted
on carbon credit markets.
5 Fines for noncompliance are rarely used, although the PROFA-
FOR program in Ecuador asks forest owners to pay back past pay-
ments if they do not comply (Wunder and Albán 2008).
6 The revelation principle (Dasgupta et al. 1979, Myerson 1979)
states that without loss of implementability, we only need to con-
sider direct revelation contracts where the agent truthfully reports
their type (baseline conservation proportion θ) and the contract
specifies an action-and-payment pair based on the agent’s type.
7 When F(θ) does not satisfy the monotone hazard rate assumption,
standard “ironing” techniques can be applied (Mussa and Rosen
1978). Additional details are provided in the appendix.
8 Because k

2 is independent of a0, the same contract can be used for
agents with different initial land sizes a0.
9 Mason and Plantinga (2013) used an environmental value k � $100
per unit area, which is based on the estimate in Lubowski et al.
(2006) of a value of $50 per ton of carbon.
10 Specifically, Brazil’s crop land size is about 2 million square kilo-
meters, and annual agricultural revenue is about $81 billion; the
U.S. crop land size is about 1.9 million square kilometers, and its an-
nual agricultural revenue (2017) is about $178 billion. This means
the average revenues per square kilometer in Brazil and the United
States are approximately $40,000 and $94,000, respectively, yielding
a factor of 2:35 > 2.
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