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ABSTRACT

Calibration of deep learning models is crucial to their trustworthiness and safe
usage, and as such, has been extensively studied in supervised classification mod-
els, with methods crafted to decrease miscalibration. However, there has yet to
be a comprehensive study of the calibration of vision-language models that are
used for zero-shot inference, like CLIP. We measure calibration across relevant
variables like prompt, dataset, and architecture, and find that zero-shot inference
with CLIP is miscalibrated. Furthermore, we propose a modified version of tem-
perature scaling that is aligned with the common use cases of CLIP as a zero-shot
inference model, and show that a single learned temperature generalizes for each
specific CLIP model (defined by a chosen pre-training dataset and architecture)
across inference dataset and prompt choice.

1 INTRODUCTION

Interpretability is one of the main hurdles in the trust, safety, and reliability of deep learning models.
One specific area of concern is the miscalibration of these models, where the confidences of the
model predictions do not reflect the probabilities of being correct. There exists many studies on the
calibration and corresponding interpretability of classification models (Guo et al., 2017; Kull et al.,
2019; Rajendran & LeVine, 2019) that are trained and tested on in a traditional fashion - a given
dataset of one modality (like images) is split into a train, validation, and test set, with a known, fixed
number of classes. The model is trained on the train set, tuned with the validation set, and evaluated
on the test set. However, the use of vision-language models for zero-shot inference, like CLIP
(Radford et al., 2021), is becoming increasingly popular. In this setting, the dataset is multimodal,
and the inference paradigm allows for zero-shot inference, where the class being predicted was not
explicitly defined as a class of interest during training.

There has yet to be either an extensive study of the calibration of CLIP as a zero-shot inference
model or applications of calibration methods to CLIP’s zero-shot inference setting. We therefore
propose “Zero-Shot-Enabled Temperature Scaling,” a method based on Temperature Scaling (TS)
that enables zero-shot inference for models like CLIP. Our main contributions are

• An extensive analytical study of the calibration of CLIP stratified by architecture, dataset
(pre-training and inference), and input prompt. There exists literature that briefly mentions
the calibration of CLIP (Minderer et al., 2021), but not one that studies the calibration
across any of the previously mentioned experimental variables.

• The novel application of Temperature Scaling to CLIP in a way that preserves the ability for
zero-shot inference with an exposition on its robustness to changes in inference dataset and
prompt. We note that the only modification to inference is to perform Temperature Scaling
on the text-image similarity with temperature T . We show that this parameter varies solely
with changes in underlying architecture and pre-training dataset (identical to the axes of
variation allowed in the parameters of CLIP), and thus can be used at inference time for
any arbitrary set of prompts or inference datasets. Therefore, to perform inference on a
given dataset of interest requires no training, tuning, or calibration - meaning our method
matches the zero-shot inference paradigm as used in CLIP.

† denotes equal contribution
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2 PRELIMINARIES

2.1 PROBLEM SETUP

Let X : Ω → X ⊂ RD be the input (random) variable and let Y : Ω → {1, 2, ..., C − 1, C} ⊂ N
(where C is the number of output classes) be the response (random) variable. Typically X has some
information about Y and we’d like to make inferences about Y given X . A common situation is
trying to compute argmax

c
E(Y = c|X = x) with a model f̂ : Rd → [0, 1]C . That is, f̂ predicts the

most likely class on inference example xi among the output classes as argmax
c

f̂c(xi). Typically, f

uses an intermediate logit function L : RD → RC . That is, the logit function returns a real number
per class. For a given class index c, the logit corresponding to that class Lc(xi) ideally increases
as the resemblance increases between the inference example xi and the training inputs of class c
(formally {xj s.t. yj = c}Nj=1).

2.2 CLIP

Introduced in Radford et al. (2021), CLIP is trained to align image/text pairs. This enables zero-shot
inference, where the output classes of Y are chosen at inference time based on natural language
prompts. CLIP accomplishes this by calculating its logit function as the cosine similarity between
the embedding of a given input image xi - which we denote as Eim(xi) - and the language embed-
dings of the natural language corresponding to the output classes. We denote the language embed-
ding of the natural language corresponding to a given output class yc as Elang(yc). More formally,
the logit function of CLIP is1

LCLIP
c (xi) = 100 ∗

Eim(xi) · Elang(yc)

|Eim(xi)||Elang(yc)|

For CLIP and non-CLIP models, the softmax function is typically used to convert these logits into
class probabilities. That is

f̂c(xi) =
eL

CLIP
c (xi)∑C

j=1 e
LCLIP

j (xi)

2.3 CALIBRATION

Ideally, we would like the confidence estimate p̂(xi, f̂) = max
c

f̂c(xi) to be in alignment with

the accuracy of f̂ on xi and points with confidences similar to that of xi. As an example noted
in Guo et al. (2017), given a set of 100 predictions with confidences of 0.8, we would hope
that 80 of these predictions would be correctly classified. If so, we would consider the model
to be calibrated. Let Dtest = {(xi, yi)}Ni=1 be the test set on which f̂ is evaluated, where
each xi and yi are examples drawn from (X,Y ) (or a subset thereof), respectively. Further let
Dtest

p = {(xi, yi) ∈ Dtest s.t. p̂(xi, f̂) = p}. Formally, a model is calibrated if

acc(f̂ , Dtest
p ) = p ∀ p ∈ [0, 1] (1)

We further note as in Guo et al. (2017) that the probability in 1 cannot be computed on a single
sample, since an accuracy is computed on a set of examples rather than a single sample. Thus, there
is a need for empirical approximations that can capture the essence of 1, which we describe below.

2.3.1 VISUALIZING MISCALIBRATION VIA RELIABILITY DIAGRAMS

We visualize the calibration of our estimator through reliability diagrams (DeGroot & Fienberg,
1983; Niculescu-Mizil & Caruana, 2005). These diagrams group points by their predicted confi-
dence scores into M equally spaced bins, and then compute the true and estimated accuracies in

1The 100 in the logit function is a standard scalar temperature used as a multiplier for the CLIP image-
similarity logit, as seen in https://github.com/openai/CLIP/
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Figure 1: Confidence histograms (top) and reliability diagrams (bottom) of Left 2 Columns: CLIP
without any calibration, Center 2 Columns: CLIP with our method, Zero-Shot-Enabled Temper-
ature Scaling, and Right 2 Columns: CLIP with Supervised Temperature Scaling. Miscalibration
can be visualized by pink (overconfidence) and purple (underconfidence). Additionally, the Ex-
pected Calibration Error (ECE) for each evaluation is given, where a lower ECE is better. We
note that our method is as calibrated and almost as calibrated as Supervised Temperature Scaling
on CIFAR10 and CIFAR100, as measured by ECE, respectively, even though our method enables
zero-shot inference. Here, we use ViT-B-16 (Dosovitskiy et al., 2020) pretrained on laion400m e31
(Schuhmann et al., 2021) as our model, and “a photo of {CLASS NAME}” as our prompt.

each bin as follows: let Bm be the (xi, yi) test samples whose confidence (i.e. estimated accu-
racy) falls into the interval Im =

(
(m − 1)/M,m/M

]
, for m = 2, . . . ,M , and I1 = [0, 1

M ].
The true accuracy is acc(f̂ , Bm) and the estimated accuracy (i.e. average confidence) within Bm is
1/|Bm|

∑
(xi,yi)∈Bm

p̂(xi, f̂), which we write in short-hand as p̂(f̂ , Bm). The reliability diagram
plots the difference between true accuracy and estimated accuracy for all M bins, and deviations
from the line f(x) = x represent miscalibrations: areas where there is a significant difference be-
tween the estimated and true accuracy. In Figure 1, the pink and purple portions of bars represent
overconfidence and underconfidence, respectively, while the blue portions of bars represent how
well-calibrated the model is. For all experiments, we let M = 10, as is standard (Guo et al., 2017;
Rajendran & LeVine, 2019; Kull et al., 2019).

Following standard practice (Minderer et al., 2021), we also visualize a histogram of the number
of points in each bin |Bm|. Mismatches between confidence and accuracy in bins with a relatively
large amount of points are more grave than mismatches corresponding to bins with fewer points,
since it means that the model was more miscalibrated on a larger number of points.

2.3.2 QUANTIFYING MISCALIBRATION VIA EXPECTED CALIBRATION ERROR (ECE)

We can quantify this miscalibration with the Expected Calibration Error (ECE) introduced in
Naeini et al. (2015). ECE, aimed at summarizing the miscalibration visualized in reliability dia-
grams, is calculated as

ECE =

M∑
m=1

|Bm|
|D|

∣∣∣∣p̂(f̂ , Bm)− acc(f̂ , Bm)

∣∣∣∣ (2)

In the leftmost columns of Figure 1, we show the calibration of CLIP, as it is regularly used, via
reliability diagrams.

2.4 CALIBRATING WITH LABELS VIA TEMPERATURE SCALING

Typically used to reduce miscalibration, Temperature Scaling (Guo et al., 2017) geometrically de-
creases the logit function L by a scalar T . That is, f̂ has a logit function that employs Temperature
Scaling as Lcalibrated

c (xi;T ) = Lc(xi)/T . In the case of CLIP, the Temperature-Scaling-infused logit
function is

Lcalibrated
c (xi;T ) = LCLIP

c (xi)/T

3



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Method CLIP CLIP + 0-Shot-Enabled TS CLIP + TS
Architecture Pre-Train Data

ViT-B-16 laion400m 6.34 2.22 0.91
laion2b 4.65 2.96 0.98

ViT-L-14 laion400m 6.68 1.36 0.72
laion2b 3.17 2.38 0.85

ViT-B-32 laion400m 4.69 3.06 1.66
laion2b 3.88 2.69 0.80

ViT-H-14 laion2b 3.67 2.47 0.88
ResNet-50 yfcc15m 26.69 7.60 2.61

cc12m 26.56 6.18 3.31

Table 1: ECE results on a variety of prompts, architectures, inference datasets, and pre-training
datasets. Each results is the mean across 3 different inference datasets with different prompts for
each dataset (per the original CLIP paper from Minderer et al. (2021)) which are enumerated in
Appendix Section A.2. For citations and links to the architectures and pre-training datasets, please
see Appendix Section A.3. All numbers are percentages.

Temperature Scaling typically calibrates a frozen network post-training using a dataset
Dcalibration = {(xi, yi)}Ni=1 by minimizing the cross-entropy loss function LCE(f̂ , Dcalibration) =

−
∑

(xi,yi)∈Dcalibration

log f̂yi(xi).

In the rightmost two rows of Figure 1, we present reliability diagrams of CLIP once calibrated via
Temperature Scaling. In Appendix Section A.1, we present reliability diagrams in this evaluation
setting using additional supervised calibration methods Isotonic Regression introduced in Zadrozny
& Elkan (2002), and Histogram Binning introduced in Zadrozny & Elkan (2001), as well as Un-
supervised Temperature Scaling introduced in Mozafari et al. (2019). These are solely for context,
since the main benefits of using CLIP are to be able to perform inference on a task of interest both
without having any training labels on that task (which are required by the supervised methods) and
without a calibration dataset that is specific for each inference dataset (which are required by all of
the previously mentioned methods).

3 OUR METHOD: ZERO-SHOT-ENABLED TEMPERATURE SCALING

To address this gap of the inability to calibrate CLIP without a calibration dataset, we propose
Zero-Shot-Enabled Temperature Scaling. For a given architecture and pre-training dataset of CLIP,
we simply train a temperature on an auxiliary dataset via Temperature Scaling. We then use this
temperature on all downstream inferences of this model regardless of prompt or inference dataset.
For all experiments, we use ImageNet-1k (Huang & Li, 2021) as our auxiliary dataset with “a photo
of {}” as the prompt in the supervised training of the temperature ultimately used in our Zero-Shot-
Enabled Temperature Scaling. Once trained, this model can be used for zero-shot inference since it
does not require any re-training or tuning to be used on any given inference dataset with any given
prompt.

We note that the training of Zero-Shot-Enabled Temperature Scaling does require a dataset on which
to perform a training process. However, this method enables zero-shot inference in an identical sense
to CLIP: CLIP trains parameters on an auxiliary dataset and enables zero-shot inference on any
arbitrary unseen distribution without any training on a dataset with significant distribution overlap
to the inference distribution of interest. We note that CLIP allows the training of the parameters on a
given architecture and a given pre-training dataset to be independent of the training of the parameters
of different architectures and pre-training datasets. Therefore, we allow a different temperature for
each architecture/pre-training dataset pair, matching the CLIP paradigm. Given this single parameter
T associated with the CLIP architecture and pre-training dataset, a user can utilize our method by
simply diving the CLIP logits by T , without any training, tuning, or calibration processes necessary.

In the middle two columns of Figure 1, we present reliability diagrams of a CLIP-based model once
updated via Zero-Shot-Enabled Temperature Scaling.
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Figure 2: A plot of the effect of temperature on ECE for various prompts and inference datasets
(enumerated in Appendix Section A.2). Different lines of the same color represent different prompts.
Note that the optimal temperature T per inference dataset and prompt is very close to the one learned
on a large auxiliary dataset and is approximately the same across inference datasets and prompts.

4 RESULTS

4.1 COMPARISON TO VANILLA CLIP AND CLIP + TEMPERATURE SCALING

In Table 1, we show the Expected Calibration Error results of our method compared to CLIP and
CLIP calibrated via supervised Temperature Scaling on a variety of prompts, architectures, inference
datasets, and pre-training datasets. For detailed results across prompts and datasets for a single pre-
training dataset and architecture (selected arbitrarily), please see Figure 3. We note that our results
are superior to CLIP without any calibration in all settings, but that our method results in models that
are still significantly less calibrated than those calibrated via the supervised variant of Temperature
Scaling - thus, leaving room for future Zero-Shot-Enabled CLIP calibration methods that improve
upon our method.

4.2 ROBUSTNESS TO CHANGES IN PROMPT AND INFERENCE DATASET

In Figure 2, we show that, for a single architecture and pre-training dataset, the optimal temperature
T across prompts and inference datasets are approximately the same. This is remarkable considering
each of the inference and auxiliary datasets has a different number of classes from each other (since
CIFAR10 has 10 classes, CIFAR100 has 100 classes, SUN397 has 397 classes, and ImageNet-1k
has 1000 classes), as well as different distributions. We do note that this temperature T needs to be
trained per architecute/pre-training dataset pair, as different pairs have (slightly) different optimal
T ’s, as can be visualized by comparing the approximate optimal T ’s in the left plot (around T =
1.55) and in the right plot (around T = 1.35) of Figure 2.

5 CONCLUSION AND FUTURE WORK

The miscalibration of supervised classification models has been extensively studied and improved
via many calibration methods. Yet, prior to this paper, that has not been the case for vision-language
models (like CLIP) with a different evaluation setup than traditional deep learning models. In this
paper, we have shown that CLIP out-of-the-box is generally miscalibrated for a variety of experimen-
tal parameters. Lastly, to address this miscalibration, we have also presented a calibration method
for CLIP that modifies inference with a single parameter that is aligned with the CLIP zero-shot-
inference paradigm. Future work will extend additional supervised calibration methods to CLIP’s
zero-shot-inference setting and provide improvements to our method to close the gap in calibration
between our Zero-Shot-Enabled Temperature Scaling and the supervised variant of Temperature
Scaling.
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Figure 3: Differences in ECE with and without Zero-Shot-Enabled Temperature Scaling for various
prompts and datasets. Regions where Zero-Shot-Enabled Temperature Scaling lowered ECE (i.e.
improved calibration) can be visualized in the pink portion of the bars. Here, we use ViT-B-16
(Dosovitskiy et al. (2020)) pretrained on laion400m e31 (Schuhmann et al. (2021)) as our model.
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vised temperature scaling: An unsupervised post-processing calibration method of deep networks.
arXiv preprint arXiv:1905.00174, 2019.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, pp. 2901–2907. AAAI Press, 2015. ISBN 0262511290.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learn-
ing. In Proceedings of the 22nd international conference on Machine learning, pp. 625–632,
2005.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Vickram Rajendran and William LeVine. Accurate layerwise interpretable competence estimation.
Advances in Neural Information Processing Systems, 32, 2019.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk,
and Jenia Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text
models. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022. URL https://openreview.net/forum?id=M3Y74vmsMcY.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. In Proceedings of the Eighteenth International Conference on
Machine Learning, ICML ’01, pp. 609–616, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc. ISBN 1558607781.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass prob-
ability estimates. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02, pp. 694–699, New York, NY, USA, 2002.
Association for Computing Machinery. ISBN 158113567X. doi: 10.1145/775047.775151. URL
https://doi.org/10.1145/775047.775151.

7

https://openreview.net/forum?id=M3Y74vmsMcY
https://doi.org/10.1145/775047.775151


Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

A APPENDIX

A.1 CALIBRATION RESULTS OF SUPERVISED METHODS

In Figure 4 we present reliability diagrams for CLIP using the following supervised calibration meth-
ods: Isotonic Regression (Zadrozny & Elkan, 2002) and Histogram Binning (Zadrozny & Elkan,
2001), as well as Unsupervised Temperature Scaling (Mozafari et al., 2019). All three of these
methods perform well and significantly reduce miscalibration. However, as mentioned in Section
2.4, the use of these methods is inconsistent with how CLIP is often used, and is therefore impracti-
cal for wide-scale adoption.

Figure 4: Reliability diagrams of Left 2 Columns: CLIP with Unsupervised Temperature Scaling
(Mozafari et al., 2019), Center 2 Columns: CLIP with Isotonic Regression (Zadrozny & Elkan,
2002), and Right 2 Columns: CLIP with Histogram Binning (Zadrozny & Elkan, 2001). Here, we
use ViT-B-16 (Dosovitskiy et al., 2020) pretrained on laion400m e31 (Schuhmann et al., 2021) as
our model, and “a photo of {CLASS NAME}” as our prompt.

A.2 PROMPTS AND DATASETS USED IN FIGURE 1

Our ECE results in Figure 1 are averaged over the following datasets and prompts:

1. SUN397 (Yu et al., 2015) with the following prompts:
(a) “a photo of {}”
(b) “a photo of the {}”

2. CIFAR10 and CIFAR100 (Krizhevsky, 2009) with the following prompts:
(a) “a photo of a {}”
(b) “a blurry photo of a {}”
(c) “a black and white photo of a {}”
(d) “a low contrast photo of a {}”
(e) “a high contrast photo of a {}”
(f) “a bad photo of a {}”
(g) “a good photo of a {}”
(h) “a photo of a small {}”
(i) “a photo of a big {}”
(j) “a photo of the {}”
(k) “a blurry photo of the {}”
(l) “a black and white photo of the {}”

(m) “a low contrast photo of the {}”
(n) “a high contrast photo of the {}”
(o) “a bad photo of the {}”
(p) “a good photo of the {}”
(q) “a photo of the small {}”
(r) “a photo of the big {}”
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A.3 ARCHITECTURES AND PRETRAINING DATASETS USED IN FIGURE 1

All models in Figure 1 are from OpenCLIP (Ilharco et al., 2021). All ViT models used are pretrained
on either LAION-400M (Schuhmann et al., 2021) or LAION-2B (Schuhmann et al., 2022). The
ResNet models are pretrained on YFCC15M, a subset of YFCC100M (Thomee et al., 2016), or the
Conceptual Captions Dataset (Changpinyo et al., 2021)
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