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Abstract
The optimized certainty equivalent (OCE) is a
family of risk measures that cover important ex-
amples such as entropic risk, conditional value-at-
risk and mean-variance models. In this paper,
we propose a new episodic risk-sensitive rein-
forcement learning formulation based on tabular
Markov decision processes with recursive OCEs.
We design an efficient learning algorithm for this
problem based on value iteration and upper con-
fidence bound. We derive an upper bound on the
regret of the proposed algorithm, and also estab-
lish a minimax lower bound. Our bounds show
that the regret rate achieved by our proposed al-
gorithm has optimal dependence on the number
of episodes and the number of actions.

1. Introduction
Reinforcement learning (RL) studies the problem of se-
quential decision making in an unknown environment by
carefully balancing between exploration and exploitation
(Sutton & Barto, 2018). In the classical setting, it describes
how an agent takes actions to maximize expected cumu-
lative rewards in an environment typically modeled by a
Markov decision process (MDP, (Puterman, 2014)). How-
ever, optimizing the expected cumulative rewards alone is
often not sufficient in many practical applications such as
finance, healthcare and robotics. Hence, it may be necessary
to take into account of the risk preferences of the agent in
the dynamic decision process. Indeed, a rich body of litera-
ture has studied risk-sensitive (and safe) RL, incorporating
risk measures such as the entropic risk measure and con-
ditional value-at-risk (CVaR) in the decision criterion, see,
e.g., Shen et al. (2014); Garcıa & Fernández (2015); Tamar
et al. (2016); Chow et al. (2017); Prashanth L & Fu (2018);
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Fei et al. (2020) and the references therein.

In this paper we study risk-sensitive RL for tabular MDPs
with unknown transition probabilities in the finite-horizon,
episodic setting, where an agent interacts with the MDP in
episodes of a fixed length with finite state and action spaces.
To incorporate risk sensitivity, we consider a broad and im-
portant class of risk measures known as Optimized Certainty
Equivalent (OCE, (Ben-Tal & Teboulle, 1986; 2007)). The
OCE is a (nonlinear) risk function which assigns a random
variable X to a real value, and it depends on a concave
utility function, see Equation (1) for the definition. With
an appropriate choice of the utility function, OCE covers
important examples of risk measures, including the entropic
risk, CVaR and mean-variance models, as special cases, so
it is popular in financial applications, such as portfolio opti-
mization, and in the machine learning literature. See Sec-
tion 2.1 for details. Using this unified framework, we aim to
develop efficient learning algorithms for risk-sensitive RL
with OCEs and provide worst-case regret bounds, where the
regret measures the sub-optimality of the learning algorithm
compared to an optimal policy should the model parameters
be completely known.

We formulate a new risk-sensitive episodic RL problem
with recursive OCEs. The conventional objective in risk-
sensitive MDPs (when the model is known) is to optimize
a static risk measure/functional applied to the (possibly
discounted) cumulative rewards over the decision horizon
(Howard & Matheson, 1972; Marcus et al., 1997). Except
for the entropic risk measure, this approach typically suf-
fers from the time-inconsistency issue, which prevents one
from directly applying the dynamic programming princi-
ple (Artzner et al., 2007). In addition, the optimal policies
can be non-Markovian, and are often difficult to compute
(Mannor & Tsitsiklis, 2011; Du et al., 2022). In view of the
time-inconsistency issue and the computational difficulty,
we consider an alternative approach, which is to consider
MDPs with recursive risk measures (Ruszczyński, 2010;
Shen et al., 2013; Bäuerle & Glauner, 2022). In this ap-
proach, instead of optimizing a static risk measure of the
cumulative rewards, one optimizes the value function de-
fined by a recursive application of a risk measure at each
period, which essentially replaces the expectation operator
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in the standard value iteration by the risk measure (OCEs in
our setting). This approach is also partly motivated by recur-
sive utilities in the economics literature (Kreps & Porteus,
1978; Epstein & Zin, 1989). Indeed, our recursive OCE
model is a special case of the so-called dynamic mixture-
averse preferences, which have an axiomatic foundation
(Sarver, 2018) and is a special class of recursive utilities.
The recursive structure in our OCE model implies time
consistency and dynamic programming, which leads to a
Bellman equation in a known environment; see for instance
Bäuerle & Glauner (2022). Our formulation of episodic RL
with recursive OCEs is built on this Bellman equation. Due
to the generality of OCE, our RL formulation unifies and
generalizes several existing episodic RL formulations in the
literature, including standard risk-neutral RL (see, e.g., Azar
et al. (2017)), RL with entropic risk in Fei et al. (2020), and
RL with iterated CVaR in Du et al. (2022). See Section 2.2
for details.

A special case of OCE is the entropic risk measure, which
is obtained by setting the utility function in OCE to be an
exponential function. In this special case, the recursive OCE
model is equivalent to applying the entropic risk measure to
the cumulative reward over the entire decision horizon. In
general, the recursive OCE model and the model of applying
OCE to the cumulative reward directly are different and can
be applied in different problems to account for different
attitudes toward risk. The former tends to lead to more
conservative actions than the latter does, because in the
former the agent is concerned about risk in every step and in
every state; see Du et al. (2022) for a detailed discussion and
a concrete example in this regard in the context of recursive
CVaR.

In this paper, we develop a model-based algorithm for risk-
sensitive RL with recursive OCEs. Our algorithm is a variant
of the UCBVI (Upper Confidence Bound Value Iteration)
algorithm in Azar et al. (2017) for risk-neural RL. The main
novelty in our algorithm design is that the bonus term used
to encourage exploration depends on the utility function in
the specific OCE that one considers. Theoretically, we prove
regret bounds for our algorithm in learning MDPs with a
wide family of recursive risk measures including the mean-
variance criterion, by considering different utility functions
in OCEs. Such bounds are new to the literature, to the best
of our knowledge.

The regret analysis of algorithms for risk-sensitive RL is
difficult mainly due to the nonlinearity of the objective (Fei
et al., 2020). Although the structure of our regret analysis
of the proposed algorithm follows the optimism principle
in provably efficient risk-neutral RL (see, e.g., Azar et al.
(2017); Agarwal et al. (2021)), we develop two new ingredi-
ents to overcome the difficulty in our risk-sensitive setting:
(a) concentration bounds for the OCE of the next-state value

function under the estimated transition distributions, and
(b) a change-of-measure technique to bound the OCE of
the estimated value function under the true transition distri-
bution with an affine functional (see Equation (13)). Our
concentration bounds for OCEs of value functions are differ-
ent from recent results in LA & Bhat (2022) which rely on
the Lipschitz continuity of the utility function and a Wasser-
stein distance approach. Our technique (b) is inspired by the
regret analysis in Du et al. (2022) for iterated CVaR, but it
is much more general and thus is applicable to OCEs. Con-
ceptually, the main insight is to use the fact that the OCE is
a concave risk functional (Ben-Tal & Teboulle, 2007, Theo-
rem 2.1). Its (algebraic) supergradient is a linear functional
(Ruszczyński & Shapiro, 2006) which turns out to be in the
form of an expectation with respect to a new probability
distribution that is related to the true transition distribution
via change-of-measure. This linearization method is crucial
in carrying out the recursions (in the time parameter) in
our regret analysis. Due to change-of-measure, the corre-
sponding Radon-Nikodym derivative naturally appears in
our analysis and we need to carefully bound it.

In addition to the regret upper bound, we also establish a
minimax lower bound. It shows that the regret rate achieved
by our proposed algorithm has optimal dependence on the
number of episodes K and the number of actions A, up to
logarithmic factors. The proof of our lower bound proof is
built on the hard MDP instances constructed in Domingues
et al. (2021) for tabular risk-neutral RL. The main novelty in
our analysis lies in modifying such hard instances to adapt
to the OCEs and bounding value functions which are defined
recursively via OCEs that involve an optimization problem.

1.1. Related Work

Despite rich literature in risk-sensitive RL, there are fairly
limited number of studies on regret minimization in risk-
sensitive MDPs. We provide a concise review below, and
leave the detailed comparisons of existing regret bounds (for
entropic risk and CVaR only) with our bounds to Section 4.1.

To the best of our knowledge, the first regret bound for risk-
sensitive tabular MDP is due to Fei et al. (2020), who study
episodic RL with the goal of maximizing the entropic risk
of the cumulative rewards. By the pleasant properties of
exponential functions in entropic risk, their RL formulation
is in fact equivalent to our general (iterative) formulation
when the OCE is entropic risk.

The results in Fei et al. (2020) have been improved in Fei
et al. (2021a) for tabular MDPs with entropic risk, where
they design two model-free algorithms with improved regret
bounds. In addition, these algorithms have been extended
to the function approximation setting in Fei et al. (2021b)
and to time-inhomogeneous MDPs with variation budgets
in Ding et al. (2022). Liang & Luo (2022) also consider
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RL with the entropic risk, and they use tools from distribu-
tional RL (Bellemare et al., 2017). They propose algorithms
with regret upper bounds matching the results in Fei et al.
(2021a).

Du et al. (2022) propose Iterated CVaR RL, which is an
episodic risk-sensitive RL formulation with the objective of
maximizing the tail of the reward-to-go at each step. Their
RL formulation is a special case of ours. Du et al. (2022)
study both regret miminization and best policy identification,
and provide matching upper and lower bounds with respect
to the number of episodes.

All the aforementioned studies focus on one single risk
measure (entropic risk or CVaR only) for regret analysis in
risk-sensitive MDPs. Their algorithms and analysis typically
rely on the properties of the special risk measure they con-
sider. Bastani et al. (2022) study episodic RL with a class
of risk-sensitive objectives known as spectral risk measures,
which includes CVaR as an example (but not the entropic
risk and mean-variance criterion). They develop an upper-
confidence-bound style algorithm and obtain a regret upper
bound for their algorithm. Although spectral risk measures
cover CVaR as an example, their work is different from Du
et al. (2022) and ours in that their objective is to optimize
the (static) spectral risk of the cumulative rewards, rather
than the value function obtained from iterative application
of the risk measure at each time step. See Appendix A in
Du et al. (2022) and Section 3 in Bastani et al. (2022) for
further discussions.

Paper Organization. The rest of the paper is organized as
follows: we present the problem formulation in Section 2
and describe the algorithm in Section 3. We state and discuss
the main results in Section 4. We provide the proof sketch
of our regret upper bound in Section 5, and conclude in
Section 6. Due to space constraints, proofs and experiments
are given in the Appendix.

2. Problem Formulation
In this section, we introduce the optimized certainty equiva-
lent (OCE), and formulate the risk-sensitive reinforcement
learning problem with recursive OCE.

2.1. The Optimized Certainty Equivalent

We introduce OCE, following Ben-Tal & Teboulle (2007).
Let u : R → [−∞,∞) be a nondecreasing, closed, con-
cave utility function with effective domain dom u = {x ∈
R|u(t) > −∞} ≠ ∅. Suppose u satisfies u(0) = 0 and
1 ∈ ∂u(0), where ∂u(·) denotes the superdifferential of u.
We denote this class of normalized utility functions by U0.
The optimized certainty equivalent (OCE) is defined by

OCEu(X) = sup
λ∈R
{λ+ E[u(X − λ)]}, (1)

Table 1. Popular OCEs and corresponding utility functions. For
CVaR, q(α) = min{x|FX(x) ≥ α} where FX is the cumulative
distribution function of X and [−t]+ = max{−t, 0}.

Name OCEu(X) Utility function u

Mean E[X] u(t) = t

Entropic risk 1
β
logE

[
eβX

]
uβ(t) =

1
β
eβt − 1

β

CVaR E [X | X ≤ q (α)] uα(t) = − 1
α
[−t]+

Mean-Variance E[X]− c · Var(X) uc(t) =
1
4c
1{t > 1

2c
}

+(t− ct2)1{t ≤ 1
2c
}

where X is a bounded random variable (so that OCEu(X)
is finite). The interpretation for OCE in (1) is as follows:
a decision maker can consume part of the future uncertain
income of X dollars at present, and this is denoted by λ.
The present value of X then becomes λ+E[u(X−λ)], and
the OCE represents the optimal allocation of X between
present and future consumption.

OCE captures the risk attitude of a decision maker via
the utility function u. With different choices of the util-
ity functions, OCE covers important examples of popular
risk measures, including the entropic risk measure, CVaR
and mean-variance models, as special cases. See Table 1.
Due to its tractability and flexibility, OCE has been applied
in many areas including finance and machine learning; see,
e.g., Ben-Tal & Teboulle (2007); Lee et al. (2020); LA &
Bhat (2022).

2.2. Episodic Risk-Sensitive MDPs with Recursive OCE

Consider a finite-horizon, tabular, time-inhomogeneous
Markov decision process (MDP),M(S,A, H,P, r), where
S is the set of states with |S| = S, A is the set of actions
with |A| = A, H is the number of steps in each episode,P is
the transition matrix so that Ph(·|s, a) gives the distribution
over states if action a is taken for state s at step h ∈ [H],
where [H] = {1, 2, · · · , H}, and rh : S × A → [0, 1]
is the deterministic reward function at step h. We define
sH+1 as the terminate state, which represents the end of
an episode. A policy π is a collection of H functions
Π := {πh : S → A}h∈[H].

The reinforcement learning agent repeatedly interacts with
the MDPM :=M(S,A, H,P, r) over K episodes. For
simplicity (as in many prior studies (Azar et al., 2017;
Du et al., 2022)) we assume that the reward function
(rh(s, a))s∈S,a∈A is known, but the transition probabili-
ties (Ph(·|s, a))s∈S,a∈A are unknown. In each episode
k = 1, 2, · · · ,K, an arbitrary fixed initial state sk1 = s1 ∈ S
is picked.1 An algorithm algo initializes and implements

1The results of the paper can also be extended to the case where
the initial states are drawn from a fixed distribution over S.
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a policy π1 for the first episode, and executes policy πk

throughout episode k based on the observed past data
(states, actions and rewards) up to the end of episode k − 1,
k = 2, · · · ,K.

To capture the (dynamic) risk in the decision making process
of the agent, we propose a novel RL formulation with re-
cursive OCEs based on the studies of MDPs with recurisve
measures (Ruszczyński, 2010; Bäuerle & Glauner, 2022).
Specifically, we use V π

h : S → R to denote the value func-
tion at step h under policy π and we use Qπ

h : S ×A → R
to denote the state-action value function at step h. They are
recursively defined as follows: for all h ∈ [H], s ∈ S and
a ∈ A,

Qπ
h(s, a) = rh(s, a) +OCEu

s′∼Ph(·|s,a)(V
π
h+1(s

′)), (2)

V π
h (s) = Qπ

h(s, πh(s)), V π
H+1(s) = 0, (3)

where

OCEu
s′∼Ph(·|s,a)(g(s

′))

= sup
λ∈R
{λ+ Es′∼Ph(·|s,a)[u(g(s

′)− λ)]}, (4)

with g : S → R being a real-valued function.

Note that in (2)–(3), the risk measure OCE is applied to
the next-state value at each period. Due to the generality
of OCEs, the recursions in (2)–(3) cover and unify several
existing frameworks: (a) when u(t) = t, the OCE becomes
the mean, and (2)–(3) become the standard Bellman equa-
tion for the policy π in risk-neutral RL; (b) when u is an
exponential function given in Table 1, OCE becomes the
entropic risk, and (2)–(3) recover the Bellman equation for
the policy π in risk-sensitive RL with entropic risk (see
Equation (3) in Fei et al. (2021a)); (c) when u is a piecewise
linear function and the OCE becomes the CVaR, (2)–(3)
reduce to the recursion of value functions in risk-sensitive
RL with iterated CVaR (see Equation (1) in Du et al. (2022)).
We also remark that when the OCE is a coherent risk mea-
sure (e.g. CVaR), it has a dual or robust representation,
and the recursion (2)–(3) can be interpreted as the Bellman
equation of a distributionally robust MDP, see Section 6 of
Bäuerle & Glauner (2022) for detailed discussions.

Because S,A, H are finite, by Theorem 4.8 in Bäuerle
& Glauner (2022), there exists an optimal Markov pol-
icy π∗ which gives the optimal value function V ∗

h (s) =
maxπ∈Π V π

h (s) for all s ∈ S and h ∈ [H]. The optimal
Bellman equation is given by

Q∗
h(s, a) = rh(s, a) +OCEu

s′∼Ph(·|s,a)(V
∗
h+1(s

′)), (5)

V ∗
h (s) = max

a∈A
Q∗

h(s, a), V ∗
H+1(s) = 0. (6)

The expected (total) regret for algorithm algo over K

episodes of interaction with the MDPM is then defined as

Regret(M, algo,K) = E

[
K∑

k=1

(V ∗
1 (s

k
1)− V πk

1 (sk1))

]
,

(7)
where the term V ∗

1 (s
k
1) − V πk

1 (sk1) measures the perfor-
mance loss when the agent executes (suboptimal) policy πk

in episode k. Our goal is to propose an efficient learning al-
gorithm with a provable worst-case regret upper bound that
scales sublinearly in K, as well as to establish a minimax
lower bound.

3. The OCE-VI Algorithm
In this section, we propose a model-based algorithm, de-
noted by OCE-VI, for risk-sensitive RL with recursive OCE.

Before presenting the algorithm, we first introduce some
notations. A state-action-state triplet (s, a, s′) means that
the process is in state s, takes an action a and then moves to
state s′. Similarly, a state-action pair (s, a) means that the
process is in state s and takes an action a. At the beginning
of the k-th episode, we set the observed cumulated visit
counts to (s, a, s′) at step h up to the end of episode k − 1
as Nk

h (s, a, s
′) for s, s′ ∈ S and a ∈ A, and the cumulated

visit counts to (s, a) at step h up to the end of episode k− 1
as Nk

h (s, a) for s ∈ S and a ∈ A. When 2 ≤ k ≤ K, for
s ∈ S, a ∈ A, s′ ∈ S, the formulas for Nk

h (s, a, s
′) and

Nk
h (s, a) are given by

Nk
h (s, a, s

′) =

k−1∑
i=1

1{(sih, aih, sih+1) = (s, a, s′)},

Nk
h (s, a) =

k−1∑
i=1

1{(sih, aih) = (s, a)}.

(8)

When k = 1, we set Nk
h (s, a, s

′) = Nk
h (s, a) = 0 for

s ∈ S, a ∈ A, s′ ∈ S. Then the empirical transition proba-
bilities are given by

P̂ k
h (s

′|s, a) = Nk
h (s, a, s

′)

max{1, Nk
h (s, a)}

. (9)

In particular, if (s, a) has not been sampled before episode
k, P̂ k

h (s
′|s, a) = 0 for all s′.

Similar to UCBVI in Azar et al. (2017) for risk-neutral RL,
the OCE-VI algorithm achieves exploration by awarding
some bonus for exploring some state-action pairs during the
learning process. We consider the bonus

bkh(s, a) = |u(−H + h)|

√
2 log

(
SAHK

δ

)
max{1, Nk

h (s, a)}
, (10)

where (s, a) ∈ S ×A, and δ ∈ (0, 1) is an input parameter
in our algorithm. The details of the OCE-VI algorithm are
summarized in Algorithm 1.
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Algorithm 1 The OCE-VI Algorithm

Input: Parameters δ,S,A, H,K, r and an utility function u ∈ U0

for episode k = 1, · · · ,K do
Estimate P̂ k

h (s
′|s, a) by (8) and (9) for all (s, a, s′, h) ∈ S ×A× S × [H]

Initialize V̂ k
H+1(s)← 0 for all s ∈ S

for step h = H,H − 1, · · · , 1 do
for (s, a) ∈ S ×A do

if Nk
h (s, a) ≥ 1 then

Compute bkh(s, a) by (10) according to the utility function u

Q̂k
h(s, a)← min {rh(s, a) +OCEu

s′∼P̂k
h (·|s,a)(V̂

k
h+1(s

′)) + bkh(s, a), H − h+ 1}
else
Q̂k

h(s, a)← H − h+ 1
end if
V̂ k
h (s)← maxa′∈A Q̂k

h(s, a
′), πk

h(s)← argmaxa′∈A Q̂k
h(s, a

′)
end for

end for
Apply policy πk throughout episode k

end for

Remark 3.1. The dependence of the bonus (10) on the utility
function u sheds some light on how the degree of risk aver-
sion affects the degree of exploration. Ben-Tal & Teboulle
(2007) show that an agent with OCE preferences is weakly
risk averse (i.e., any random payoff is less preferred by
the agent to its mean) if and only if the utility function is
dominated by the identity function (i.e., u(x) ≤ x, x ∈ R).
Now, consider two agents with recursive OCE preferences
represented by utility functions u1 and u2, respectively. If
u1 is dominated by u2 (i.e., u1(x) ≤ u2(x), x ∈ R), then
|u1(−H + h)| ≥ |u2(−H + h)| because −H + h ≤ 0 and
ui(x) ≤ 0, x ≤ 0, i = 1, 2. Consequently, the exploration
bonus for agent 1 is larger than that for agent 2. Therefore,
if we interpret the dominance of u2 over u1 as a higher
degree of risk aversion of agent 1 than that of agent 2, as
suggested by the characterization of weak risk aversion Ben-
Tal & Teboulle (2007), then in our algorithm for a more risk
averse agent we need to have a larger bonus to encourage
her to explore. We also remark that our bonus (10) is based
on Chernoff-Hoeffding’s concentration inequalities and it
scales linearly with |u(−H + h)|. It might be possible to
design tighter bonuses that may depend on the utility func-
tion in a nonlinear manner. This is an open problem for
risk-sensitive RL with recursive OCE and we leave it for
future work.

Remark 3.2. The OCE-VI algorithm is computationally
tractable. In each episode, the computational cost of the
algorithm is similar to solving a known MDP with value
iteration, except that one needs to to compute the quan-
tity OCEu

s′∼P̂k
h (·|s,a)(V̂

k
h+1(s

′)) when updating the Q func-
tion. For certain special utility functions such as those
in Table 1, this quantity can be explicitly computed be-
cause the state space is finite. In general, computing this

OCE is equivalent to solving the optimization problem
supλ∈R{λ + Es′∼P̂k

h (·|s,a)[u(V̂
k
h+1(s

′) − λ)]}. This is a
one-dimensional concave optimization problem because the
utility function u is concave and P̂ k

h (·|s, a) is a probabil-
ity distribution. Because the state space is finite, we can
exchange the expectation and the derivative/supergradient
with respect to λ in the first order optimality condition of the
above optimization problem. Thus, when the utility function
is differentiable, this concave optimization problem can be
solved efficiently using the gradient descent or Newton’s
method. When the utility function is nondifferentiable, it
can be solved with efficient proximal gradient methods; see,
e.g., Parikh et al. (2014).

4. Main Results
In this section, we present our main results. Our first main
result is an upper bound on the expected regret of the pro-
posed OCE-VI algorithm.
Theorem 4.1. The expected regret of the OCE-VI algorithm
satisfies

Regret(M,OCE-VI,K)

≤ Õ

 H∑
h=1

|u(−H + h)|S

√√√√h−1∏
i=1

u′
−(−H + i)AK

 ,

where Õ(·) ignores the logarithmic factors in S,A,H and
K and u′

−(·) is the left derivative of u.

The regret upper bound depends on the utility function u in
the OCE (1) via the term |u(−H + h)|, which comes from

the bonus (10), and the term
h−1∏
i=1

u′
−(−H+ i), which comes
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from bounding the Radon-Nikodym derivative arising from
the linearization of the OCE as a concave functional in our
regret analysis (see Equation (16)). We provide a sketch
of the proof of Theorem 4.1 in Section 5, and give the full
details in Appendix B.

We next present our second main result, which provides a
minimax regret lower bound for RL with recursive OCE.
We first state the following assumption.

Assumption 4.2. The number of states and actions satisfy
S ≥ 6, A ≥ 2, and there exists an integer d such that S =

3 + Ad−1
A−1 . In addition, the horizon H satisfies H ≥ c2d,

where c2 > 2 is a constant.

Assumption 4.2 is adapted from Assumption 1 in
Domingues et al. (2021), who provide a minimax lower
bound in the risk-neutral episodic RL setting. This assump-
tion is imposed to simplify the analysis, more precisely the
construction of hard MDP instances, and it can be relaxed
following the discussion in Appendix D of Domingues et al.
(2021).

Theorem 4.3. Under Assumption 4.2, for any algorithm
algo, there exists an MDPM whose transition probabilities
depend on h such that

Regret(M, algo,K)

≥
√
SAHK

18
√
c1c2

·
[
u

((
1− 2

c2

)
H − λ∗

)
− u(−λ∗)

]
for all K ≥ c1HSA

2c2
, where the constants c1 ≥ 4, c2 > 2

and λ∗ satisfies

1 ∈
(
1− 2

c1

)
∂u

((
1− 2

c2

)
H − λ∗

)
+

2

c1
∂u(−λ∗).

Note that when u(t) = t, OCE becomes expectation, and
our regret lower bound in Theorem 4.3 is Ω(H

√
SAHK),

by choosing for instance c1 = 4 and c2 = 3. This recovers
the (tight) regret lower bound in Domingues et al. (2021)
in learning risk-neutral tabular MDP. For a general utility
function u in OCE, the choices of constants c1 ≥ 4, c2 > 2
should be based on the specific utility function to generate
tighter lower bounds. For illustrations, we provide some
examples in Section 4.1.

The proof of Theorem 4.3 is based on extending the proof of
Theorem 9 in Domingues et al. (2021) to our risk-sensitive
setting. There are essential difficulties in this extension.
These include how to construct hard MDP instances that
adapt to the OCE, and how to bound the value functions
defined recursively via OCE that involves an optimization
problem. Due to space limitations, we provide the proof
details in Appendix C.
Remark 4.4. For the simplicity of presentation, we focus
on OCE in (1), which exhibits the risk aversion property

with OCEu(X) ≤ E[X], due to the concavity of the util-
ity function; see Proposition 2.2 in Ben-Tal & Teboulle
(2007). Our main results in the paper hold in the risk-
seeking setting as well, where OCEu(X) is defined by
infλ∈R{λ + E[u(X − λ)]} with a convex utility func-
tion u. In this case, we need to use a bonus bkh(s, a) =

|u(−H + h)|
√

2S log(SAHK
δ )

max{1,Nk
h (s,a)} in the OCE-VI algorithm.

Compared with (10), this bonus has an extra term
√
S,

which arises from a technical step in the proof for the risk-
seeking case (see inequality (2) of Lemma B.2). The regret
bounds still hold in this setting.

4.1. Examples and Comparisons to Related Work

We consider several specific utility functions and the result-
ing OCEs to illustrate our regret bounds in Theorems 4.1
and 4.3.

4.1.1. MEAN-VARIANCE MODEL

When the utility function is uc(t) = (t− ct2)1{t ≤ 1
2c}+

1
4c1{t > 1

2c}, the corresponding OCE is the celebrated
mean-variance model (Markowitz, 1952), where c > 0 is a
given risk parameter representing the degree of risk aversion.
To the best of our knowledge, the following results are the
first regret bounds for risk-sensitive MDPs with the recursive
mean-variance model.

• Upper bound. Our regret upper bound in Theorem 4.1
is Õ

(
(1 + 2cH)

H−1
2 (H2 + cH3)S

√
AK

)
.

• Lower bound. We can choose c1 = 8, c2 = 4,
and then λ∗ =

(
1− 2

c1

)(
1− 2

c2

)
H = 3H/8.

The regret lower bound in Theorem 4.3 becomes
Ω
(
(H + 1

4cH
2)
√
SAHK

)
.

4.1.2. (ITERATED) CVAR

When the utility function is uα(t) = − 1
α [−t]+, α > 0, the

corresponding OCE is CVaR, where α > 0 is the risk level
of CVaR. Our RL formulation in Section 2.2 reduces to the
one in Du et al. (2022), and our OCE-VI algorithm becomes
their ICVaR algorithm with a smaller exploration bonus.

• Upper bound. Our regret upper bound in Theorem 4.1

becomes Õ
(

( 1√
α
)H−1−H( 1√

α
−1)

(1−
√
α)2

S
√
AK

)
. When

0 < α ≤ 3−
√
5

2 , this upper bound can be further

bounded by Õ
((

1√
αH+1

− H√
α

)
S
√
AK

)
. When

3−
√
5

2 < α < 1, the regret bound can be further

bounded by Õ
(

H2S
√
AK√

αH+1

)
. Du et al. (2022) design
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the ICVaR algorithm and can obtain a worst-case regret
upper bound of Õ

(
H2S

√
AK√

αH+1

)
.2 Our result improves

the result of Du et al. (2022) by a factor of H2 when
0 < α ≤ 3−

√
5

2 . This is due to a smaller exploration
bonus used in our algorithm compared with theirs.

• Lower bound. We can choose c1 = 2
α and c2 = 4 in

Theorem 4.3, and let λ∗ =
(
1− 3

c2

)
H . Then, our

regret lower bound becomes Ω
(
H
√

SAHK
α

)
and it

is problem-independent. This is in contrast with Du
et al. (2022), who derive a regret lower bound that
depends on some problem-dependent quantity, specifi-
cally, the minimum probability of visiting an available
state under any feasible policy.

4.1.3. ENTROPIC RISK

When the utility function is uβ(t) =
1
β e

βt − 1
β , β < 0, the

corresponding OCE is entropic risk, where β < 0 is a given
risk parameter representing the degree of risk aversion. In
this case, our RL formulation in Section 2.2 is equivalent
to the one in Fei et al. (2020). Note, however, that our
OCE-VI algorithm is model-based and is different from the
model-free algorithms proposed in Fei et al. (2020).

• Upper bound. Our regret upper bound in
Theorem 4.1 for the OCE-VI algorithm is
Õ
(
exp(−βH2

4 ) exp(−βH)−1
−β S

√
AK

)
. This bound

has a factor that is exponential in |β|H2, which is
similar as the bounds in Fei et al. (2020). Recently,
Fei et al. (2021a) propose the RSVI2 and RSQ2
algorithms, and they manage to remove this factor.
Their algorithms are based on the nice properties of the
exponential utility, in particular, the so-called exponen-
tial Bellman equation which takes the exponential on
both sides of the Bellman equation in Fei et al. (2020).
However, such techniques can not be applied to our
general setting, because general utility functions do
not possess the same nice properties as the exponential
function. Even though our upper bound is worse than
the one in Fei et al. (2021a), we show numerically
that our algorithm can outperform their algorithms on
randomly generated MDP instances. See Figure 1 for
an example and Appendix D for experimental details.

• Lower Bound. We can choose c1 =
2

e−β−1
· exp

(
−β
(
1− 2

c2

)
H
)

and c2 = 6

in Theorem 4.3, and the corresponding
λ∗ = 1

β log
((

1− 2
c1

)
exp

(
β
(
1− 2

c2

)
H
)
+ 2

c1

)
.

2Du et al. (2022) consider time-homogeneous MDPs, and we
modify their regret bounds to adapt to our time-inhomogeneous
setting.

Then our regret lower bound becomes

Ω

(
exp(− 1

3βH)−1

−β

√
SAHK

)
. By contrast, Fei

et al. (2020) derive a regret lower bound of
Ω
(

exp( 1
2 |β|H)−1

|β|
√
K
)

, which does not depend on S

or A (due to the simple structure of the hard instances
they construct). Liang & Luo (2022) derive a regret
lower bound Ω

(
exp( 1

6 |β|H)−1

|β|
√
SAHK

)
in the

risk-seeking setting when β > 0, but they mention
that it is unclear whether a similar bound holds in the
risk-averse setting when β < 0; see page 30 of their
paper.

Figure 1. Performance comparison of the OCE-VI algorithm with
RSVI2 and RSQ2 algorithms in Fei et al. (2021a) on a randomly
generated MDP with (H,S,A) = (6, 20, 3) and the entropic risk
objective.

4.2. Discussions on tightness of our regret bounds

Theorems 4.1 and 4.3 imply that the OCE-VI algorithm
achieves a regret rate with the optimal dependence on the
number of episodes K and the number of actions A, up to
logarithmic factors. While the bounds on K are the most
important as they imply the convergence rates of learning
algorithms, it remains an important open question whether
one can improve the dependence of these bounds on H and
S to narrow down the gap between the upper and lower
bounds in the risk-sensitive RL setting. We elaborate further
on this issue below.

From Theorems 4.1 and 4.3, we can see that the gap between
our upper and lower bounds in terms of S is

√
S, where S

is the number of states. The extra
√
S in our regret upper

bound arises from a step in our proof where we apply an
L1 concentration bound for the S-dimensional empirical
transition probability vector, see Equation (12) in Section 5.
This extra

√
S factor can be removed in RL for risk-neutral

MDPs by directly maintaining confidence intervals on the
optimal value function; see, e.g., Azar et al. (2017); Zanette
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& Brunskill (2019). However, it is not clear how to adapt
this technique to our risk-sensitive setting, i.e., remove

√
S

in (12). This is primarily because the estimated value func-
tions V̂ k

h in our algorithm are not only random, but they
also involve OCE which is nonlinear and defined by an
optimization problem (so the optimizer is also random).

There is an exponential gap in terms of H between our
upper and lower bounds. This gap is due to the linearization
of OCE in the recursive procedure of the regret analysis
of our algorithm. Indeed, if u(t) = t, the corresponding
regret upper bound is Õ(H2S

√
AK), which does not have

the exponential term of H . In the risk-neutral setting, one
can improve the dependence of the upper bound on H by
considering Bernstein-style exploration bonus which is built
from the empirical variance of the estimated value function
V̂ k
h+1 at the next state, see, e.g., Azar et al. (2017). However,

it is still an open problem how to use Bernstein-type bonus
to improve the regret bound in risk-sensitive RL (Fei et al.,
2021a; Du et al., 2022). In our RL setting with recursive
OCEs, it is possible to design a Bernstein-type bonus, but
it may not lead to improved regret bounds, at least within
our current analysis framework. We provide some informal
discussions below including the challenges in improving
bounds.

First, to ensure optimism with Bernstein-type (or variance-
related) bonuses, we need analogous results to Lemmas B.1
and B.2 in the appendix, which provide concentration
bounds for OCEs of next-state value functions. Using Bern-
stein inequality instead of Hoeffding inequality, the confi-
dence bound in Lemma B.1 becomes√

2Vars′∼Ph(·|s,a)
(
u(V ∗

h+1(s
′)− λ∗

h+1)
)
log
(
SAHK

δ

)
Nk

h (s, a)

+ lower order term.

This bound allows us to design a Bernstein-type bonus
bkh(s, a) in the form of

2

√√√√Vars′∼P̂k
h (·|s,a)

(
u(V̂ k

h+1(s
′)− λ̂k

h+1)
)
log
(
SAHK

δ

)
Nk

h (s, a)︸ ︷︷ ︸
main term

+ lower order term.

Compared with the Bernstein bonus in the risk-neutral RL
setting (see e.g. Azar et al. (2017)), V̂ k

h+1(s
′) inside the

variance operator is replaced by u(V̂ k
h+1(s

′)− λ̂k
h+1) in our

risk-sensitive RL setting. We use this approach because
the OCE involves an optimization problem and we need to
‘linearize’ it (i.e., remove the sup in the definition of OCE)
and work with the utility u applied to the value function first
in order to derive concentration bounds for OCEs. With this
new bonus, we might be able to get the same regret bound
as the one presented in the current paper.

However, it is difficult to get improved bounds as we explain
below. In the risk-neutral setting, Azar et al. (2017) use an
iterative-Bellman-type-Law of Total Variance so that the
sum of the variances of V ∗

h+1 over H steps is bounded by
the variance of the sum of H-step rewards; see Equation (26)
in Azar et al. (2017) and Lemma C.5 in Jin et al. (2018) for a
proof of this result. This is a key technical result in obtaining
improved bounds in H . However, this result does not hold
in our setting for two reasons: first, our value function is
not the expected sum of H-step rewards; second, while
the value V ∗

h+1 satisfies a Bellman recursion, the quantity
u(V ∗

h+1(s
′)− λ∗

h+1) (that appears in the variance operator)
does not. Therefore, we may still have to use the crude
bound for the variance term in the Bernstein-type bonus
by using a maximum bound for u(V ∗

h+1(s
′)− λ∗

h+1). This
leads to the same bound as in our current paper and we do
not obtain improvements in the regret with respect to H .

5. Proof Sketch of Theorem 4.1
The structure of the proof of Theorem 4.1 follows the op-
timism principle in provably efficient risk-neutral RL (see,
e.g., Agarwal et al. (2021, Chapter 7)), however, we pro-
vide two new ingredients in our analysis: (a) concentration
bounds for the OCE of the next-state value function under es-
timated transitions (see (11) and (12)), and (b) a change-of-
measure technique to bound the OCE of the estimated value
function (under the true transition) with an affine function
(see (13)), and bound the the Radon-Nikodym derivative
(see (16)). For notational simplicity, we use Ph to denote
Ph(s

k
h+1|skh, akh) and use P̂ k

h to denote P̂ k
h (s

k
h+1|skh, akh)

when there is no ambiguity.

Step 1: Optimism. We can first show optimism, i.e., the
event V̂ k

h ≥ V ∗
h for all h, k holds with a high probability,

where V̂ k
h is the estimated value function in our algorithm

in episode k. This step relies on a concentration bound of
the OCE of the optimal value function under the estimated
transitions P̂ k

h : with probability 1− δ (where δ ∈ (0, 1)),

OCEu
Ph

(V ∗
h+1)−OCEu

P̂k
h

(V ∗
h+1) ≤ bkh. (11)

This bound can be proved by using the representation of the
OCE in (1), together with similar martingale arguments used
in the risk-neutral RL setting (Agarwal et al., 2021, Lemma
7.3). By optimism, the regret in (7) is upper bounded by
E[
∑K

k=1(V̂
k
1 − V πk

1 )].

Step 2: Bounding V̂ k
h − V πk

h ,∀k, h. By definition,

V̂ k
h − V πk

h ≤ bkh +OCEu
P̂k

h

(V̂ k
h+1)−OCEu

Ph
(V πk

h+1)

= bkh +
[
OCEu

P̂k
h

(V̂ k
h+1)−OCEu

Ph
(V̂ k

h+1)
]

+
[
OCEu

Ph
(V̂ k

h+1)−OCEu
Ph

(V πk

h+1)
]
.
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Step 2.1: The second term in the above equation can be
bounded by using a concentration result for the OCE of the
estimated value function V̂ k

h+1: with probability 1− δ,

OCEu
P̂k

h

(V̂ k
h+1)−OCEu

Ph
(V̂ k

h+1) ≤
√
S · bkh. (12)

The extra
√
S factor, compared with (11), is because both

V̂ k
h+1 and P̂ k

h are random and we use L1 concentration
bounds for ||P̂ k

h − Ph||1 as in Jaksch et al. (2010).

Step 2.2: The third term OCEu
Ph

(V̂ k
h+1)−OCEu

Ph
(V πk

h+1)
is more difficult to bound. Because the OCE is a con-
cave nonlinear functional, we expect that OCEu

Ph
(V̂ k

h+1)−
OCEu

Ph
(V πk

h+1) ≤ ℓ(V̂ k
h+1 − V πk

h+1), where ℓ(·) is a linear
function of random variables and it is a supergradient of
the OCE. We actually show that ℓ can be represented in the
form of an expectation:

OCEu
Ph

(V̂ k
h+1)−OCEu

Ph
(V πk

h+1) ≤ EBh
(V̂ k

h+1 − V πk

h+1),
(13)

where the expectation EBh
[·] is taken with respect to a

new probability distribution Bh that is linked to the true
transition distribution Ph by change-of-measure. Specif-
ically, using the first order optimality condition for
OCEu

Ph
(V πk

h+1) as a concave optimization problem, we have
1 ∈ Es′∼Ph

[∂u(V πk

h+1(s
′) − λk

h+1)] where λk
h+1 is an op-

timal solution. We can find a supergradient Λk
h+1(s

′) ∈
∂u(V πk

h+1(s
′) − λk

h+1) that satisfies EPh
[Λk

h+1] = 1, and
define the new distribution Bh by

Bh(s
′|s, a) = Ph(s

′|s, a)Λk
h+1(s

′), ∀s′ ∈ S.

Here, Λk
h+1 is the Radon-Nikodym derivative.

By combining Steps 2.1 and 2.2, we obtain

V̂ k
h − V πk

h ≤ 2
√
S · bkh + EBh

[V̂ k
h+1 − V πk

h+1]. (14)

Step 3: Bounding the regret. Applying (14) recursively
over h and using (10), we have that with probability 1− 2δ,

K∑
k=1

(
V̂ k
1 − V πk

1

)
(15)

≤
H∑

h=1

K∑
k=1

EwB
hk

2√2|u(−H + h)|

√
S log

(
SAHK

δ

)
Nk

h

 ,

where wB
hk is the probability of πk visiting (skh, a

k
h)

at step h starting from sk1 under probability measures
Bi(·|ski , aki ), i = 1, · · · , h− 1. Specifically,

EwB
hk
[·] :=

{
1 h = 1,

EB1

[
EB2

[
· · ·EBh−1

[·]
]]

h ≥ 2.

The main difficulty in bounding E[
∑K

k=1(V̂
k
1 − V πk

1 )] is
that wB

hk is built upon the probability measure Bh for any
k ∈ [K], h ∈ [H] while we have to take expectation under
probability measure Ph outside the summation over k ∈ [K].

To address this issue, we first note that EwB
hk

[
1√
Nk

h

]
=

E

[
Λk
2 · · ·Λk

h
1√
Nk

h

∣∣∣∣∣sk1 , ak1
]

, which implies

E

 K∑
k=1

EwB
hk

 1√
Nk

h

 =

K∑
k=1

E

Λk
2 · · ·Λk

h

1√
Nk

h

 .

Using Cauchy–Schwarz inequality, this term can be upper

bounded by
√∑K

k=1 E[Λk
2 · · ·Λk

h]
2 ·
∑K

k=1 E
[

1
Nk

h

]
. It is

well-known that
∑K

k=1
1

Nk
h

≤ SA log(3K) (Azar et al.,

2017). One can show that E[Λk
2 · · ·Λk

h] = 1 and 0 ≤
Λk
i+1 ≤ u′

−(−H + i). Then we have

K∑
k=1

E[Λk
2 · · ·Λk

h]
2 ≤

h−1∏
i=1

u′
−(−H + i)K. (16)

Summing over h, choosing δ = 1
2KH and applying a stan-

dard argument (see, e.g., Chapter 7.3 of Agarwal et al.
(2021) ), we obtain the bound in Theorem 4.1.

6. Conclusion and Future Work
In this paper we have proposed a risk-sensitive RL formu-
lation based on episodic finite MDPs with recursive OCEs.
We develop a learning algorithm, OCE-VI, and establish
a worst-case regret upper bound. We also prove a regret
lower bound, showing that the regret rate achieved by our
proposed algorithm actually has the optimal dependence on
the numbers of episodes and actions. Because OCEs encom-
pass a wide family of risk measures, our paper generates
new regret bounds for episodic risk-sensitive RL problems
with those risk measures.

Regret minimization for risk-sensitive MDPs is still largely
unexplored. For future work, one important direction is
to improve regret bounds in the number of states and the
horizon length. Other interesting directions include, to
name a few, studying large or continuous state/action spaces,
considering risk measures other than OCEs, and obtaining
problem-dependent regret bounds.
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A. Preliminary Lemmas
In this section, we present some preliminary lemmas that will be used in the proofs of Theorems 4.1 and 4.3.

Lemma A.1 is Ben-Tal & Teboulle (2007, Theorem 2.1) and it summarizes some fundamental properties of OCE.
Lemma A.1. (Main Properties of OCE) For any utility function u ∈ U0, and any bounded random variable X the following
properties hold:
(a)Shift Additivity. OCEu(X + c) = OCEu(X) + c,∀c ∈ R.
(b)Consistency. OCEu(c) = c, for any constant c ∈ R.
(c)Monotonicity. Let Y be any random variable such that X(w) ≤ Y (w),∀w ∈ Ω. Then,

OCEu(X) ≤ OCEu(Y ).

(d)Concavity. For any random variables X1, X2 and any µ ∈ (0, 1), we have

OCEu(µX1 + (1− µ)X2) ≥ µOCEu(X1) + (1− µ)OCEu(X2).

The following lemma provides preliminary bounds for the value functions (see (2) and (3)) and the regret of learning
algorithms.
Lemma A.2. For any s ∈ S, a ∈ A, h ∈ [H], π ∈ Π and u ∈ U0, we have Qπ

h(s, a) ∈ [0, H − h + 1] and V π
h (s) ∈

[0, H − h+ 1]. Consequently, for each K ≥ 1, we have 0 ≤ Regret(M, algo,K) ≤ KH for any algo.

Proof. Recall that Qπ
h(s, a) = rh(s, a) +OCEu

s′∼Ph(·|s,a)(V
π
h+1(s

′)) and V π
H+1(s) = 0,∀s ∈ S. Then, we can calculate

that

Qπ
H(s, a) = rH(s, a) +OCEu

s′∼PH(·|s,a)(V
π
H+1(s

′))
(1)
= rH(s, a) ∈ [0, 1],

V π
H(s) = max

a∈A
rH(s, a) ∈ [0, 1],

where equality (1) is due to property (b) in Lemma A.1. Hence, we have

Qπ
H−1(s, a) = rH−1(s, a) +OCEu

s′∼PH−1(·|s,a)(V
π
H(s′))

(1)

≤ rH−1(s, a) +OCEu
s′∼PH−1(·|s,a)(1) ∈ [1, 2],

Qπ
H−1(s, a) = rH−1(s, a) +OCEu

s′∼PH−1(·|s,a)(V
π
H(s′))

(2)

≥ rH−1(s, a) +OCEu
s′∼PH−1(·|s,a)(0) ∈ [0, 1],

V π
H−1(s) = max

a∈A
Qπ

H−1(s, a) ∈ [0, 2],

where inequalities (1) and (2) hold due to properties (b) and (c) in Lemma A.1. Carrying out this procedure repeatedly until
step h, we can get

Qπ
h(s, a) ∈ [0, H − h+ 1], and V π

h (s) ∈ [0, H − h+ 1].

Using the definition (7), we then immediately obtain that 0 ≤ Regret(M, algo,K) ≤ KH for any algo.

With Lemma A.2, we can obtain the following result, which shows that the optimization problem in
OCEu

s′∼Ph(·|s,a)(V
π
h+1(s

′)) has an optimal solution in the support of the random variable V π
h+1(s

′).

Lemma A.3. For any probability measure Ph(·|s, a), any s ∈ S, a ∈ A, h ∈ [H], suppose V π
h+1(s

′) ∈ [0, H − h] for
s′ ∼ Ph(·|s, a). Then, we have

OCEu
s′∼Ph(·|s,a)(V

π
h+1(s

′)) = max
λ∈[0,H−h]

{λ+ Es′∼Ph(·|s,a)[u(V
π
h+1(s

′)− λ)]}. (17)

Proof. Note that V π
h+1(s

′) ∈ [0, H − h] for s′ ∼ Ph(·|s, a) by Lemma A.2. By the concavity and continuity of u,
we deduce that the function G(λ) := λ + Es′∼Ph(·|s,a)[u(V

π
h+1(s

′) − λ)] is concave and continuous, and moreover,
G(λ) ≤ Es′∼Ph(·|s,a)[V

π
h+1(s

′)] < ∞ for all λ ∈ R due to the fact that u(x) ≤ x for all x. In addition, ∂G(λ) =
1−Es′∼Ph(·|s,a)[∂u(V

π
h+1(s

′)− λ)] due to the finite state space S , and thus, G(λ) will be nonincreasing when λ ≥ H − h
due to the fact that η ≥ 1 for all η ∈ ∂u(x), x ≤ 0. It follows that the set of optimal solutions to the problem supλ∈R G(λ)
is nonempty. Hence, we can apply Proposition 2.1 in Ben-Tal & Teboulle (2007) and obtain the desired result.
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B. Proof of Theorem 4.1
We present a series of lemmas in Section B.1, and prove Theorem 4.1 in Section B.2. The relation of different lemmas is
given below.

Lemma B.1 Lemma B.2 Lemma B.3

Lemma B.4 Lemma B.5

Lemma B.6 Lemma B.7

Lemma B.8 Lemma B.9

Theorem 4.1

B.1. Preparations for the Proof of Theorem 4.1

In this subsection, we state and prove a few lemmas needed for the proof of theorem 4.1. Recall that the bonus in the

OCE-VI algorithm is bkh(s, a) = |u(−H + h)|
√

2 log(SAHK
δ )

max{1,Nk
h (s,a)} for any (s, a, h, k) ∈ S ×A× [H]× [K].

Lemma B.1 provides a bound for the difference between Es′∼Ph(·|s,a)
[
u(V ∗

h+1(s
′)− λ∗

h+1)
]

and its estimation for all
h ∈ [H], where

λ∗
h+1 ∈ argmax

λ∈[0,H−h]

{λ+ Es′∼Ph(·|s,a)[u(V
∗
h+1(s

′)− λ)]}.

Note that both V ∗
h+1 and λ∗

h+1 are deterministic quantities. To facilitate the presentation, we let

Hk
h = ((S ×A)H−1 × S)k−1 × (S ×A)h−1 × S (18)

be the set of possible histories up to step h in episode k. Then, one sample of the history up to step h in episode k is

Hk
h = (s11, a

1
1, s

1
2, a

1
2, · · · , s1H , · · · , sk1 , ak1 , · · · , skh−1, a

k
h−1, s

k
h) ∈ Hk

h.

Lemma B.1. For any δ ∈ (0, 1), we have

P

(
Es′∼Ph(·|s,a)

[
u(V ∗

h+1(s
′)− λ∗

h+1)
]
− Es′∼P̂k

h (·|s,a)
[
u(V ∗

h+1(s
′)− λ∗

h+1)
]

≤
∣∣u(H − h− λ∗

h+1)− u(−λ∗
h+1)

∣∣√ 2 log(SAHK
δ )

max{1, Nk
h (s, a)}

,

V ∗
h+1 : S → [0, H − h], λ∗

h+1 ∈ [0, H − h],∀(s, a, h, k) ∈ S ×A× [H]× [K]

)
≥ 1− δ.

(19)

Proof. We adapt the proof of Lemma 7.3 in Agarwal et al. (2021) who consider the risk neural episodic RL setting. For
each fixed (s, a, h, k) ∈ S ×A× [H]× [K], we have to consider two cases.

Firstly, according to section 3, when Nk
h (s, a) = 0, we have P̂ k

h (s
′|s, a) = 0 for all s′ ∈ S. According to Lemma

A.2 and Lemma A.3, V ∗
h+1(s

i
h+1) ∈ [0, H − h] and λ∗

h+1 ∈ [0, H − h]. Thus, we have u(V ∗
h+1(s

i
h+1) − λ∗

h+1) ∈

13
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[u(−λ∗
h+1), u(H − h− λ∗

h+1)], where u(−λ∗
h+1) ≤ 0 and u(H − h− λ∗

h+1) ≥ 0. Then, we have

Es′∼Ph(·|s,a)
[
u(V ∗

h+1(s
′)− λ∗

h+1)
]
− Es′∼P̂k

h (·|s,a)
[
u(V ∗

h+1(s
′)− λ∗

h+1)
]

(1)
= Es′∼Ph(·|s,a)

[
u(V ∗

h+1(s
′)− λ∗

h+1)
]

(2)

≤ |u(H − h− λ∗
h+1)− u(−λ∗

h+1)|

(3)

≤
∣∣u(H − h− λ∗

h+1)− u(−λ∗
h+1)

∣∣√ 2 log(SAHK
δ )

max{1, Nk
h (s, a)}

,

where equality (1) holds because P̂ k
h (s

′|s, a) = 0 for all s′ ∈ S, inequality (2) holds because

u(V ∗
h+1(s

i
h+1)− λ∗

h+1) ≤ u(H − h− λ∗
H+1) ≤ |u(H − h− λ∗

h+1)− u(−λ∗
h+1)|,

and inequality (3) holds because Nk
h (s, a) = 0 and log(SAHK

δ ) > 1. Therefore,

P

(
Es′∼Ph(·|s,a)

[
u(V ∗

h+1(s
′)− λ∗

h+1)
]
− Es′∼P̂k

h (·|s,a)
[
u(V ∗

h+1(s
′)− λ∗

h+1)
]

≤
∣∣u(H − h− λ∗

h+1)− u(−λ∗
h+1)

∣∣√ 2 log(SAHK
δ )

max{1, Nk
h (s, a)}

,

V ∗
h+1 : S → [0, H − h], λ∗

h+1 ∈ [0, H − h]

)
= 1 ≥ 1− δ

SAHK
.

Secondly, when Nk
h (s, a) ≥ 1, by the definition of P̂ k

h , we have

Es′∼P̂k
h (·|s,a)

[
u(V ∗

h+1(s
′)− λ∗

h+1)
]
=

1

Nk
h (s, a)

k−1∑
i=1

1{(sih,ai
h)=(s,a)}u(V

∗
h+1(s

i
h+1)− λ∗

h+1).

Remark that when Nk
h (s, a) ≥ 1, we have k ≥ 2. We define for i = 1, . . . , k − 1,

Xi = E
[
1{(sih,ai

h)=(s,a)}u(V
∗
h+1(s

i
h+1)− λ∗

h+1)
∣∣∣Hi

h

]
− 1{(sih,ai

h)=(s,a)}u(V
∗
h+1(s

i
h+1)− λ∗

h+1).

By the same argument as in the previous case, we conclude that u(V ∗
h+1(s

i
h+1)− λ∗

h+1) ∈ [u(−λ∗
h+1), u(H − h− λ∗

h+1)].
Thus, we have

u(−λ∗
h+1)− u(H − h− λ∗

h+1) ≤ Xi ≤ u(H − h− λ∗
h+1)− u(−λ∗

h+1).

In addition, it is evident that E[Xi|Hi
h] = 0, which implies that (Xi) is a martingale difference sequence. Then, by

Azuma-Hoeffding’s inequality for martingales, with a probability of at least 1− δ
SAHK , we have

k−1∑
i=1

Xi = Nk
h (s, a)Es′∼Ph(·|s,a)[u(V

∗
h+1(s

′)− λ∗
h+1)]−

k−1∑
i=1

1{(sih,ai
h)=(s,a)}u(V

∗
h+1(s

i
h+1)− λ∗

h+1)

≤ |u(H − h− λ∗
h+1)− u(−λ∗

h+1)|
√
2Nk

h (s, a) log(
SAHK

δ
)

Divided by Nk
h (s, a) on both sides of the above inequality, combining the above two cases and using a union bound over all

(s, a, h, k) ∈ S ×A× [H]× [K], we obtain (19).

By Lemma B.1, we can derive the following concentration bound for the OCE applied to the optimal value function at the
next state (under the estimated transition distribution).
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Lemma B.2. For any δ ∈ (0, 1), we have that

P

(
OCEu

s′∼Ph(·|s,a)(V
∗
h+1(s

′))−OCEu
s′∼P̂k

h (·|s,a)(V
∗
h+1(s

′)) ≤ |u(−H + h)|

√
2 log

(
SAHK

δ

)
max{1, Nk

h (s, a)}
,

V ∗
h+1 : S → [0, H − h],∀(s, a, h, k) ∈ S ×A× [H]× [K]

)
≥ 1− δ.

(20)

Proof. According to Lemma B.1, with a probability of at least 1− δ, for any k ∈ [K], s ∈ S, a ∈ A, h ∈ [H], we have

OCEu
s′∼Ph(·|s,a)(V

∗
h+1(s

′))−OCEu
s′∼P̂k

h (·|s,a)(V
∗
h+1(s

′))

(1)
= max

λ∈[0,H−h]
{λ+ Es′∼Ph(·|s,a)[u(V

∗
h+1(s

′)− λ)]} − max
λ∈[0,H−h]

{λ+ Es′∼P̂k
h (·|s,a)[u(V

∗
h+1(s

′)− λ)]}

(2)

≤ λ∗
h+1 + Es′∼Ph(·|s,a)[u(V

∗
h+1(s

′)− λ∗
h+1)]− λ∗

h+1 − Es′∼P̂k
h (·|s,a)[u(V

∗
h+1(s

′)− λ∗
h+1)]

(3)

≤
∣∣u(H − h− λ∗

h+1)− u(−λ∗
h+1)

∣∣√ 2 log(SAHK
δ )

max{1, Nk
h (s, a)}

≤ sup
λ∈[0,H−h]

|u(H − h− λ)− u(−λ)|

√
2 log

(
SAHK

δ

)
max{1, Nk

h (s, a)}
,

where equality (1) follows from Lemma A.3, inequality (2) holds because λ∗
h+1 is the optimal solution to maxλ∈[0,H−h]{λ+

Es′∼Ph(·|s,a)[u(V
∗
h+1(s

′)− λ)]} and inequality (3) follows from Lemma B.1. One can check that u(H − h− λ)− u(−λ)
is a nondecreasing function of λ ∈ [0, H − h]. To see this, note that the superdifferential of u(H − h − λ) − u(−λ)
is ∂u(−λ) − ∂u(H − h − λ) and for any z ∈ ∂u(−λ) − ∂u(H − h − λ), we have z ≥ 0, because the utility function
u is concave. This implies that the function u(H − h − λ) − u(−λ) is nondecreasing. In addition, this function is
non-negative because u is nondcreasing and thus u(H − h) − u(0) ≥ 0 for h ∈ [H]. Thus, we can deduce that
supλ∈[0,H−h] |u(H − h − λ) − u(−λ)| ≤ u(0) − u(−H + h) = |u(−H + h)| since u(0) = 0. The proof is then
complete.

Lemma B.2 immediately implies the following result. To facilitate the presentation, we define the following event from
Lemma B.2:

G1 =

{
OCEu

s′∼Ph(·|s,a)(V
∗
h+1(s

′))−OCEu
s′∼P̂k

h (·|s,a)(V
∗
h+1(s

′)) ≤ |u(−H + h)|

√
2 log

(
SAHK

δ

)
max{1, Nk

h (s
k
h, a

k
h)}

,

V ∗
h+1 : S → [0, H − h],∀(s, a, h, k) ∈ S ×A× [H]× [K]

}
. (21)

Lemma B.3 (Optimism). Conditional on the event G1, we have V̂ k
h (s) ≥ V ∗

h (s) for any k ∈ [K], s ∈ S, h ∈ [H].

Proof. We prove the result by induction. Set V̂ k
H+1(s) = V ∗

H+1(s) = 0,∀s ∈ S . Conditional on the occurrence of the event
G1, assume V̂ k

h+1(s
′) ≥ V ∗

h+1(s
′),∀s′ ∈ S. Then, under event G1, for step h, we have

bkh(s, a) + rh(s, a) +OCEϕ

s′∼P̂k
h (·|s,a)

(V̂ k
h+1(s

′))− rh(s, a)−OCEϕ
s′∼Ph(·|s,a)(V

∗
h+1(s

′))

(1)

≥ bkh(s, a) +OCEϕ

s′∼P̂k
h (·|s,a)

(V ∗
h+1(s

′))−OCEϕ
s′∼Ph(·|s,a)(V

∗
h+1(s

′))

(2)

≥ bkh(s, a)− |u(−H + h)|

√
2 log

(
SAHK

δ

)
max{1, Nk

h (s, a)}
= 0, (22)
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where inequality (1) follows from the assumption V̂ k
h+1(s

′) ≥ V ∗
h+1(s

′),∀s′ ∈ S and property (c) in Lemma A.1, and
inequality (2) holds due to Lemma B.2. Recall that

Q̂k
h(s, a) = min{bkh(s, a) + rh(s, a) +OCEϕ

s′∼P̂k
h (·|s,a)

(V̂ k
h+1(s

′)), H − h+ 1},

Q∗
h(s, a) = rh(s, a) +OCEϕ

s′∼Ph(·|s,a)(V
∗
h+1(s

′)).

By (22) and Lemma A.2, we can immediately obtain

Q̂k
h(s, a)−Q∗

h(s, a) ≥ 0.

Because V̂ k
h (s) = maxa′∈A Q̂k

h(s, a
′), we have V̂ k

h (s) ≥ V ∗
h (s). The result then follows by induction.

We next state a concentration bound (Lemma B.5) for the OCE of the estimated next-state value function V̂ k
h+1 under the

estimated transition distribution P̂ k
h . This is different from Lemma B.2 in that V̂ k

h+1 is a random quantity depending on the
data while the optimal value function is deterministic. The proof of Lemma B.5 relies on the following well-known result on
the L1 concentration bound for the empirical transition probabilities (see, e.g., Lemma 17 in Jaksch et al. (2010)):

Lemma B.4. For any δ ∈ (0, 1), we have

P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S log

(
SAHK

δ

)
max{1, Nk

h (s, a)}
,∀(s, a, h, k) ∈ S ×A× [H]× [K]

)
≥ 1− δ.

Lemma B.5. For any δ ∈ (0, 1), we have

P

(∣∣∣OCEu
s′∼Ph(·|s,a)(V̂

k
h+1(s

′))−OCEu
s′∼P̂k

h (·|s,a)(V̂
k
h+1(s

′))
∣∣∣ ≤ |u(−H + h)|

√
2S log

(
SAHK

δ

)
max{1, Nk

h (s, a)}
,

∀(s, a, h, k) ∈ S ×A× [H]× [K]

)
≥ 1− δ.

(23)

Proof. With probability at least 1− δ, we have that for any k ∈ [K], s ∈ S, a ∈ A, h ∈ [H],∣∣∣OCEu
s′∼Ph(·|s,a)(V̂

k
h+1(s

′))−OCEu
s′∼P̂k

h (·|s,a)(V̂
k
h+1(s

′))
∣∣∣

=

∣∣∣∣ max
λ∈[0,H−h]

{λ+ Es′∼Ph(·|s,a)[u(V̂
k
h+1(s

′)− λ)]} − max
λ∈[0,H−h]

{λ+ Es′∼P̂k
h (·|s,a)u(V̂

k
h+1(s

′)− λ)]}
∣∣∣∣

≤ max
λ∈[0,H−h]

∣∣∣Es′∼Ph(·|s,a)[u(V̂
k
h+1(s

′)− λ)]− Es′∼P̂k
h (·|s,a)[u(V̂

k
h+1(s

′)− λ)
∣∣∣

= max
λ∈[0,H−h]

∣∣∣∣∣∑
s′∈S

(
P̂ k
h (s

′|s, a)− Ph(s
′|s, a)

)
· u(V̂ k

h+1(s
′)− λ)

∣∣∣∣∣
(1)

≤ max
λ∈[0,H−h]

∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
·
∥∥∥u(V̂ k

h+1(·)− λ)
∥∥∥
∞

(2)

≤

√
2S log

(
SAHK

δ

)
max{1, Nk

h (s, a)}
· max
λ∈[0,H−h]

∥∥∥u(V̂ k
h+1(·)− λ)

∥∥∥
∞

,

where inequality (1) follows from Hölder’s inequality and inequality (2) follows from Lemma B.4. Because V̂ k
h+1(s

′) ∈
[0, H − h] for any s′ by the design of the OCE-VI algorithm and because λ ∈ [0, H − h], we can immediately obtain that

max
λ∈[0,H−h]

∥∥∥u(V̂ k
h+1(·)− λ)

∥∥∥
∞
≤ |u(−H + h)|,

where we use the fact that u is nondecreasing and concave. The proof is then completed.
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In the next lemma, we will bound the following difference

OCEu
s′∼Ph(·|s,a)

(
V̂ k
h+1(s

′)
)
−OCEu

s′∼Ph(·|s,a)

(
V πk

h+1(s
′)
)

(24)

for any (s, a, h, k) ∈ S ×A× [H]× [K], which is the key step in the recursion of the regret analysis.

We first introduce some notations. Pick any λk
h+1 ∈ [0, H − h] such that

λk
h+1 ∈ argmaxλ∈[0,H−h]{λ+ Es′∼Ph(·|s,a)[u(V

πk

h+1(s
′)− λ)]}. (25)

By the first order optimality condition of the above optimization problem and the fact that the state space S is finite, we have

1 ∈ Es′∼Ph(·|s,a)[∂u(V
πk

h+1(s
′)− λk

h+1)]. (26)

Thus, we can find Λk
h+1(s

′) ∈ ∂u(V πk

h+1(s
′)− λk

h+1), s
′ ∈ S such that Es′∼Ph(·|s,a)

[
Λk
h+1(s

′)
]
= 1. In addition, because

the utility function u is nondecreasing, we have Λk
h+1(s

′) ≥ 0,∀s′ ∈ S . Now we can define the following new probability
measure Bh(·|s, a): for any (s, a, s′, h, k) ∈ S ×A× S × [H]× [K], define

Bh(s
′|s, a) := Ph(s

′|s, a)Λk
h+1(s

′), (27)

where
∑

s′∈S Bh(s
′|s, a) = 1 because Es′∼Ph(·|s,a)

[
Λk
h+1(s

′)
]
= 1. Now we can state the following important result.

Lemma B.6. For any (h, k) ∈ [H]× [K] and functions V̂ k
h+1, V

πk

h+1, V
∗
h+1 : S → [0, H − h], we have

OCEu
skh+1∼Ph(·|skh,a

k
h)

(
V̂ k
h+1(s

k
h+1)

)
−OCEu

skh+1∼Ph(·|skh,a
k
h)

(
V πk

h+1(s
k
h+1)

)
≤ Eskh+1∼Bh(·|skh,a

k
h)

[
V̂ k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

]
,

(28)

where Bh(·|skh, akh) is the new probability measure given in (27).

Proof. Pick any µk
h+1 ∈ [0, H − h] such that

µk
h+1 ∈ argmaxλ∈[0,H−h]{λ+ Eskh+1∼Ph(·|skh,a

k
h)
[u(V̂ k

h+1(s
k
h+1)− λ)]},

and recall λk
h+1 ∈ [0, H − h] given in (25). We can then compute

OCEu
skh+1∼Ph(·|skh,a

k
h)

(
V̂ k
h+1(s

k
h+1)

)
−OCEu

skh+1∼Ph(·|skh,a
k
h)

(
V πk

h+1(s
k
h+1)

)
(1)
= max

λ∈[0,H−h]

{
λ+ Eskh+1∼Ph(·|skh,a

k
h)
[u(V̂ k

h+1(s
k
h+1)− λ)]

}
− max

λ∈[0,H−h]

{
λ+ Eskh+1∼Ph(·|skh,a

k
h)
[u(V πk

h+1(s
k
h+1)− λ)]

}
= µk

h+1 + Eskh+1∼Ph(·|skh,a
k
h)
[u(V̂ k

h+1(s
k
h+1)− µk

h+1)]− λk
h+1 − Eskh+1∼Ph(·|skh,a

k
h)
[u(V πk

h+1(s
k
h+1)− λk

h+1)]

(2)

≤ µk
h+1 − λk

h+1 + Eskh+1∼Ph(·|skh,a
k
h)

[
Λk
h+1(s

k
h+1) · (V̂ k

h+1(s
k
h+1)− V πk

h+1(s
k
h+1)− (µk

h+1 − λk
h+1))

]
=
(
1− Eskh+1∼Ph(·|skh,a

k
h)

[
Λk
h+1(s

k
h+1)

])
(µk

h+1 − λk
h+1)

+ Eskh+1∼Ph(·|skh,a
k
h)

[
Λk
h+1(s

k
h+1) · (V̂ k

h+1(s
k
h+1)− V πk

h+1(s
k
h+1))

]
(3)
= Eskh+1∼Bh(·|skh,a

k
h)
[V̂ k

h+1(s
k
h+1)− V πk

h+1(s
k
h+1)],

where equality (1) holds due to Lemma A.3, inequality (2) holds due to the fact that u(y) ≤ u(x) + z(y − x) for any
x, y ∈ [−H + h,H − h], z ∈ ∂u(x) when u(x) is a concave function, and equality (3) follows from (27) and the fact that
Eskh+1∼Ph(·|skh,a

k
h)
[Λk

h+1(s
k
h+1)] = 1. The proof is therefore completed.
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In the next lemma, we bound the term V̂ k
1 (sk1)− V πk

1 (sk1) by using a recursive procedure. Lemma B.7 below is an extension
of the so-called simulation lemma in the risk-neutral RL (see, e.g, Agarwal et al. (2021)) to our risk-sensitive RL setting.
The key to overcome the difficulty in the recursion setting due to the nonlinearity of the OCE is Lemma B.6. To facilitate
the presentation, we first introduce the following notations.

For any k ∈ [K], h ∈ [H], let whk(s
k
h, a

k
h) be the state-action distribution induced by πk at time step h starting from sk1 , i.e.,

the probability of πk visiting (skh, a
k
h) at time step h starting from sk1 . Mathematically, the formula of whk(s

k
h, a

k
h) is given

by

whk(s
k
h, a

k
h) =


1, h = 1,

P1(s
k
2 |sk1 , ak1), h = 2,∑

sk2∈S

· · ·
∑

skh−1∈S

P1(s
k
2 |sk1 , ak1) · · ·Ph−1(s

k
h|skh−1, a

k
h−1), h ≥ 3.

(29)

Similarly, let wB
hk(s

k
h, a

k
h) be the probability of πk visiting (skh, a

k
h) at step h starting from sk1 under probability measures

Bi(·|ski , aki ), i = 1, · · · , h. The explicit formula of wB
hk(s

k
h, a

k
h) is given by

wB
hk(s

k
h, a

k
h) =


1, h = 1,

B1(s
k
2 |sk1 , ak1), h = 2,∑

sk2∈S

· · ·
∑

skh−1∈S

B1(s
k
2 |sk1 , ak1) · · ·Bh−1(s

k
h|skh−1, a

k
h−1), h ≥ 3.

(30)

Equivalently, by (27) we have

wB
hk(s

k
h, a

k
h) =


1, h = 1,

P1(s
k
2 |sk1 , ak1)Λk

2(s
k
2), h = 2,∑

sk2∈S

· · ·
∑

skh−1∈S

P1(s
k
2 |sk1 , ak1) · · ·Ph−1(s

k
h|skh−1, a

k
h−1)Λ

k
2(s

k
2) · · ·Λk

h(s
k
h), h ≥ 3.

(31)

Finally, given (sk1 , a
k
1), we define

E(skh,a
k
h)∼wB

hk
[·] :=

1, h = 1,

Esk2∼B1(·|sk1 ,ak
1 )

[
Esk3∼B2(·|sk2 ,ak

2 )

[
· · ·Eskh∼Bh−1(·|skh−1,a

k
h−1)

[·]
]]

, h ≥ 2.
(32)

Lemma B.7. For each episode k ∈ [K], we have

V̂ k
1 (sk1)− V πk

1 (sk1) (33)

≤
H∑

h=1

E(skh,a
k
h)∼wB

hk

[
bkh(s

k
h, a

k
h) +OCEu

skh+1∼P̂k
h (·|skh,a

k
h)
(V̂ k

h+1(s
k
h+1))−OCEu

skh+1∼Ph(·|skh,a
k
h)
(V̂ k

h+1(s
k
h+1))

]
.
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Proof. For any k ∈ [K], let akh = argmaxa∈A Q̂k
h(s

k
h, a), h ∈ [H]. Then, we can compute

V̂ k
1 (sk1)− V πk

1 (sk1)

(1)

≤ Q̂k
1(s

k
1 , a

k
1)−Qπk

1 (sk1 , a
k
1)

≤ bk1(s
k
1 , a

k
1) +OCEu

sk2∼P̂k
1 (·|sk1 ,ak

1 )
(V̂ k

2 (sk2))−OCEu
sk2∼P1(·|sk1 ,ak

1 )
(V πk

2 (sk2))

= bk1(s
k
1 , a

k
1) +OCEu

sk2∼P̂k
1 (·|sk1 ,ak

1 )
(V̂ k

2 (sk2))−OCEu
sk2∼P1(·|sk1 ,ak

1 )
(V̂ k

2 (sk2))

+OCEu
sk2∼P1(·|sk1 ,ak

1 )
(V̂ k

2 (sk2))−OCEu
sk2∼P1(·|sk1 ,ak

1 )
(V πk

2 (sk2))

(2)

≤ bk1(s
k
1 , a

k
1) +OCEu

sk2∼P̂k
1 (·|sk1 ,ak

1 )
(V̂ k

2 (sk2))−OCEu
sk2∼P1(·|sk1 ,ak

1 )
(V̂ k

2 (sk2))

+ Esk2∼B1(·|sk1 ,ak
1 )

[
V̂ k
2 (sk2)− V πk

2 (sk2)
]

≤ bk1(s
k
1 , a

k
1) +OCEu

sk2∼P̂k
1 (·|sk1 ,ak

1 )
(V̂ k

2 (sk2))−OCEu
sk2∼P1(·|sk1 ,ak

1 )
(V̂ k

2 (sk2))

+ Esk2∼B1(·|sk1 ,ak
1 )

[
bk2(s

k
2 , a

k
2) +OCEu

sk3∼P̂k
2 (·|sk2 ,ak

2 )
(V̂ k

3 (sk3))−OCEu
sk3∼P2(·|sk2 ,ak

2 )
(V̂ k

3 (sk3))

+ Esk3∼B2(·|sk2 ,ak
2 )

[
V̂ k
3 (sk3)− V πk

3 (sk3)
] ]

,

where inequality (1) holds because V̂ k
1 (sk1) = maxa∈A Q̂k

1(s
k
1 , a) = Q̂k

1(s
k
1 , a

k
1) and inequality (2) holds due to Lemma B.6.

Applying the above procedure recursively and using the fact that V̂ k
H+1(s) = V ∗

H+1(s) = 0 for any s ∈ S , we immediately
obtain (33).

From Lemma B.7, it is clear that we need to bound the sum of bonuses in order to bound the regret. We present such a
bound in Lemma B.9. To this end, we first state Lemma B.8, which is adapted from a well-known result heavily used in
the risk-neutral setting (see page 24-25 of Azar et al. (2017) or page 21 of Jin et al. (2018)). Lemma B.9 is a nontrivial
extension of Lemma B.8 due to the new probability measure wB

hk involved in the expectation.

Lemma B.8. Consider arbitrary K sequences of trajectories τk = {skh, akh}Hh=1 for k = 1, · · · ,K, we have

K∑
k=1

1

max{1, Nk
h (s

k
h, a

k
h)}
≤ SA log(3K).

Lemma B.9. We have

E

 K∑
k=1

H∑
h=1

E(skh,a
k
h)∼wB

hk

 |u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}

 ≤ H∑
h=1

|u(−H + h)|

√√√√h−1∏
i=1

u′
−(−H + i)SAK log(3K), (34)

where E(skh,a
k
h)∼wB

hk
[·] given in (32) is taken over (skh, a

k
h) conditional on (sk1 , a

k
1) and u′

−(·) is the left derivative of u.

Proof. By (31) and (32), we have

E(skh,a
k
h)∼wB

hk

 |u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}


=
∑
sk2∈S

· · ·
∑
skh∈S

P1(s
k
2 |sk1 , ak1) · · ·Ph−1(s

k
h|skh−1, a

k
h−1)Λ

k
2(s

k
2) · · ·Λk

h(s
k
h)

|u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}

. (35)
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This implies

E

E(skh,a
k
h)∼wB

hk

 |u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}


= E

E
Λk

2(s
k
2) · · ·Λk

h(s
k
h)

|u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}

∣∣∣∣∣sk1 , ak1


= E

Λk
2(s

k
2) · · ·Λk

h(s
k
h)

|u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}

 .

Then, we have

E

 K∑
k=1

H∑
h=1

E(skh,a
k
h)∼wB

hk

 |u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}


=

H∑
h=1

K∑
k=1

E

E(skh,a
k
h)∼wB

hk

 |u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}


=

H∑
h=1

|u(−H + h)|
K∑

k=1

E

Λk
2(s

k
2) · · ·Λk

h(s
k
h)

1√
max{1, Nk

h (s
k
h, a

k
h)}


(1)

≤
H∑

h=1

|u(−H + h)|
K∑

k=1

√
E
[
Λk
2(s

k
2) · · ·Λk

h(s
k
h)
]2 ·√E

[
1

max{1, Nk
h (s

k
h, a

k
h)}

]
(2)

≤
H∑

h=1

|u(−H + h)|

√√√√ K∑
k=1

E
[
Λk
2(s

k
2) · · ·Λk

h(s
k
h)
]2 ·

√√√√ K∑
k=1

E

[
1

max{1, Nk
h (s

k
h, a

k
h)}

]
where the inequalities (1) and (2) follow from Cauchy–Schwarz inequality.

Recall that Λk
h+1(s

′) ∈ ∂u(V πk

h+1(s
′)− λk

h+1), s
′ ∈ S and it satisfies Es′∼Ph(·|s,a)

[
Λk
h+1(s

′)
]
= 1, where λk

h+1 is defined
in (25). By Lemma A.2 and Lemma A.3 and the concavity of the utility function u, we have 0 ≤ Λk

h+1 ≤ u′
−(−H + h).

Because E(skh,a
k
h)∼wB

hk
[1] =

∑
sk2∈S · · ·

∑
skh∈S P1(s

k
2 |sk1 , ak1) · · ·Ph−1(s

k
h|skh−1, a

k
h−1)Λ

k
2(s

k
2) · · ·Λk

h(s
k
h) = 1, taking the

expectation on both sides, we have E
[
Λk
2(s

k
2) · · ·Λk

h(s
k
h)
]
= 1. Then, we have

K∑
k=1

E
[
Λk
2(s

k
2) · · ·Λk

h(s
k
h)
]2

≤
K∑

k=1

E
[
Λk
2(s

k
2) · · ·Λk

h(s
k
h)
]
·
h−1∏
i=1

u′
−(−H + i)

= K ·
h−1∏
i=1

u′
−(−H + i).

Combining this inequality and Lemma B.8, we have

E

 K∑
k=1

H∑
h=1

E(skh,a
k
h)∼wB

hk

 |u(−H + h)|√
max{1, Nk

h (s
k
h, a

k
h)}


≤

H∑
h=1

|u(−H + h)|

√√√√h−1∏
i=1

u′
−(−H + i)SAK log(3K),

20



Regret Bounds for MDPs with Recursive OCEs

which completes the proof.

B.2. Proof of Theorem 4.1

Now we are ready to prove Theorem 4.1. Recall G1 in (21) and we define

G2 =

{∣∣∣OCEu
s′∼Ph(·|s,a)(V̂

k
h+1(s

′))−OCEu
s′∼P̂k

h (·|s,a)(V̂
k
h+1(s

′))
∣∣∣ ≤ |u(−H + h)|

√
2S log

(
SAHK

δ

)
max{1, Nk

h (s
k
h, a

k
h)}

,

∀(s, a, h, k) ∈ S ×A× [H]× [K]

}
.

We also define G = G1 ∩ G2. From Lemmas B.2 and B.5, we know that P (G1) ≥ 1− δ and P (G2) ≥ 1− δ, which implies
that P (G) ≥ 1− 2δ.

Proof of Theorem 4.1. For any k ∈ [K], let akh = argmaxa∈A Q̂k
h(s

k
1 , a), h ∈ [H]. Then, when the event G holds, we can

compute

V ∗
1 (s

k
1)− V πk

1 (sk1)

(1)

≤ V̂ k
1 (sk1)− V πk

1 (sk1)

(2)

≤
H∑

h=1

E(skh,a
k
h)∼wB

hk

[
bkh(s

k
h, a

k
h) +OCEu

skh+1∼P̂k
h (·|skh,a

k
h)
(V̂ k

h+1(s
k
h+1))−OCEu

skh+1∼Ph(·|skh,a
k
h)
(V̂ k

h+1(s
k
h+1))

]
(3)

≤
H∑

h=1

E(skh,a
k
h)∼wB

hk

2√2|u(−H + h)|

√
S log

(
SAHK

δ

)
max{1, Nk

h (s
k
h, a

k
h)}

 , (36)

where inequality (1) follows from Lemma B.3, inequality (2) holds due to Lemma B.7, inequality (3) holds due to Lemma

B.5 and the fact that bkh(s
k
h, a

k
h) ≤ |u(−H + h)|

√
2S log(SAHK

δ )
max{1,Nk

h (skh,a
k
h)}

.

We can write the expected regret as follows:

Regret(M,OCE-VI,K)

= E

[
K∑

k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)]

= E

[
1G ·

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)]

+ E

[
1Gc ·

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)]

(4)

≤ E

[
1G ·

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)]

+ 2δKH,

where inequality (4) holds because P (Gc) ≤ 2δ and 0 ≤ V πk

1 (sk1) ≤ V ∗
1 (s

k
1) ≤ H by Lemma A.2. Using (36) and

Lemma B.9, we deduce that

E

[
1G ·

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)]

≤ E

 K∑
k=1

H∑
h=1

E(skh,a
k
h)∼wB

hk

2√2|u(−H + h)|

√
S log

(
SAHK

δ

)
max{1, Nk

h (s
k
h, a

k
h)}


≤ 2
√
2

H∑
h=1

|u(−H + h)|S

√√√√h−1∏
i=1

u′
−(−H + i)AK log(3K) log

(
SAHK

δ

)
.
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Then, we have

Regret(M,OCE-VI,K)

≤ 2
√
2

H∑
h=1

|u(−H + h)|S

√√√√h−1∏
i=1

u′
−(−H + i)AK log(3K) log

(
SAHK

δ

)
+ 2δKH

≤ 2
√
2

H∑
h=1

|u(−H + h)|S

√√√√h−1∏
i=1

u′
−(−H + i)AK log(3K) log (2SAH2K2) + 1,

where the last inequality follows by choosing δ = 1
2KH . The proof is then completed.

C. Proof of Theorem 4.3
Proof. We adapt the proof of Theorem 9 in Domingues et al. (2021) to our risk-sensitive setting. The proof of Theorem 4.3
is long, so we divide it into a few steps.

• Step 1: Constructing the hard MDP instances.

We first construct hard MDP instances, which are almost the same as the ones in Domingues et al. (2021) except one
small yet important difference: the transition probabilities in (37).

Based on assumption 4.2, we can construct a full A-ary tree of depth d− 1 with root s̃root, which has S − 3 states. In
this rooted tree, each node has exactly A children and the total number of nodes is given by

∑d−1
i=0 Ai = S − 3. We

add three special states to the tree: a “waiting” state s̃w where the agent starts and can choose action ãw to stay up to a
stage H̄ < H − d, a “good” state s̃g where the agent obtains rewards, and a “bad” state s̃b that gives no reward. Note
that H̄ is a parameter to be chosen later. Both s̃g and s̃b are absorbing states. For any state in the tree, the transitions are
deterministic, the a-th action in a node leads to the a-th child of that node. The agent stays or leaves s̃w with probability

Ph(s̃w|s̃w, a) := 1{a = ãw, h ≤ H̄}, Ph(s̃root|s̃w, a) := 1− Ph(s̃w|s̃w, a).

Then, the agent transverses the tree until she arrives at the leaves. Let L be the number of leaves, and the set of the
leaves is L = {s̃1, · · · , s̃L}. For any s̃i ∈ L, any action will lead to a transition to either s̃g or s̃b with the transition
probability

Ph(s̃g|s̃i, a) = p+∆(h∗,s∗,a∗)(h, s̃i, a), Ph(s̃b|s̃i, a) = 1− p−∆(h∗,s∗,a∗)(h, s̃i, a), (37)

where the parameter p and the function ∆ will be specified later. In Domingues et al. (2021), p is set to be 0.5 in the
risk-neutral setting, whereas we will tune p in our risk-sensitive setting to obtain a tighter regret lower bound.

The reward function is defined as

rh(s, a) := 1{s = s̃g, h ≥ H̄ + d+ 1}, ∀a ∈ A.

For each
(h∗, s∗, a∗) ∈ {1 + d, · · · , H̄ + d} × L ×A =: Z,

we define an MDPM(h∗,s∗,a∗), where ∆(h∗,s∗,a∗)(h, s̃i, a) = 1{h = h∗, s̃i = s∗, a = a∗}ϵ and ϵ is a parameter to
be chosen later. Denote by P(h∗,s∗,a∗) and E(h∗,s∗,a∗) the probability measure and expectation, respectively, in the
MDPM(h∗,s∗,a∗). LetM0 be the MDP with ∆0(h, s̃i, a) = 0 for all (h, s̃i, a) ∈ [H]×L×A. Denote by P0 and E0

the probability measure and expectation, respectively, in the MDPM0.

• Step 2: Computing the Expected Regret of an Algorithm inM(h∗,s∗,a∗).

We now compute Regret(M(h∗,s∗,a∗), algo,K) for a learning algorithm algo, which executes policy πk in episode
k ∈ [K]. By (7), we need to compute the optimal value function, V ∗

1 (s
k
1), and the value function under policy πk,

V πk

1 (sk1), for k ∈ [K]. Unlike Domingues et al. (2021), these quantities can not be computed explicitly in general in
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our risk-sensitive setting because the OCE is defined by an optimization problem. Hence, in the following, we will
bound V ∗

1 (s
k
1)− V πk

1 (sk1) in order to lower bound the regret.

We first compute the value function V πk

1 (sk1) under policy πk. For notational simplicity, we denote πk
h(s

k
h) as akh for

all h ∈ [H], k ∈ [K]. Under policy πk, we use Ĥ to denote the number of time steps in which the agent stays in the
“waiting” state, which is no larger than H̄ . Because there is no reward collected before step Ĥ + d, we can obtain

V πk

1 (sk1) = V πk

Ĥ+d
(sk

Ĥ+d
). (38)

Next, we compute V πk

Ĥ+d
(sk

Ĥ+d
). To this end, we first show

V πk

H̄+d+1(s
k
H̄+d+1) = (H − H̄ − d)× 1{skH̄+d+1 = s̃g}. (39)

We prove it by recursion. It is clear that

V πk

H (skH) = rH(skH , akH) +OCEskH+1∼PH(·|skH ,ak
H)(V

πk

H+1(s
k
H+1))

(1)
= 1{skH = s̃g}

(2)
= 1{skH̄+d+1 = s̃g},

where equality (1) holds because V πk

H+1(s
k
H+1) = 0, and equality (2) follows from the fact that the agent is in the

absorbing states when h ≥ H̄ + d+ 1. Then, we can compute

V πk

H−1(s
k
H−1) = rH−1(s

k
H−1, a

k
H−1) +OCEskH∼PH−1(·|skH−1,a

k
H−1)

(V πk

H (skH))
(3)
= 2× 1{skH̄+d+1 = s̃g},

where equality (3) holds because the random variable 1{sk
H̄+d+1

= s̃g} is known at step H − 1, and we use property
(b) in Lemma A.1. Repeating this procedure until time step h = H̄ + d+ 1, we obtain (39).

Given (39), we next compute the value function under policy πk at time Ĥ + d + 1. Note that at time step Ĥ + d,
the agent is at the leaf of the rooted tree, where Ĥ ≤ H̄. Hence, the probability that the agent is at good state s̃g
at step h = Ĥ + d + 1 is the same as that at step h = H̄ + d + 1. In addition, the reward function is given by
rh(s, a) = 1{s = s̃g, h ≥ H̄ + d+ 1},∀a ∈ A. Hence, we obtain

V πk

Ĥ+d+1
(sk

Ĥ+d+1
) = V πk

H̄+d+1(s
k
H̄+d+1) = (H − H̄ − d)× 1{skH̄+d+1 = s̃g}

= (H − H̄ − d)× 1{sk
Ĥ+d+1

= s̃g}.

It then follows that

V πk

1 (sk1) = V πk

Ĥ+d
(sk

Ĥ+d
)

= rĤ+d(s
k
Ĥ+d

, ak
Ĥ+d

) +OCEsk
Ĥ+d+1

∼PĤ+d(·|skĤ+d
,ak

Ĥ+d
)(V

πk

Ĥ+d+1
(sk

Ĥ+d+1
))

= OCEsk
Ĥ+d+1

∼PĤ+d(·|skĤ+d
,ak

Ĥ+d
)

(
(H − H̄ − d)× 1{sk

Ĥ+d+1
= s̃g}

)
= sup

λ∈[0,H−H̄−d]

{λ+ P(h∗,s∗,a∗)(s
k
Ĥ+d+1

= s̃g)u(H − H̄ − d− λ) + (1− P(h∗,s∗,a∗)(s
k
Ĥ+d+1

= s̃g))u(−λ)}

= sup
λ∈[0,H−H̄−d]

{λ+ P(h∗,s∗,a∗)(s
k
H̄+d+1 = s̃g)u(H − H̄ − d− λ) + (1− P(h∗,s∗,a∗)(s

k
H̄+d+1 = s̃g))u(−λ)}.

(40)

Similar to Equation (7) in Domingues et al. (2021), we can derive

P(h∗,s∗,a∗)(s
k
H̄+d+1 = s̃g)

=

H̄+d∑
h=1+d

pP(h∗,s∗,a∗)(s
k
h ∈ L) + 1{h = h∗}P(h∗,s∗,a∗)(s

k
h = s∗, akh = a∗)ϵ

= p+ ϵ · P(h∗,s∗,a∗)(s
k
h∗ = s∗, akh∗ = a∗).

(41)

Together with (40), we obtain an expression of the value function V πk

1 (sk1).
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We next compute the optimal value function V ∗
1 (s

k
1). Based on (40), one can easily show that the optimal policy is

to let P(h∗,s∗,a∗)(s
k
h∗ = s∗, akh∗ = a∗) = 1. Specifically, in the MDPM(h∗,s∗,a∗), the optimal policy is to traverse

the tree at step h∗ − d, so that the agent visits the leaf state s∗ at time step h∗ and takes the action a∗ at this leaf state.
Thus, the optimal value function is given by

V ∗
1 (s

k
1) = sup

λ∈[0,H−H̄−d]

{λ+ (p+ ϵ)u(H − H̄ − d− λ) + (1− p− ϵ)u(−λ)}.

Now, we can compute that for each episode k ∈ [K],

V ∗
1 (s

k
1)− V πk

1 (sk1)

= sup
λ∈[0,H−H̄−d]

{λ+ (p+ ϵ)u(H − H̄ − d− λ) + (1− p− ϵ)u(−λ)}

− sup
λ∈[0,H−H̄−d]

{λ+ P(h∗,s∗,a∗)(s
k
H̄+d+1 = s̃g)u(H − H̄ − d− λ) + (1− P(h∗,s∗,a∗)(s

k
H̄+d+1 = s̃g))u(−λ)}

(1)

≥ ρ+ (p+ ϵ)u(H − H̄ − d− ρ) + (1− p− ϵ)u(−ρ)
− ρ− P(h∗,s∗,a∗)(s

k
H̄+d+1 = s̃g)u(H − H̄ − d− ρ)− (1− P(h∗,s∗,a∗)(s

k
H̄+d+1 = s̃g))u(−ρ)

(2)
= ϵ[u(H − H̄ − d− ρ)− u(−ρ)]× [1− P(h∗,s∗,a∗)(s

k
h∗ = s∗, akh∗ = a∗)],

where inequality (1) holds by setting

ρ ∈ argmax
λ∈[0,H−H̄−d]

{λ+P(h∗,s∗,a∗)(s
k
H̄+d+1 = s̃g)u(H−H̄−d−λ)+(1−P(h∗,s∗,a∗)(s

k
H̄+d+1 = s̃g))u(−λ)}, (42)

and equality (2) holds by applying (41).

Therefore, the regret of a learning algorithm algo inM(h∗,s∗,a∗) can be lower bounded as follow:

Regret(M(h∗,s∗,a∗), algo,K)

=

K∑
k=1

E(h∗,s∗,a∗)[V
∗
1 (s

k
1)− V πk

1 (sk1)]

≥ ϵ[u(H − H̄ − d− ρ)− u(−ρ)]
K∑

k=1

(
1− P(h∗,s∗,a∗)(s

k
h∗ = s∗, akh∗ = a∗)

)
= ϵ[u(H − H̄ − d− ρ)− u(−ρ)]

(
K − E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

])
, (43)

where

NK
(h∗,s∗,a∗) =

K∑
k=1

1{sh∗ = s∗, ah∗ = a∗}. (44)

• Step 3: Bounding Maximum Regret over all possibleM(h∗,s∗,a∗).
We can deduce from (43) that the maximum regret of an algorithm algo over all possibleM(h∗,s∗,a∗) is lower bounded
by

max
(h∗,s∗,a∗)∈Z

Regret(M(h∗,s∗,a∗), algo,K)

≥ 1

H̄LA

∑
(h∗,s∗,a∗)∈Z

Regret(M(h∗,s∗,a∗), algo,K)

≥ K[u(H − H̄ − d− ρ)− u(−ρ)]ϵ

1− 1

KH̄LA

∑
(h∗,s∗,a∗)

E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

] .

(45)

So to lower bound the regret, we have to upper bound
∑

(h∗,s∗,a∗)∈Z E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

]
.
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• Step 4: Bounding
∑

(h∗,s∗,a∗)∈Z E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

]
.

For this step, we use similar arguments to those used in Domingues et al. (2021); see page 13 therein. Fix (h∗, s∗, a∗) ∈
[H]× S ×A. Because 1

KNK
(h∗,s∗,a∗) ∈ [0, 1], one can obtain from Lemma 1 of Garivier et al. (2019) that

kl

(
1

K
E0

[
NK

(h∗,s∗,a∗)

]
,
1

K
E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

])
≤ KL(P0, P(h∗,s∗,a∗)),

where KL denotes the Kullback-Leibler divergence between two probability measures and kl(p, q) denotes the KL
divergence between two Bernoulli distributions with success probabilities p and q respectively; see Definition 4 in
Domingues et al. (2021). It then follows from Pinsker’s inequality, (p− q)2 ≤ 1

2kl(p, q), that

1

K
E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

]
≤ 1

K
E0

[
NK

(h∗,s∗,a∗)

]
+

√
1

2
KL(P0, P(h∗,s∗,a∗)).

BecauseM0 andM(h∗,s∗,a∗) differ at stage h∗ when (sh∗ , ah∗) = (s∗, a∗), by Lemma 5 of Domingues et al. (2021)
and Lemma C.1 in Appendix C.1, we can prove that

KL
(
P0, P(h∗,s∗,a∗)

)
= E0

[
NK

(h∗,s∗,a∗)

]
kl(p, p+ ϵ) ≤ E0

[
NK

(h∗,s∗,a∗)

] c1ϵ2
p

,

where c1 ≥ 2 is a certain positive constant, p ∈ [0, 1− 1
c1
] and ϵ satisfies

ϵ ∈

0, (1− 2p) +
√

1− 4p
c1

2

 . (46)

Thus,

1

K
E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

]
≤ 1

K
E0

[
NK

(h∗,s∗,a∗)

]
+

√
c1
2p

ϵ

√
E0

[
NK

(h∗,s∗,a∗)

]
.

According to the definition of NK
(h∗,s∗,a∗) in (44), we know that

∑
(h∗,s∗,a∗)∈Z NK

(h∗,s∗,a∗) ≤ K. Then, by Cauchy-
Schwarz inequality, we have

1

K

∑
(h∗,s∗,a∗)∈Z

E(h∗,s∗,a∗)

[
NK

(h∗,s∗,a∗)

]
≤ 1 +

√
c1
2p

ϵ
√

H̄LAK. (47)

• Step 5: Optimizing ϵ and Choosing H̄ and p.
By combining (45) with (47), we have

max
(h∗,s∗,a∗)∈Z

Regret(M(h∗,s∗,a∗), algo,K)

≥ K[u(H − H̄ − d− ρ)− u(−ρ)]ϵ

(
1− 1

H̄LA
−
√

c1
2p

ϵ

√
H̄LAK

H̄LA

)
, (48)

where the right-hand side of the inequality is a quadratic function of ϵ. Maximizing this function by taking

ϵ =

√
p

2c1

(
1− 1

H̄LA

)√
H̄LA

K
, (49)

we derive

max
(h∗,s∗,a∗)∈Z

Regret(M(h∗,s∗,a∗), algo,K)

≥ 1

2
√
2

√
p

c1
[u(H − H̄ − d− ρ)− u(−ρ)]

√
H̄LAK(1− 1

H̄LA
)2. (50)
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According to Assumption 4.2, we have A ≥ 2, S ≥ 6, and thus L = (1− 1
A )(S − 3) + 1

A ≥
S
4 . Then, we can deduce

from (50) that

max
(h∗,s∗,a∗)∈Z

Regret(M(h∗,s∗,a∗), algo,K)

≥ 1

2
√
2
·
√

p

c1
[u(H − H̄ − d− ρ)− u(−ρ)]

√
H̄ · S

4
AK · 4

9

=
1

9
√
2
·
√

p

c1
[u(H − H̄ − d− ρ)− u(−ρ)]

√
SAH̄K. (51)

The bound in (51) is not explicit in the sense that the quantity ρ defined in (42) depends on the unknown probability
P(h∗,s∗,a∗)(s

k
H̄+d+1

= s̃g), which equals p+ ϵ · P(h∗,s∗,a∗)(s
k
h∗ = s∗, akh∗ = a∗). We next lower bound the term on

the right-hand-side of (51) in order to derive the explicit bound given in Theorem 4.3.

Because ρ satisfies (42), by the first-order optimality condition, we have

1 ∈ P(h∗,s∗,a∗)(s
k
H̄+d+1 = s̃g)∂u(H − H̄ − d− ρ) + (1− P(h∗,s∗,a∗)(s

k
H̄+d+1 = s̃g))∂u(−ρ). (52)

According to Assumption 4.2, we have H ≥ c2d with c2 > 2. We choose

H̄ =
H

c2
. (53)

Then, by the monotonicity of the supergradients of the concave function u, we obtain from (52) that

1 ≤ P(h∗,s∗,a∗)(s
k
H̄+d+1 = s̃g)∂u

((
1− 2

c2

)
H − ρ

)
+ (1− P(h∗,s∗,a∗)(s

k
H̄+d+1 = s̃g))∂u(−ρ), (54)

where the inequality means every element in the set on the right-hand-side is greater than one. Recall that
P(h∗,s∗,a∗)(s

k
H̄+d+1

= s̃g) = p+ ϵ · P(h∗,s∗,a∗)(s
k
h∗ = s∗, akh∗ = a∗). Then, we can deduce from (52) that

1 ≤ p · ∂u
((

1− 2

c2

)
H − ρ

)
+ (1− p) · ∂u(−ρ), (55)

where we use the fact that ∂u is monotone so that all elements in the set ∂u((1 − 2
c2
)H − ρ) − ∂u(−ρ) are all

non-negative. Now consider the function p · ∂u((1− 2
c2
)H − λ) + (1− p) · ∂u(−λ) for λ ∈ [0, ρ]. When λ = 0, it is

clear that p · ∂u((1− 2
c2
)H) + (1− p) · ∂u(0) contains an element that is smaller than one, because 1 ∈ ∂u(0) and

the elements in ∂u((1− 2
c2
)H) are smaller than one. Together with (55) and the continuity of the superdifferential

mapping, we then deduce that there exists some λ∗ ∈ [0, ρ] such that

1 ∈ p · ∂u
((

1− 2

c2

)
H − λ∗

)
+ (1− p) · ∂u(−λ∗). (56)

Now, we are ready to lower bound the right-hand-side of (51). Note that u(H − H̄ − d− λ)− u(−λ) is nondecreasing
in λ ∈ [0, H − H̄ − d]. Using (53) and the assumption H ≥ 2c2d, we then have

u(H − H̄ − d− ρ)− u(−ρ) ≥ u

((
1− 2

c2

)
H − λ∗

)
− u(−λ∗). (57)

For fixed c1 ≥ 4, we can choose

p = 1− 2

c1
≥ 1

2
. (58)

It follows from (51) and (53) that

max
(h∗,s∗,a∗)∈Z

Regret(M(h∗,s∗,a∗), algo,K)

≥ 1

9
√
2
·
√

p

c1
[u(H − H̄ − d− ρ)− u(−ρ)]

√
SAH̄K

≥ 1

18
√
2c1c2

·
[
u

((
1− 2

c2

)
H − λ∗

)
− u(−λ∗)

]√
SAHK. (59)

26



Regret Bounds for MDPs with Recursive OCEs

Finally, we need to make ϵ in (49) satisfy the constraint (46). It is easy to check that ϵ ≤
√

HSA
2c1c2K

. Moreover, we have

(1−2p)+
√

1− 4p
c1

2 ≥ 1
c1

. Hence, we can choose K ≥ c1HSA
2c2

to make ϵ in (49) feasible. The proof is therefore completed.

C.1. An Auxiliary Lemma and Its Proof

Recall that for any p, q ∈ (0, 1) with p+ q = 1, kl(p, q) denotes the KL divergence between two Bernoulli distributions
with success probabilities p and q respectively, i.e.,

kl(p, q) = p log

(
p

q

)
+ q log

(
1− p

1− q

)
.

Lemma C.1. Fix any constant c1 ≥ 2. If p ∈ [0, 1− 1
c1
] and ϵ ∈

[
0,

(1−2p)+
√

1− 4p
c1

2

]
, then we have kl(p, p+ ϵ) ≤ c1ϵ

2

p .

Proof. Using the inequality log(1 + x) ≤ x for any x > −1, we have

kl(p, p+ ϵ) = p log

(
p

p+ ϵ

)
+ (1− p) log

(
1− p

1− p− ϵ

)
≤ p

(
p

p+ ϵ
− 1

)
+ (1− p)

(
1− p

1− p− ϵ
− 1

)
=

ϵ2

(p+ ϵ)(1− p− ϵ)

(1)

≤ c1ϵ
2

p
,

where inequality (1) holds if we have

p

c1
≤ p(1− p) + (1− 2p)ϵ− ϵ2.

One can easily verify that the above inequality holds if p ∈ [0, 1 − 1
c1
] and ϵ ∈

[
0,

(1−2p)+
√

1− 4p
c1

2

]
. The proof is then

completed.

D. Numerical Experiments
In this section, we conduct numerical experiments to illustrate the performance of the OCE-VI algorithm on randomly
generated MDPs.

We adopt the methods in Dann (2019, Section 4.7) to randomly generate MDPs with state space S = {1, · · · , S}, action
spaceA = {1, · · · , A} and episode length H . For each h = 1, 2, . . . ,H , the transition probabilities Ph(·|s, a) are generated
independently from the Dirichlet distribution Dir(0.1, · · · , 0.1). Reward functions rh(s, a) are set to 0 with probability
85% and generated independently from the uniform distribution U [0, 1] with probability 15%. In comparing the performance
of different learning algorithms, we assume that the reward functions are known, but the transition probabilities are unknown.

In our experiments we consider two different OCEs3: entropic risk and mean-variance models. For entropic risk, we compare
the performance of our OCE-VI algorithm with the RSVI2 and RSQ2 algorithms in Fei et al. (2021a). For mean-variance
models, because there is no existing benchmark algorithm in the episodic RL setting with recursive mean-variance criterion,
we compare our OCE-VI algorithm with the UCBVI-CH (with Chernoff-Hoeffding bonus) and UCBVI-BF (with Bernstein

3For CVaR, our OCE-VI algorithm is essentially the ICVaR algorithm (Du et al., 2022), so we do not compare their performances in
the experiments.
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bonus) algorithms in Azar et al. (2017) designed for the risk-neutral episodic RL. While the original UCBVI algorithms in
Azar et al. (2017) are developed for MDPs with stationary transitions, we adapt them to our non-stationary MDP setting
with time-dependent transition probabilities.

We consider two sets of parameters. The first one is (H,S,A) = (3, 6, 3), and we use the risk-aversion parameter β = −0.6
for the entropic risk and c = 1

6 for the mean-variance models. We set K = 106 and δ = 1
2KH for all algorithms. The

second one is (H,S,A) = (6, 20, 3), and we use β = −0.6 for the entropic risk and c = 1
12 for the mean-variance models.

Because the size of the MDP becomes larger and learning can be more difficult in the second setting, we consider K = 107

to show the sublinear regret (in K) of algorithms.

Figures 2 and 3 illustrate the performance comparisons of the OCE-VI algorithm with other algorithms, where we plot
the average regret of each algorithm as a function of the number of episodes K. We compute the expected regret of each
algorithm by averaging over 30 independent runs, but we do not plot the confidence intervals since the confidence intervals
estimated from the 30 samples are very narrow compared with the magnitude of the regret and are almost invisible in the
figures. We can observe from Figures 2 and 3 that for episodic RL with recursive entropic risk, our algorithm can outperform
the RSVI2 algorithm in Fei et al. (2021a) on randomly generated MDPs in the same risk-sensitive RL setting. For episodic
RL with recursive mean-variance models, we find that our algorithm performs better than UCBVI algorithms in Azar et al.
(2017), though this is not surprising given that UCBVI is designed for the risk-netural RL setting.

(a) (b)

Figure 2. Performance comparison of OCE-VI algorithm with other algorithms on a randomly generated MDP with (H,S,A) = (3, 6, 3).
Figure 2a is for episodic RL with recursive entropic risk and Figure 2b is for the mean-variance models.

(a) (b)

Figure 3. Performance comparison of OCE-VI algorithm with other algorithms on a randomly generated MDP with (H,S,A) = (6, 20, 3).
Figure 3a is for episodic RL with recursive entropic risk and Figure 3b is for the mean-variance models.
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