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Abstract

A probabilistic classifier is considered calibrated if it outputs probabilities equal to the
expected class distribution given the classifier’s output. Calibration is essential in safety-
critical tasks where small deviations between the predicted probabilities and the actually
observed class proportions can incur high costs. A common approach to improve the cali-
bration of a classifier is to use a hold-out dataset and a post-hoc calibration method to learn
a correcting transformation for the classifier’s output. This work explores the field of post-
hoc calibration methods for multi-class classifiers and formulates two assumptions about
the probability simplex which have been used by many existing non-parametric calibration
methods, but despite this, have never been explicitly stated: assuming locally equal label
distributions or assuming locally equal calibration errors. Based on the latter assumption,
an intuitive non-parametric post-hoc calibration method is proposed, which is shown to offer
improvements to the state-of-the-art according to the expected calibration error metric on
CIFAR-10 and CIFAR-100 datasets.

1 Introduction

Probabilistic classifiers take some data as input and produce probability distributions over classes as output.
For example, a classifier could be tasked to take as input an X-ray image of a person’s chest and produce as
output a vector of three probabilities for whether the image depicts a healthy lung, lung cancer or some other
lung disease. A classifier is considered to be calibrated if its predicted probabilities are in correspondence
with the true class distribution. It is possible that a probabilistic classifier is not well-calibrated and produces
distorted probabilities. For example, predicting an X-ray image to show a healthy lung with a probability
of 0.9 is calibrated if, among a large sample of images with similar predictions, 0.9 of them truly depict a
healthy lung. If in reality only 0.7 of the images depict a healthy lung, then the prediction of 0.9 is over-
confident. The problem of over-confident predictions is especially common for modern deep neural networks
(Guo et al., 2017; Lakshminarayanan et al., 2017). Distorted output probabilities are also characteristic of
many classical machine learning methods such as naive Bayes, decision trees (Niculescu-Mizil & Caruana,
2005; Domingos & Pazzani, 1996) or high-dimensional logistic regression (Bai et al., 2021; Clarté et al.,
2022a;b).

Well-calibrated classifiers are essential in safety-critical applications (e.g. medical diagnosis, autonomous
driving) where small deviations of predicted probabilities from being calibrated can cause costly mistakes
(Leibig et al., 2017). For example, in a self-driving car that uses a classifier to detect if the road is clear of
obstructions, over-confident predictions can lead to accidents, and under-confident predictions can prevent
the vehicle from driving.
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The machine learning literature has two fundamentally different approaches to achieve better-calibrated
classifiers. The first approach, with a focus on neural networks, is to modify the classifier’s training algorithm
or use Bayesian approaches to model uncertainties. For example, Mukhoti et al. (2020) studied the use of
focal loss (Lin et al., 2017) instead of log-loss for training better calibrated classifiers; Müller et al. (2019)
investigated the use of label smoothing (Szegedy et al., 2016) during training for better calibration; Kumar
et al. (2018) and Popordanoska et al. (2021) proposed additional terms to be added to the training time loss
function that penalize miscalibration; Maddox et al. (2019) proposed Bayesian model averaging for achieving
calibration in deep learning.

The second approach to achieve better-calibrated classifiers is to apply a post-hoc calibration method on an
already trained classifier. Post-hoc calibration methods receive as input a classifier and a hold-out validation
dataset and learn a transformation from the classifier’s predictions to better-calibrated predictions. Many
methods have been proposed for binary probabilistic classifiers, where the output has only two classes and
only one degree of freedom. For example, there exists logistic calibration (Platt, 1999); isotonic calibration
(Zadrozny & Elkan, 2002); histogram binning (Zadrozny & Elkan, 2001); beta calibration (Kull et al., 2017).
For multi-class classifiers with more than two output classes, a common approach has been to apply binary
methods in a one-versus-rest manner: a binary post-hoc calibration method is applied separately on the
probabilities of each class (Zadrozny & Elkan, 2002). In recent years, several inherently multi-class post-hoc
calibration methods have been proposed as well, even though some of them are applicable only for neural
networks. For example, Guo et al. (2017) proposed temperature scaling, vector scaling, and matrix scaling;
Kull et al. (2019) introduced Dirichlet calibration; Zhao et al. (2021) proposed a method specifically intended
for decision making scenarios; Rahimi et al. (2020) suggested intra-order preserving functions; Wenger et al.
(2020) proposed a non-parametric method based on a latent Gaussian process.

This work takes a look at the post-hoc calibration method approach for achieving better calibrated multi-
class classifiers. While there already exist many strong multi-class methods, several of them are limited to
symmetrical transformations for all the classes; for example, temperature scaling, Gaussian process calibra-
tion, diagonal and order-invariant subfamilies of the intra-order preserving functions are all symmetrical.
As shown in the experiments section, symmetrical transformations are usually not a problem but can be
severely limiting in some cases. The asymmetrical existing methods are limited in their expressivity; for
example, matrix scaling and vector scaling are limited to only linear transformations in the logit space. This
work proposes an intuitive and simple non-parametric post-hoc calibration method that is not limited by a
symmetrical transformation or the expressivity of parametric function families. The basis of the proposed
method is assuming that similar predictions on the probability simplex have similar calibration errors. The
method is shown to outperform competing methods, offering improvements in expected calibration error and
avoiding the failures of symmetric methods.

In Section 2, notation is introduced and an overview of background information connected to multi-class
calibration is given. The concepts of calibration, calibration error, calibration error estimation, and existing
post-hoc calibration methods for multi-class calibration are explained. In Section 3, the contributions of this
work are described and a post-hoc calibration method is proposed. In Section 4, experiments are carried out
to compare the proposed method to its competitors. The source code of the experiments is available at https:
//github.com/kaspar98/lece-calibration. This paper builds upon preliminary research conducted for
the author’s master’s thesis (Valk, 2022).

2 Background and related work

The following sections introduce the concepts of calibration, calibration error, calibration error estimation
and explain the existing post-hoc calibration methods for multi-class calibration.

2.1 Notation

This work focuses on m-class classification problems with feature space X and one-hot encoded label space
Y = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}, where m ≥ 3. A probabilistic multi-class classifier for such
a classification problem is a function f : X → ∆m that takes as input features x ∈ X and outputs a
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probability vector f(x) = p̂ = (p̂1, . . . , p̂m) ∈ ∆m, where ∆m = {(q1, . . . , qm) ∈ [0, 1]m|
∑m

i=1 qi = 1}
is the (m − 1)-dimensional probability simplex. In addition, let X ∈ X , Y = (Y1, . . . , Ym) ∈ Y and
f(X) = P̂ = (P̂1, . . . , P̂m) ∈ ∆m be random variables, where X denotes the input features, Y denotes the
label, and P̂ the classifier’s prediction.

2.2 Calibration

There exist several definitions for calibration in the context of probabilistic multi-class classifiers.

Multi-class calibration A classifier is considered to be multi-class-calibrated (or just calibrated) (Kull
et al., 2019) if for any prediction vector p̂ ∈ ∆m it holds that

EY

[
Y |P̂ = p̂

]
= p̂.

Classwise calibration A weaker notion of classwise calibration conditions the expectation on each class
separately (Zadrozny & Elkan, 2002). A classifier is considered to be classwise calibrated if for any class
i ∈ {1, 2, . . . , m} and any real value c ∈ [0, 1] it holds that

EYi

[
Yi|P̂i = c

]
= c.

Note that for binary classification, classwise calibration is the same as multi-class calibration (Vaicenavicius
et al., 2019).

Confidence calibration Another weaker notion, confidence calibration used by Guo et al. (2017) requires
calibration only for the predictions of the class with the highest probability in each output. A classifier is
considered to be confidence calibrated if for any real value c ∈ [0, 1] it holds that

EY

[
Yargmax P̂ |max P̂ = c

]
= c.

An illustrative example of the different calibration definitions is presented in Appendix A.1.

2.3 Calibration error

Calibration error describes the difference between the predicted probabilities of the classifier and the corre-
sponding perfectly calibrated class probabilities. Kumar et al. (2019) defined calibration error for confidence
and classwise calibration for a classifier f . In a slightly more generalized form, confidence calibration error
is defined as

CEconf = EP̂

[∣∣∣max P̂ − EY

[
Yargmax P̂ |max P̂

]∣∣∣α]1/α

,

and classwise calibration error is defined as

CEcw = 1
m

m∑
i=1

EP̂

[∣∣∣P̂i − EY

[
Yi|P̂i

]∣∣∣α]1/α

.

The calibration errors are parameterized by α, where α = 1 results in mean-absolute-error, and α = 2
mean-squared-error.

Calibration error could not only be defined for the whole classifier f but also for just one prediction value as
the difference between the right-hand side and the left-hand side of the corresponding calibration definition.
For this work, calibration error for multi-class calibration for prediction vector value p̂ is defined as

CE(p̂) = p̂− EY

[
Y |P̂ = p̂

]
.

Note that for multi-class calibration, the error defined in such a way is a vector of real values.
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2.4 Calibration evaluation

In any real-world setting, true calibration error can not be directly found, it can only be estimated. Common
metrics to evaluate calibration are expected calibration error (ECE) and proper scoring rules.

The ECE metric groups similar predictions into bins and uses bin averages to estimate the calibration error.
For confidence calibration, ECE is calculated using Yargmax P̂ and max P̂ and it is defined as

confidence ECE =
b∑

i=1

|Bi|
n
· |pi − yi|, (1)

where b is the number of bins, |Bi| the number of data points in bin Bi, n the number of data points, pi the
average prediction value in the i-th bin and yi the average label value in the i-th bin (Naeini et al., 2015).

For classwise calibration, ECE is defined as

classwise ECE = 1
m

m∑
j=1

class-j-ECE,

where class-j-ECE is calculated with the same formula as in Equation (1) but with values Yj and P̂j used
instead of Yargmax P̂ and max P̂ when calculating yi and pi (Kull et al., 2019). Commonly bins are chosen
with either equal size so that they contain an equal amount of data points, or with equal width so that
the probability interval from 0 to 1 is uniformly partitioned between them. Equal-sized bins are also called
equal-mass bins or data dependent bins in some works.

While ECE is an important measure for calibration evaluation, it should not be the only metric to be
evaluated. Very low calibration error can be achieved if the classifier makes very uninformative predictions;
e.g. predicts the overall class distribution of the training dataset for any given input. Good metrics to
consider in addition to ECE are proper scoring rules (Brier score or log-loss) as they are shown to decompose
into calibration loss and refinement loss (DeGroot & Fienberg, 1983). While the calibration loss measures
miscalibration, the refinement loss measures the extent to which instances of different classes are getting
the same prediction. The key property of proper scoring rules is to have the Bayes-optimal model as the
unique loss minimizer, achieving zero calibration loss and the minimal possible refinement loss, which can
be non-zero due to aleatoric uncertainty (Kull & Flach, 2015).

2.5 Post-hoc calibration methods

Calibration of an already trained classifier can be improved by post-hoc calibration methods. Given a
classifier and a hold-out validation dataset different from the original training dataset, the goal of a post-hoc
calibration method is to learn a map ĉ : ∆m → ∆m from the uncalibrated output p̂ of the classifier to a
better-calibrated output ĉ(p̂). The ideal result would be if the calibration method learns the true calibration
map c(p̂) = EY

[
Y |P̂ = p̂

]
. The transformation is typically learned by optimizing a proper scoring rule

(Brier score or log-loss) (Rahimi et al., 2020). A possible motivation behind this can be that unless the
refinement loss is decreasing, any reduction of a proper loss is due to the reduction of the calibration loss.

One-versus-rest methods A common approach to multi-class calibration has been to apply binary post-
hoc calibration methods in a one-versus-rest manner (Zadrozny & Elkan, 2002). For every class in a m class
classification task, one can define a binary one-vs-rest classification problem: the currently viewed class is
the positive class, rest of the classes grouped together are the negative class. In a one-versus-rest approach
to multi-class calibration, a binary classification method is trained on m such one-vs-rest tasks separately.
For example, some binary calibration methods that have been applied in the one-versus-rest approach are
Platt scaling (Platt, 1999), isotonic regression calibration (Zadrozny & Elkan, 2002), histogram binning
(Zadrozny & Elkan, 2001), and beta calibration (Kull et al., 2017). Platt scaling and beta calibration are
both parametric methods fitting a specific family for calibration, isotonic regression calibration uses isotonic
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regression to learn a calibrating transformation, histogram binning divides the probability space into equal-
sized bins and in each bin sets the calibrated value of predictions belonging to that bin equal to the empirical
class distribution value in the bin.

There are two considerable flaws to the one-versus-rest approach. First, it is not able to learn any depen-
dencies between classes. Second, when the output of m binary methods is put back together, the prediction
vector will likely no longer sum to 1 and needs to be normalized. It has been shown that normalization can
make the probabilities less calibrated depending on the metric used (Gupta & Ramdas, 2022). Therefore,
some works propose to ignore the final step of normalization and treat one-vs-rest calibration as truly m
separate binary calibration problems (Patel et al., 2021; Gupta & Ramdas, 2022).

Temperature scaling Temperature scaling is a logit scaling method designed for neural networks in-
troduced by Guo et al. (2017). The method is defined as ĉ(z) = σ(z/t) where z is the logit vector and
t ∈ (0,∞) is the learned temperature parameter shared across all classes. If t > 1, then the method makes
the predictions less confident by pulling the probability distribution towards the uniform distribution; if
t < 1, then the method makes the predictions more confident, making the largest probability in the output
even larger.

Matrix and vector scaling Matrix and vector scaling are both logit transformation techniques proposed
by Guo et al. (2017) similar to temperature scaling. The calibrated output of these techniques is obtained
by ĉ(z) = σ(Wz + b), where W ∈ Rk×k is a matrix of learned weights (restricted to the diagonal matrix
for vector scaling, unrestricted for matrix scaling) and b ∈ Rk is a vector of learned biases. Vector scaling
is similar to temperature scaling, but instead of a single scaling parameter, a scaling parameter is learned
separately for each class and an additional bias is also learned. For matrix scaling, each logit becomes a
linear combination of other logits. Matrix scaling gives better results if it is trained with off-diagonal and
intercept regularization (ODIR) (Kull et al., 2019): the term λ( 1

m(m−1)
∑

i ̸=j w2
ij) + µ( 1

m

∑
j b2

j ) is added to
the training loss, where λ and µ are the regularization hyperparameters.

Dirichlet calibration Dirichlet calibration is a method proposed by Kull et al. (2019) that is quite
similar to matrix scaling, except it does not work on the logits of a neural network but rather on the actual
predicted probabilities p̂ of a classifier. With Dirichlet calibration, the calibrated probabilities are obtained
by ĉ(p̂) = σ(Wlnp̂ + b), where ln is a vectorized natural-logarithm function. Similar to matrix scaling,
Dirichlet calibration is also trained with ODIR to prevent overfitting.

Intra order-preserving functions Rahimi et al. (2020) proposed to use the family of intra order-
preserving (IOP) functions to learn a calibration map on the logits of a neural network. An IOP function
ĉ : Rm → Rm is a vector-valued function where the order of the sorted output components is the same
as the order of sorted input components, that is argsort ĉ(z) = argsort z. The use of IOP functions was
motivated by their property of preserving classifier accuracy, and having larger expressive power than the
scaling methods proposed by Guo et al. (2017) or Dirichlet calibration. The IOP function family preserves
classifier accuracy after calibration, as the largest probability in the classifier output still remains the largest
probability after calibration, thanks to the order-preserving property. The IOP function family is more ex-
pressive than matrix scaling or Dirichlet calibration, as IOP functions can learn non-linear transformations
while matrix scaling and Dirichlet calibration are limited to linear transformations.

In addition, Rahimi et al. (2020) showed in their experiments that in practice, it is better to use a diagonal
subfamily of IOP functions as they can be expressed with fewer parameters and are therefore less prone to
overfitting. An IOP function ĉ is a diagonal function if ĉ(z) = (ĉ(z1), . . . , ĉ(zm)), where ĉ : R → R is a
continuous and increasing function. A diagonal IOP function is symmetrical for all classes and produces
output where the different class logits do not interact with each other in ĉ. It can be noted that temperature
scaling uses a subfamily of diagonal IOP functions: it uses linear diagonal IOP functions where the bias
term equals 0. Rahimi et al. (2020) implemented the IOP post-hoc calibration method as a neural network
with two fully connected hidden layers with order-preserving constraints. Their implementation has two
hyperparameters: the number of neurons in the first and second hidden layers.
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Decision calibration Zhao et al. (2021) proposed a non-parametric calibration method for the context of
decision making settings. The method works iteratively by partitioning the probability simplex and applying
an adjustment on each partition. The partition and adjustment are both determined by the average difference
between the label and prediction values.

Gaussian process calibration Wenger et al. (2020) proposed a natively multi-class non-parametric cal-
ibration method that uses a latent Gaussian process to learn the calibrating transformation. The method
applies the same transformation for all the classes.

3 Contributions

The contributions of this work to the field of multi-class calibration can be split into two:

1. The work formulates two assumptions about the true calibration map that have been previously
used but not clearly stated in the calibration literature.

2. By explicitly acknowledging the assumptions, we propose an intuitive and simple non-parametric
post-hoc calibration method.

3.1 Proposed assumptions

Before introducing the proposed assumptions, a small introduction is needed. According to the defi-
nition of multi-class calibration given in Section 2.2, a prediction vector p̂ is considered calibrated if
p̂ = EY

[
Y |P̂ = p̂

]
. Therefore, a calibrating transformation of a prediction p̂ could be found if we had

a good estimate of its true conditional class distribution EY

[
Y |P̂ = p̂

]
— we could simply set the pre-

diction value p̂ equal to the estimate. Similarly, if we were to approach calibration from the definition of
calibration error CE(p̂) = p̂−EY

[
Y |P̂ = p̂

]
given in Section 2.3, it would suffice for calibration if we had a

good calibration error estimate — we could subtract the estimate from the prediction and our output would
be calibrated.

One obvious weak estimator for the true class distribution could be the (single) label value Y corresponding
to p̂. The estimator would clearly be unbiased as for each p̂, the average value of Y is equal to EY [Y |P̂ = p̂],
and hence, EY [Y |P̂ = p̂]−EY [Y |P̂ = p̂] = 0. However, this estimator Y would have very high variance as
it is based on a sample with just one element. Likewise, an unbiased high variance estimator ĈE could be
constructed for the calibration error as the difference between the prediction and its label ĈE(p̂) = p̂− Y .
Unfortunately, both of these simple estimators have too high variance to be used for calibration. However, if
we made some assumptions about the calibration map of our classifier, we could construct good estimators
that make use of these weaker estimators.

Assumption of locally equal calibration errors (LECE) We propose to assume that the calibration
error is approximately equal in a close neighborhood on the probability simplex. Formally, for some fixed
ϵ, δ > 0 and some neighborhood function d : ∆m ×∆m → R, we assume that

d(p̂, p̂′) ≤ δ =⇒
∥∥CE(p̂)− CE(p̂′)

∥∥2 ≤ ϵ

where ∥·∥2 denotes the squared Euclidean norm.
Note that the term ‘locally‘ is often used to refer to neighborhoods in the original feature space, whereas we
consider neighborhoods in the simplex.

Given a validation dataset, the LECE assumption allows us to construct a considerably better estimator
ĈEneigh for the calibration error of prediction p̂ than the previously introduced weak estimator ĈE(p̂) =
p̂−Y . First, we need to find the close neighborhood of p̂, meaning the validation set predictions p̂1, . . . , p̂k

with labels Y 1, . . . , Y k for which d(p̂, p̂i) ≤ δ for i in 1, . . . , k. A stronger estimator can then be constructed
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if we average across the weak calibration error estimator values belonging to that close neighborhood

ĈEneigh(p̂) = 1
k

k∑
i=1

ĈE(p̂i) = 1
k

k∑
i=1

(p̂i − Y i).

The stronger estimator has an upper bound on its squared bias as

Bias
[
ĈEneigh(p̂)

]2
=

∥∥∥EY 1,...,Y k

[
ĈEneigh(p̂)

]
− CE(p̂)

∥∥∥2

=
∥∥∥∥∥ 1

k

k∑
i=1

EY i
[(p̂i − Y i)]− CE(p̂)

∥∥∥∥∥
2

=
∥∥∥∥∥ 1

k

k∑
i=1

(p̂i − EY i [Y i])− CE(p̂)
∥∥∥∥∥

2

=
∥∥∥∥∥ 1

k

k∑
i=1

CE(p̂i)− CE(p̂)
∥∥∥∥∥

2

≤ 1
k

k∑
i=1
∥CE(p̂i)− CE(p̂)∥2 ≤ 1

k

k∑
i=1

ϵ = ϵ.

The variance of the estimator decreases approximately linearly as the number of neighbors increases

V ar
[
ĈEneigh(p̂)

]
= V ar

[
1
k

k∑
i=1

ĈE(p̂i)
]

=
∑k

i=1 V ar[ĈE(p̂i)]
k2 ≈ V ar[ĈE(p̂)]

k
.

Given the estimate ĈEneigh(p̂), a calibrated prediction can finally be constructed by subtracting it from the
original prediction: ĉ(p̂) = p̂− ĈEneigh(p̂).

Assumption of locally equal class distributions (LECD) A similar derivation for constructing cal-
ibrated predictions is possible if one would instead assume that the true label distribution EY

[
Y |P̂ = p̂

]
is approximately equal in a close neighborhood. Formally, for some fixed ϵ, δ > 0 and some neighborhood
function d : ∆m ×∆m → R, we assume that

d(p̂, p̂′) ≤ δ =⇒
∥∥∥EY

[
Y |P̂ = p̂

]
− EY

[
Y |P̂ = p̂′

]∥∥∥2
≤ ϵ.

With this assumption, the method would arrive at a calibrated prediction by using the average one-hot
label vector in a close neighborhood ĉ(p̂) = 1

k

∑k
i=1 Y i. Similarly to the previous LECE assumption, the

estimator used with the LECD assumption would also have an upper bound of ϵ on its squared bias, and its
variance would decrease approximately linearly as the number of neighbors increases.

Visualisation of the assumptions To better understand the difference between the two assumptions,
consider Figure 1. It depicts the calibration maps learned by two calibration methods on a synthetic
calibration task. The exact details about the synthetic dataset are given in Section 4.1, but in short, 5000
prediction and label pairs were generated from a Dirichlet distribution with parameters [0.5, 0.5, 0.5], and
the goal of the calibration methods in Figures 1a and 1b was to learn to imitate the true calibration map
depicted in Figure 1c from the generated data. Note that the true calibration map depicted in Figure 1c
is something we never know in practice and here it has been manually created merely for this synthetic
calibration task to allow for visual comparison between the two assumptions. Both the background colors
and black arrows depict the learned transformation. The same information that is represented by the arrow
is also represented by the RGB color value which is in a linear relation with the calibration error vector at
that point: red for class 1, green for class 2, and blue for class 3.
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(a) Histogram binning one-vs-rest
with LECD assumption (classical)

(b) Histogram binning one-vs-rest
with LECE assumption (new)
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(c) True calibration map

Figure 1: Illustrative example of the differences between the LECD and the LECE assumption on a synthetic
calibration task. Two versions of histogram binning applied in a one-vs-rest style with 5 equal-width bins
(a, b) aim to learn the true calibration map (c). The classical histogram binning uses the LECD assumption
(a); the novel version uses the LECE assumption (b). Note the difference between the two methods: (a) for
LECD the black calibration arrows point to the same location in one bin; (b) for LECE the arrows are the
same in one bin. Histogram binning applied with the LECE assumption (b) imitates the true calibration
map (c) more closely than the one applied with the LECD assumption (a). For details about the synthetic
data calibration task, see Section 4.1.

Both of the methods depicted in Figure 1a and Figure 1b depict the result of a histogram binning method
applied in one-vs-rest style with 5 equal-width bins. Note that the classical histogram binning uses equal-size
bins, but here equal-width bins are used for a clearer visualization. The only difference between the methods is
the underlying assumption used: in Figure 1a the LECD assumption is used as in classical histogram binning;
the novel alternative in Figure 1b uses the LECE assumption. Note that the visualization in Figure 1a is
very similar to the visualization of the higher-dimensional reliability diagrams as used by Vaicenavicius et al.
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(2019), and even though they are technically the same, here Figure 1a does not depict a reliability diagram,
but rather the transformation of a calibration method.

In both cases, the binning scheme defines the close neighborhoods, where we assume the corresponding
assumptions to hold. With the classical LECD assumption, the end point of every calibrating arrow is the
same in one bin; with the novel assumption, the calibrating arrow itself is the same in one bin. When
comparing Figure 1a and Figure 1b to Figure 1c, histogram binning applied with the LECE assumption
provides a closer imitation of the true calibration map than histogram binning applied with the LECD
assumption. The visual intuition is also confirmed by the several numeric metrics in provided in Table 1
in Section 4.1, showing that the histogram binning based on the LECE assumption is indeed closer to the
true calibration map. The LECE assumption outperformed the LECD assumption on the real experiments
as well (as shown in Section 4.2.4) and is therefore preferred in this work.

Relation to prior work Neither of the two assumptions are completely novel as estimators based on them
have been used in previous work. However, the assumptions themselves have never been explicitly stated.
An estimator based on the assumption of equal calibration errors has been used in at least two algorithms
that use the average difference between the label and prediction in a close neighborhood. First, the widely
used ECE calculation algorithm (Naeini et al., 2015) defines the close neighborhood with bins and in each
bin uses the difference between the average label and average prediction value to estimate the calibration
error — this is similar to the proposed assumption as 1

k

∑k
i=1 p̂i − 1

k

∑k
i=1 yi = 1

k

∑k
i=1(p̂i − yi). Second,

the recently proposed decision calibration algorithm (Zhao et al., 2021) also uses the average difference
between the predictions and labels in a close neighborhood. In the decision calibration algorithm, the close
neighborhoods are defined in each iteration by the partition.

An estimator based on the assumption of equal class distributions has also been previously used. It is the
basis of the histogram binning method (Zadrozny & Elkan, 2001) where the close neighborhood is defined
by the binning scheme; in each bin, the average one-hot label vector is used to calibrate the predictions.
The weighted average one-hot label vector is also used in recent work by Popordanoska et al. (2021) for a
training time calibration method, not a post-hoc calibration method. In their work, all the neighbors of a
prediction are assigned a weight with a kernel function; the weighted average of label vectors is then used
to estimate the calibrated prediction.

Defining the close neighborhood For both assumptions, two open questions remain:

1. How many instances should the close neighborhood cover?

2. How should the close neighborhood be defined?

To answer the first question: the more neighbors taken, the less varying the estimators; however, the further
away the neighbors are, the bolder the assumptions and the larger the bias from the assumption. Therefore,
a sweet spot for the bias-variance tradeoff has to be found. This can be achieved if the used neighborhood
scheme offers a hyperparameter defining the neighborhood size. The hyperparameter could then be optimized
with cross-validation with Brier score or log-loss.

There is no simple answer to the second question. Histogram binning and the ECE algorithm define the
close neighborhood with a binning scheme. However, the binning schemes are only defined for the binary
case. The decision calibration algorithm (Zhao et al., 2021) defines the close neighborhoods by a linear
partition that splits the probability simplex such that the calibration error estimates would be maximized.
Popordanoska et al. (2021) define the neighborhood through assigning weights with a kernel function.

3.2 LECE calibration

One intuitive approach would be to define the close neighborhood separately for every data point: for some
prediction p̂, the close neighborhood could be defined by the k closest instances on the validation dataset.
Defining the neighborhood this way results basically in a modified k-nearest-neighbors algorithm that we
call LECE calibration. For any uncalibrated prediction p̂, LECE calibration would:
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1. Find the k closest predictions on the validation dataset p̂1, . . . , p̂k according to some neighborhood
function d.

2. Estimate the calibration error of p̂ by finding the average difference between its neighbors’ prediction
and label

ĈEneigh(p̂) = 1
k

k∑
i=1

(p̂i − yi) = 1
k

k∑
i=1

ĈE(p̂i).

3. Subtract the calibration error estimate ĈEneigh(p̂) from the uncalibrated prediction p̂ to calibrate:

ĉ(p̂) = p̂− ĈEneigh(p̂).

Similary to the LECE calibration algorithm, a LECD calibration algorithm could be defined as well, with
the only difference being in the underlying assumption used — instead of steps 2 and 3 of the algorithm,
the method would instead set the calibrated prediction equal to the average label value of the neighbors
ĉ(p̂) = 1

k

∑k
i=1 yi.

For the neighborhood function d, we considered Kullback-Leibler divergence and Euclidean distance. As
shown in the real data experiments in Section 4.2.4, Kullback-Leibler divergence performed slightly bet-
ter. To find the neighbors of p̂, Kullback-Leibler divergence is applied as dKL(p̂, ·) where dKL(p̂, p̂′) =∑m

i=1 p̂i log
(

p̂i

p̂′
i

)
, and the term in the sum is considered equal to 0 if p̂i = 0 and equal to ∞ if p̂i ̸= 0 and

p̂′
i = 0. The number of classes is denoted by m.

Thresholding tiny probabilities A problem inherent to the non-parametric LECE (and LECD) calibra-
tion method is its inability to work well for tiny probabilities. This is because the method uses an estimator,
which has some built in errors coming from its bias and/or variance. For class probabilities that are very near
to 0, these errors of the estimator become very large proportionally to the probability. To see this, consider
a true class probability pi estimated based on k neighbours. In the ideal case where all the neighbours have
the same true label distribution, the variance of this estimator is pi(1−pi)

k . Hence the estimator’s relative

error (standard deviation divided by the true value) is
√

pi(1−pi)√
k

/pi =
√

1−pi√
pi·k

which becomes increasingly
large when pi gets small. This could even lead to situations, where the LECE method produces output
that is smaller than 0 for some classes and could no longer be interpreted as probabilities. For example,
consider p̂i = 0.01 and suppose the average prediction of its k neighbors is p̄ = 0.03 and the average label
ȳ = 0.01. In that case, the calibration error estimate is ĈEneigh(p̂i) = 0.03 − 0.01 = 0.02 and the calibrat-
ing transformation would be ĉ(p̂i) = p̂i − ĈEneigh(p̂i) = 0.01 − 0.02 = −0.01, which is no longer on the
probability simplex. Therefore, to overcome this problem with small probabilities, we opted to introduce
one more parameter to the calibration method: a threshold value t ∈ R which sets a lower limit when to
apply the method. For any class probability smaller than t, we do not apply the method. As the true class
probability pi is unknown, then instead we apply this threshold on both the uncalibrated prediction p̂i and
the corresponding would-be-calibrated prediction ĉ(p̂i). More precisely, given the prediction vector p̂, and
the would-be-calibrated prediction vector ĉ(p̂) = p̂ − ĈEneigh(p̂), if for the i-th class p̂i ≤ t or ĉi(p̂) ≤ t,
then we set ĉi(p̂) = p̂i, where ĉ(·) = (ĉ1(·), . . . , ĉm(·)). Thresholding can cause the final output to no longer
sum to 1, so to solve this, as a final step we divide the output vector by its sum. As shown by optimal
threshold values chosen by hyperparameter tuning in the real experiments in Table 11, the LECE method
chooses small threshold values ranging from t = 0 to t = 0.02.

Composition with parametric methods The authors of the decision calibration algorithm noticed
that their proposed non-parametric post-hoc calibration method works better if it is applied in composition
with temperature scaling (Zhao et al., 2021). First, temperature scaling learns the calibration map on the
validation dataset and then their method fine-tunes the result of temperature scaling using the temperature-
scaled validation data. The benefit of composing parametric and non-parametric calibration methods was
also shown by Zhang et al. (2020) who noted that isotonic regression applied in a one-versus-rest manner
works better if it is applied on top of temperature scaling. A similar observation is true for the proposed
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non-parametric LECE calibration method in this work as well. The experiments on real data in Section 4.2
show that the proposed method loses to existing parametric post-hoc calibration methods when applied
directly, but wins when applied on top of temperature scaling. From the experiments it can be concluded
that on datasets with few samples per class, LECE alone is not strong enough to compete with methods
with parametric assumptions. However, LECE has its merits being less constrained than its competitors,
and therefore it can offer improvements on top of parametric methods, wherever they are limited by their
parametric family. Additionally, the violations of the LECE assumption are likely to diminish when the
calibration errors become smaller, e.g. on top of temperature scaling.

Algorithm 1: LECE calibration method
Input : predictions on the validation set p̂1, . . . , p̂n

validation set labels y1, . . . , yn

prediction to calibrate p̂
neighborhood size k
distance function d
threshold t
number of classes m

Output: calibrated prediction ĉ(p̂)
1 D ← distances d(p̂, p̂i) for i in 1, . . . , n
2 I ← indices of k smallest values from D

3 p̄← 1
k

∑
i∈I p̂i // average prediction

4 ȳ← 1
k

∑
i∈I yi // average label

5 ĈE ← p̄− ȳ // calibration error estimate
6 ĉ(p̂)← p̂− ĈE // initial calibrated prediction
7 for i in 1, . . . , m do
8 if p̂i ≤ t or ĉ(p̂)i ≤ t then
9 ĉ(p̂)i ← p̂i // thresholding

10 end
11 end
12 ĉ(p̂)← ĉ(p̂)/

∑m
i=1 ĉ(p̂)i // ensure sums to 1

13 return ĉ(p̂)

The complete pseudocode of LECE calibration with thresholding is presented in Algorithm 1. Note that
if LECE calibration were to be applied in composition with temperature scaling, then the only difference
in Algorithm 1 would be that the input p̂1, . . . , p̂n and p̂ would be the output of temperature scaling. A
discussion on the computational and memory complexity of Algorithm 1 is given in Appendix A.2.

To summarize, the LECE calibration method is essentially a k-nearest neighbors algorithm using the neigh-
bors prediction and label difference; the method involves thresholding of tiny probabilities; and it works best
when composed with a parametric method.

4 Experiments

The experiments’ section consists of two parts:

• A small experiment on synthetically generated data. The goal of this experiment is to illustrate and
give visual intuition about the different post-hoc calibration methods.

• Larger experiments on two real datasets and three convolutional neural network classifiers. The goal
of these experiments is to compare the proposed post-hoc calibration method with its competitors
and see if it can offer improvement over the state-of-the-art.
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4.1 Synthetic data experiment

To illustrate the differences between the assumption of locally equal calibration errors (LECE) and the as-
sumption of locally equal class distributions (LECD), and the limitations of the existing post-hoc calibration
methods, a synthetic dataset was created. A synthetic approach allows to define the true calibration function
c(p̂) = EY [Y |P̂ = p̂], which is not available in any real-world dataset.

4.1.1 Data generation

For the experiment, a 3-class validation dataset consisting of 5000 prediction and label pairs, and a test
dataset consisting of 100000 prediction and label pairs were generated. Note that as calibration applies on the
predictions and does not depend on the original feature space, we are directly generating predictions without
considering the features nor the classification model at all. Classifier predictions p̂ were sampled from a 3-
class Dirichlet distribution with parameters [0.5, 0.5, 0.5]; the label distributions were calculated by applying
the chosen true calibration function c(p̂) = EY [Y |P̂ = p̂] on the predictions; the labels y were sampled
from c(p̂). The chosen true calibration function is defined as c(p̂) = (p̂0.8

1 + p̂1·p̂2
5 , p̂2 + p̂1·p̂3

3 , p̂3 + p̂1·p̂2
10 )/Z,

where Z is the renormalizing term to sum to 1. The chosen function is depicted in Figure 1c and repeated
again in Figure 2d for convenience. Note that the results of the synthetic experiment should be considered
purely illustrative as the function c(·) was chosen rather arbitrarily and with a different function the results
could be different.

4.1.2 Compared post-hoc calibration methods

On the synthetic task several post-hoc calibration methods were evaluated:

• Two different histogram binnings with 5 equal-width bins: a classical version with the LECD as-
sumption (H-LECD) and a novel version with the LECE assumption (H-LECE). The histogram
binning methods were chosen to visualise the difference between the two assumptions formalized in
Section 3. The visualization between the two assumptions is provided in Figure 1.

• Temperature scaling (TS) to illustrate the limitations of symmetric calibration methods which can
only learn transformations that act the same way for all the classes. Temperature scaling was applied
to log(p̂) as no logits were available for the task.

• Dirichlet calibration (DIR) to show the limited expressivity of the otherwise powerful parametric
methods. Dirichlet calibration was fit without regularization as the number of parameters is low
with 3 classes.

• Our proposed LECE calibration method (LECE) to illustrate its merits. The method was applied
with k = 500 neighbors and threshold value t = 0 (thus applying thresholding only to ensure that
outputs are non-negative). Note that this synthetic calibration task is meant to be purely illustrative
of different calibration methods, and therefore the hyperparameters of LECE were manually chosen
to show that the method can work well given good hyperparameters. The experiments on real data
where hyperparameters are tuned with cross-validation show that good hyperparameter values can
be found in practice as well.

4.1.3 Results

The learned calibration maps of H-LECD and H-LECE are depicted in Figure 1, the maps of all other
methods are shown in Figure 2. Both the background colors and black arrows in both Figure 1 and Figure 2
depict the learned transformation. The same information that is represented by the arrow is also represented
by the RGB color value which is in a linear relation with the calibration error vector at that point: red for
class 1, green for class 2, and blue for class 3. Table 1 contains the results of the synthetic experiment
according to several different numeric metrics; it shows the mean of 100 data generation seeds with the
standard deviation. For synthetic experiments, the ECE measures are replaced with the true calibration
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Table 1: Results of the illustrative synthetic experiment: the mean and standard deviation over 100 data seeds
is reported. For details of the applied methods, see Section 4.1.2. H-LECD (in Figure 1a) is outperformed
by H-LECE (in Figure 1b). TS (in Figure 2a) is limited by symmetry and loses to DIR (in Figure 2b). DIR
is limited by its parametric family and loses to LECE (in Figure 2c). The final column (true) depicts the
theoretical best result which is obtained by applying the true calibration map (in Figure 2d).

ours ours
H-LECD H-LECE TS DIR LECE true

confidence CE 0.056± 0.001 0.019± 0.002 0.030± 0.002 0.022± 0.004 0.018± 0.003 0.000± 0.000
classwise CE 0.049± 0.001 0.016± 0.001 0.027± 0.001 0.018± 0.002 0.015± 0.002 0.000± 0.000
Brier score 0.448± 0.001 0.438± 0.001 0.440± 0.001 0.438± 0.001 0.438± 0.001 0.436± 0.001
log-loss 0.772± 0.002 0.749± 0.010 0.751± 0.002 0.747± 0.002 0.742± 0.002 0.738± 0.002
accuracy 0.668± 0.002 0.671± 0.002 0.669± 0.001 0.671± 0.001 0.670± 0.001 0.671± 0.001

(a) Temperature scaling (b) Dirichlet calibration

(c) LECE calibration (new)
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(d) True calibration map

Figure 2: Illustrative example of calibration maps produced by different post-hoc calibration methods on
a synthetic calibration task (a, b, c). The goal of the methods is to learn the true calibration map (d).
Temperature scaling (a) is limited by its symmetric calibration map. Dirichlet calibration (b) performs well,
but is held back by its parametric family: it fails to imitate the calibration arrows of the true calibration
map (d) for small values of p̂1. LECE calibration (c) manages to learn a transformation very similar to the
true calibration map (d).
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errors (CE) as the true calibration function is known (see Section 2.3 for details): CE is measured with
α = 1 and the expectation is replaced with empirical test set average. The last column in Table 1 depicts
the results when applying the true calibration map — the theoretical best result the methods could achieve.

First, when comparing the two histogram binnings, it can be seen that the evaluation metrics in Table 1
confirm the visual intuition available from Figure 1a and Figure 1b: the new proposed LECE assumption
significantly outperforms the classical LECD assumption. Second, as seen in Figure 2a, temperature scaling is
clearly not sufficient for the task as it is limited to a symmetrical transformation. Third, Dirichlet calibration,
one of the strongest existing competitors learns a result close to the true calibration map, but is held back by
its parametric family: note its bad performance for values close to 0 for p̂1 as the learned calibration arrows
there are not similar to the arrows of the true calibration map. Overall, the proposed LECE calibration
method depicted in Figure 2c learns the most similar transformation to the true calibration map.

4.2 Real data experiments

The goal of the real data experiments is to see if the proposed method can improve state-of-the-art in
practical settings.

4.2.1 Datasets and models

CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) are used for the experiments. On both of the datasets,
the predictions of convolutional neural networks ResNet-110 (He et al., 2016), ResNet Wide 32 (Zagoruyko
& Komodakis, 2016), DenseNet-40 (Huang et al., 2017) are used. The precomputed logits of these three
CNN-s were provided by Kull et al. (2019), and the same validation and test set split of the logits was used
as in the experiments of Kull et al. (2019) and Rahimi et al. (2020). An overview of the used datasets,
classifiers, and dataset sizes is given in Table 2.

4.2.2 Compared post-hoc calibration methods

On the real datasets the following methods are compared:

• Uncalibrated predictions (uncal) to have a baseline.

• Matrix scaling with ODIR (MS); best hyperparameters for the dataset and classifier combinations
were provided by the authors of ODIR for matrix scaling (Kull et al., 2019).

• Diagonal subfamily of intra-order preserving functions (IOP); best hyperparameters for the dataset
and classifier combinations were obtained from the original article (Rahimi et al., 2020).

• Gaussian process calibration (GP) applied on logits (Wenger et al., 2020).

• Temperature scaling (TS) (Guo et al., 2017).

Table 2: Datasets and model details for the real experiments. The precomputed logits were provided by
Kull et al. (2019), and the same validation and test set split of the logits was used as in the experiments of
Kull et al. (2019) and Rahimi et al. (2020).

Dataset size
Dataset Models Classes Training Validation Test
CIFAR-10 DenseNet-40 10 45000 5000 10000

ResNet-110
ResNet Wide 32

CIFAR-100 DenseNet-40 100 45000 5000 10000
ResNet-110
ResNet Wide 32
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• Decision calibration (Zhao et al., 2021); trained to achieve decision calibration with respect to all loss
functions with 2 decisions; number of trained iterations was determined by looking at the test set (!)
Brier score to save computational resources, thus giving a slight unfair advantage to this method;
the final output was normalised to sum to 1 which was not done in the original implementation but
is inevitable for log-loss evaluation; applied in composition with temperature scaling (TS+DEC)
as recommended by the original paper.

• Isotonic regression calibration (Zadrozny & Elkan, 2002) applied in a one-vs-rest approach (IR) and
the same method in composition with temperature scaling (TS+IR) as proposed by Zhang et al.
(2020). In both cases, the final output is normalized by dividing the output vector with its sum.

• Our proposed method; optimal hyperparameters were found with 10-fold cross-validation grid
search optimized by log-loss from neighborhood size proportions q of the training dataset
q = k/n ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.2, 1.0}, and threshold values t ∈
{0, 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.05, 0.10, 1.0}. Note that including t = 1 as a possible
value allows the calibration method to learn the identity map. Neighborhood size proportion 0.01
stands for 0.01 · 5000 = 50 neighbors in the validation set and 0.01 · 4500 = 45 neighbors in one fold
of the 10-fold cross-validation as there are 5000 total data points in the validation set. The reason
for using a fixed proportion q instead of a fixed number of neighbors k is to ensure that the neigh-
borhood would cover approximately the same subregion of the probability simplex on data folds of
different sizes. LECE calibration is applied in composition with temperature scaling (TS+LECE)
and without temperature scaling (LECE).

For methods applied in composition with temperature scaling, temperature scaling is always applied first.

4.2.3 Results

In the following paragraphs the results for confidence ECE, classwise ECE, log-loss, and accuracy are pre-
sented.

Confidence ECE Table 3 presents the results for confidence ECE. Both confidence and classwise ECE are
measured with 15 equal-sized bins or also known as data dependent bins according to the formulas described
in Section 2.4. According to confidence ECE, the best performing methods are GP and our proposed method
TS+LECE. Without TS, LECE performs poorly on the real datasets: it is heavily outperformed by every
other method. However, when applied in composition with TS, the result of TS is improved for 5 out of 6
cases.

Table 3: Confidence ECE (×102) applied with 15 equal-sized bins according to the formula described in
Section 2.4. For details of the applied methods see Section 4.2.2. In every row, the methods are ranked and
the rank is displayed as a subindex, the best performing method is also highlighted in bold. On average, the
best performing methods are Gaussian process calibration (GP) and our proposed method TS+LECE.

ours ours
uncal IR LECE MS IOP GP TS TS+DEC TS+IR TS+LECE

C-10 DenseNet-40 5.4910 1.678 3.729 0.914 0.802 0.863 0.925 1.136 1.397 0.691
ResNet-110 4.7510 1.448 3.319 0.995 0.913 0.882 0.944 1.016 1.027 0.651
ResNet Wide 32 4.4810 1.078 2.059 0.756 0.693 0.391 0.693 0.767 0.693 0.602

average rank 10.0 8.0 9.0 5.0 2.7 2.0 4.0 6.3 5.7 1.3
C-100 DenseNet-40 21.1610 4.868 10.499 1.224 3.456 0.892 0.791 3.857 2.125 1.183

ResNet-110 18.4810 5.808 6.369 2.314 2.805 1.891 2.133 3.407 3.176 1.992
ResNet Wide 32 18.7810 5.748 15.539 1.855 1.043 0.872 1.414 3.347 2.956 0.851

average rank 10.0 8.0 9.0 4.3 4.7 1.7 2.7 7.0 5.7 2.0
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Table 4: Classwise ECE (×102) applied with 15 equal-sized bins according to the formula described in
Section 2.4. For details of the applied methods see Section 4.2.2. In every row, the methods are ranked and
the rank is displayed as a subindex, the best performing method is also highlighted in bold. On average,
the best performing methods are matrix scaling (MS) and our proposed method TS+LECE. Row CIFAR-10
ResNet Wide 32 illustratres the limitations of symmetrical methods, where all symmetrical methods (IOP,
GP, TS) offer minimal improvements over uncalibrated predictions.

ours ours
uncal IR LECE MS IOP GP TS TS+DEC TS+IR TS+LECE

C-10 DenseNet-40 0.44510 0.2807 0.4119 0.2141 0.2513 0.2595 0.2554 0.2918 0.2646 0.2342
ResNet-110 0.35810 0.2608 0.2979 0.1801 0.2122 0.2153 0.2164 0.2487 0.2346 0.2164
ResNet Wide 32 0.49610 0.3196 0.2925 0.1811 0.4529 0.4407 0.4468 0.2824 0.2462 0.2462

average rank 10.0 7.0 7.7 1.0 4.7 5.0 5.3 6.3 4.7 2.7
C-100 DenseNet-40 0.1308 0.1177 0.20610 0.0952 0.1106 0.1024 0.1024 0.1399 0.0952 0.0941

ResNet-110 0.1328 0.1197 0.15910 0.1105 0.0964 0.0921 0.0943 0.1359 0.1146 0.0921
ResNet Wide 32 0.1248 0.1227 0.13610 0.0942 0.1055 0.1055 0.1034 0.1248 0.0963 0.0891

average rank 8.0 7.0 10.0 3.0 5.0 3.3 3.7 8.7 3.7 1.0

Classwise ECE Table 4 presents the results for classwise ECE. Note that classwise ECE values tend to
be a lot smaller than confidence ECE: this is due to the fact that most predictions coming from the softmax
function are tiny and wash out the ECE score (Nixon et al., 2019). On CIFAR-10, matrix scaling is clearly
the best performing method. On CIFAR-100 our proposed TS+LECE performs best but only marginally:
many other methods offer similar scores. The results on CIFAR-10 ResNet Wide 32 expose the limitations
of symmetrical methods that perform the same transformation for all the classes. For that case, IOP, GP,
and TS all fail and produce bad classwise ECE scores around 0.440 which is only slightly lower than the
uncalibrated result 0.496. Methods not limited by symmetry offer substantially better results, all producing
scores less than 0.320 with matrix scaling even reaching as low as 0.181. Without TS, LECE performs
again poorly: for CIFAR-100 it even worsens the result of uncalibrated predictions. However, similarly to
confidence ECE, when applied in composition with TS, it offers consistent improvements over TS.

Log-loss Table 5 displays the results for log-loss. The best method according log-loss is clearly matrix
scaling, being ranked first every time. The second best method is our proposed TS+LECE. The limitations
of symmetrical methods can be seen according to log-loss as well: on CIFAR-10 ResNet Wide 32, IOP,
GP, and TS perform worse than MS and TS+LECE. Without TS, LECE again performs poorly, but in
composition with TS, it consistently offers improvements over TS.

Table 5: Log-loss. For details of the applied methods see Section 4.2.2. In every row, the methods are ranked
and the rank is displayed as a subindex, the best performing method is also highlighted in bold. On average,
the best performing method is matrix scaling (MS) followed by our proposed TS+LECE.

ours ours
uncal IR LECE MS IOP GP TS TS+DEC TS+IR TS+LECE

C-10 DenseNet-40 0.42810 0.2688 0.3109 0.2221 0.2253 0.2265 0.2253 0.2667 0.2616 0.2232
ResNet-110 0.35810 0.2507 0.2679 0.2041 0.2084 0.2062 0.2095 0.2326 0.2548 0.2062
ResNet Wide 32 0.38210 0.2146 0.2649 0.1821 0.1925 0.1913 0.1913 0.2348 0.2197 0.1852

average rank 10.0 7.0 9.0 1.0 4.0 3.3 3.7 7.0 7.0 2.0
C-100 DenseNet-40 2.01710 1.3677 1.7399 1.0471 1.0665 1.0563 1.0574 1.3386 1.4428 1.0542

ResNet-110 1.69410 1.6199 1.4987 1.0731 1.1055 1.0822 1.0924 1.4536 1.5918 1.0853
ResNet Wide 32 1.80210 1.3657 1.5769 0.9311 0.9454 0.9393 0.9454 1.2846 1.4018 0.9372

average rank 10.0 7.7 8.3 1.0 4.7 2.7 4.0 6.0 8.0 2.3
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Table 6: Classifier accuracy. For details of the applied methods see Section 4.2.2. In every row, the methods
are ranked and the rank is displayed as a subindex, the best performing method is also highlighted in bold.
There are no large differences between the methods. Only notable value is isotonic regression combined with
temperature scaling (TS+IR) on CIFAR-100 ResNet-110, where it reduces accuracy from 0.715 to 0.710.

ours ours
uncal IR LECE MS IOP GP TS TS+DEC TS+IR TS+LECE

C-10 DenseNet-40 0.9243 0.9243 0.9243 0.9251 0.9243 0.9243 0.9243 0.9243 0.9243 0.9251
ResNet-110 0.9361 0.9361 0.9361 0.9361 0.9361 0.9359 0.9361 0.9361 0.9359 0.9361
ResNet Wide 32 0.9397 0.9405 0.9405 0.9421 0.9397 0.9397 0.9397 0.9413 0.9413 0.9421

average rank 3.7 3.0 3.0 1.0 3.7 6.3 3.7 2.3 5.0 1.0
C-100 DenseNet-40 0.7004 0.7004 0.7004 0.7041 0.7004 0.7004 0.7004 0.7023 0.69710 0.7041

ResNet-110 0.7153 0.7129 0.7153 0.7153 0.7153 0.7153 0.7153 0.7161 0.71010 0.7161
ResNet Wide 32 0.7384 0.7384 0.7384 0.7401 0.7384 0.7384 0.7384 0.7401 0.73610 0.7401

average rank 3.7 5.7 3.7 1.7 3.7 3.7 3.7 1.7 10.0 1.0

Accuracy Table 6 presents accuracies of the methods on the test set. None of the methods offer substantial
improvements in accuracy, nor do any of the methods have considerable detrimental effects. In general, the
methods perform very similarly. The only notable value is TS+IR on CIFAR-100 ResNet-110, where it
reduces accuracy of the uncalibrated classifier from 0.715 to 0.710.

4.2.4 Ablation study

To understand the importance of the neighborhood function used in the LECE calibration algorithm, and
to compare LECE calibration with LECD calibration, we repeat the real data experiments for the following
methods

• LECE calibration with Euclidean distance instead of Kullback-Leibler divergence (LECEeuc and
TS+LECEeuc),

• LECD calibration as described in Section 3.2 — otherwise the same method as LECE calibration
but using the LECD assumption instead of the LECE assumption (LECD and TS+LECD).

The method parameters were chosen with 10-fold cross-validation from the same parameter sets as for LECE
calibration described in Section 4.2.2. Table 7 presents the results for confidence ECE, Table 8 the results for

Table 7: Ablation study, confidence ECE (×102) applied with 15 equal-sized bins according to the formula
described in Section 2.4. For details of the applied methods see Section 4.2.4. In every row, the methods are
ranked and the rank is displayed as a subindex, the best performing method is also highlighted in bold. On
average, the best performing method is TS+LECE.

LECE LECEeuc LECD TS+LECE TS+LECEeuc TS+LECD
C-10 DenseNet-40 3.726 3.304 3.435 0.691 0.762 1.193

ResNet-110 3.316 3.205 2.694 0.651 0.662 0.943
ResNet Wide 32 2.055 2.936 1.934 0.603 0.532 0.501

average rank 5.7 5.0 4.3 1.7 2.0 2.3
C-100 DenseNet-40 10.495 11.166 5.974 1.182 1.213 0.791

ResNet-110 6.365 12.026 3.534 1.992 2.033 1.711
ResNet Wide 32 15.536 14.215 5.764 0.851 1.162 1.413

average rank 5.3 5.7 4.0 1.7 2.7 1.7
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Table 8: Ablation study, classwise ECE (×102) applied with 15 equal-sized bins according to the formula
described in Section 2.4. For details of the applied methods see Section 4.2.4. In every row, the methods are
ranked and the rank is displayed as a subindex, the best performing method is also highlighted in bold. On
average, the best performing method is TS+LECE.

LECE LECEeuc LECD TS+LECE TS+LECEeuc TS+LECD
C-10 DenseNet-40 0.4114 0.6706 0.4535 0.2341 0.2382 0.2673

ResNet-110 0.2974 0.5576 0.3355 0.2162 0.2021 0.2162
ResNet Wide 32 0.2925 0.7326 0.2854 0.2461 0.2742 0.2773

average rank 4.3 6.0 4.7 1.3 1.7 2.7
C-100 DenseNet-40 0.2515 0.3366 0.1724 0.0941 0.0962 0.1023

ResNet-110 0.1595 0.2696 0.1234 0.0921 0.0953 0.0921
ResNet Wide 32 0.1375 0.3326 0.1264 0.0891 0.0952 0.1033

average rank 5.0 6.0 4.0 1.0 2.3 2.3

Table 9: Ablation study, log-loss. For details of the applied methods see Section 4.2.4. In every row, the
methods are ranked and the rank is displayed as a subindex, the best performing method is also highlighted
in bold. The best performing method is TS+LECE.

LECE LECEeuc LECD TS+LECE TS+LECEeuc TS+LECD
C-10 DenseNet-40 0.3105 0.3054 0.3196 0.2231 0.2242 0.2263

ResNet-110 0.2675 0.2654 0.2796 0.2061 0.2061 0.2093
ResNet Wide 32 0.2645 0.2604 0.2726 0.1851 0.1872 0.1883

average rank 5.0 4.0 6.0 1.0 1.7 3.0
C-100 DenseNet-40 1.7396 1.6815 1.4374 1.0541 1.0541 1.0573

ResNet-110 1.4985 1.5166 1.3064 1.0851 1.0872 1.0923
ResNet Wide 32 1.5766 1.5445 1.2724 0.9371 0.9412 0.9453

average rank 5.7 5.3 4.0 1.0 1.7 3.0

classwise ECE, and Table 9 the results for log-loss. The three tables are discussed in unison, as the methods
are ranked similarly across the tables, and the key conclusions to be made from the tables are the same.

The best method on average in all the tables is TS+LECE. TS+LECE outperforms its derivative with
Euclidean distance TS+LECEeuc in almost all cases with a few exceptions: it loses once in confidence ECE,
once in classwise ECE, and is tied twice in log-loss. TS+LECE outperforms TS+LECD as well: it performs
better in 13 cases, is tied in 2, and loses in 3 out of the 18 total rows in the three tables.

When comparing the methods with and without TS, it can be seen that TS is crucial for all of them. Adding
the composition with TS improves the result in all cases and by a very large margin. For cases without
TS, LECE and LECEeuc perform otherwise similarly but for classwise ECE the method LECEeuc fails.
Therefore, similary to the LECE methods applied in composition with TS, Kullback-Leibler divergence can
be concluded to perform better than Euclidean distance for the non-compositional case as well. Comparing
LECE with LECD, LECE seems to perform better for CIFAR-10 but LECD for CIFAR-100. Yet, as the
compositional TS+LECE methods heavily outperformed the non-compositonal LECE methods, the final
conclusion would still be that LECE assumption is better than the LECD assumption.

Table 10 shows the optimal neighborhood proportion parameter q chosen by the 10-fold cross-validation for
the methods. Many different values are represented, starting from 0.01 corresponding to 0.01 · 5000 = 50
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Table 10: Optimal neighborhood proportion q chosen by cross-validation. Commonly chosen values are
between 0.01 and 0.1 (corresponding respectively to 50 and 500 neighbors). In some cases the value 1.0 is
also chosen corresponding to the whole 5000 validation data set points. For TS+LECE, the neighborhood
proportion remains in range between 0.01 to 0.04 corresponding to 50 to 200 neighbors.

LECE LECEeuc LECD TS+LECE TS+LECEeuc TS+LECD
C-10 DenseNet-40 0.04 0.1 0.04 0.04 0.03 0.07

ResNet-110 0.06 0.1 1.0 0.03 0.02 0.01
ResNet Wide 32 0.02 0.1 0.02 0.01 0.01 0.01

C-100 DenseNet-40 0.05 0.03 1.0 0.01 0.02 0.01
ResNet-110 0.01 0.05 1.0 0.04 0.03 0.01
ResNet Wide 32 1.0 0.03 1.0 0.04 0.05 0.01

Table 11: Optimal threshold t chosen by cross-validation. For methods applied without TS, values close to
0 are chosen, corresponding to no thresholding. For methods applied in composition with TS, the chosen
threshold values are usually small: between 0.0025 and 0.02. In three cases, TS+LECD has chosen t = 1.0
— meaning it has learned the identity transformation.

LECE LECEeuc LECD TS+LECE TS+LECEeuc TS+LECD
C-10 DenseNet-40 0 0 0 0.0025 0.0025 0.1

ResNet-110 0 0 0.05 0.01 0.01 1.0
ResNet Wide 32 0 0 0 0.01 0.02 0.05

C-100 DenseNet-40 0 0 0.005 0.02 0.02 1.0
ResNet-110 0 0 0.005 0.01 0.02 0.1
ResNet Wide 32 0 0 0.005 0.005 0.005 1.0

neighbors, up to 1.0, corresponding to the whole validation dataset of 5000 neighbors. For TS+LECE, the
neighborhood proportion remains in range between 0.01 to 0.04 corresponding to 50 to 200 neighbors.

Table 11 shows the optimal threshold parameter chosen by the 10-fold cross-validation. For methods applied
without TS, 0 seems to be a good value as it was chosen by LECE and LECEeuc in all cases. For methods
applied in composition with TS, the chosen threshold values remain usually small: between 0.0025 and 0.02.
TS+LECD is an exception as it uses larger threshold values. In three cases out of six it even picked t = 1.0,
meaning it learned the identity map and kept the result of TS.

The running times of LECE and LECD calibration are discussed in Appendix A.3.

4.2.5 Discussion

Overall, from the experiments it can be concluded that while many strong methods exist, our proposed
TS+LECE can still offer improvements. Symmetrical methods IOP, GP, and TS perform generally well,
but can fail for problems where asymmetrical transformations are needed as shown by classwise ECE and
log-loss on CIFAR-10 ResNet Wide 32. Matrix scaling could be considered the best method according to
classwise ECE and log-loss, but according to confidence ECE it is clearly outperformed by other methods.
TS+LECE avoids the problems of symmetrical methods and offers the best confidence ECE, being second
best in classwise ECE and log-loss.

Another aspect to notice from the experiments, is the behaviour of LECE with the number of classes. On the
illustrational synthetic task with 3 classes the method performs very well without TS. However, on the real
tasks with 10 and 100 classes, the method fails unless it is used on top of TS. This is due to problems arising
from the curse of dimensionality inherent to the proposed non-parametric approach. In higher dimensions,
the probability space is more sparsely populated as every data point starts to become approximately equally
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distant from every other data point. Because of this, the neighborhood sizes grow and the applied assumption
of locally equal calibration errors becomes very bold, lowering the effectiveness of the method. However,
applying LECE on top of TS makes the assumption to be more realistic, as the calibration errors are smaller
after TS and hence the errors of neighbors are more similar, as required by the LECE assumption.

5 Conclusion

This work explored the field of post-hoc calibration methods for multi-class classifiers. Two assumptions
about the true calibration map were formalized that have been previously used for creating estimators, but
despite this have never been clearly stated: assuming locally equal calibration errors (LECE) and assuming
locally equal class distributions (LECD). Based on the more reasonable of the assumptions, a non-parametric
calibration method was proposed — LECE calibration. The used assumption states that the calibration error
of a data point can be modeled by the calibration errors of its neighbors. This results in using the average
difference of predictions and labels in a close neighborhood to estimate the calibration error of a prediction.
Based on the definition of calibration, the found calibration error estimate is then subtracted from the
prediction to reach a calibrated prediction.

Experiments were carried out on three convolutional neural networks trained on CIFAR-10 and CIFAR-100
to compare the proposed method with its competitors. The experimental results on real data showed that
the proposed method alone is clearly not competitive for cases with many classes and a limited validation
dataset due to problems arising from the curse of dimensionality. However, when applying the proposed
method in composition with temperature scaling, it tops the state-of-the-art in confidence ECE and is close
to the best according to classwise ECE and log-loss.

For future work, the limitations of the proposed approach could be studied more thoroughly. How does
improvement in calibration depend on the number of classes in the dataset; on the validation dataset size;
or on the distribution of the predictions? In addition, the composition of different calibration methods could
be studied further as this work and several previous (Zhang et al., 2020; Zhao et al., 2021) have shown the
possible benefits.
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A Appendix

A.1 Example of different calibration definitions

As a toy example to illustrate the different definitions of calibration, consider a 3-class classifier for which
P̂ can take two equally likely values

P̂ = (0.6, 0.3, 0.1) or P̂ = (0.6, 0.2, 0.2).
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Now suppose that the corresponding expected label values for these predictions are

EY

[
Y |P̂ = (0.6, 0.3, 0.1)

]
= (0.5, 0.3, 0.2) and

EY

[
Y |P̂ = (0.6, 0.2, 0.2)

]
= (0.7, 0.2, 0.1).

Such a classifier would not be multi-class calibrated as

EY

[
Y |P̂ = (0.6, 0.3, 0.1)

]
̸= (0.6, 0.3, 0.1), and also

EY

[
Y |P̂ = (0.6, 0.2, 0.2)

]
̸= (0.6, 0.2, 0.2).

The classifier would also not be classwise calibrated as

EY

[
Y3|P̂3 = 0.1

]
̸= 0.1, and also

EY

[
Y3|P̂3 = 0.2

]
̸= 0.2.

However, the classifier would be confidence calibrated as

EY

[
Yargmax P̂ |max P̂ = 0.6

]
= 0.5 · 0.5 + 0.5 · 0.7 = 0.6.

A.2 Computational and memory complexity of LECE calibration

The complete pseudocode of LECE calibration with thresholding was presented in Algorithm 1. The LECE
calibration method is essentially a variation of the k-nearest-neighbors algorithm and its exact memory and
computational complexity depends on the implementation. The LECE calibration method does not need
any training, but has heavy computational and memory complexity during inference time. On a validation
set with size x, a test set with size y, m classes, and k neighbors, the total computational complexity of our
implementation is O(m · x · y) and it is caused by line 1 of Algorithm 1, which needs O(m · x) calculations
for a single test set data point. The memory complexity of our implementation is O(x ·m · b + y ·m), where
b ≤ y is a batch size parameter. The memory complexity O(x ·m · b) is caused by line 1 of the algorithm,
where the distances are calculated with matrix operations applied on test set batches of size b. The O(y ·m)
is also needed as the test dataset has to be kept in memory during inference time.

A.3 Running times of LECE calibration

The LECE method requires no time for training but considerable time for inference as discussed in Ap-
pendix A.2. The real data experiments were implemented in Python and run on a machine with 16 GBs of
RAM and a CPU with clock speed 3.7 GHz. For CIFAR-10 DenseNet-40, LECE calibration with the best
hyperparameters reported in Table 10 and Table 11 took 4.7s to calibrate the 10000 test set data points
given the 5000 validation set data points (average running time over 10 runs). For CIFAR-100 DenseNet-40,
the average running time over 10 runs was 34.2s.

By far the most computationally expensive part of the LECE calibration method is the calculation of
distances in line 1 of Algorithm 1. For CIFAR-10, line 1 accounted for 85% of the running time (4.0s of
4.7s), and for CIFAR-100 it was even 97% (33.2s of 34.2s). The second most computationally expensive part
of the algorithm is finding the k closest neighbors in line 2 of Algorithm 1. For CIFAR-10, line 2 accounted
for 13% of total running time, and for CIFAR-100 it was 2%.

The running times for the LECD calibration method were very similar to LECE; as were the running times
for TS+LECE and TS+LECD as temperature scaling requires only a fraction of a second for training and
evaluation. For example, TS+LECE took 4.9s to train the calibration method and evaluate the 10000 test
set points on CIFAR-10 DenseNet-40; and for CIFAR-100 DenseNet-40 it was 34.8s (average of 10 runs).
The running times for ResNet-110 and ResNet Wide-32 were similar to DenseNet-40.
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