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ABSTRACT

Molecular learning is pivotal in many real-world applications, such as drug discov-
ery. Supervised learning requires heavy human annotation, which is particularly
challenging for molecular data, e.g., the commonly used density functional theory
(DFT) is computationally very expensive. Active Learning (AL) automatically
queries labels for most informative samples, thereby remarkably alleviating the
annotation hurdle. In this paper, we present a novel and powerful AL paradigm for
molecular learning, where we treat molecules as 3D molecular graphs. Specifically,
we propose a new diversity sampling method to eliminate mutual redundancy
built on distributions of 3D geometries. We first propose a set of new 3D graph
isometrics for 3D graph isomorphism analysis. Our method is provably more
powerful than the geometric Weisfeiler-Lehman (GWL) test. The moments of the
distributions of the associated geometries are then extracted for efficient diversity
computing. To ensure our AL paradigm selects samples with maximal uncertain-
ties, we carefully design a Bayesian geometric graph neural network to compute
uncertainties specifically for 3D molecular graphs. We pose active sampling as a
quadratic programming (QP) problem using the novel components and conduct
extensive experiments on the QM9 dataset. Results demonstrate the effectiveness
of our AL paradigm, as well as the proposed diversity and uncertainty methods.

1 INTRODUCTION

Molecular representation learning is essential for a variety of real-world applications, such as
molecular design, drug discovery, material design, etc. In recent studies, molecules have been
formulated as 3D graphs, based on the evidence that 3D spatial information is crucial to determine
the properties of molecules (Liu et al., 2019; Townshend et al., 2019; Axelrod & Gomez-Bombarelli,
2020). In a 3D graph, atoms are nodes, each of which is associated with the Cartesian coordinates in
3D space. A predefined cut-off distance can be used as a threshold to determine if there is an edge
between two nodes in the 3D graph. With the advance of deep learning, 3D graph neural networks
(GNNs) have been developed to learn from 3D molecular graph data (Schütt et al., 2017; Satorras
et al., 2021; Gasteiger et al., 2020; Liu et al., 2021; Gasteiger et al., 2021; Thomas et al., 2018; Liao &
Smidt, 2022). These models are data-hungry and necessitate a large amount of annotated training data
to attain good performance. However, annotation usually consumes excessive manpower, which is
particularly challenging for molecules, e.g., the commonly used density functional theory (DFT) for
molecular energy computing (Hohenberg & Kohn, 1964) is very expensive, inducing the complexity
of O(n3

e), where ne is the number of electrons. As a concrete example, DFT can be hundreds of
thousands of times slower than a reasonably good GNN for inference (Gilmer et al., 2017).

Active Learning (AL) algorithms automatically identify the salient and exemplar samples from large
amounts of unlabeled data (Settles, 2009; Ren et al., 2021). This tremendously reduces the human
annotation effort in inducing a deep neural network, as only the few samples that are identified
by the algorithm need to be labeled manually. Further, since the deep network gets trained on the
representative samples from the underlying data population, it typically depicts better generalization
capability than a passive learner, where the training data is selected at random. Deep AL has been
used with remarkable success in a variety of applications, such as computer vision (Yoo & Kweon,
2019; Sinha et al., 2019), natural language processing (Zhang et al., 2022), medical diagnosis (Blanch
et al., 2017), and anomaly detection (Pimentel et al., 2020) among others. However, a principled AL
algorithm for 3D molecular graph learning is currently lacking.

1



Under review as a conference paper at ICLR 2024

In this paper, we propose a powerful AL paradigm for 3D molecular graphs. We formulate a criterion
based on uncertainty and diversity, which ensures that the queried molecules are the ones where the
graph learning model has maximal uncertainty about the labels, and are also mutually diverse to
avoid duplicate sample queries. In particular, diversity computing for 3D graphs is challenging and
the difficulties are twofold. Firstly, the AL pipeline requires to compute the difference between any
two 3D molecular graphs, which could have different planar molecules (entangling different atom
numbers, etc) in most cases. Secondly, the 3D shape (geometry) of a 3D graph should be captured
completely for expressive geometric representations for accurate diversity computing. To tackle
these challenges, we propose a novel diversity sampling method for 3D molecular graphs built on
distributions of important 3D geometries. We particularly propose a set of new 3D graph isometrics
for 3D graph isomorphism. Our geometric modeling method is provably more powerful than the
Geometric Weisfeiler-Leman (GWL) test (Joshi et al., 2023) in distinguishing and representing 3D
graph geometries. This indicates our approach sets an upper bound to the expressive power of any
existing equivariant geometric models. The moments of the distributions of the associated geometries
(e.g., reference distances, triangles) are extracted for accurate and efficient diversity computing. In
addition, to ensure our AL paradigm selects samples with maximal uncertainties, we carefully design
a Bayesian geometric graph neural network specifically for 3D graph uncertainty computing. Our
method is shown to be effective and efficient based on a set of ground approximations. With our novel
components, we pose the sample selection as a quadratic programming (QP) to identify exemplar
molecules to be annotated. Our method is easy to implement and can be applied in conjunction with
any 3D GNN architecture. We conduct extensive experiments on four properties of the QM9 dataset.
Results demonstrate the effectiveness of our AL paradigm, as well as the proposed diversity and
uncertainty methods.

2 METHODS

2.1 DIVERSITY COMPUTING FOR 3D MOLECULAR GRAPHS

In molecular AL tasks, diversity sampling is important for eliminating redundancy, thereby wisely
leveraging the annotation budget. The model’s capability of capturing the 3D shape diversity among
molecules is crucial for informed sampling. A particular challenge lies in that, a diversity measure for
two 3D molecules with different planar graphs is indispensable. Methods for diversity measures for
3D molecules with the same planar graph have been developed (Kumar & Zhang, 2018; Kearnes et al.,
2016; Gfeller et al., 2013), but a diversity method for two 3D molecules with different planar graphs
(entailing different atoms, etc) is demanding. Inspired by the USR method (Ballester & Richards,
2007), we propose a novel solution to achieve the goal from the distribution perspective. Generally,
we develop a set of new isometrics for expressive representations of 3D molecular graphs, after which
the distributions of geometries associated with the isometrics are obtained for diversity computing.
2.1.1 ISOMETRICS OF 3D MOLECULAR GRAPHS

As the first step, we introduce a set of new isometrics as a basis, aiming at expressive representations
of 3D graphs. As we focus on 3D geometry of molecules in this section, for simplicity, we use 3D
point clouds to illustrate our ideas. Let A = {a1, a2, ..., an} and B = {f(a1), f(a2), ..., f(an)}
be two sets representing 3D point clouds. Here, each ai in A is associated with a positional vector
a⃗i = (xai , yai , zai) in 3D space. f denotes a bijective mapping between A and B. Then, similarly,
each point f(ai) in B is associated with a positional vector ⃗f(ai) = (xf(ai), yf(ai), zf(ai)). Two
3D point clouds A and B are said to have isometric transformation when, given a group SE(3),
∃ γ ∈ SE(3) such that A = γB. We further choose or compute a reference point (e.g., centroid) for
each point cloud, denoted as r1 and r2, respectively. Without loss of generality, we use afar to denote
the farthest point from the reference point in point cloud A. Below, we will define three levels of
isometrics, each of which fulfills an isometrical mapping between A and B. To satisfy any isometric,
there needs to exist a bijective function f : A → B, such that hf(a) = ha for any node a ∈ A. Here,
hf(a) and ha denote the node feature vectors for f(a) and a, respectively.

Reference Distance Isometric: If there exists a collection of global group elements γi ∈ SE(3),
such that (r2, f(ai)) = (γir1, γiai) for each point ai ∈ A, A is reference distance isometrical to B.

Reference distance isometric involves the Euclidean distance between any atom in the molecule and
the predefined reference point.
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Figure 1: The illustrations of encoding the molecu-
lar triangular and cross angular isometrics.

Triangular Isometric: If there exists a collec-
tion of global group elements γi ∈ SE(3), such
that (r2, f (afar) , f(ai)) = (γir1, γiafar, γiai)
for each point ai ∈ A, A is triangular isomet-
rical to B.

With reference point r, we define the reference
vector v⃗0 as r pointing to the farthest point afar in
a 3D molecule. Based on reference distance iso-
metric, triangular isometric further involves the
angle between v⃗0 and any other vector pointing
from r to any other point in the molecule, computed as θk = cos−1

(
v⃗0·v⃗k

∥v⃗0∥∥v⃗k∥

)
, where v⃗k denotes

vectors originating from r and directed towards kth atoms in the molecule. The process is illustrated
in part A of Fig. 1. For a molecule with N nodes, we compute N − 1 angles. Essentially, such angles
provide insights into the spatial arrangement of atoms with respect to the pre-assigned reference
vector.

Cross Angular Isometric: If there exists a collection of global group elements γij ∈ SE(3),
such that (r2, f (aj) , f(ai)) = (γijr1, γijaj , γijai) for all ai, aj ∈ A (i ̸= j), A is cross angle
isometrical to B.

Beyond the angles in triangular isometric as well as based on reference distance isometric, cross
angular isometric further considers angles formed by any two atoms in the molecule with respect to
the reference vector as above. Specifically, for every pair of atoms i and j, a vector v⃗ij is formed from

i to j. With the reference vector v⃗0, the cross angle is computed as αij = cos−1
(

v⃗0·v⃗ij
∥v⃗0∥∥v⃗ij∥

)
. This

approach, as depicted in part B of Fig. 1, essentially reflects the torsion information (angles between
two planes) in a molecular structure. For a molecule with N nodes, we compute N(N − 1)/2 cross
angles with the complexity of O(N2). However, the commonly used way to compute torsion angles
involves 3-hop neighborhood in a graph, inducing a much larger complexity of O(N3).

Notably, in this work, we propose the aforementioned three isometrics to define a complete isometry
space, leading to the computing of the associated geometries (distances, angles) in Euclidean space
for molecular diversity. There exist other studies to delineate isometry space, such as the first
and second fundamental forms(Gallier, 2011). Compared with existing methods, the advantages
of our solution are twofold. Firstly, our method represents a straightforward solution that can be
naturally fitted into existing pipelines for molecular similarity computing. The commonly used
methods, such as the Ultrafast Shape Recognition (USR) algorithm (Ballester & Richards, 2007) and
Gaussian overlay-based methods (Rush et al., 2005; Hawkins et al., 2007), are all developed based on
geometries (distances, angles) in Euclidean space. Secondly, our method is more efficient in capturing
the essential geometric features. Taking the first and second fundamental forms as an example,
these methods involve complex computations of a surface’s differential properties, which could
be expensive, especially for non-smooth surfaces that are common in molecular data. Specifically,
estimating these forms accurately may lead to computational complexities up to O(N3), depending
on the technique used for approximating surface derivatives and curvatures.

Figure 2: A and B are triangular isomorphic but not
cross angular isomorphic. The angles ∠br1afar, ∠cr1afar,
and ∠dr1afar in structure A are equal to the angles
∠f(b)r2f(afar), ∠f(c)r2f(afar), and ∠f(d)r2f(afar) in
structure B, respectively. However, the cross angle ∠dr1c is
not equal to the cross angle ∠f(d)r2f(c).

Next, we propose Theorem 1 to in-
dicate the relationship between these
three isometrics as below.
Theorem 1. If A and B are Triangu-
lar Isometric, then A and B are Refer-
ence Distance Isometric; If A and B
are Cross Angular Isometric, then A
and B are Triangular Isometric.

The proof of Theorem 1 can be found
in Appendix A.2. Generally, we define
three levels of isometrics for graph iso-
morphism. Reference distance isomet-
ric ensures that the Euclidean distance
between each point and a predefined reference point is consistent in two different point clouds.
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Triangular isometric further manifests the spatial arrangement of atoms referring to the pre-assigned
pivot. Built on Triangular isometric, cross angular isometric then reflects the spatial torsion angle
information. An illustrative example for triangular isometric and cross angular isometric is also
given in Fig. 2. Clearly, cross angular isometric represents the strictest isometry among the three. In
the following Sec. 2.1.2, we show that a designed geometric representation based on cross angular
isometric can exhibit great expressive power.

2.1.2 EXPRESSIVE POWER OF OUR GEOMETRIC REPRESENTATIONS

In this section, we aim to formally elucidate the expressive power of a geometric representation
based on our developed isometrics in Sec. 2.1.1. Generally, we use GR to denote any geometric
representation to capture molecular structures, and function ζ be the mapping function associated
with GR. We explore the Geometric Weisfeiler-Leman (GWL) test (Joshi et al., 2023), and then
leverage GWL to measure the expressiveness of a GR. GWL test is an extension of the classic
WL Test, enhancing its capabilities by incorporating both the topological structure of the graph and
the geometric attributes of its vertices. Such an integration allows the GWL test especially apt for
evaluating all 3D graph representation methods. Similar to the regular WL test, GWL test imposes
an upper bound to the expressive power of 3D GNNs, i.e., if GWL test fails to distinguish two 3D
graphs, then all existing 3D GNNs would also fail. See details of the GWL test in Appendix A.1.

Let the relation A ≇ B indicate that two structures are not reference distance isometric in terms of
their 3D geometries. We propose Theorem 2 as follows:
Theorem 2. A geometric representation GR has the same expressive power as the Geometric
Weisfeiler-Leman (GWL) Test in distinguishing non-isomorphic molecular structures if the associated
mapping function ζ can map any two molecular structures A and B into two distinct representations
(i.e., ζ (A) ̸= ζ (B)) if and only if A ≇ B.

The proof of Theorem 2 is provided in Appendix A.2. Next, we use GRours to denote the geometric
representation based on the isometrics developed in Sec. 2.1.1, From Theorem 1, we can easily
conclude that cross angular isometric is the strictest isometric among the three. Naturally, we
formulate GRours as a set containing all reference distances, triangles, and cross angles in a 3D graph.
We show GRours adheres to the constraints stipulated in Theorem 2 through the Proposition below.
Proposition 1. GRours can map any two different molecular structures A and B into two distinct
representations (i.e., ζ (A) ̸= ζ (B)) if and only if A ≇ B.

The proof of Proposition 1 is provided in Appendix A.2. Based on both Theorem 2 and Proposition
1, it is evident that our geometric representation GRours possesses an expressiveness at least as
powerful as the GWL test. Moreover, through the proposition below, we rigorously show GRours
possesses greater expressive power than the GWL test.
Proposition 2. GRours is strictly more expressive than the Geometric Weisfeiler-Leman (GWL) test
in distinguishing non-isometric point clouds.

The proof of Proposition 2 can be found in Appendix A.2. In conclusion, the molecular geometric
representation method GRours developed in this work has the greater expressive power than the
Geometric Weisfeiler-Leman (GWL), which indicates our diversity sampling method is accurate
enough to capture the 3D shape diversity among different molecules. Notably, as mentioned before,
GWL test sets the upper bound to any existing 3D GNNs. Apparently, our geometric representation
method GRours is provably more expressively powerful than any existing 3D GNN for learning
geometric representations. Essentially, the three isometrics associated with GRours define expres-
siveness at different levels. For example, as only considering distance information, a well pretrained
SchNet is upper bounded by reference distance isometric (but not triangular isometric or cross
angular isometric); as a more powerful model than SchNet, a well pretrained DimeNet is upper
bounded by triangular isometric (but not cross angular isometric). Additionally, accurate geometric
representation learning requires a perfect pretrained 3D GNN model, which is also hard to guarantee
in practice. Our isomorphy study provides a model-agnostic diversity computing solution, avoiding
the need of a perfectly pretrained 3D GNN model, as well as achieving a theoretically guaranteed
upper bound of the expressiveness of all existing 3D GNN models.

2.1.3 FINAL DISTRIBUTIONAL REPRESENTATIONS

Based on the isomorphy study in Sec. 2.1.1, we obtain our geometric representation method GRours
and prove GRours possesses greater expressive power than any existing 3D GNN models in Sec.
2.1.2. In this section, we aim to extract the distributions of the entangled three geometries in GRours,
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including reference distances, triangles, and cross angles, for diversity computing. Fortunately, we
have the theorem (Hall, 1983) implying that the sequence of translated moments can be used to
determine the original distribution. Following the USR work (Ballester & Richards, 2007), for each
of the three aforementioned geometries, we also use four reference points to reflect the “translated”
geometries; those are, the centroid that is denoted as ctd and computed by the mean position of all the
atoms in the 3D molecule, the point closest to the centroid (denoted as cst), the point farthest from the
centroid (denoted as fct), and the point farthest from fct (denoted as ftf). For each reference point, we
use a set of moments, including mean, variance, skewness, and kurtosis, which describe a distribution
from different angles, e.g., skewness indicates the asymmetry and kurtosis describes the tailedness
of a distribution. Detailed formulae for these moments can be found in the Appendix A.3. Notably,
we compute these translated moments for all three entangled geometries as above. Eventually, we
obtain summarized representations of distributions over geometries of 3D graphs, capturing essential
characteristics of a molecule’s shape.

We use cross angles as an example to describe the final distributional vector. For a molecule with N

atoms, as shown in Fig. 1, we can obtain a set of cross angles [αref
ij ]

N(N−1)/2
i ̸=j,0<i,j<N for a reference point

(e.g., ctd). After applying statistical moments as an approximation, we can obtain a 4-dimensional
vector

−−→
M ca

ref = [mca
ref, v

ca
ref, s

ca
ref, k

ca
ref], where the four elements denote the mean, variance, skewness, and

kurtosis for this reference point, respectively. We perform a similar process for all four reference
points mentioned above. By doing this, we can obtain four 4-dimensional vectors including

−−→
M ca

ctd,
−−→
M ca

cst,
−−→
M ca

fct, and
−−→
M ca

ftf , which are then concatenated together, resulting in the final 16-dimensional vector
to represent the distribution of cross angles. We repeat the similar process for reference distances
and triangles, and then all three corresponding 16-dimensional vectors are further concatenated as a
48-dimensional distributional vector to represent the geometric information of the input molecule.
The 48-dimensional distributional vectors are then used to compute the diversity matrix as in Sec.
2.1.3. Finally, for any two molecules n1 and n2 in the dataset with N molecules, we perform the
inner product on their distributional vectors to achieve the similarity, and then use 1− similarity to
obtain the final value Dn1n2

as the diversity measure between them. Finally, a matrix D ∈ ℜN×N is
obtained, which contains the diversity between every pair of molecules.

2.2 UNCERTAINTY COMPUTING FOR 3D MOLECULAR GRAPHS

In Sec. 2.1, we develop an effective method for diversity computing among different 3D molecular
graphs. However, as mentioned in Sec. 1 and Sec. 3, in addition to selecting diverse molecules, it is
important to select molecules where the model has maximal prediction uncertainty about the labels,
so as to append maximal information to the model. To this end, we develop a principled pipeline
to compute uncertainties for 3D molecular graphs in this section. Uncertainty qualification is well
studied in planar graph analysis (Hirschfeld et al., 2020), but an effective and principled paradigm
for 3D molecular graphs is currently lacking. Additionally, existing methods, such as Bayesian
neural networks (BNNs) (Lampinen & Vehtari, 2001; Titterington, 2004; Goan & Fookes, 2020) and
deep model ensemble methods (Lakshminarayanan et al., 2017; Huang et al., 2017), are excessively
computationally expensive, limiting their capacity in 3D graph analyses. In this work, we develop an
effective and efficient method, known as Bayesian geometric graph neural network (BGGNN), that
takes a 3D graph as input and produces the demanding properties as well as uncertainty values, e.g.,
mean and variance.

Formally, a 3D graph is represented as G = (V,E, P ), where V denotes the set of vertices (atoms), E
denotes for the set of edges (bonds), and P stands for the set of Cartesian coordinates for each atoms.
A 3D molecular graph is associated with a set of properties, denoted as O. Recently, researchers
have developed 3D GNNs, such as SchNet (Schütt et al., 2017), DimeNet (Gasteiger et al., 2020),
SphereNet (Liu et al., 2021), and GemNet (Gasteiger et al., 2021), for 3D graph representation
learning. The likelihood of a 3D GNN can be represented as p3DGNN(O | G,w), where 3DGNN
indicates any existing 3D GNN and w denotes the set of parameters of the used 3D GNN. We also
use p3DGNN(w) to represent the prior distribution for the parameters. Assume we collect a new input
and output pair, denoted as g∗ and o∗. Then based on the conventional Bayesian theorem, Bayesian
inference for this new output o∗ is given by

p3DGNN (o∗ | g∗,G,O) =

∫
Rn

p3DGNN (o∗ | g∗,w) p3DGNN(w | G,O)dw, (1)

where Rn is the whole space of n parameters in 3DGNN. It’s infeasible to perform the above
integration on Rn due to prohibitive computational cost. To tackle this, the variational inference
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method is introduced to approximate p3DGNN(O | G,w) with the parameterized qθ(w) through
minimizing the Kullback-Leibler (KL) divergence between these two distributions. After applying
Bayesian theorem once more, the minimization objective becomes

LVI(θ) = −
∫
Rn

qθ(w) log p3DGNN(O | G,w)dw +KL (qθ(w)∥p3DGNN(w)) . (2)

To completely avoid the integration over the whole parameter space, the MC-dropout method (Gal &
Ghahramani, 2016; Srivastava et al., 2014) is further used in our BGGNN. Specifically, it employes the
Monte-Carlo estimator (Gal et al., 2016; Gal & Ghahramani, 2016) to approximate the integration by
performing summation over the sampled models. In practice, researchers implement an MC-dropout
network by using dropout as the network’s regularization(Gal & Ghahramani, 2016). Following this,
we propose to insert dropout layers after the linear layers in our used 3DGNN as an effective yet
efficient estimation of Bayesian inference.

Now as we have obtained the variational predictive distribution of a new output with qθ(w), we can
easily compute the predictive mean and variance of this distribution. For the molecular property
prediction tasks, after we sample N outputs from the same input, the heteroscedastic predictive
uncertainty is then given by

σ̂2 (o∗ | g∗) =
1

N

N∑
n=1

(ô∗
n)

2 −

(
1

N

N∑
n=1

ô∗
n

)2

+
1

N

N∑
n=1

σ̂2
n, (3)

where ô∗n is the nth sampled output and σ̂2
n is the variance that is the same among all the data samples.

By doing this, we can obtain an uncertainty value (variance) for each molecule. Additionally, built on
a 3D GNN, our BGGNN can faithfully produce a set of molecular properties O.

Practically, any of the existing 3D GNN can be used as the backbone network for property prediction
and uncertainty computing. In this study, we employ SphereNet (Liu et al., 2021) as our 3DGNN,
owing to its completeness in incorporating 3D geometric information. We apply dropout layers onto
the linear layers of SphereNet for Bayesian inference in our BGGNN. To allow more accurate AL
selections, we particularly employ the concrete dropout with a learnable dropout rate (Gal et al.,
2017) in our BGGNN. Overall, our method is shown to be an effective and efficient paradigm for 3D
graph uncertainty computing, as further empirically demonstrated in Sec. 4.

2.3 ACTIVE SAMPLING

max
z

z⊤r + λz⊤Dz

s.t.

N∑
i=1

zi = k

zi ∈ {0, 1},∀i, (4)

A schematic diagram of our active sampling framework is depicted
in Fig. 6 and described in A.4 in Appendix. Specifically, in Sec. 2.1,
we obtain the matrix D ∈ ℜN×N containing the mutual diversity
between every pair of unlabeled molecules, where N is the number
of unlabeled molecules. In Sec. 2.2, we employ our designed
BGGNN to achieve the vector r ∈ ℜN×1 quantifying the prediction
uncertainty score of each unlabeled molecule. In the AL setting,
our objective is to select a batch of k unlabeled molecules (where k
is the pre-determined query batch size) with high prediction uncertainty and high mutual diversity
among them. Let z ∈ {0, 1}N×1 be a binary vector with N entries which denotes whether the
unlabeled molecule xi will be included in the batch (zi = 1) or not (zi = 0). The molecule selection
can thus be posed as the following optimization problem as in Eq. 4, where λ is a weight parameter
governing the relative importance of the two terms. This is a standard quadratic programming (QP)
problem; we relax the integer constraints into continuous constraints and solve the problem using
an off-the-shelf QP solver. In this work, we employ the widely used Operator Splitting Quadratic
Program (OSQP) (Stellato et al., 2020) to solve the QP problem in Eq. 4. We then apply a greedy
approach to project the continuous solution back to the binary space, where the k highest entries of the
continuous solution vector are set to 1 and the remaining to 0. Such an approach is commonly used
to convert continuous solutions obtained from a QP solver to binary solutions in AL Chattopadhyay
et al. (2013); Wang & Ye (2013). Notably, the predictions in main tasks (e.g., molecular properties)
are produced by our BGGNN built on SphereNet as in Sec. 2.2.

3 RELATED WORK

3.1 ACTIVE LEARNING

Active Learning (AL) is a well-researched problem in the machine learning community (Settles, 2009).
There exist two commonly used strategies for AL sampling. Uncertainty based sampling queries un-
labeled samples with the highest prediction uncertainties for annotation. Diversity/representativeness
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based sampling aims to select the subset that can well represent the entire data distribution. A full
review of the two AL sampling methods is provided in Appendix A.5.

3.2 MOLECULAR SHAPE SIMILARITY

Molecular shape similarity plays a pivotal role in drug discovery and virtual screening of compounds
(Kumar & Zhang, 2018; Murgueitio et al., 2012; Shang et al., 2017). Methods predominantly fall
into several categories (Kumar & Zhang, 2018), including descriptor-based methods (Schreyer &
Blundell, 2012; Cannon et al., 2008; Li et al., 2016; Armstrong et al., 2009; Zhou et al., 2010),
atom-centered gaussian-based methods (Haque & Pande, 2010; de Lima & Nascimento, 2013;
Yan et al., 2013), surface-based methods (Hofbauer et al., 2004; Mavridis et al., 2007; Cai et al.,
2012; Karaboga et al., 2013; Venkatraman et al., 2009; Sael et al., 2008), etc. Descriptor-based
methods are notably represented by the Ultrafast Shape Recognition (USR) algorithm (Ballester &
Richards, 2007), which uses statistical moments of the distance distribution to characterize molecular
shapes. Gaussian overlay-based methods, with ROCS (Rush et al., 2005; Hawkins et al., 2007)
being the most commonly used one, evaluate the maximum volume overlap between two molecules.
Surface-based methods typically employ shape signatures (Zauhar et al., 2013) or shape histograms
to delineate molecular surfaces for shape similarity assessment. Despite the progress, a principled
and theoretically ground similarity method for 3D molecular graphs is currently lacking.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Data and Active Learning Setup: We perform experiments on four properties of the QM9 (Ra-
makrishnan et al., 2014) benchmark dataset: mu, alpha, homo, and lumo. These properties have
continuous values, making the prediction problem a regression task. We randomly divide the training
set of 110, 000 molecules into three splits of size 25, 000 each. From each split, we randomly select
5, 000 molecules as the initial labeled set and the remaining 20, 000 molecules as the unlabeled
set. In each AL iteration, we query 1, 500 molecules from the unlabeled set, which are labeled
and appended to the labeled set. The model’s performance is evaluated on a held-out validation set
containing 10, 000 molecules. We save the best-performing model on the validation set and report its
performance on the test set containing 10, 831 molecules. The process is repeated for 7 AL iterations,
which is taken as the stopping criterion. The final results are averaged over the three splits to rule
out the effects of randomness. The value of λ in Eq. 4 is taken as 1, for the QP problem. The Mean
Absolute Error (MAE) is used as the evaluation metric in this work.
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Figure 3: Active learning performance results. The graphs
show the mean (averaged over 3 runs) and the errorbars for all
the methods. Best viewed in color.

Implementation Details: We use
SphereNet (Liu et al., 2021) as the
backbone model of our BGGNN in
all the experiments. As mentioned
in Liu et al. (2021), we set the op-
timal network configurations for the
SphereNet and train the network for
150 epochs. We use the Adam Op-
timizer with the initial learning rate
5 × 10−4 and scale it by a factor of
0.5 every 15 epochs. PyTorch is used
for implementation, and models are
trained using NVIDIA RTX A4500
20GB GPUs.
Comparison Baselines: We use
four AL methods as baselines: Ran-
dom Sampling, Coreset (Sener &
Savarese, 2018), Learning Loss (Yoo
& Kweon, 2019), and Evidential Un-
certainty (Beluch et al., 2018; Amini
et al., 2020). Random Sampling is
the default comparison baseline in AL research. Coreset and Learning Loss are two extensively
used deep active learning algorithms for regression applications. Evidential Uncertainty is also a
commonly used technique to quantify uncertainty for molecular property prediction, and was hence
included as a comparison baseline.
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4.2 ACTIVE LEARNING PERFORMANCE

The active learning performance results are depicted in Fig. 3. In each graph, the x-axis denotes the
iteration number and the y-axis denotes the MAE on the test set. Our analysis revealed that Evidential
Uncertainty depicted the worst performance and furnished significantly high error values for all the
four properties, which obscured the difference in performance among the other methods in the plots.
For better interpretation and understanding, we exclude the Evidential Uncertainty method from the
plots here and present the results with this baseline in Sec. A.6 of the Appendix. The other baseline
methods depict more or less similar performance, with Coreset marginally outperforming the other
baselines. Our method comprehensively outperforms all the baselines. At any given AL iteration, it
consistently attains a lower MAE compared to all the baselines. It also attains the least MAE after all
the AL iterations, for all the four properties studied.

Table 1: The table shows the p-values obtained using paired
t-test between the results our method against each of the base-
lines for all the properties studied. Here, L. Loss refers to
Learning Loss.

Properties
Baselines

Random L. Loss Coreset Evidential

mu 7.54×10−6 5.09×10−5 1.51×10−4 2.19×10−7

alpha 1.06×10−5 8.14×10−4 4.27×10−5 2.72×10−4

homo 2.26×10−5 8.36×10−7 4.23×10−6 1.71×10−8

lumo 4.48×10−5 1.25×10−5 3.12×10−4 2.39×10−6

We also conducted statistical tests of
significance using paired t-test to as-
sess whether the improvement in per-
formance achieved by our method is
statistically significant. For this pur-
pose, we compared the average MAE
achieved by our method against each
of the baselines individually. The re-
sults are reported in Table 1; each en-
try in the table denotes the p-value of
the paired t-test between our method
and the corresponding baseline (denoted in the columns) for the property studied (denoted in the
rows). From the table, we note that the improvement in performance achieved by our method is
statistically significant (p < 0.05) compared to all the baselines, consistently for all the four properties
studied. These results unanimously corroborate the promise and potential of the proposed active
sampling method to tremendously reduce the annotation cost in inducing a robust 3D graph neural
network for molecular property prediction.
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Figure 4: Study of query budget on the active learning performance. The graphs show the mean
(averaged over 3 runs) and the errorbars for all the methods. The results with budget 1500 are the
same as the those presented in Figure 3 and are included here for comparison. Best viewed in color.

4.3 STUDY OF QUERY BUDGET
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Figure 5: Ablation study results on the mu and lumo properties.
Best viewed in color.

The goal of this experiment is to
study the effect of query budget
(batch size) on the AL performance.
The results on the mu property
for query budgets 1, 000, 1, 500
and 2, 000 are depicted in Fig. 4.
Since Evidential Uncertainty de-
picted much worse performance than
all the methods, it was excluded
from this comparison. Our frame-
work once again outperforms all the baselines consistently for all the query budgets and attains the
least MAE after all the AL iterations. As before, we conducted a paired t-test to estimate the statistical
significance of the obtained performance improvement. The results are presented in Sec. A.7 of
the Appendix. From the p-values, we conclude that the error values furnished by our method are
statistically significantly better (p < 0.05) than all the baselines, consistently for all the query budgets.
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This shows the robustness of our framework to the query budget. These results are particularly
significant from a practical standpoint as the available query budget in a real-world application is
dependent on time, resources, and other constraints of the application.

4.4 ABLATION STUDIES

We conduct ablation studies to examine the power of our diversity computing method, as it is our
primary contribution in this research. We perform experiments on the mu and lumo properties from
two aspects. Firstly, we compare our framework with only the diversity term in Eq. 4 against Coreset,
the state-of-the-art diversity-based AL technique. The results are reported in Fig. 5, from which
we note that the diversity component of our framework consistently furnishes much lower MAE
values than Coreset over all the AL iterations, for both properties. Secondly, we also conducted
experiments where we compared the performance of our overall framework (using both uncertainty
and diversity) against the baseline where only the uncertainty term in Eq. (4) was used for active
sampling. The results revealed that removing the diversity term adversely affected the performance
of our framework. A paired t-test revealed that the improvement in performance achieved by our
diversity component is statistically significant (p < 0.05) for both these properties (p = 0.0001 for
mu and p = 0.04 for lumo). These results show the usefulness of the proposed diversity metric in
developing an AL framework to train a 3D GNN for molecular property prediction.

4.5 COMPUTATION TIME ANALYSIS

Table 2: Average (± std) time taken by each method for sample
selection and training the SphereNet model (one iteration of AL).
Here, L. Loss refers to Learning Loss.

Selection Methods

Random L. Loss Coreset Evidential Ours Ours (Fast QP)

53±4.5min 56±2.1min 2hr 7±3.5min 56±2.3min 1hr 58±3.7 min 1hr 28±7.5 min

In this experiment, we analyze
the computation time of all
the methods studied in this pa-
per. The average time taken to
query a batch of unlabeled sam-
ples and update the SphereNet
model (one active learning iter-
ation) are shown in Table 2. For fair comparison, all the methods were run on the same NVIDIA
RTX A4500 20GB GPU. We note that Random, Learning Loss and Evidential Uncertainty all have
similar computation time. Coreset depicts the highest computation time, as it needs to solve a mixed
integer programming (MIP) problem. The computation time of our framework is marginally less
than Coreset, and approximately double that of the other three. Our analysis revealed that solving
the QP problem is the main bottleneck of our method. Hence, we explored a strategy to improve
the computation overhead of solving the QP problem by running it in the GPU (instead of the CPU)
using the parallel implementation of the alternating direction method of multipliers, as detailed in
Schubiger et al. (2020). This results in a substantial reduction of the computation time, as depicted in
Table 2 (Ours (Fast QP)). The AL performance using the fast QP solver is very similar to that obtained
using the original solver, and is presented in Fig. 8 in Sec. A.8 of the Appendix. Apparently, the
performance studies in both Sec. 4.2 and Sec. A.8 show that our framework is much more accurate
than these baselines. Given the large margin of performance improvement, we think the efficiency of
our methods is acceptable. As solving QP problems is not the main technical novelty of this work,
we will continue exploring faster QP solvers from literature for engineering purposes as future work.

5 CONCLUSION AND FUTURE WORK

In this paper, we present a novel active learning framework with the goal of reducing the annotation
cost for learning from 3D molecules represented as 3D graphs. The sample selection is posed as a
QP problem, which selects samples with high mutual diversity and high uncertainty. Novel diversity
and uncertainty components are proposed specifically for 3D graphs, with strong empirical results
demonstrating the promise and potential of our AL framework. As part of future work, we plan
to apply our methods to molecular analysis where much more accurate but expensive annotation
is required, such as computing ground states of molecular systems using the Schrödinger equation.
DFT calculations are widely used in many practical applications but still involve approximations, as
Schrödinger equation is prohibitively expensive and its use is limited in very small molecules. Our AL
pipeline is anticipated to unleash greater potential in such extreme-scale applications. Additionally,
given AL needs several interactions with each requiring the model is well trained, we test our methods
on the commonly used but medium-scale QM9 dataset in this work. Even though we think the
empirical studies are sufficient to support our theory, we still plan to test the scalability of our
methods on large-scale molecule datasets, such as OC20 (Chanussot et al., 2021), in the future.
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A APPENDIX

A.1 GEOMETRIC WEISFEILER-LEMAN (GWL) TEST

For the Geometric Weisfeiler-Leman (GWL) test, consider a graph G with its set of vertices repre-
sented as V(G) and its set of edges as E(G). A vertex in graph G is denoted by i, and Ni signifies the
set of vertices adjacent to i. The color of vertex i at iteration t is given by c

(t)
i , and the geometric

object for vertex i at iteration t is represented by g
(t)
i .

The procedure for the GWL test is as follows:

1. Initialization: Each vertex i is assigned an initial color c(0)i and a geometric object g(0)
i ,

typically based on its local property or geometric attributes.
2. Iterative Aggregation: For each iteration t ≥ 1, the geometric object of each vertex i is

updated to aggregate geometric information from its t-hop neighborhood, represented as
g
(t)
i , which includes the colors and geometric objects from the previous iteration of vertex i

and its neighbors.
3. Color Update: The color of each vertex i at iteration t is computed by aggregating the

geometric information around vertex i using a G-orbit injective and G-invariant function,
denoted by I-HASH, i.e., c(t)i := I−HASH(t)

(
g
(t)
i

)
.

4. Termination: The procedure terminates when colors do not change from the previous
iteration or a predetermined maximum number of iterations is reached.

5. Graph Comparison: Finally, two geometric graphs G and H are geometrically non-
isomorphic if there exists some iteration t for which the sets of colors of their vertices
are not equal, i.e.,

{{
c
(t)
i | i ∈ V(G)

}}
̸=
{{

c
(t)
i | i ∈ V(H)

}}
.

A.2 PROOFS OF THE THEOREMS AND PROPOSITIONS

Theorem 1. If A and B are Triangular Isometric, then A and B are Reference Distance Isometric;
If A and B are Cross Angular Isometric, then A and B are Triangular Isometric.

Proof. 1. If A and B are Triangular Isometric

Assume that A and B are Triangular Isometric, i.e., there exists a collection of global group elements
γi ∈ SE(3) such that

(r2, f (afar) , f(ai)) = (γir1, γiafar, γiai)

for each point ai ∈ A.

From the above assumption, it is clear that for each point ai ∈ A, there exists a corresponding
γi ∈ SE(3) such that

(r2, f(ai)) = (γir1, γiai)

which is the condition for A and B to be Reference Distance Isometric. Hence, the statement is
proved.

2. If A and B are Cross Angular Isometric

Assume A and B are Cross Angular Isometric, which means for all ai, aj ∈ A with i ̸= j, there
exists a collection of global group elements γij ∈ SE(3) such that

(r2, f(aj), f(ai)) = (γijr1, γijaj , γijai).

From this assumption, for any point ai ∈ A, there exists a corresponding γi ∈ SE(3) (which is one
of the γij where j corresponds to the farthest point afar) such that

(r2, f(afar), f(ai)) = (γir1, γiafar, γiai).
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This is precisely the condition for A and B to be Triangular Isometric. Hence, if A and B are Cross
Angular Isometric, then A and B are also Triangular Isometric.

Theorem 2. A geometric representation GR has the same expressive power as the Geometric
Weisfeiler-Leman (GWL) Test in distinguishing non-isomorphic molecular structures if the associated
mapping function ζ can map any two molecular structures A and B into two distinct representations
(i.e., ζ (A) ̸= ζ (B)) if and only if A ≇ B.

Proof. 1. GWL Distinguishable implies GR Distinguishable: Suppose two molecular structures,
A and B, are distinguishable by the GWL Test after k iterations. That is to say, the multiset of
node colors remains the same through iteration 0 to k − 1 but becomes different in the kth iteration.
According to the GWL Test in the Graph Compasison step, there exist a0 ∈ A and f(a0) ∈ B such
that

{{
c
(t)
a0 | i ∈ A

}}
̸=
{{

c
(t)
f(a0)

| f(a0) ∈ B
}}

. Then by the color update rule of GWL Test,
this means that a0 ∈ A and f(a0) ∈ B have different distances from their respective reference points
and thus A and B are non-Reference Distance Isometric. According to the constraints on GR in the
theorem, ζ (A) and ζ (B) are different and distinguishable.

2. GR Distinguishable implies GWL Distinguishable: Suppose that, at the kth iteration, two
molecular structures A and B are distinguishable by the representation method GR. This implies that
the mappings ζ (A) and ζ (B) are different by being non-Reference Distance Isometric according to
the constraints on GR in the theorem. So we are able to find at least a0 ∈ A, such that (r2, f(a0)) ̸=
(γr1, γa0) holds for ∀γ ∈ SE(3) which can be colored differently by the GWL Test when g

(t)
i

encodes geometrical information of its neighbors. So GWL Test is also able to distinguish between
A and B.

Proposition 1. GRours can map any two different molecular structures A and B into two distinct
representations (i.e., ζ (A) ̸= ζ (B)) if and only if A ≇ B.

Proof. 1. Non Reference Distance Isometric implies GRours Distinguishable: If A and B are
non-Reference Distance Isometric, then by definition we know that ∃a0 ∈ A, such that (r2, f(a0)) ̸=
(γr1, γa0) holds for ∀γ ∈ SE(3). So ζ (A) and ζ (B) would give different representation as a result
of different distance which implies A and B are R distinguishable.

2. GRours Distinguishable implies Non Reference Distance Isometric: If A and B are R distin-
guishable, then ζ (A) ̸= ζ (B), which means there is difference in representation. This discrepancy
arises from either Reference Distance, Triangle or Cross Angle. Then by different choices of reference
points, we know that A and B are Non Reference Distance Isometric.

Proposition 2. GRours is strictly more expressive than the Geometric Weisfeiler-Leman (GWL) test
in distinguishing non-isometric point clouds.

Proof. First we prove that GRours satisfies the two constraints as below.

1. GRours can distinguish any two point clouds A and Bby cross angles; that is, ζ (A) ̸= ζ (B),
if A and B are reference distance isometric but are non cross angular isometric.

2. The mapping function ζ associated with GRours is injective.

Then we would prove that with the constraints satisfied, GRours would be more expressive than GWL
Test.

1. GRours satisfies the two constraints:

1. A and B are reference distance isometric implies that there exists a collection of global
group elements γi ∈ SE(3) such that (r2, f(ai)) = (γir1, γiai) for each point ai ∈ A.
Meanwhile, A and B are non cross angular isometric implies that ∃ai, aj ∈ A (i ̸= j), such
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that (r2, f (aj) , f(ai)) ̸= (γr1, γaj , γai) holds for ∀γ ∈ SE(3). Given GRours introduced
in Sec. 2.1.1, this would result in difference in cross angles and thus in results of GRours;
that is, ζ (A) ̸= ζ (B).

2. Consider two distinct 3D molecular graphs represented by point clouds A and B. Since
A and B are distinct, there exists at least one isometric, as defined in Section 2.1.1, that
is violated by A and B. In GRours, the distributions of geometries associated with the
isometrics would then be different. That is to say, ζ (A) ̸= ζ (B). Therefore, the mapping
function ζ associated with GRours is injective, mapping distinct 3D molecular point cloud to
distinct representations.

2. GRours is more expressive than GWL Test: GRours that satisfies the two constraints can
distinguish any two different point clouds A and B in R3n. Because for the two different point clouds
A and B, they must be non cross angular isometric and thus are distinguishable by the injective
mapping ζ. We now prove that GRours is more expressive than GWL Test by showing that there are
circumstances when the GWL Test is unable to distinguish between two distinct point clouds. We
present three cases for which GWL Test would fail.

1. For a given iteration k in the GWL Test, the primary cause of failure arises when, despite
the point clouds not being entirely isometric, there exist local structures or geometrical
features that are sufficiently similar. In such case, they might be assigned the same node
color partition even after the kth iteration.

2. When the color update scheme in GWL Test depends only on local area scalar features
which are the same between two point clouds, the test will thus assign the two point clouds
the same node color partition.

3. For GWL Test without a pre-assigned iteration number, it may also fail as a result of Hash
collision. Different inputs may be mapped to the same Hash value and thus result in the
same node color partition between different point clouds.

These are the cases that GWL Test may fail to distinguish two distinct point clouds. Since there exist
point clouds that GWL Test cannot distinguish while GRours can, we can draw the conclusion that
GRours is more expressive than the GWL Test.

A.3 STATISTICAL MOMENTS

The equations that we used for calculating four moments are as follows.

The mean, often referred to as the average, represents the sum of all data points divided by the
number of data points and is given by

Mean =

∑n
i=1 xi

n
. (5)

Variance measures the spread or dispersion of a dataset and is defined as

Variance =

∑n
i=1(xi − Mean)2

n− 1
. (6)

Skewness gauges the asymmetry of a dataset’s distribution. Here we sightly change its definition to
be positive for convenience as

Skewness =
∑n

i=1 |xi − Mean|3/n
{
∑n

i=1(xi − Mean)2/(n− 1)}3/2
. (7)

Kurtosis assesses the “tailedness” of a dataset’s distribution as

Kurtosis =
∑n

i=1(xi − Mean)4/n

{
∑n

i=1(xi − Mean)2/(n− 1)}2
. (8)
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A.4 SCHEMATIC DIAGRAM OF OUR FRAMEWORK

A schematic diagram of our active sampling framework is depicted in Fig. 6. We are given a labeled
training set L, an unlabeled set U and a query budget k for each active learning iteration. The
SphereNet model is first trained on the labeled set L. In the second step, the trained model is applied
on the unlabeled set to compute a prediction uncertainty of each unlabeled molecule, which is used
to populate the uncertainty vector r; the diversity matrix D is also computed in this step where
D(i, j) is the diversity between unlabeled molecules xi and xj . Next, the QP problem is solved to
select k unlabeled molecules for annotation. These molecules are removed from the unlabeled set U
and appended to the labeled set L. The active sampling process is continued iteratively until some
stopping criterion is satisfied (taken as 7 iterations in our work).
Note that, computing the diversity matrix D in Step 3 needs to be executed just once for the whole
process. Once we have the initial D, as more and more samples are queried through AL, we keep
deleting the corresponding rows and columns from D to derive the updated matrix.

Figure 6: Schematic diagram of the proposed active learning framework.

A.5 RELATED WORK FOR ACTIVE LEARNING

Active Learning (AL) is a well-researched problem in the machine learning community (Settles,
2009). Uncertainty sampling is an important strategy for AL, where unlabeled samples with the
highest prediction uncertainties are queried for annotation. Several techniques have been explored to
compute the uncertainty, such as Shannon’s entropy (Guo & Schuurmans, 2007; Li & Guo, 2013), the
distance of a sample from the separating hyperplane for SVM classifiers (Tong & Koller, 2001), the
disagreement among a committee of classifiers regarding the label of a sample (Freund et al., 1997;
Gilad-Bachrach et al., 2005), among others (Hoi et al., 2006; HOI et al., 2008; Guo & Greiner, 2007;
Freytag et al., 2014). With the advent of deep learning, Deep AL has attracted significant research
attention (Hino, 2020; Ren et al., 2021), Entropy-based methods are developed as well (Wang &
Shang, 2014; Ranganathan et al., 2017). Yoo & Kweon (2019) cascaded a task-agnostic loss learning
module that queries samples with the highest predicted loss values. Huang et al. (2021) proposed a
strategy based on temporal output discrepancy. Techniques based on adversarial training have also
been explored (Sinha et al., 2019; Mayer & Timofte, 2020; Zhang et al., 2020; Zhu & Bento, 2017).
Bayesian neural networks (BNNs) (Lampinen & Vehtari, 2001; Titterington, 2004; Goan & Fookes,
2020) and deep model ensemble (Lakshminarayanan et al., 2017; Huang et al., 2017) generally
achieve superior performance but may induce excessive computational cost.

Diversity/representativeness based AL sampling has also been exploited. A core-set sampling
technique proposed by Sener & Savarese (2017) queries a batch of samples such that a model trained
on the queried subset is competitive for the remaining data samples. Diversity sampling has also been
exploited in the context of Bayesian neural networks (Kirsch et al., 2019). Buchert et al. (2023) uses
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diversity sampling, together with self-supervised representation learning to select an informative seed
set for AL. Combinations of uncertainty/diversity/representativeness-based criteria have also been
used as query functions in AL research (Chakraborty et al., 2015; Wu et al., 2022; Ash et al., 2020).

A.6 RESULTS WITH THE EVIDENTIAL UNCERTAINTY BASELINE
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Figure 7: Active learning performance results. The graphs show the mean (averaged over 3 runs) and
the errorbars for all the methods. Best viewed in color.

The active learning performance results on the four properties studied (mu, alpha, homo, and lumo)
are depicted in Fig. 7. As mentioned in Sec. 4.2, we note that Evidential Uncertainty depicts
significantly high error values than the other methods, for all the four properties.

A.7 STATISTICAL TESTS OF SIGNIFICANCE FOR THE QUERY BUDGET EXPERIMENT

Table 3: The table shows the p-values obtained using paired t-test between the results our method
against each of the baselines for the mu property for query budgets 1, 000, 1, 500 and 2, 000.

Budget
Baselines

Random Learning Loss Coreset Evidential

1000 7.58 × 10−6 1.05 × 10−5 5.32×10−5 2.46 × 10−10

1500 7.54 × 10−6 5.09 × 10−5 1.51 × 10−4 2.19 × 10−7

2000 7.90 × 10−5 1.74 × 10−5 1.94 × 10−4 1.77 × 10−8

Table 3 reports the results of the statistical tests of significance for the study of query budget (presented
in Sec. 4.3). Each entry in the table denotes the p-value of the paired t-test between our method
and the corresponding baseline (denoted in the columns) for the query budget (denoted in the rows)
for the mu property. From the table, we note that the improvement in performance achieved by our
method is statistically significant (p < 0.05) compared to all the baselines, consistently for all the
query budgets.
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A.8 PERFORMANCE OF OUR FRAMEWORK USING THE FAST QP SOLVER

We investigated the literature for potential solutions to improve the computational overhead of the QP
solver. We implemented a solution, where the strategy is to solve the QP problem in the GPU (instead
of the CPU) using the parallel implementation of the alternating direction method of multipliers, as
detailed in Schubiger et al. (2020).
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Figure 8: Active learning performance results of the proposed method using the Fast QP solver. Best
viewed in color.

We conducted an experiment to validate the performance of this QP solver. The results on the mu
and lumo properties are depicted in Fig. 8. As evident from the figure, the performance of our
method using the fast QP solver is very similar to that obtained using the original QP solver. Our
method still consistently and comprehensively outperforms all the baselines. However, due to the
GPU based QP implementation, solving the QP problem now takes less than 1 minute (with 20, 000
unlabeled molecules). The average time taken for one AL iteration (sample selection and training the
SphereNet model) by our method using the fast QP implementation is now 1 hr 28 mins (as opposed
to 1hr 58 mins before). This value has been reported in Table 2. Thus, using the fast QP solver,
the computation time of our framework has been substantially reduced, with almost similar active
learning performance.
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