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Abstract

Large language models (LLMs) process entire input contexts indiscriminately,
which is inefficient when the information required to answer a query is localized
within the context. We present dynamic context cutoff, a novel method enabling
LLMs to self-terminate processing upon acquiring sufficient task-relevant infor-
mation. Through analysis of model internals, we discover that specific attention
heads inherently encode “sufficiency signals” — detectable through lightweight
classifiers — that predict when critical information has been processed. This re-
veals a new efficiency paradigm: models’ internal understanding naturally dictates
processing needs rather than external compression heuristics. Comprehensive
experiments across six QA datasets (up to 40K tokens) with three model fami-
lies (LLaMA/Qwen/Mistral, 1B-70B) demonstrate 3.4% accuracy improvement
while achieving 1.33x token reduction on average. Furthermore, our method
demonstrates superior performance compared to other context efficiency methods
at equivalent token reduction rates. Additionally, we observe an emergent scaling
phenomenon: while smaller models require probing for sufficiency detection, larger
models exhibit intrinsic self-assessment capabilities through prompting. Code is

available at

1 Introduction

Large language models (LLMs) demonstrate re-
markable capabilities across diverse tasks, yet
their indiscriminate processing of entire input
contexts creates inefficiencies. LLMs process
every token with equal computational priority,
regardless of its actual relevance to the task [235].
This brute-force approach leads to fundamen-
tal inefficiencies: models waste computation on
irrelevant context while simultaneously strug-
gling with the “lost-in-the-middle” phenomenon,
where critical information becomes diluted in
lengthy inputs [16} |6]. For instance, when an-
swering a simple factual question, models may
process an entire document even after gathering
sufficient information in the first few sentences.

Given the documents, could you tell me which
company has the largest total liabilities?

L

<Doc 1>, <Doc 2> ... TechNova Corporation
reports the highest total liabilities at $15.8
billion as of December 31, 2023. The CEO of
TechNova, Jane Doe, emphasized the ...

@ 1 got it - it is TechNova!

Figure 1: Our method enables language models
to perform early termination by detecting suffi-
ciency signals in key attention heads, reducing
the amount of processed content while preserv-
ing performance.

The human cognitive system offers an instructive contrast. When solving problems, people dynami-
cally assess information sufficiency — we stop processing once we gather enough evidence, ignoring
redundant details [4]. On the other hand, LLMs process entire contexts even after acquiring sufficient
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information. This raises a question: “Can we enable LLMs to self-assess context sufficiency and
terminate early without compromising accuracy?”

In this work, we present dynamic context cutoff, which enables LLMs to identify when they have
acquired sufficient information for a task. Our key insight emerges from analysis of model internals:
specific attention heads in transformer layers exhibit strong sensitivity to information sufficiency
(§2.2). By monitoring these “context sufficiency heads” with lightweight classifiers, we enable
models to make early stopping decisions while improving performance.

Context compression offers a promising avenue for improving inference efficiency in LLMs. How-
ever, existing compression methods typically operate by predefining a target compression rate, which
introduces the risk of information loss. For instance, the LLMLingua family [} 10} [18] employs a
small language model to filter out unimportant tokens, reducing context based on a fixed compression
target. These methods impose predefined compression rates, enforcing a one-size-fits-all reduc-
tion regardless of content complexity. Similarly, retrieval-augmented generation (RAG) methods
predefine a fixed number of top-k retrieved documents. Although RAG operates differently by
retrieving external documents rather than compressing existing input, we include it for comprehensive
comparison as it has appeared in the baselines of previous work on context compression [10, [18].
We refer to both compression-based approaches and RAG as static methods, as they apply uniform
compression ratios (e.g., 50% compression results in every input being compressed to exactly half its
length). In contrast, our method is dynamic and context-adaptive — different inputs receive different
amounts of compression based on their information density, with actual compression determined by
each input’s specific content rather than a predetermined target. This approach enables models to
process only the minimal context needed, expanding it only when necessary, creating a new paradigm
where efficiency emerges naturally from the model’s own understanding rather than from external
compression heuristics, as demonstrated in Figure[I]

We conduct comprehensive experiments to evaluate our approach across six QA datasets (context
lengths 0.5K—40K tokens) and three model families (LLaMA, Qwen, Mistral; 1B—70B parameters).
We find that LLMs inherently encode context sufficiency signals in specific attention heads. No-
tably, our method reveals behaviors that align well with the scaling properties of modern LLMs:
while smaller models (1B—8B parameters) require explicit sufficiency detection to achieve competi-
tive efficiency, larger models (14B+) exhibit emergent self-assessment capabilities through simple
prompting. Our method achieves a 3.4% average accuracy improvement with 1.33x token reduction,
outperforming state-of-the-art context compression methods. Our in-depth analysis explores the
sensitivity to classification thresholds, the efficiency gains from different chunking strategies, and the
model-specific nature of context sufficiency, providing valuable insights into context sufficiency.

Related Work

Efficient Context Processing in LLMs. Improving inference efficiency in LLMs has attracted
significant research attention. Existing approaches fall into two orthogonal categories: (1) methods
that approximate transformer computations during inference, including speculative decoding [13l],
quantization [32], efficient attention mechanisms [[1} [12], and KV cache optimization [37, 9} [29]; (2)
methods that reduce input context length through compression [8 (10} (18, 28} [15]]. These approaches
are complementary — any context compression method can benefit from computational approximations.
Our work focuses on context reduction rather than computational approximation. Specifically, our
method aligns with hard prompt compression approaches like the LLMLingua family, which compress
input at the fextual level without requiring model retraining. We include the full suite of LLMLingua
variants in our experiments. For comprehensive comparison, we also include the RAG baselines
used in [[10, [18]], though RAG operates differently by retrieving external documents rather than
compressing existing input context. Critically, unlike both LLMLingua and RAG, our method does
not require any predefined compression target and dynamically adjusts context length based on the
model’s own understanding of the input content.

Latent Knowledge in Model Activations. LLMs encode task-relevant knowledge within inter-
mediate activations [23]], often more accurately than their final surface outputs [22| [14]. This latent
knowledge has been leveraged for various downstream applications, including knowledge graph con-
struction [27]], reasoning correctness verification [35]], hallucination detection [7], and long-context
understanding [34]. We extend this line of work by interpreting model internal activation subspaces



to detect context sufficiency. Unlike prior work, our approach uniquely identifies when the model has
internally synthesized adequate information and leverages this insight to reduce information overhead
during context processing. To the best of our knowledge, we are the first to propose a dynamic context
cutoff method that uses the model’s internal signals to determine when to stop processing context.

2 Methodology

We propose dynamic context cutoff, a method that enables LLMs to identify and process only the
minimal sufficient context required for a given task. Our approach leverages internal model activations
to detect when enough information has been gathered, reducing token processing while improving
performance, as illustrated in Figure 2]

2.1 Problem Formulation

Let M denOte a pre_trained language mOdel' Query: What is the_s_ou_rce qflhe Klehini river?

Given an input textual context C, we process Context: The Kiehini River’s ...

C sequentially from left to right by partitioning TS T ST Do

. s am

it into an ordered sequence of chunks {s; }72 ;. Procose Next Chunk

where each chunk s; comprises a contiguous ves (o] (chunk ... n)

subset of C (e.g., a sentence or a fixed percent-

age of the total tokens). These chunks form a Forward Pass -
- 1 1 1 . Sufficien: s activations
non-overlapping covering of C, meaning: At
chunks
H»_ 5, =C, s;Ns;=0fori+#j ) )
J=1" R 73 Figure 2: Our method leverages the model’s in-
ternal representations to identify when sufficient
information has been processed. A lightweight
classifier is trained on selected attention heads to
detect context sufficiency, leading to token savings
while improving task performance.

where || denotes concatenation. We define
a sequence of cumulative contexts {C;}™,
where each cumulative context C; consists of
all chunks up to and including the i-th chunk:

Ci:51||52||--~||5i7 1§2§m

By construction, these cumulative contexts satisfy the nested proper subset relationship: C; C Co C
-+ C C,,, = C. Given a query g, the goal is to identify the smallest prefix C;, (where & < m) such
that:

M(q, Ci) = M(q, C).

Here, Cj, represents the minimal sufficient context required for the model to answer ¢ with comparable
performance to using the full context C.

At each step i, a sufficiency classifier S iteratively checks whether the current cumulative context C;
contains enough information, by comparing its confidence S.(C;) with a threshold 7. Formally,

1 ifS.(Cy)>71
0 otherwise

)

S(Cy) = {

where S.. : R? — [0, 1] is the sufficiency confidence score function, and 7 is a predefined threshold.
If S(C;) = 1, processing terminates, and C; is selected as the minimal sufficient context Cy. The
remaining chunks {s;11,5;4+2,...,5m} = C\ Cj are ignored.

We formulate our task as a left-to-right context processing problem rather than searching or selecting
an arbitrary subset of documents. This aligns with how LLMs naturally process text from left
to right to maintain semantic coherence and continuity between chunks. Our cumulative, non-
overlapping chunking approach is essential for computational efficiency: each new chunk extends
the context incrementally (chunk;, chunk; 5, chunk; 4243, etc.), allowing us to reuse the KV cache
and avoid redundant computation of previously processed tokens. Overlapping chunks would require
recomputing activations for the same tokens multiple times, negating the computational efficiency
gains that make this approach practical. More discussion in Appendix



2.2 Probing LLMs for “Context Sufficiency”

We are interested in understanding how context sufficiency is represented within the model and how
it can be leveraged to improve efficiency. To do so, we probe its intermediate activations. Following
prior work on neural network interpretability [14} 2], we assess whether certain attention heads
encode information predictive of sufficiency. The data for probing consists of input cumulative
contexts {C;}_,, each labeled as either sufficient (y = 1) or insufficient (y = 0).
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For each C;, the model produces attention head
activations {x]'}, where z' € RP is the activa-
tion of the h-th head in the [-th layer. We train
a lightweight binary classifier py(z!') on these
activations to predict sufficiency: pe(m?) =
a((0,zl)), where € RP are the parameters
of the probe, and o denotes the sigmoid function.
The dataset is split into training and validation
sets (4:1 ratio) per task. We discuss more de-
tails about the data used for the probe in §A3]
Each classifier’s validation F1 score determines
the predictive ability of the corresponding head.
This selection process is performed only once
for all tasks. Figure [3] shows the F1 scores of
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Figure 3: Validation F1 scores for linear probes

probes for all attention heads in LLaMA3.2-1B.
A subset of heads, primarily in middle layers, ex-
hibit significantly higher predictive performance.
However, the performance of the probes may
vary depending on model architecture.

across all attention heads in LLaMA3.2-1B,
sorted row-wise by F1. Darker blue represents
higher F1 scores. Some heads show significantly
higher performance. More visualizations can be
found in Figure 8]

These results suggest that the model’s internal representations encode latent information about context
sufficiency. We leverage this insight to identify the most informative attention heads for further
processing. More details about the head selection process can be found in Appendix [B.1]

2.3 Dynamic Context Cutoff

Sufficiency Classification. After identifying the top heads from the probing step, we train multiple
lightweight base classifiers {S;, Sa, . .., Se} on these heads to form an ensemble. The ensemble is
constructed using StratifiedKFold with n = 5 folds, with the best performing models selected based
on their mean cross-validation AUC scores to form the final weighted ensemble:

1 €
:;ensenl e (ji = - S, (ji .
semble(Ci) = — j; i (Ci)
More details on this ensemble classifier can be found in Appendix [F1}

Inference with Iterative Forward Passes. During inference, the full context is processed incre-
mentally as a sequence of nested {C;}?_,, where each {C;} contains all preceding tokens. These
progressively expanding subsets are passed through the model to extract activations at each step.
Next, the ensemble classifier Sepsemple predicts whether the current context {C; }7*, is sufficient.
The activations of all processed chunks are cached to avoid redundant computation. Let Af_ .
denote cached activations for C;, containing the activations of all previous chunks by construction.
Activations for the current C; are computed as:
i—1
A(C;) = finodet(Ci \ Ci1, Alpe)

cache

where fioder 18 the model’s forward pass function conditioned on the cached activations A¢,cpe. The
iterative process continues until a sufficient context Cy, is identified, as determined by Sepsempie- If N0
C,; is deemed sufficient, the entire input context is processed. In either cases, the cached activations
will be reused for generation. We discuss potential KV cache optimization in Appendix [F:4] The final
output is computed as:

M(Cy) = M(Cy \ Cr—1, AF-L).

cache



Alternative Sufficiency Detection. As an alternative to the classifier-based approach, larger LLMs
can leverage their own reasoning capabilities through self-prompting. For each cumulative context
C;, we append a meta-prompt asking the model to evaluate whether it has sufficient information to
answer query g. The prompt can be found in Appendix The model’s binary response determines
sufficiency, enabling dynamic cutoff without classifiers. In §3.2] we show that self-prompting
becomes increasingly reliable with larger model sizes (14B+ parameters), suggesting that sufficiency
detection emerges as a capability with scale.

3 Experiments

In this section, we describe our experimental setup in §3.1] and present comprehensive results
demonstrating the effectiveness of our method in §3.2]

3.1 Experimental Setup

Datasets. We use two types of datasets, single-hop and multi-hop, to assess models’ ability to
locate the key information across varying context structures and tasks. For single-hop reasoning,
where answers are typically found within a single passage requiring minimal context dependency,
we use SQuAD [19], a widely used dataset with questions based on Wikipedia passages; Natural
Questions [11], containing questions derived from real-world search queries with answers located in a
single but longer passage; and a Code Understanding dataset, where we use GPT-40 to synthetically
generate multiple single-function code snippets as distractors, and use the original PCSD [26] data to
create a QA task dataset requiring to first locate and then understand the relevant code. For multi-hop
reasoning, which requires combining information from multiple parts of the context to arrive at
the correct answer, we use HotpotQA [31]], a popular dataset with multi-hop questions requiring
reasoning across multiple paragraphs from Wikipedia; MUSIQUE [24]], a dataset with compositional
and nested questions requiring multi-step reasoning across multiple documents; and Multi-hop
Key-Value Retrieval [36]], a widely adopted synthetic dataset for evaluating long-context LLMs that
requires exact retrieval of dependent key-value pairs across multiple documents.

Data Processing. To evaluate LLMs’ long-context capabilities, we extend these naturally short
datasets to approximately 40K tokens. Following Liu et al. [16] and Zhang et al. [36]], we create long-
form versions by combining multiple unique documents within each dataset, conducting experiments
on both versions (§3.2). For each data point, we define the ground-truth sufficiency cutoff as the
normalized position of the last token in the gold information span — the minimal context required
for correct answers. Importantly, our evaluation datasets are carefully balanced by design: the
gold answer locations follow a uniform distribution (mean ~ 0.50, standard deviation 0.25-0.28)
across all datasets, ensuring approximately 50% of chunks are classified as “insufficient” and 50%
as “sufficient.” This balanced distribution prevents bias toward early- or late-context answers and
provides a fair assessment of context sufficiency detection. Detailed dataset statistics are provided
in Appendix [A] We examine the inference time-context length trade-off in our method (§4.2). This
definition treats sufficiency as a dataset property, implying a universal cutoff point across models.
However, in practice, different models may need varying amounts of context to generate accurate
responses, where sufficiency could be model-dependent. We investigate this phenomenon in
Additionally, when ground truth cutoff points are not available, we show that synthetically LLM
generated sufficiency labels are effective proxies in Appendix

Models and Baselines. We evaluate four open-source LLM families ranging from 1B to 70B
parameters: LLaMA-3.2-1B [3l], Mistral-8B [[L7], Qwen-2.5-14B [30], and LLaMA-3.3-70B [3]].
Note that our proposed method is model-agnostic and can be applied to any Transformer-based
LLM. To ensure fair comparison, we follow previous work [[10, 18] and evaluate our method against
several well-established baselines. For retrieval-based methods (RAG), we include BM25 [21]], which
ranks chunks by term frequency, and SBERT [20], which uses transformer-based embeddings for
semantic relevance. For compression-based methods, we evaluate LLMLingua [8]], which removes
low-entropy tokens; LongLLMLingua [10]], which applies hierarchical filtering for long contexts;
and LLMLingua2 [18]], which learns task-agnostic compression through knowledge distillation.
Additionally, we include a Fine-Tuned Classifier baseline that learns to predict context sufficiency
(Appendix [F3) and Self-Prompting, where the LLM assesses sufficiency through prompting (§2.3).



Evaluation Metrics. We evaluate two aspects of our dynamic context cutoff method: sufficiency
classification and task performance. For sufficiency classification, we use F1 Score, which balances
precision and recall, capturing the trade-off between false positives (overestimating sufficiency) and
false negatives (underestimating sufficiency). We also report Recall at 90% Precision (R@90P),
which measures the percentage of sufficient contexts correctly identified while maintaining a precision
of at least 90%. This ensures that the method reliably avoids excessive false positives while achieving
high recall. For task performance, we evaluate Accuracy, which measures the percentage of correct
model outputs against the ground truth after and before context cutoff. We also evaluate Token
Reduction, which quantifies the proportion of tokens processed relative to the full context. Following
previous work [33]], we perform model-based evaluation for accuracy calculation by using GPT-40
MiniE] More details about the evaluation metrics and prompts can be found in Appendix |C| and
Appendix [D.2] respectively.

Implementation Details. The proposed dynamic context cutoff method involves three hyperpa-
rameters: the classification threshold 7, the number of attention heads used for training, and the
number of classifiers in the ensemble. Among these, 7 is the key hyperparameter as it directly
impacts the trade-off between efficiency and performance, as discussed in §4.1] The remaining two
hyperparameters are determined empirically via a standard hyperparameter sweep on the validation
set; details can be found in Appendix Specifically, we set k¥ = 5 for attention heads with the
highest F1 scores and train 8 lightweight classifiers for each head, selecting the top 4 with the highest
AUC scores to form the ensemble. More details can be found in Appendix [F.1] For all methods,
including the proposed dynamic context cutoff method, we evaluate using percentage-based chunking
with a 10% incremental threshold, meaning each chunk contains 10% more of the full context than
the previous one. We explore different chunking strategies in Section[4.2]

3.2 Results

Sufficiency Classification. Table[|shows that i . )
probing internal attention heads achieves su-  Iable 1: Probing (ours) achieves highest F1
perior sufficiency detection (F1 = 91.1) com-  S€ores compareq to supervised fine-tuning (FT)
pared to supervised fine-tuning (79.5) and self- and self-prompting across all models.

prompting (83.1) in 70B models, demonstrating

that latent sufficiency signals are more reliable Model FT  Prompt Ours
than surface-level outputs. We also observe an in- LLaMA3.2-1B 32.6 88.3
teresting phenomenon: while 1B models struggle Mistral-8B 69.7 89.8
with self-prompting (F1 = 52.6), 70B versions Qwen2.5-14B 79.5 78.3 87.2
achieve much higher performance, suggesting LLaMA3.3-70B 83.1 91.1

larger models intrinsically develop self-

assessment capabilities. However, our probing approach maintains consistent high performance
across all model sizes, confirming that internal activation provides the most reliable sufficiency
detection regardless of model scale.

Efficiency vs. Performance. Figure 4| shows the efficiency and performance trade-off between
different methods. Unlike static methods (RAG and the Lingua family) that require predefined
compression rates or top-k document selection, dynamic methods (FT, self-prompting, and our
approach) adaptively determine cutoff points based on content understanding. For our proposed
method, we sweep through 4 different 7 values. For 1B models, our method matches RAG and
LLMLingua2 in token reduction and achieves comparable accuracy. At 8B, it processes about
1.5x fewer tokens with minimal accuracy drop, outperforming all baselines. For 14B+ models, the
method not only reduces tokens up to 1.22x but also improves accuracy. In contrast, RAG degrades
sharply with scale. FT underperforms universally, likely due to misaligned sufficiency signals across
models. Interestingly, larger models (14B+) exhibit emergent self-awareness via prompting, whereas
smaller models (1B-8B) perform poorly in prompting, as instruction-following ability is critical for
self-prompting to work effectively. The results suggest that context truncation may also mitigate the
“lost-in-the-middle” problem [[16] 6], as models focus more on the end of the context, which is likely
to contain key information after removal.

2 gpt-40-mini-2024-07-18



Llama3.2-1B Ministral-8B Qwen2.5-14B Llama3.3-70B
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Figure 4: Our method achieves superior efficiency-accuracy trade-offs compared to baselines. RAG
degrades with scale, while Lingua2 remains competitive but lags on multihop tasks. Larger models
(14B+) exhibit emergent self-awareness on context sufficiency through prompting.

Table 2: Performance comparison across different models on Single-hop and Multi-hop tasks on the
short-form dataset. Our method achieves a token reduction of 1.33 %, while outperforming static
methods with a targeted compression rate at 1.25x.

Method LLaMA3.2-1B Ministral-8B Qwen2.5-14B LLaMA3.3-70B Avg.

Multi Single Avg Multi Single Avg Multi Single Avg Multi Single Avg Multi Single Total
Full Context 104 179 142 29.6 448 372 304 576 440 37.1 750 561 266 487 379
BM25 112 162 137 208 275 356 258 408 365 21.7 37.1 417 199 304 319
SBERT 102 178 140 196 375 352 263 513 423 221 417 408 196 37.1 331
LLMlingua 6.3 183 123 221 417 319 242 525 383 358 741 550 221 467 344
LongLLMlingua 6.7 200 133 221 41.7 319 263 558 41.1 354 717 53.6 226 473 350
LLMlingua2 79 208 144 283 433 358 321 579 450 358 750 554 261 493 377
FT 6.2 138 10.0 215 347 281 223 351 287 356 524 440 214 340 277
Self-Prompt 6.4 114 89 238 362 300 382 520 451 483 699 591 289 426 358
Ours 103 175 139 288 458 373 333 592 463 438 753 595 290 494 392

Table 3: Performance comparison across different models on Single-hop and Multi-hop tasks on
the long form dataset. Our method achieves a token reduction of 1.27x, while outperforming static
methods with a targeted compression rate at 1.25x

Method LLaMA3.2-1B Ministral-8B Qwen2.5-14B LLaMA3.3-70B Avg.

Multi Single Avg Multi Single Avg Multi Single Avg Multi Single Avg Multi Single Total
Full Context 5.0 104 77 183 388 285 299 400 350 293 708 50.0 20.6 40.0 303
BM25 5.7 122 89 209 387 298 302 392 347 287 687 487 213 40.0 305
SBERT 56 125 9.1 202 377 294 300 389 344 277 688 483 21.1 395 303
LLMlingua 3.8 12.1 7.9 17.1 358 265 27.1 41.8 345 233 654 444 178 388 283
LongLLMlingua 3.3 12.1 7.1 150 371 260 28.0 40.1 341 275 679 477 185 393 289
LLMlingua2 2.7 9.6 6.2 17.1 383 277 288 429 358 282 692 487 192 40.0 29.6
FT 2.6 8.4 5.5 149 315 233 214 332 273 214 471 343 151 300 226
Self-Prompt 42 7.3 5.7 174 326 250 305 458 376 290 654 472 203 378 29.0
Ours 5.0 9.9 7.5 19.1 377 284 298 432 365 308 709 509 212 399 308

Individual Task Performance. Table[2]shows that our method maintains consistent performance
on both single-hop tasks (49.4% average accuracy) and multi-hop tasks (29%), outperforming the
top static baseline, LLMLingua2, by +1.5% in absolute accuracy score. In contrast, RAG methods
experience a considerable drop in both settings. For a fair comparison, we report RAG results only
for k = 8, which corresponds to a compression rate of 0.8 for the Lingua family or a token reduction
factor of 1.25x. Note that dynamic methods stop naturally and do not target a specific token reduction
rate. Our method achieves a 1.33x reduction in tokens, while the FT and Prompt methods achieve
reductions of 1.54 x and 1.42x on average, respectively.

Long Context Scenario. We evaluate our method with longer contexts to assess its scalability. For
fair comparison, static methods are evaluated at a fixed 1.25x token reduction. Table [3|shows that
our method consistently outperforms baselines, especially in the multi-hop setting. Dynamic methods
adaptively determine cutoff points, with FT achieving 1.61 x, Self-Prompt 1.41 X, and our method



1.27x, ensuring minimal performance loss. Notably, RAG performs better in long-context settings,
particularly for multi-hop reasoning. However, FT remains the weakest method, struggling with
generalization. Self-Prompting improves with model size, as larger models better follow instructions
for self-assessment. The results confirm that dynamic cutoff outperforms static heuristics. For longer
contexts, our method provides an alternative and scalable solution for efficient inference.

4 Analysis and Discussion

4.1 Classification Threshold

The balance between the model’s prediction con-
fidence and the classification threshold 7 is a
key factor in our proposed method. In Figure[3]
we plot the model’s prediction confidence av-
eraged over different numbers of chunks. We
observe that the confidence in sufficiency predic-
tions grows steadily as more context is processed,
which indicates that useful signals are accumu-
lating over the chunks. Consequently, once the
model’s confidence exceeds 7, it has likely inte-
grated enough information. Note that stopping
too early can cause information loss when criti-
cal elements of the context are excluded.
Although the F1 score is a useful measure for de-
tecting context sufficiency, we also report Recall
at high Precision to show how well our method
identifies truly sufficient contexts while minimiz-
ing false positives. In Figure[6] we show results
at 90% precision and provide further findings at
95% and 98% precision in the appendix. This
metric measures the fraction of actually suffi-
cient contexts that are correctly identified when
precision is at least 90%. Such a metric is critical
for our task, as a mistaken early cutoff (false pos-
itive) can exclude relevant content and degrade
the final performance.

4.2 Chunking and Inference Time

Chunking determines how efficiently the model
processes and evaluates context sufficiency. Ta-
ble[d] compares different chunking strategies for
Qwen-2.5-14B. Percentage-based chunking per-
forms consistently well, with 10% chunking of-
fering the best trade-off between accuracy and ef-
ficiency. While sentence-level chunking achieves
the highest classification performance, it is im-
practical due to the increased overhead of fre-
quent sufficiency checks. Since these checks
require processing chunks sequentially, smaller
chunks lead to higher latency, as each additional
step incurs computational overhead before reach-
ing a decision even with caching.

Confidence
o
-

| i‘! i
ﬁﬁ

1
Chunk

Figure 5: Confidence progression across context
chunks. Model’s prediction confidence increases
monotonically with more context.
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Figure 6: F1 score and Recall at 90% precision
for sufficiency detection. Our approach reliably
identifies when enough context is present while
minimizing false positives. More results can be
found in Appendix |G|

Table 4: Sentence-level chunking achieves the
highest performance but is computationally ex-
pensive. 10% chunking offers the best balance
between accuracy and efficiency.

Metric Sent. 1% 5% 10% 20%
F1-Score 968 872 87.0 883 88.3
R@90P 954 909 784 859 858
Acc. 145 137 128 139 137

Therefore, 10% chunking is chosen to best balance granularity and efficiency. Figure [7] shows
inference time between our method (10% chunking) and full-context processing. For short contexts
(1K tokens), directly processing the full context is faster; however, beyond 2K tokens, our method
provides significant inference time savings when fewer than six chunks (60% of the full context) are
processed. This demonstrates that our approach scales efficiently, offering increasing benefits for

longer inputs.
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Figure 7: For short contexts (1K tokens), full-context processing is faster. However, beyond 2K
tokens, our method becomes more efficient, achieving faster inference when fewer than six chunks
(60% of the full context) are processed.

4.3 Wall-Clock Time vs. Accuracy

Beyond token reduction, we compare wall-clock  Table 5: Comparison of average wall-clock in-
time in Table [5} using the same configuration  ference time (seconds per sample) and average
from Sectiond.2] All experiments were run on  accuracy across various methods.

the same hardware configurations as detailed in

Appendix [F2] Our method achieves faster in- Method Time (s) Acc. (%)
ferenpe timq than full context processing while Full 9.02 35.0
also improving accuracy from 35.0% to 36.5%. BM?25 8.68 347
LLMLingua? is the fastest overall at 6.97s with SBERT 8.93 34.4
comparable accuracy of 35.8%. Self-Prompting, LLMLingua 7.35 34.5
while achieving the highest accuracy (37.6%), is LongLLMLingua 8.47 34.1
the slowest among all methods. RAG methods LLMLingua2 6.97 35.8
(BM25 and SBERT) and other Lingua variants FT 8.01 27.3
offer some speedup over full context but gen- Self-Prompt 10.5 37.6
erally at the cost of accuracy. The FT method Ours 8.13 36.5

achieves faster inference than full context.

However, it results in a significant drop in accuracy. Overall, our method offers a balanced trade-off,
reducing latency without external heuristics while preserving answer quality.

4.4 Universal vs. Model-Specific Cutoffs

From a human perspective, each task has a “gold” location in the context where the final relevant
information resides—once an answer is directly obtained, any further context is redundant. In such
cases, a universal stopping point may be plausible. However, from a model perspective, defining
a single optimal cutoff is challenging and ambiguous. For example, in in-context learning (ICL),
models observe demonstration examples without a clear threshold for sufficiency. Smaller models
may require more examples to generalize, while larger models may reach high confidence with fewer.
This suggests a model-specific cutoff, where each model determines its own stopping threshold rather
than adhering to a universal standard. This is particularly relevant in real-world applications, where
different LLMs and tasks have varying context requirements. We provide preliminary exploration of
tasks without explicit answer locations in Appendix [E] using ICL as a representative case.

4.5 Beyond Factoid QA

Our work focuses on tasks where the information needed to answer a query is localized within
specific parts of the context. While this represents a substantial portion of real-world applications
(e.g., question answering, information retrieval, fact verification), we acknowledge that not all tasks
benefit from early stopping. Tasks requiring holistic understanding of the entire context, such as
summarization or passage rewriting, may not be suitable candidates for dynamic cutoff. However, a
key advantage of our method is its ability to handle both scenarios naturally. Unlike compression
methods that reduce context regardless of task requirements, our sufficiency classifier can process the
full context when necessary — when all information is crucial, the classifier would not trigger early
stopping, effectively using the entire input. We also demonstrate in Appendix [A.4] that synthetically
generated sufficiency labels (via GPT-40) achieve competitive performance (F1: 84.6-87.0 vs 88.3-



89.8 for original labels), enabling extension beyond factoid QA. Additionally, for larger models
(14B+), our self-prompting approach eliminates dependence on labeled data entirely, suggesting
potential for broader task coverage.

4.6 Limitations and Future Work

While our sufficiency classifier demonstrates promising generalization through synthetic labels and
self-prompting, its applicability to all task types (e.g., creative writing, open-ended dialogue) remains
an open question. Future work could investigate classifier performance across broader task spectrums
and develop adaptive threshold selection mechanisms that automatically adjust 7 based on model
characteristics and task requirements, rather than relying on validation-based hyperparameter tuning.

5 Conclusion

We introduce dynamic context cutoff, a method that enables LLMs to process only the minimal
necessary context by detecting context sufficiency signals using the model’s internal representations.
This approach reduces token processing by 1.33 x on average while improving accuracy by 3.4%,
outperforming static methods like RAG and compression-based heuristics. We find that larger models
develop emergent self-assessment capabilities, allowing them to detect sufficiency through self-
prompting. By enabling models to terminate processing dynamically, our method enhances efficiency
and scalability for LLM inference, paving the way for more intelligent context processing.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. Our paper claims to provide a method to detect whether a
given long-context input is sufficient for a given task, and to provide a method to stop the
inference of a given LLM model at the point where the input is sufficient.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we discuss the limitations of the work, including the assumptions made
for the univerisal cutoff point. We leave the exploration of the limitations to future work.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide the full dataset, code, and instructions to reproduce the main
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed

instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide the full dataset, code, and instructions to reproduce the main
experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide the full dataset, code, and instructions to reproduce the main
experimental results.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments use a fixed random seed and consistent setup across runs,
eliminating variation due to stochasticity. As such, reporting error bars was not necessary to
support the paper’s main claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the compute resources used and GPU time in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: We have read the Code of Ethics and confirm that our research conforms to
every point.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work focuses solely on a technical efficiency method applied to already-
public LLMs and standard QA datasets; it does not introduce new deployment contexts,
user-facing applications, or novel data that would plausibly create distinct societal benefits
or harms beyond those already well studied for large language models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not release any new pretrained models or proprietary datasets; it
only evaluates existing open-source LLMs and publicly available QA datasets, so no special
safeguards are required.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: Creators of all external datasets and models are cited, and licensing is dealt
with in our provided code base.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the full dataset, code, and instructions to reproduce the experimen-
tal results. The code base also deals with relevant licensing credits.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large-language model is employed as an original, non-standard, or integral
component of the proposed method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset

A.1 Statistics

We define gold location as the gold information span’s end position divided by the total number of
tokens in the input, which is uniformly distributed. We provide statistics for the Long datasets as
shown below in Table[6]and Short-form dataset in Table[7} Each dataset contains 600 data points, and
the train-validation-test split is 80%, 10%, and 10%, respectively.

Table 6: The datasets are grouped based on reasoning type. Code Understanding (Code) is distinct as
it involves synthetic code understanding, whereas SQuAD and Natural Questions focus on retrieving
answers from a single passage. Multi-hop Key-Value Retrieval (KV) is separate as a synthetic multi-
hop key-value retrieval task, while HotpotQA and MUSIQUE involve natural multi-hop reasoning
across multiple passages. Statistics include Token Count and Gold Location.

Statistic Single-hop Multi-hop
Code SQuAD & Natural Questions KV HotpotQA & MUSIQUE

Token Count

Mean 22,758.96 22,653.68 22,494.19 24,970.78
Median 22,739.50 22,584.00 22,619.00 25,168.50
Std Dev 7,299.95 6,758.97 7,290.87 7,159.93
Max 35,465 36,888 35,426 40,622
Min 10,107 9,955 10,023 10,430
Gold Location

Mean 0.50 0.50 0.51 0.49
Median 0.50 0.50 0.49 0.49
Std Dev 0.28 0.28 0.25 0.26
Max 0.99 0.99 0.96 0.96
Min 0.01 0.01 0.04 0.02

Table 7: Categorized by reasoning type, with single-hop tasks (Code Understanding, SQuAD, and
Natural Questions) involving direct retrieval from a passage, and multi-hop tasks (Multi-hop Key-
Value Retrieval, HotpotQA, and MUSIQUE) requiring inference across multiple segments. Statistics
include both token count and gold location.

Statistic Single-hop Multi-hop
Code SQuAD & Natural Questions KV HotpotQA & MUSIQUE

Token Count

Mean 2951.23 1678.98 2723.65 1676.15
Median 2910.50 694.50 2704.00 1735.00
Std Dev 562.14 1269.42 450.02 646.41
Max 4990 4993 4616 2815
Min 1489 600 1572 578
Gold Location

Mean 0.51 0.48 0.56 0.53
Median 0.52 0.49 0.55 0.50
Std Dev 0.23 0.28 0.20 0.28
Max 0.98 0.99 0.91 0.99
Min 0.02 0.02 0.21 0.02

A.2 Dataset Balance

Our information sufficiency evaluation dataset is carefully balanced by design. As described in
Appendix [A] the gold location in our context is sampled from a uniform distribution, placing the
required information approximately at the middle of the context. This creates a balanced evaluation
where approximately 50% of context chunks are classified as “insufficient” (before the gold location)
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and 50% as “sufficient” (after and including the gold location). This balanced distribution ensures
that our evaluation is not biased towards either early or late stopping decisions, providing a fair
assessment of the method’s ability to detect context sufficiency.

A.3 Sufficiency Label Collection Process

To train our sufficiency detection classifiers, we create datapoints by labeling context chunks as either
sufficient or insufficient for answering the given question. Here we describe our methodology for
generating these sufficiency labels.

Label Generation Process. We generate sufficiency labels by first splitting the context into non-
overlapping chunks according to our chunking strategy (e.g., 10% of total tokens per chunk). Using
the ground truth answer location(s), we identify the answer-containing chunk(s) in the document.
We then label all chunks that appear before the answer-containing chunk as insufficient (0), while
marking the answer-containing chunk itself and all subsequent chunks as sufficient (1). This labeling
approach is based on the intuition that a question becomes answerable if and only if all necessary
information chunks are present in the context. Note that the labeling process varies slightly for
different question types:

* Single-hop Questions: These typically require information from a single passage or section
within the document. Depending on the chunking strategy, there is usually only one answer-
containing chunk. All chunks before this are labeled as insufficient, while this chunk and all
subsequent chunks are labeled as sufficient.

* Multi-hop Questions: These questions require integrating information from multiple parts
of the document. There may be multiple answer-containing chunks (e.g., different pieces of
information needed from different sections). In these cases, only the last answer-containing
chunk and all subsequent chunks are labeled as sufficient, as all required information is only
available after that point.

A.4 Synthetic Sufficiency Labels

Most existing QA datasets (including all six datasets used in our paper) are constructed with known an-
swer locations, making it straightforward to generate sufficiency labels as described above. However,
this approach may not be directly applicable to scenarios where answer locations are not explicitly
provided. To address this limitation, we investigated whether large language models could generate
synthetic sufficiency labels that perform comparably to those derived from human-annotated ground
truth locations. We conducted experiments comparing classifiers trained with two types of labels:

* Original Labels: Generated using the ground truth answer locations as described above.

* Synthetic Labels: Generated using GPT-4o to predict answer locations within the docu-
ments.

For the synthetic label generation, we prompt GPT-40 to identify the minimal set of context chunks
required to answer each question completely. We then use these predictions to label chunks as
sufficient or insufficient following the same methodology used for original labels. Table [§] shows
the performance comparison between classifiers trained with synthetic versus original labels. The
evaluation pipeline for both remained identical, relying on the same ground-truth labels for testing.

The results show that while there is a modest performance gap, classifiers trained with synthetic
labels still achieve strong performance that is competitive with those trained on original labels. This
indicates that our approach can be effectively extended to scenarios where explicit answer locations
are not available, by leveraging LL.Ms to generate reasonably accurate sufficiency labels.
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Table 8: Performance comparison between classifiers trained with synthetic (GPT-40 generated)
versus original (human-annotated) sufficiency labels across different model sizes.

Task Type Synthetic Original
1B 8B 1B 8B

Single-hop 82.1 84.4 857 893
Multi-hop  87.1 89.6 909 90.3

OverallF1  84.6 87.0 883 89.8
P90 793 827 859 90.1

B Additional Probing Details

B.1 Activation Head Selection

For efficient context cutoff, our method does not use activations from all layers of the model, but
rather selectively identifies the most informative attention heads in specific layers through probing.
The activation selection process works as follows:

» We initially probe all attention heads across all layers of the model to identify which ones
encode the strongest sufficiency signals.

* As shown in Figure [3[for LLaMA3.2-1B and Figure [3|for Qwen2.5-14B, we discovered
that a subset of heads, primarily from middle layers, exhibit significantly higher predictive
performance for context sufficiency. This aligns with findings in other interpretability work
that middle layers often capture higher-level semantic information.

* After identifying these predictive heads, we select only the top-%k heads with the highest F1
scores on the validation set (K = 5 in our implementation) to train our ensemble classifier.

As demonstrated in Table [0} we found that using just the top 5 attention heads yields the best
performance, with minimal gains or even decreased performance when more heads are included.
This confirms our hypothesis that context sufficiency signals are concentrated in specific architectural
components rather than distributed throughout the entire model.

The specific layers used can vary across model architectures - we don’t restrict our approach to
predetermined layers, but rather let the probing results guide which heads (and consequently which
layers) provide the most reliable sufficiency signals. This approach ensures our classifier focuses
only on the most informative components of the model’s internal representations while keeping
computational overhead minimal.

B.2 Additional Probing Results

Figure [§]illustrates the probing results for the Qwen2.5 14B model, revealing that, similar to LLaMA
models, the highest F1 scores are concentrated in the middle layers. However, the distribution of
these high-performing heads differs between the two model families. While both models exhibit
darker regions indicating stronger sufficiency signals in their intermediate layers, LLaMA3.2-1B
shows a more dispersed pattern of high F1 scores across various heads within these layers. This
suggests that although both LLaMA and Qwen models tend to encode context sufficiency signals
primarily in their middle layers, the specific attention heads responsible and their activation patterns
vary between architectures.

B.3 Left-to-Right Context Processing

Our choice of left-to-right processing is motivated by two main factors. First, Transformer models
are typically trained on left-to-right sequences, making this order naturally compatible with their
internal representations. This avoids the need for significant architectural changes or retraining.
Second, it enables efficient use of the key-value (KV) cache while preserving semantic consistency.
As described in left-to-right processing allows us to reuse cached activations from previous
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Figure 8: Probing results for the Qwen2.5 14B model. The heatmap shows the average F1 score for
each head across all layers, which is different from LLaMA models.

chunks, maintaining contextual coherence across the sequence. As shown in Figure[3] the model’s
confidence in sufficiency predictions increases steadily as more context is processed, suggesting that
meaningful information accumulates effectively under left-to-right processing.

Although alternative processing orders (e.g., reversed or random) or methods (e.g., RAG, which
selects arbitrary subsets of context) are possible, our approach preserves semantic continuity between
chunks. We leave the investigation of these alternatives for future work.

Note that when processing a chunk, we retain the KV cache from all preceding chunks. This means
there is no computational difference between processing the context chunk-by-chunk from left to
right and processing the entire context in a single pass. We do not alter the computation over the
context; we simply segment it into chunks to determine when to stop. Each token receives exactly the
same context as it would without chunking, due to reuse of the KV cache.

C Evaluation Metrics

Our evaluation framework employs two categories of metrics to comprehensively assess different
aspects of our method:

* Information Sufficiency Classification metrics:

— F1 Score: Measures the overall balance between precision and recall in detecting
sufficient context. This metric is particularly important as it penalizes both false
positives (stopping too early) and false negatives (processing unnecessary context). A
high F1 score indicates that our method can reliably identify when enough information
has been processed while avoiding premature cutoffs.

— Recall at 90% Precision (R@90P): Ensures high confidence in sufficiency predictions
while maintaining good coverage. This metric is crucial for our task as it measures how
many truly sufficient contexts we can identify while keeping false positives (incorrect
early cutoffs) below 10%. This conservative approach helps prevent information loss
while still achieving efficiency gains.

¢ QA Task Performance metrics:

— Accuracy: Measures answer correctness before and after context cutoff. This metric
is calculated as the percentage of questions answered correctly by comparing model
outputs with ground truth answers. We use GPT-40 Mini as an automated judge to
evaluate answer correctness, following established practices in QA evaluation [33].
This approach is more reliable than exact string matching, especially for long-form
answers where semantic equivalence is more important than lexical matching.

— Token Reduction: Quantifies the proportion of tokens processed relative to full context.
This metric directly measures computational efficiency gains, calculated as the ratio
between the number of tokens processed with our method versus processing the full
context. A higher token reduction indicates greater computational savings while
improving performance.
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D Prompts

D.1 Self-Sufficiency Prompt

Self-Sufficiency Prompt

Given the following context and question, determine if the context contains enough
information needed to answer the question.

[QUESTION]: {question}
[CONTEXT]: {context}

Your response should strictly ONLY consist of *[[YES]]’ if context is enough, or ’[[NO]]’ if
context is not enough. Omit any other output.

Your response:

D.2 Evaluation Prompt

Evaluation Prompt

You are an expert model evaluator specializing in natural language understanding. Your task
is to determine if a model’s answer is correct by comparing it with the provided gold answers,
accounting for valid paraphrasing and alternate expressions of the same answers.

[QUESTION] {question} [/QUESTION]

[GOLD_ANSWERS] {correct_answers} [/[GOLD_ANSWERS]

[MODEL_ANSWER] {model_answer} [[MODEL_ANSWER]

Evaluation criteria: - Answer must convey the same core meaning as gold answers - Partial
matches should be marked incorrect - Additional correct information beyond gold answers is
acceptable - Empty or off-topic responses are incorrect

Your response should strictly ONLY consist of *[[YES]]’ if model answers question correctly,

or ’[[NO]]’ if model answers question incorrectly. Omit any other output.
Your response:

D.3 Answer Generation Prompt

Answer Generation Prompt

Please provide a response to the query based only on the given context:
[QUESTION]: {question}
[CONTEXT]: {context}

Your response:




E Model-Specific Cutoffs

While our work focuses on factoid queries where evidence is localized (data with ground truth
sufficient information label), our approach can be extended to rationale queries. We believe that
the model’s internal representations still encode when it has gathered sufficient information to form
a coherent response, even if that information is distributed across the document. Sufficiency is
ultimately a property of the model’s understanding, not just the dataset structure. In this section,
we discuss some preliminary findings and ideas under an in-context-learning setting, which does
not have explicit answers located in the context. Furthermore, our experiments show synthetically
generated sufficiency labels (via GPT-40) are effective proxies when explicit answer locations are
unavailable Appendix [A.4] The modest performance gap indicates potential for rationale queries.

E.1 Case Study: In-Context Learning

To explore the challenges of defining model-specific cutoffs, we utilized the TREC dataset [5]] for
In-Context Learning (ICL) task. TREC comprises a series of questions categorized into six distinct
types, Abbreviation, Entity, Description and abstract concept, Human being, Location, and Numeric
value; these six types are labled from zero to five respectively. Each question type serves as a category
label, and the dataset is structured to provide multiple examples per category without revealing these
labels to the models. This setup requires the model to generalize from demonstrated examples to
accurately classify unseen queries. For our experiments, we employed two models of differing scales:
a 8-billion-parameter (8B) Mistral model and a 14-billion-parameter (14B) Qwen2.5 model. These
models were selected to illustrate the variance in context processing capabilities across different
model sizes, providing insights into how each handles the accumulation of context in an ICL setting.

E.2 Analysis

Figure [0] presents the probability of outputting labels as the models process sequential examples
from the TREC ICL dataset. The 8B model exhibits a gradual increase in confidence, requiring
nearly all available examples to achieve its highest accuracy. In contrast, the 14B model reaches peak
confidence after processing only a subset of the examples, demonstrating a more rapid understanding
of the underlying category structure. This discrepancy highlights that larger models can infer
task requirements more efficiently, suggesting that a universal cutoff—applicable to all model
sizes—would be suboptimal. The figure also reveals instances where the 8B model remains uncertain
despite processing additional examples, whereas the 14B model consistently converges on the correct
label with fewer demonstrations. These observations underscore the necessity for model-specific
thresholds that account for each model’s unique capacity to assimilate and generalize from context.

E.3 Implications

The variability in cutoff points between the 8B and 14B models in the ICL setting indicates that a
one-size-fits-all approach to context cutoff is inadequate for more nuanced tasks. Methods, such
as halting after a fixed number of examples or relying solely on confidence thresholds, may lead
to inconsistent performance across different model architectures. For instance, early examples in
the ICL dataset can sometimes mislead smaller models, causing them to misclassify subsequent
queries. Addressing this requires developing adaptive cutoff mechanisms that dynamically adjust
based on the model’s internal state and the specific characteristics of the task. Future research should
focus on designing algorithms that can learn these individualized thresholds, potentially leveraging
additional signals from the model’s activations or exploring hybrid approaches that combine universal
and model-specific criteria. Furthermore, applying such techniques to datasets where the gold
information is not easily identifiable will be crucial for validating the robustness and generalizability
of model-specific cutoff strategies.

F Implementation Details

F.1 Ensemble Classifier

For the ensemble classifier, the folds are constructed from the training split during cross-validation.
The validation split is held out for the evaluation after the classifier is built. Tables[9shows the perfor-
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Figure 9: Confidence progression in TREC ICL task: The 8B model requires nearly all examples to
achieve its highest confidence, whereas the 14B model attains peak confidence after processing fewer
examples. This illustrates the need for model-specific cutoff thresholds.

mance comparison in different number of attention heads and different classifiers used in ensemble.
For attention heads, we found that using only the top 5 selected heads yield best performance, and
use the top 4 out of 7 classifiers is the best configuration.

Table 9: Performance comparison across head selections and number of classifiers for our method.

Head Numbers Classifier Numbers
Maetrics 5 10 20 2 4 6

F1-Score 883 873 879 874 883 873
R@90P 89 780 780 77.6 859 780
Acc. 139 13.0 128 127 139 129

F.2 Memory Requirements and Computational Requirements

Our ensemble classifier consists of small tree-based and linear models with extremely minimal
memory footprints, typically in the range of a few megabytes per model. The full ensemble model
consists of 8 linear/tree-based classifiers, from which we select the top 4 with the highest validation
F1 scores as our final ensemble. The total memory requirement for our complete ensemble is less
than 15MB, which is negligible compared to the multi-gigabyte memory requirements of the LLMs
themselves (often 6-140GB depending on model size).

During our experiments, we ran these classifiers on GPUs alongside the LLMs for convenience
and faster iteration. We were able to run all experiments (including with 70B models) on just 2-4
A5000/A6000 GPUs (as detailed in Table [T0), as the classifier’s memory requirements are negligible
in the overall GPU memory budget. For deployment scenarios where GPU memory efficiency is
particularly important, offloading the classifier to CPU while keeping only the LLM on GPU is a
viable option. This approach incurs minimal latency overhead since the classifier’s computation is
lightweight compared to the LLM’s forward pass. We leave the detailed analysis of the memory and
latency trade-off for future work.

Table 10: GPU configurations used for different models in our experiments.

Model GPUs Used
LLaMA 3.2-1B 2 x Nvidia A5000
Mistral 8B 4 x Nvidia A5000

Qwen 2.5-14B 4 x Nvidia A5000
LLaMA 3.3-70B 4 x Nvidia A6000
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F.3 Fine-Tuned Classifier (FT)

We fine-tune meta-llama/Llama-3.2-1B to predict the context cutoff point in long-context inputs,
formulating this as a binary classification task. The model is trained on the Short-form dataset
specified in Appendix [A] We optimize using the AdamW optimizer with a learning rate of 8.0e-05
and a batch size of 32, employing a cosine learning rate schedule with linear warmup. The fine-tuned
model achieves a development set accuracy of 0.8346, demonstrating strong predictive capability.
We chose meta-llama/Llama-3.2-1B due to its efficiency in capturing long-range dependencies while
maintaining manageable computational costs. Additionally, framing the task as binary classification
simplifies optimization and enables robust generalization across diverse long-context scenarios. We
include meta-llama/Llama-3.2-3B results and the performance of training on long dataset in Table TT]
for reference. All models are fine-tuned for one epoch.

Table 11: Performance of fine-tuned classifiers tuned on different datasets.

Base Model Trained & Evaluated on  Test Accuracy

Llama3.2-1b Short Dataset 0.8346
Llama3.2-1b Long Dataset 0.7515
Llama3.2-3b Short Dataset 0.8413
Llama3.2-3b Long Dataset 0.7456

F.4 Potential Combination with KV Cache Optimization

Recent work has explored KV cache optimization techniques to improve inference efficiency. As
also discussed in §I| while KV cache optimization focuses on reducing or evicting less important
KV cache entries to reduce memory usage for decoding speedup, our method reduces initial text
processing at the input level (like LLMLingua). This means these approaches are complementary
and can be potentially combined - our method reduces input size, and KV cache optimization could
further improve decoding speed. While combining both methods could lead to additional efficiency
gains, it is beyond the scope of this work. We consider this an interesting direction for future research.
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(R@95P) for sufficiency detection. (R@98P) for sufficiency detection.
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