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ABSTRACT

The search for effective and robust metrics has been the focus of recent theoretical
and empirical work on generalization of deep neural networks (NNs). In this
paper, we discuss the performance of natural language processing (NLP) models,
and we evaluate various existing and novel generalization metrics. Compared to
prior studies, we (i) focus on NLP instead of computer vision (CV), (ii) focus on
generalization metrics that predict test error instead of the generalization gap, (iii)
focus on generalization metrics that do not need the access to data, and (iv) focus on
the heavy-tail (HT) phenomenon that has received comparatively less attention in
the study of deep neural networks. We extend recent HT-based work which focuses
on power law (PL) distributions, and we study exponential (EXP) and exponentially
truncated power law (E-TPL) fitting to the empirical spectral densities (ESDs) of
weight matrices. Our empirical studies are carried on (i) hundreds of Transformers
trained in different settings, in which we systematically vary the amount of data,
the model size and the optimization hyperparameters, (ii) a total of 51 pretrained
Transformers from eight families of Huggingface NLP models, including BERT,
GPT2, ALBERT, etc., and (iii) a total of 28 existing and novel generalization
metrics. From our detailed empirical analyses, we show that shape metrics, or the
metrics obtained from fitting the shape of the ESDs, perform uniformly better at
predicting generalization performance than scale metrics commonly studied in the
literature, as measured by the average rank correlations with the generalization
performance for all of our experiments. We also show that among the three HT
distributions considered in our paper, the E-TPL fitting of ESDs performs the most
robustly when the models are trained in experimental settings, while the PL fitting
achieves the best performance on well-trained Huggingface models, and that both
E-TPL and PL metrics (which are both shape metrics) outperform scale metrics.

1 INTRODUCTION

Recent years have seen a wide array of large-scale empirical studies on the various metrics used to
quantify generalization (Dziugaite et al., 2020; Jiang et al., 2019; Martin & Mahoney, 2021a; Martin
et al., 2021). On the one hand, theory-driven metrics have the potential to reveal more information
than test error, bringing us one step closer to unpacking the black box of deep NNs (Frankle & Carbin,
2018; Nakkiran et al., 2019; Zhang et al., 2021). On the other hand, a wide variety of generalization
metrics have been applied to predict the quality of pretrained models (Martin & Mahoney, 2019;
Martin et al., 2021), design effective training procedures (Foret et al., 2020; Izmailov et al., 2018),
improve network efficiency (Chen et al., 2020; Dong et al., 2019), quantify network robustness (Tanay
& Griffin, 2016; Yang et al., 2020), improve ensemble learning techniques (Fort et al., 2019; Garipov
et al., 2018), analyze and improve large-scale machine learning contests (Martin & Mahoney, 2021a),
and so on.

Despite advances in the study of generalization, however, several recent papers point out the defi-
ciencies of many of these “fantastic” generalization metrics. These include a lack of “robustness”
to the changes of environmental hyperparameters (Dziugaite et al., 2020; Jiang et al., 2019) (such
as data, network architecture and training schemes), or the Simpson’s paradox that generalization
metrics perform differently (i.e., predict opposite trends) when applied to each sub-part of a collection
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of learning models or to the holistic study (Martin & Mahoney, 2021a). Another drawback is the
over-reliance on experiments with CV models, which are relatively well-explored, and which are not
representative of many other application areas. Despite a few counterexamples (Martin et al., 2021;
Nakkiran et al., 2019; Yang et al., 2021), systematic studies of generalization in other fields, such as
NLP, are largely missing.

Generalization metrics for NLP. The objective of this paper is to provide a systematic study of
generalization metrics in NLP, addressing several deficiencies in prior studies (Dziugaite et al., 2020;
Jiang et al., 2019; Martin et al., 2021). Compared to CV, predicting generalization in NLP has
several important differences that require careful consideration. The training data from standard CV
benchmarks can often be easily obtained, while NLP pretraining datasets are typically web-scale and
are challenging to access. Therefore, generalization metrics that can measure the quality of learning
models without access to data are ideal for NLP. Indeed, recent work has demonstrated that access to
training or testing data is not necessary for assessing the model quality of learning models (Martin
et al., 2021), though these have yet to be evaluated at scale in the NLP domain. Furthermore, it
is typically infeasible to train NLP models to interpolate the (frequently large) training set. This
becomes an issue when applying most existing generalization metrics as they often estimate the
generalization gap (i.e., the difference between training and test performance) rather than the test
error itself. Metrics that focus on predicting the generalization gap include most of the well-known
metrics in CV, such as those based on the PAC-Bayesian framework (McAllester, 1999; Neyshabur
et al., 2018) and margins (Bartlett et al., 2017; Jiang et al., 2018; Pitas et al., 2017).

To illustrate the issue, consider the problem of model selection between two models (Jiang et al.,
2020; Martin & Mahoney, 2021a).Suppose we are given two classification models. Then even if we
have i) access to both models’ training errors, and ii) a metric which is guaranteed to perfectly rank
correlate with the generalization gap, then we still cannot determine which model as smaller test
error. This means that, if our objective is to construct a metric that correctly predicts which model has
lower test error, rank correlation with the generalization gap is not sufficient. In this paper, we aim to
study how generalization metrics correlate with model quality, for which we use test error as a close
approximation. As we will demonstrate (in Figure 4), rank correlation with the generalization gap
indeed does not imply rank correlation with model quality in practice, and in fact often orders models
in the opposite order of their test errors. From a practical point of view, for NLP tasks, we prefer
generalization metrics that can directly predict trends in test error (or similar evaluation metrics in
NLP, such as the test BLEU score (Papineni et al., 2002)) rather than trends in the generalization gap.

Naturally, we cannot expect a metric to be universally correlated with test error if evaluating the
metric does not need data. However, within certain classes of models (e.g., stages of training in one
model or across pre-trained models), they may be effective at diagnosing model quality. With these
objectives in mind, among the generalization metrics in the literature, we take particular interest
in those derived from the heavy-tail self regularization (HT-SR) theory (Martin & Mahoney, 2019,
2021b), which (i) predicts test error directly instead of the generalization gap and (ii) does not require
access to training (or testing) data.

HT-SR theory. The core principle of HT-SR theory is that HT structures arise naturally in the ESDs
of the weight matrices 1 as the result of extracting various correlations in data during optimization
(Martin & Mahoney, 2019, 2021a,b; Martin et al., 2021). Its primary practical consequence is that by
estimating the PL coefficient from the ESDs (requiring only weights), one can predict model quality,
as smaller coefficients are reported to correspond to higher test accuracy. However, these estimators
can be unstable, and so one must be careful not to rely on them alone. The quality of the PL fit itself
should also point to similar conclusions (Martin & Mahoney, 2021b), which can be a sanity check.

The principles of HT-SR theory extend beyond fitting the PL coefficient, however, as ESDs can take
many forms. To this end, we study three different types of distributions to fit to the ESDs of weight
matrices, including power laws (PL) in Eqn. (1), exponentially truncated power laws (E-TPL) in
Eqn. (2), and exponential laws (EXP) in Eqn. (3). These are all commonly considered families
of distributions in classical studies of PL (Clauset et al., 2009), and it is often hard in practice to
predict which family fits data the best (as we show in this paper, this is true for deep NNs especially).

1The ESD of a weight matrix W refers to the empirical density of the eigenvalues of the squared weight
matrix W>W. See “Preliminary of ESDs of weight matrices” at the end of the Introduction.
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Figure 1 shows examples of comparing different HT fittings on the same ESD. Following Martin &
Mahoney (2021a), we refer to the various metrics derived from HT-SR as shape metrics.

(a) Small ks distance. (b) Mediocre ks distance. (c) Large ks distance.

(d) E-TPL fitting of the ESD. (e) E-TPL fitting of the ESD. (f) E-TPL fitting of the ESD.

Figure 1: Comparing PL and E-TPL fitting. (First row). Good, mediocre, and bad PL fittings
measured by the ks distance. (Second row). E-TPL fitting of the ESD on the same column.
Blue histograms represent the ESDs. Solid vertical lines represent the lower threshold xmin of the PL
distribution found by the fitting procedure. Solid curves represent ESDs truncated using xmin, and
dashed curves represent the fitted HT distributions.
Contributions. The following summarizes our main contributions.

• Deviating from prior work examining generalization metrics in CV (Dziugaite et al., 2020; Jiang
et al., 2019), we provide the first systematic empirical study on various generalization metrics in
NLP. Our detailed studies include the following:

– We consider 360 transformers trained with varying hyperparameters, and eight families of
pretrained SOTA transformers downloaded from Huggingface (Wolf et al., 2020), including
BERT (Kenton & Toutanova, 2019), GPT2 (Radford et al., 2019), ALBERT (both v1 and v2)
(Lan et al., 2019), etc.

– measuring the correlation between 28 generalization metrics and the model quality (measured
by test-time performance) over three different model classes: (i) models trained with the
optimal hyperparameters; (ii) a single model at different stages of training; and (iii) a model
trained with different hyperparameters (similar to Jiang et al. (2019)).

• We extend prior studies on HT-SR theory and investigate alternative models to fit heavy-tail/light-
tail distributions. Our results show that E-TPL fits are comparatively robust alternatives to PL fits
for predicting trends in test error on suboptimally-trained models.

• We find that, applied appropriately, HT-based shape metrics consistently perform better than scale
metrics (or norm-based metrics) for predicting model quality.

• We provide results for data-dependent metrics motivated by margins and PAC-Bayesian bounds
(Dziugaite et al., 2020; Jiang et al., 2019). While these metrics perform well in predicting the
generalization gap, we show that none of them satisfactorily predicts test error directly.

Preliminary of ESDs of weight matrices. Consider a NN with d layers and corresponding weight
matrices W1, W2,..., Wd. For each weight matrix Wi with shape N ⇥ M , assume without
loss of generality that N � M (otherwise, consider W>

i ). We define the correlation matrix as
Xi = W>

i Wi, and denote the eigenvalues of Xi as {�j}Mj=1, so that �j = �2
j , where {�j}Mj=1 are

the singular values of Wi. Furthermore, we use �i,max to denote the maximum eigenvalue of the
correlation matrix Xi. The ESD of the weight matrix Wi refers to the empirical density of the
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eigenvalues of Xi, typically represented through a histogram. We let p(x) denote the density function
to fit the ESD taking values in the interval (xmin, xmax). For a power law, p satisfies

p(x) / x�↵, xmin < x < xmax. (1)

From Martin & Mahoney (2021a), xmax is chosen to be the maximum eigenvalue of the empirical
correlation matrix. However, xmin is a variable to be optimized to improve the quality of PL fitting,
and it is not equal to the minimum eigenvalue in general.

2 HEAVY-TAIL SELF-REGULARIZATION THEORY

Here, we provide a brief overview of the HT-SR theory, and discuss several metrics that can be
derived from it. According to HT-SR theory, the ESDs of the weight matrices become more heavy-
tailed during training as they become increasingly correlated. One can quantify the extent of these
correlations by fitting a PL to the ESD of a weight matrix, for example, by using the open-source
WeightWatcher tool (Martin et al., 2021). After computing the ESD of a weight matrix, we use
the maximum likelihood estimate from Alstott et al. (2014) to fit the PL distribution, the specific form
of which has been defined in (1). Let PL alpha denote the PL coefficient averaged over layers;
effectively the slope of the tail of the ESD of the pooled weights, on a log-log scale.

Correctly identifying and fitting PL distributions is well-known to be a challenge in practice. For
example, a density that appears as a straight line on a log-log scale plot need not follow a power
law, as there are many other distributions that could show a similar behavior, including lognormal
and exponential-type distributions (Clauset et al., 2009). Nested distributions such as E-TPL, which
combine the pure PL and other distributional assumptions, can often improve the quality of fitting
(Alstott et al., 2014; Clauset et al., 2009). Therefore, in addition to the PL distribution defined in (1),
we consider several other distribution classes from the literature.

• (E TPL lambda and E TPL beta) The ESDs are assumed to take a “nested” form.

p(x) / x�� exp(��x), xmin < x < xmax. (2)

After fitting the E-TPL, we call the exponential truncation coefficient � the E TPL lambda
metric, and we call the PL coefficient the E TPL beta metric.

• (EXP lambda). The ESDs are assumed to take the following form.

p(x) / exp(��x), xmin < x < xmax. (3)

After fitting the EXP, we call the exponential coefficient � the EXP lambda metric.

For more details of the various metrics considered in this paper, see Table 1. All of the metrics
derived from HT-SR do not require access to data, and they are relatively cheap to compute. Our
primary comparisons are between shape metrics (derived from HT-SR), and scale metrics (mostly
norm-based). For the precise definitions of these metrics, see Appendix A.

Issues of PL fitting. It is well-known that subtle issues can arise when fitting the ESDs (Alstott
et al., 2014; Clauset et al., 2009; Martin & Mahoney, 2017, 2021a). To best mitigate these issues
in PL fits, we adopt the fitting strategies used in WeightWatcher (Martin & Mahoney, 2017). For
example, as in Clauset et al. (2009), it is common to choose the lower threshold xmin which coincides
with the best quality fit under the Kolmogorov–Smirnoff statistic (referred to as PL ks distance
for PL and E TPL ks distance for E-TPL in the sequel; see Eqn. (12)). However, this method
is time-consuming, especially for E-TPL as there are two parameters to fit. Instead, we adopt the
fix-finger method (see WeightWatcher) which selects xmin as the peak of the ESD when fitting
E-TPLs. More than a simple speed improvement, we find this method also yields more stable results.

Comparing PL and E-TPL fitting. Referring to Figure 1, we now discuss how E-TPL could
partially address these fitting issues. On the first row of Figure 1, we show three typical cases of
PL fitting. In Figure 1a, the log-log scale reveals a “linear region” of the histogram, which the PL
fitting correctly locates. The quality of fit, measured by the ks distance, is within a typical range,
as reported in Table 5 of Martin & Mahoney (2021b). In Figure 1b and Figure 1c, the ESDs do
not exhibit a clear linear region on the log-log scale. Following Martin & Mahoney (2021b), it is
ill-advised to consider metrics derived from a PL fit in these scenarios. In practice, this typically
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Name Eqn Ref
Need initial

weights?
Scale or
shape

Need
data?

Need
gpu?

Predicting model quality
or generalization gap?

param norm (4) Jiang et al. (2019) No Scale No No Generalization gap
fro dist (5) Jiang et al. (2019) Yes Scale No No Generalization gap
log norm (6) Martin & Mahoney (2021b) No Scale No No Generalization gap

log spectral norm (7) Martin & Mahoney (2021a) No Scale No No Generalization gap
dist spec int (8) Jiang et al. (2019) Yes Scale No No Generalization gap
path norm (9) Neyshabur et al. (2015) No Scale No No Generalization gap
mp softrank (10) Martin & Mahoney (2021b) No Scale/Shape No No Model quality
stable rank (11) Martin & Mahoney (2021b) No Scale/Shape No No Model quality
PL alpha (1) Martin & Mahoney (2021b) No Shape No No Model quality

E TPL beta (2)
This paper

WeightWatcher No Shape No No Model quality

E TPL lambda (2)
This paper

WeightWatcher No Shape No No Model quality

EXP lambda (3)
This paper

WeightWatcher No Shape No No Model quality
PL ks distance (12) Martin & Mahoney (2021b) No Shape No No Model quality

E TPL ks distance (12)
This paper

Martin & Mahoney (2021b) No Shape No No Model quality
alpha weighted (13) Martin & Mahoney (2021b) No Hybrid No No Model quality
log alpha norm (14) Martin & Mahoney (2021a) No Hybrid No No Model quality
inverse margin (17) Jiang et al. (2019) No Scale Yes Maybe Generalization gap

log prod of spec over margin (18)
Bartlett et al. (2017)

Pitas et al. (2017) No Scale Yes Maybe Generalization gap

log sum of spec over margin (19)
Bartlett et al. (2017)

Pitas et al. (2017) No Scale Yes Maybe Generalization gap

log prod of fro over margin (20)
Bartlett et al. (2017)

Pitas et al. (2017) No Scale Yes Maybe Generalization gap

log sum of fro over margin (21)
Bartlett et al. (2017)

Pitas et al. (2017) No Scale Yes Maybe Generalization gap
path norm over margin (22) Neyshabur et al. (2015) No Scale Yes Maybe Generalization gap

pacbayes init (25) Neyshabur et al. (2017) Yes Scale Yes Yes Generalization gap
pacbayes orig (26) Neyshabur et al. (2017) No Scale Yes Yes Generalization gap

pacbayes flatness (27) Neyshabur et al. (2017) No Scale Yes Yes Generalization gap
pacbayes mag init (28) Jiang et al. (2019) Yes Scale Yes Yes Generalization gap
pacbayes mag orig (29) Jiang et al. (2019) No Scale Yes Yes Generalization gap

pacbayes mag flatness (30) Jiang et al. (2019) No Scale Yes Yes Generalization gap

Table 1: Overview of the generalization metrics considered. We focus on the shape metrics derived
from the ESDs of weight matrices. See Appendix A for the details of these metrics.

occurs when PL alpha > 4 (e.g., see Figure 1c). On the other hand, in these two cases, the
corresponding E-TPL fits (shown on the second row in Figure 1) still closely match the empirical
density function (see Figure 1e and Figure 1f), and the ks distance on the second row using a
E-TPL fit is smaller than that for the PL fit on the first row, even when the fit on the second row
clearly covers a larger part of the ESD. In these two cases, the E TPL lambda plays a similar role
as the PL alpha in PL fitting, and provides an effective alternative when the ESD does not exhibit a
proper PL.

Between these three PL and E-TPL fittings, we would like to point out that the important thing
in HT-SR is not the PL fitting per se but that the spectral distributions exhibit HT or other non-
standard shapes. The particular forms of the distributions fit here simply constitute different ways to
quantify this property in practice. These details, such as selecting the most appropriate distributional
assumptions, clearly matter if we would like to engineer the tools of HT analysis to effectively
measure the ground truth. However, the primary concern in predicting generalization is to measure
the shape information, and the shape information is independent of the fitting procedure, although
better fitting procedures may capture the shape information better.

3 EMPIRICAL RESULTS

3.1 EXPERIMENTAL SETUP

Dataset. We consider the WMT14 German to English (DE-EN) dataset (Bojar et al., 2014), commonly
used as a benchmark for neural machine translation (Edunov et al., 2018; Ott et al., 2018; Shen et al.,
2020; Vaswani et al., 2017). WMT14 consists of 4.5 million sentence pairs for training.
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Figure 2: BLEU-score vs. six shape metrics for 200 Transformers trained on WMT14 with varying
hyperparameters. HT-SR theory applies for optimally-tuned models (black stars), that is, models that
have better BLEU scores exhibit heavier-tailed ESDs. For suboptimal models, the HT-SR metrics can
be anti-correlated with model quality, see e.g. the grey dotted line in the first subfigure.

Hyperparameters. To capture the relationship between the generalization metrics and model quality
in a number of different settings, we vary several hyperparameters: the number of samples (either
160K, 320K, 640K, 1.28M, 2.56M samples), the initial learning rate during training (across eight
different rates), the model width (embedding dimension either 256, 384, 512, 768, or 1024), and
the model depth ({4, 5, 6, 7, 8}-layer transformers). We also construct a high-dimensional grid of
different hyperparameters ⇥ = {(✓1, . . . , ✓K) : ✓1 2 ⇥1, . . . , ✓K 2 ⇥K}, so that we can compare
models when one of the hyperparameters is varied. Two separate high-dimensional grids with
dimension K = 3 are considered: (1) sample⇥learning rate⇥width; (2) sample⇥learning rate⇥depth.
Each grid contains 5⇥8⇥5=200 of these training settings. In total, there are 360 trained models
because the two high-dimensional grids overlap each other, and 40 models belong to both grids. We
will consider three subtasks to evaluate the considered generalization metrics.

Task one, correlation evaluated on optimally trained models. In the first task (Section 3.2.1), we
study the relationship between model quality and generalization metrics on models trained with the
optimal choice of hyperparameters. This task mimics the grid-search method often employed in
large-scale (pre)training tasks.

Task two, correlation in time. In the second task (Section 3.2.2), we track BLEU score and
generalization metrics during training, assessing time-wise correlation to model quality. This task has
been considered in the literature (Bartlett et al., 2017), and from a practical point of view, capturing
the time-wise dependence during training could potentially lead to better ways of early stopping or
regularizing the model.

Task three, correlation when hyperparameters are varied. In the third task , we study the rela-
tionship between the model quality and the generalization metrics when a single hyperparameter is
varied. Metrics that achieve a high (rank) correlation for all the hyperparameters are good candidates
for model selection. Constrained by space, we discuss this result in details in Appendix B.

Training and model setup. For the details of the training settings, see Appendix C.

3.2 EVALUATING THE METRICS ON TRANSFORMERS TRAINED IN DIFFERENT SETTINGS

In this subsection, we study 28 generalization metrics (with details provided in Table 1) and examine
their correlations with BLEU score (Papineni et al., 2002), the most commonly used metric to evaluate
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Figure 3: E TPL lambda closely tracks the BLEU score, i.e., BLEU score increases when the
E TPL lambda drops. Results are shown for Transformers trained on WMT14 with different
number of samples. (First row). Training with dropout 0.1. (Second row). Training without
dropout.

machine translation 2. We also consider correlation between these metrics and the generalization gap,
defined as the BLEU score for training data subtracted by the BLEU score for test data.

3.2.1 TASK ONE: EVALUATING CORRELATIONS ON OPTIMALLY TRAINED MODELS ONLY

Here, we group models using the number of training samples, and select the best model from each
group when the model depth and the learning rate are varied. In Figure 2, each curve represents a
group of models trained with a certain number of training samples. The black star on each curve
represents the model trained with the optimal choice of hyperparameters (learning rate and depth in
our setting), obtained by searching for the optimum on a third-order polynomial fit of each curve.
From Figure 2, we see that the shape metrics correctly predict the model quality for models trained
with the optimal hyperparameters, i.e., the BLEU scores should be higher when the metric values are
smaller.

3.2.2 TASK TWO: TIME-WISE CORRELATIONS AND RANK CORRELATION RESULTS

In this subsection, we study time-wise correlation between our chosen metrics and the BLEU scores.

E TPL lambda tracks the BLEU score. As a warm-up, we consider how well the E TPL lambda
metric defined in (2) tracks the BLEU score (recalling that E TPL lambda assumes the ESDs follow
E-TPLs). We use training with and without dropout to study the effect of training schemes, and
we consider different quantities of data to test robustness in the dataset. In Figure 3, the first row
considers models trained with dropout, while the second row considers models trained without
dropout. The multiple columns track E TPL lambda and the BLEU score throughout training for
different amounts of data. We can see that E TPL lambda not only successfully tracks BLEU scores
but also differentiates underfitting (first row, with dropout) from overfitting (second row, without
dropout) in this experiment.

Shape metrics predict model quality, while scale metrics predict the generalization gap. Now
we consider the rank correlations between our chosen metrics and the test BLEU score. The rank
correlations are evaluated across training, i.e., for each of the 360 settings of the hyperparameters, we
calculate the Spearman’s rank correlation between BLEU scores and the values of each generalization
metric over all epochs. The summarized results are presented in Figure 4a. A positive Spearman’s
rank correlation (with BLEU) suggests that the generalization metric is useful in tracking BLEU
during training. A negative Spearman’s rank correlation, on the other hand, implies that the metric

2Several empirical metrics have been designed to measure the quality of text generation, such as BERTScore
(Zhang et al., 2019) and BARTScore (Yuan et al., 2021). Our work is different because we do not need any data,
and we do model selection using the weight matrices only. BERTScore and BARTScore evaluate the text quality,
and thus they need source or reference texts generated by humans. These metrics can serve as alternatives to
BLEU, which is viewed as ground truth in our work.
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Correlations with model quality

(a) Correlations with model quality. Spearman’s
rank correlation between various generalization met-
rics and BLEU.

Correlations with generalization gap

(b) Correlations with generalization gap. Spear-
man’s rank correlation between various generalization
metrics and the generalization gap.

Figure 4: Comparing multiple generalization metrics for predicting BLEU score (on the left) or the
generalization gap (on the right). Lines on each box delineate the 25/50/75 percentiles of the rank
correlations in 360 different settings (including different amount of data, different network depths,
different network widths, and different initial learning rates).

often gives the incorrect prediction. In Figure 4a, we use the average rank correlations for all settings
to study the effectiveness of each metric, and present 25% quantile rank correlations to indicate
robustness across runs.

In Figure 4a, we find shape metrics, such as EXP lambda, E TPL lambda,
E TPL ks distance, and E TPL beta, exhibit some of the highest rank correlations
with BLEU score. The EXP lambda metric, which assumes a EXP distribution on the ESDs,
achieves the highest median rank correlation, while the E TPL lambda metric, which assumes a
E-TPL distribution on the ESDs, achieves the second highest. We discuss the inverse margin
metric in Appendix D.

In Figure 4b, we plot the rank correlations to the generalization gap across our chosen metrics. While
it is encouraging that most existing generalization metrics yield correct predictions, as previously
discussed, correct predictions of the generalization gap do not imply accurate predictions on the
best-performing models here.

Details of the rank correlation calculations. When calculating the rank correlation with the test
accuracy, we associate a negative sign to all the generalization metrics, i.e., a positive rank correlation
in Figure 4a means that a generalization metric is negatively correlated with the BLEU score. We use
this procedure to follow the conventional wisdom that a smaller value of the complexity metric leads
to better generalization. On the other hand, for Figure 4b, a positive rank correlation means that the
metric is positively correlated with the generalization gap. Thus, for both Figure 4a and 4b, a strong
positive correlation corresponds to the expected trend.

Rank-correlation results when varying a hyperparameter. We also assess whether the generaliza-
tion metrics can predict trends in BLEU score when a single hyperparameter is changed (Jiang et al.,
2019). Our findings are shown in Appendix B. Again, shape metrics have better rank correlations
with model quality, while scale metrics are better correlated with the generalization gap.

Corroborating results. We extend our empirical evaluations to other datasets and evaluation methods.
In Section E.1, we consider three other language processing tasks trained with different Transformers.
In Section E.2, we evaluate correlations using Kendall’s tau instead of Spearman’s rank correlation.
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(a) Model selection on Huggingface Transform-
ers. Metrics on the left and right are aligned. (b) E TPL ks distance evaluated on

BERT models of different size.
(c) E TPL lambda evaluated on BERT
models of different size.

Figure 5: Generalization metrics evaluated on pretrained Transformers. (a) Model selection results
on eight Huggingface Transformer model series: BERT, GPT2, ALBERTv1, ALBERTv2, T5,
DialoGPT, FlauBERT, Funnel Transformer. Left shows the rank correlation averaged over different
Transformers. Right shows the proportion of the best Transformers correctly selected using different
metrics. Shape metrics outperform scale metric only except stable rank which is strongly
influenced by the matrix size. (b and c) Evaluating two metrics on the “Smaller BERT” series. While
E TPL ks distance predicts the correct trends, E TPL lambda shows the reversed trends with
depth.

3.3 EVALUATING THE GENERALIZATION METRICS USING HUGGINGFACE TRANSFORMERS

Finally, we evaluate the data-free generalization metrics on pretrained Transformers. Eight series of
models downloaded from Huggingface (Wolf et al., 2020) are considered—see Table 2 for details.
We also include 24 BERT models from the “Smaller BERT” series (Turc et al., 2019) produced from
a “pretrained distillation” pipeline that combines masked language modeling pretraining (Kenton &
Toutanova, 2019) and knowledge distillation from a single BERT teacher model. In total, there are 51
pretrained Transformers.

Model series Models
BERT (Kenton & Toutanova, 2019) BERT-Tiny, BERT-Mini, BERT-Small, BERT-Medium, BERT-Base, BERT-Large
Smaller BERT (Turc et al., 2019) 24 smaller BERT models (English only, uncased, trained with WordPiece masking)

GPT2 (Radford et al., 2019) GPT2, GPT2-medium, GPT2-large, GPT2-xl
ALBERTv1 (Lan et al., 2019) ALBERT-base-v1, ALBERT-large-v1, ALBERT-xlarge-v1, ALBERT-xxlarge-v1
ALBERTv2 (Lan et al., 2019) ALBERT-base-v2, ALBERT-large-v2, ALBERT-xlarge-v2, ALBERT-xxlarge-v2

T5 (Raffel et al., 2020) T5-small, T5-base, T5-large
DialoGPT (Zhang et al., 2020) DialoGPT-small, DialoGPT-medium, DialoGPT-large

FlauBERT (Le et al., 2020) FlauBERT small cased, FlauBERT base cased, FlauBERT large cased
Funnel Transformer (Dai et al., 2020) FunnelModel-small, FunnelModel-medium, FunnelModel-intermediate

FunnelModel-large, FunnelModel-xlarge

Table 2: Pretrained Transformers considered in this paper.

We report rank-correlations averaged over these 8 model series in Figure 5a (left subplot), i.e.,
larger/deeper models should have smaller generalization metric values. Again, we find that the shape
metrics outperform scale metrics (except for stable rank, which is strongly influenced by the
size of the weight matrix). The hybrid models achieve performance in-between the shape and scale
metrics. In Figure 5a (right subplot), we compare different metrics in their ability to select the best
model. That is, we report for each metric the proportion that the best model is selected from one
model series when this metric is used as the model selection criterion. Note that the rankings of
metrics on the two subplots in Figure 5a are the same.

From Figure 5a, we can see that, while the shape metrics perform better than scale metrics, none
show a particularly strong rank correlation. To understand this, we examine the “Smaller BERT”
series (Turc et al., 2019), which contains a more fine-grained structure of different model sizes.
Specifically, these models are arranged in a 4-by-6 grid, where 6 represents {2,4,6,8,10,12} trans-
former layers and 4 means different hidden embedding sizes {128,256,512,768}. From Figure 5b, we
see that the E TPL ks distance correctly predicts the trend that wider and deeper models perform
better. On the other hand, from Figure 5c, E TPL lambda correctly predicts that wider models
are better, but incorrectly predicts that shallower models are better (yet another form of Simpson’s
paradox in a data set of neural network model quality; see also Martin & Mahoney (2021a)).

Another curious observation from Figure 5a is that, for the pretrained transformers, PL metrics,
such as PL alpha and PL ks distance, outperform E-TPL metrics, such as E TPL lambda,
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E TPL beta and E TPL ks distance. This phenomenon may seem surprising as one may
expect E-TPL fits to be more flexible than PL fits. These pretrained models are likely trained with
much larger datasets and over many more epochs than the models we have otherwise considered. Here,
PLs appear to provide a more natural fit. This is further evidence that HT-SR theory is particularly
well-suited for evaluating the quality of relatively high-quality models.

4 CONCLUSION

After conducting large-scale empirical studies on a variety of metrics, we find that shape metrics
derived from HT-SR theory are more effective for model selection and model evaluation, in particular
for evaluating models even without access to training or testing data. Poor correlations between
existing generalization metrics and test-time performance have been reported in prior work (Dziugaite
et al., 2020; Jiang et al., 2019; Nagarajan & Kolter, 2019). Rather than providing a “lump sum”
to rank existing and novel generalization metrics (Figure 4), we evaluated these metrics in several
ways: quantifying correlations only on optimally-trained models (Figure 2); examining the time-wise
correlation during training (Figure 3); differentiating between the correlation with test accuracy versus
generalization gap (Figure 4); evaluating these metrics on pretrained Transformer models where we
do not have any control over the training process (Figure 5); and thoroughly investigating the rich
correlational structures when different hyperparameters are varied (Figures 6 to 11 in the appendix).
By thorough empirical investigations, we show that shape metrics perform consistently better than
scale metrics in model selection—they correlate primarily with test accuracy instead of generalization
gap, and they display better correlations with models’ test performance. These metrics from HT-SR
theory provide value to practitioners, allowing one to assess pretrained NLP models without training
or testing data, even when their corresponding training loss is not small. Also, there are many large
linear layers for Transformer models typically used in modern NLP tasks, which allows for greater
accuracy in the PL estimators. That being said, further exploration of the Transformer architecture
can lead to improved metrics on NLP models, complementing existing metrics designed explicitly
for convolutional layers (Long & Sedghi, 2019; Sedghi et al., 2018). We expect our current and
future studies to be relevant and useful for improving existing generalization metrics in NLP moving
forward.
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