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Abstract
Large Language Models (LLMs) exhibit emer-
gent capabilities in structured domains, suggest-
ing they may implicitly internalize high-fidelity
representations of world models. While prob-
ing techniques have shown promising signs of
this in scientific and game-based settings, they
rely on model-specific internal activations, which
limit interpretability and generalizability. In this
work, we propose a model-agnostic, state-based
evaluation framework using chess as a bench-
mark to assess whether LLMs preserve the se-
mantics of structured environments. Our method
analyzes the downstream legal move distribu-
tions (state affordances) to estimate semantic fi-
delity between predicted and actual game states.
This approach offers a more meaningful evalu-
ation than conventional string-based metrics by
aligning more closely with the strategic and rule-
governed nature of chess. Experimental results
demonstrate that our metrics capture deficien-
cies in state-tracking, highlighting limitations of
LLMs in maintaining coherent internal models
over long sequences. Our framework provides a
robust tool for evaluating structured reasoning in
LLMs without requiring internal model access,
and generalizes to a wide class of symbolic envi-
ronments.

1. Introduction
Large Language Models (LLMs), consisting of billions of
parameters trained on massive text corpora, have demon-
strated capabilities far beyond their original next-token pre-
diction task. Recent studies suggest that this enhanced abil-
ity arises from their implicit recovery of high-fidelity rep-
resentations of structured domains embedded within their
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training data. This implicit modeling aligns closely with the
concept of a “world model,” defined in (Ha & Schmidhuber,
2018) for Neural Networks in general. In our case, it can
be understood as a representation where an environment
can be summarized by a finite set of states and rules gov-
erning transitions between them—effectively modeled as a
deterministic finite automaton (DFA) (Vafa et al., 2024).

Language models have shown promise in recovering such
world models purely from sequential data in complex sci-
entific domains like protein design, genetics, and chemistry
(Chowdhury et al., 2022; Lin et al., 2023; Benegas et al.,
2023; Jablonka et al., 2024). This ability offers a powerful
alternative to explicitly constructing detailed representa-
tions of complex environments, highlighting the capacity of
language models to extract rich domain knowledge solely
from sequences. However, these successes rest on a crit-
ical assumption: that the language model has genuinely
internalized the underlying world model. This raises a fun-
damental question—how can we reliably determine whether
a sequence model has truly learned the domain’s structure?

A common strategy for evaluating whether a model has
internalized a world model involves probing its internal
neural representations to see if they can reconstruct real-
world states (Hewitt & Liang, 2019; Li et al., 2021; Abdou
et al., 2021; Jin & Rinard, 2024; Li et al., 2023). For exam-
ple, (Toshniwal et al., 2022) and (Li et al., 2023) evaluate
whether sequence models trained on board game transcripts,
such as chess and Othello, have internalized the underlying
game rules. However, these probing-based methods rely
heavily on accessing and interpreting internal model states,
which can be model-specific, opaque, and challenging to
generalize. Furthermore, evaluating the quality of generated
move sequences in chess remains difficult because most
existing metrics focus on syntactic-level comparisons, such
as exact match, edit distance, Levenshtein distance, or direct
board state comparisons. While straightforward to com-
pute, these metrics fail to capture the strategic and semantic
richness of chess, where moves vary greatly in their im-
pact—some drastically influence the course of the game,
while others are strategically neutral or suboptimal.

Motivated by these limitations, our work proposes a model-
agnostic, sequence-based evaluation framework that di-
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rectly examines the model’s generated outputs to determine
whether they preserve the semantic properties of the original
game state. We accomplish this by analyzing the space of
valid action sequences that can unfold from a given posi-
tion and evaluating the similarity between predicted and
actual states based on the moves they enable. Although
computationally more demanding than string-based metrics,
our approach provides a richer and more informative signal,
capturing whether an LLM’s output retains the tactical and
strategic affordances inherent in real chess positions. This
framework enables robust inference and also applies broadly
across different model architectures without requiring prob-
ing of internal representations.

2. Background
We base our framework on Finite State Automata (FSA),
which offer a natural way to model state tracking in struc-
tured environments. By comparing the sets of valid con-
tinuations from different action sequences, we capture a
semantics-aware notion of similarity.

2.1. State tracking

Finite State Automata We define a Finite State Automa-
ton (FSA) as the tuple A = (S∗,Σ, δ, S0) We define the
setting as follows. Let S denote the finite set of valid states.
We augment this set to S∗ = S ∪ {0}, where 0 represents
a special error or sink state that captures invalid transitions.
The input alphabet, denoted by Σ, is the finite set of actions
that can be applied to states. The process begins from an
initial state S0, which belongs to S. Transitions between
states are governed by a function δ, which maps a pair con-
sisting of a current state (from S∗) and an action (from Σ)
to a new state in S∗. Each state S ∈ S has an associated set
of permitted actions, denoted ΣS ⊆ Σ.

Transition Sequences. Given an action sequence s =
(a1, . . . , an) ∈ ΣN and the initial state S0, the resulting
sequence of states (S1, . . . , Sn) is defined recursively by
Si = δ(Si−1, ai), for i = 1, . . . , n. We can also extend
the transition function’s definition over a sequence of moves
rather than a single move, for example here: Sn = δ(S0, s).
Thus, an action sequence s uniquely determines the final
state Sn, provided the transition function δ and initial state
S0 are known. In this sense, the final state is a function of
the sequence.

Evaluating State Tracking. To assess whether a model
has internalized a form of world-modeling or state tracking,
we examine its performance on structured action sequences.
The model only uses action sequences as inputs, without
access to the explicit underlying state structure. If generat-
ing valid continuations requires an implicit estimate of the

current state, we may conclude that the model has tracked
the relevant state information. This framework allows us to
test a model’s state awareness: if it can accurately predict or
generate valid next actions under the constraints imposed by
δ, then it implicitly represents a state in a manner consistent
with a world model.

2.2. Existing approaches

Existing approaches are typically developed with the spe-
cific task in mind. In the case of chess, which we consider in
our experiments, the two main evaluation metrics are board
accuracy and edit distance (Feng et al., 2023). However,
these techniques do not take into account the affordances
associated with a particular board state. As a result, they
can yield ”false positives” in certain scenarios. For example,
if two states differ only by the removal of a king, the edit
distance might be as low as 1 and the board accuracy could
exceed 98%, even though the resulting state is nonsensical
from an affordance perspective.

While we expect the metrics derived from our approach
to be correlated with these baseline metrics, we argue that
they more directly capture the LLM’s understanding of the
task. Specifically, a higher score in our framework consis-
tently corresponds to a state that is semantically closer to
the ground truth, unlike traditional metrics. Although it is
possible to introduce heuristic weighting into edit distance
or accuracy, a key advantage of our method is that it requires
no prior knowledge of the task. It can be applied directly in
any setting, as long as δ and Σ are defined.

3. Main idea
3.1. State reconstruction task

We define a complementary evaluation objective, the state
reconstruction task, which assesses whether a model can
explicitly generate the current environment state after ob-
serving a sequence of actions. In domains where states
admit a textual representation (e.g., algebraic notation in
chess), we prompt the model to produce this representation
given only the preceding action sequence. While failure
to reconstruct the state does not conclusively imply that
state tracking has not occurred (e.g., due to formatting or
generation noise), successful reconstruction provides strong
evidence that the model has internalized a structured world
model capable of state estimation.

3.2. Metrics

Given an action sequence s = (a1, . . . , an) and its corre-
sponding true state S = δ(S0, s), we prompt the model to
generate a predicted state S̃ using s as an input. We evaluate
the model’s performance by comparing S and S̃ using a
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suite of metrics designed to capture both syntactic accuracy
and semantic fidelity.

State based metrics To better capture semantic correct-
ness, we define metrics based on the sets of valid action
sequences under a given state. Let Am

S denote the set of
all valid action sequences of length m starting from state S.
We compare the sets Am

S and Am
S̃

using the precision/recall
formulation in Appendix A. In practice, computing these
sets exactly is infeasible due to their exponential size in m.
However, uniform sampling from Am

S is itself intractable.
Instead, we approximate this via uniform branch sampling:
at each step i, we sample an action ai uniformly from the
valid set ΣSi−1 and apply it via the transition function to
obtain Si = δ(Si−1, ai). Repeating this m times yields a
trajectory s = (a1, . . . , am). Let Ub(S) denote the distri-
bution over such sequences. We then define approximate
precision and recall as:

pm(S, S̃) = Es∼Ub(S̃)

[
1Am

S
(s)

]
rm(S, S̃) = Es∼Ub(S)

[
1Am

S̃
(s)

]
These quantities reflect how well the predicted state S̃ pre-
serves the behavior of the true state S, in terms of valid
action trajectories. While state-based metrics are more faith-
ful to the underlying semantics of state prediction, they
are computationally expensive and depend on the trajectory
length m. In practice, m can be selected based on task com-
plexity or evaluation constraints. Despite their cost, these
metrics provide a much richer and more actionable signal
than simpler string-based comparisons.
Expected Values Consider a simplified case where the
tree of possible action sequences generated from a state S
is homogeneous, meaning that at each node, the proportion
of child nodes corresponding to valid continuations under
the state S̃ is constant. Let p denote this proportion, i.e., the
probability that a randomly selected legal action from any
state results in a sequence accepted by S̃.

In this setting, since each step in the sequence independently
maintains a success probability p, the expected probability
that a full sequence of length m is accepted by S̃ is pm =
pm. This analysis reveals that pm decays exponentially with
the sequence length m in the homogeneous case. Moreover,
even in non-homogeneous trees, if the local acceptance
probability at each step, denoted ps = P(si ∈ A1

S̃
| s<i),

is uniformly bounded above by some constant M < 1,
then pm still decays exponentially as pm ≤ Mm. This
exponential behavior highlights a fundamental challenge
in estimating long-horizon compatibility between predicted
and true states, motivating the need for careful design of
sampling strategies and smoothing techniques in practice.

4. Sampling algorithm
Sample Complexity Analysis In our estimation proce-
dure, we sample N sequences of length m from a given
state. To ensure that the standard error of our estimate is of
the same order of magnitude as the mean pm, we analyze
the variance of the binary indicator variable 1Am

S̃
(s), which

follows a Bernoulli distribution with parameter pm.

The variance is pm(1 − pm) while the standard error
(SE) of the mean over N independent samples is SE =√

pm(1−pm)
N ≈

√
pm

N , where the approximation assumes
pm ≪ 1, which holds due to the exponential decay of pm
with m.

To achieve a signal-to-noise ratio (mean divided by stan-
dard error) of order one, we require pm

SE ≈
√
Npm ≈

1, implying that N ≈ 1
pm

.

In the homogeneous tree case, we previously showed that
the probability of a valid sequence of length m is given by
pm = e−λm, for some constant λ = − log p > 0, where
p is the branching probability. Substituting this into our
sample complexity estimate, we obtain N = O(eλm). This
result implies that the sample complexity of our estimation
procedure grows exponentially with the sequence length m.

4.1. Intermediate probability estimator

Because a naive sampler must run for an exponential in-
creasing amount of shots with respect to the depth we look
at using an estimator based on conditional probabilities
p(s′ ∈ Am

S̃
|s ∈ Am

S̃
) where s′ is s with a random action ap-

pended. Note that we call this quantity ps. Now we look for
a certain m at Es∼Ub(S)(ps) = vm (important pm ̸= vm).
From this we reconstruct pm = Πm

i=1vi. In the case of an
homogeneous tree the expectation of this product is pm as
vm = p. Here the error for each vi is (1 − vi)

√
vi
N . If

we maintain (1 − vi)
√

vi
N << vi the total error can be

approximated to
∑m

i=1(1 − vi)
√

vi

N . If we fall back to an
homogeneous tree then the error is m(1 − p)

√
p
N . From

this we get N = O(m2(1 − p)2p). Here the number of
necessary shots increases quadratically with m instead of
exponentially.

5. Experimental Setup
5.1. Metrics validation

We first validate our proposed metrics by examining their
behavior on two fixed chessboard positions derived from
random move sequences. We analyze the evolution of pm
with increasing m and assess the variance across multiple
runs in figure 1.

With a fixed sample size N = 500, the variance grows with
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Figure 1. pm as a function of m for two fixed states. Figure 2. pm as a function of N for two fixed states at m = 4.

m on a log scale. As expected, the naive estimator becomes
increasingly noisy as m increases, while our second method
remains significantly more stable.

Next, we examine the impact of sample size N at a fixed
depth m = 4 for the same states in figure 2.

The variance of our second estimator decreases substantially
faster than the naive method. This advantage grows with
deeper sequences or more divergent states, where vm ap-
proaches zero. For reference, the states differ by an edit
distance of 17 and have zero exact matches.

5.2. Comparison to previous metrics

We look at the correlations between our proposed metrics
and the edit distance (levenshtein distance). To do so, we
select a sample of 10000 real chess games selected from
the website Lichess. We then separate in groups of 2000
samples, for each we select a specific game length (from 5 to
50 moves) and we cut the game to the specified length (we
make sure beforehand that the total games are longer). Then
we give to openai’s GPT4o model the pgn interpretation of
the game as well as instructions on what it has to do (convert
to the ”FEN” standard board representation of the game).
Then we use our metrics (we take depth m = 4) as well as
levenshtien distance to evaluate our outputs.

In order to tell how correlated our metrics are to the edit
distance we look at the kendall’s tau of the two distributions;
state precision and −1× edit distance, first for the entirety
of our sample and then by group. The overall kendall’s tau
is of 0.69, which can be interpreted as a strong correlation.
However upon looking at values by groups we discover a
different story, see figure 3

We see that the correlation actually decreases with the num-
ber of moves of the game. This can be interpreted as when
the number of moves increases the scores overall gets lower
(see figure ??) and when they do the metrics we use become

almost uncorrelated.

The sharp decline in pm as k increases highlights GPT-4o’s
growing difficulty in accurately reconstructing the board
state. Notably, the probability of producing a legal next
move remains near one, indicating that the model still cap-
tures some aspects of valid gameplay. For comparison, the
probability of a legal next move on random boards after 5
moves is approximately (8± 2)× 10−4, whereas GPT-4o
achieves an average pm around 0.6. This demonstrates that
while the model’s states are significantly better than random,
performance degrades on longer sequences, reflecting chal-
lenges in both long-range state tracking and precise board
reconstruction.

6. Discussion
A major limitation of our method is its sensitivity to the
prompting strategy used to query the language model. Vari-
ations in phrasing, formatting, or the inclusion of inter-
mediate reasoning steps (e.g., chain-of-thought prompting)
can substantially affect the generated state representations.
While this reflects a realistic deployment scenario, it com-
plicates the interpretation of benchmarking results. Sys-
tematic studies on prompt robustness, prompt tuning, or
self-verification techniques could help mitigate this. An-
other limitation is the assumption of access to a reliable and
executable action model for the environment (e.g., the rules
of chess), which may not be available or tractable in more
open-ended or less formalized domains. Our approach also
assumes that the ground-truth states are accurately labeled
and that the representation space (e.g., FEN for chess) is
sufficiently expressive to capture task-relevant differences.
This assumption may not hold in domains with latent or
ambiguous state representations. Additionally, although
we framed the m-step precision/recall computation as a
hyperparameter-dependent process, it introduces a trade-off
between metric sensitivity and computational cost. Future
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Figure 3. Values of Kendall’s tau per group with varying number of
moves per group

Figure 4. p4 on average for each group (log scale, values from 0.6
to 0.015)

work could explore strategies to average over multiple val-
ues of m, or replace it with an adaptive stopping criterion.
We also note the possibility of using importance sampling
or guided rollouts based on fitness functions or model confi-
dence to further improve sampling efficiency. Finally, while
we focused on the forward action space as the basis for
our metric, a more comprehensive evaluation could also
incorporate backward reasoning (e.g., whether the state is
plausible given earlier context), or model uncertainty.

7. Conclusion
We propose a novel framework to evaluate language models’
state-tracking abilities through metrics grounded in down-
stream task validity, rather than superficial representation
similarity. Our key contributions include new evaluation
metrics, notably pm and rm, and efficient sampling-based
estimators capable of handling exponentially large search
spaces. Experiments on the chess domain demonstrate that
our metrics provide sensitive and reliable assessments, re-
vealing notable limitations in state reconstruction even for
powerful models like GPT-4o as sequence lengths increase.
Compared to traditional metrics such as exact match or edit
distance, our approach better captures the semantic correct-
ness of predicted states by considering their impact on valid
subsequent actions. Despite its strengths, our method is
sensitive to prompt design and computationally intensive
for large depths m. Future work includes addressing these
challenges and extending the framework to other structured
domains such as program synthesis, dialog tracking, and
robotic planning. Overall, this work offers a more prin-
cipled, task-aware evaluation paradigm that aligns model
assessment with downstream utility in structured reasoning
tasks.
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A. Appendix
Finite State Automaton

State based metrics To better capture semantic correctness, we define metrics based on the sets of valid action sequences
under a given state. Let Am

S denote the set of all valid action sequences of length m starting from state S. We compare the
sets Am

S and Am
S̃

using a precision/recall formulation:

Precision =
|Am

S ∩ Am
S̃
|

|Am
S̃
|

, Recall =
|Am

S ∩ Am
S̃
|

|Am
S |

In practice, computing these sets exactly is infeasible due to their exponential size in m. To address this, we express these
quantities as expectations over indicator functions:

Precision = Es∼U(Am
S̃
)

[
1Am

S
(s)

]
,

Recall = Es∼U(Am
S )

[
1Am

S̃
(s)

]
However, uniform sampling from Am

S is itself intractable. Instead, we approximate this via uniform branch sampling: at
each step i, we sample an action ai uniformly from the valid set ΣSi−1

and apply it via the transition function to obtain
Si = δ(Si−1, ai). Repeating this m times yields a trajectory s = (a1, . . . , am). Let Ub(S) denote the distribution over such
sequences. We then define approximate precision and recall as:

pm(S, S̃) = Es∼Ub(S̃)

[
1Am

S
(s)

]
rm(S, S̃) = Es∼Ub(S)

[
1Am

S̃
(s)

]
These quantities reflect how well the predicted state S̃ preserves the behavior of the true state S, in terms of valid
action trajectories. While state-based metrics are more faithful to the underlying semantics of state prediction, they are
computationally expensive and depend on the trajectory length m. In practice, m can be selected based on task complexity
or evaluation constraints. Despite their cost, these metrics provide a much richer and more actionable signal than simpler
string-based comparisons.

• S is the finite set of valid states.

• S∗ = S ∪ {0} is the augmented state space, including a special error (or sink) state 0.

• Σ is the finite input alphabet (i.e., the set of actions).

• S0 ∈ S is the initial state.

• δ : S∗ × Σ→ S∗ is the transition function.

The transition function is defined as:

δ(S, a) =

{
S′ ∈ S if a ∈ ΣS and S ̸= 0,

0 if a /∈ ΣS or S = 0.

This construction ensures that δ is total, i.e., it produces a well-defined output for all pairs (S, a) ∈ S∗ × Σ. Once the
automaton transitions to the error state 0, it remains there for all subsequent actions:

δ(0, a) = 0 ∀a ∈ Σ.
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Algorithm 1 Intermediate Probability Estimation

Require: N : maximum list size, m: trajectory depth, s1: starting state, s2: comparison FSA
Ensure: Approximate Ps∼Ub(s1)[s ∈ Am

s2 ] by computing
∏k

i=1 vk iteratively
1: L← [(s1, 1)]
2: for i = 1 to m do
3: L′ ← [ ]
4: for all (j, w) ∈ L do
5: new← Legal moves add(j) ▷ Get legal next states
6: w′ ← w/|new|
7: for all m ∈ new do
8: if s2.accepts(m) then
9: L′.append((m,w′))

10: end if
11: end for
12: end for
13: if |L′| > N then
14: L′ ← sample(L′, N) ▷ During sampling weights are rescaled
15: end if
16: L← L′

17: end for
18: return

∑
(m,w)∈L w

Exact Match We measure the probability that the predicted state exactly matches the ground-truth state:

p(S̃ = S)

This metric evaluates whether the model can perfectly reconstruct the correct state from the input sequence. It is strict and
binary, any deviation from the target is counted as an error. As a result, low scores under this metric do not convey how
close the predicted state is to the correct one, limiting its informativeness.

Edit distance To provide a more graded notion of correctness, we use the Levenshtein distance lev(S, S̃) between the
textual representations of the true and predicted states. This measures the minimum number of single-character edits
(insertions, deletions, or substitutions) required to transform one string into the other. Since lev(S, S̃) ∈ N and can be
unbounded, we normalize it into the [0, 1] range using an exponential kernel:

E
[
e−λ·lev(S,S̃)

]

where λ > 0 is a hyperparameter. When λ is large, the metric behaves similarly to exact match; when small, it becomes
insensitive to differences. A drawback of edit distance is that it treats all changes equally, regardless of their semantic
impact; i.e., how a change affects the resulting valid action set ΣS is not considered.
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A.1. Naive algorithm

Algorithm 2 Naive Precision/Recall Estimation

Require: N : maximum number of sequences, m: depth, s1: initial state, s2: comparison FSA
Ensure: Approximate Ps∼Ub(s1)[s ∈ Am

s2 ]
1: L← [s1]
2: for i = 1 to m do
3: L′ ← [ ]
4: for all j ∈ L do
5: L′ ← L′ ∪ Legal moves add(j)
6: end for
7: if |L′| > N then
8: L′ ← sample(L′, N)
9: end if

10: L← L′

11: end for
12: K ← |L|
13: A← 0
14: for all seq ∈ L do
15: if s2.accepts(seq) then
16: A← A+ 1
17: end if
18: end for
19: return A/K
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