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Abstract
Large language models (LLMs) have shown001
the emerging capability of in-context learning002
(ICL). One line of research has explained ICL003
as functionally performing gradient descent. In004
this paper, we introduce a new way of diagnos-005
ing whether ICL is functionally equivalent to006
gradient-based learning. Our approach is based007
on the inverse frequency effect (IFE)—a phe-008
nomenon in which an error-driven learner is009
expected to show larger updates when trained010
on infrequent examples than frequent ones. The011
IFE has previously been studied in psycholin-012
guistics because humans show this effect in the013
context of structural priming (the tendency for014
people to produce sentence structures they have015
encountered recently); the IFE has been used016
as evidence that human structural priming must017
involve error-driven learning mechanisms. In018
our experiments, we simulated structural prim-019
ing within ICL and found that LLMs display020
the IFE, with the effect being stronger in larger021
models. We conclude that ICL is indeed a type022
of gradient-based learning, supporting the hy-023
pothesis that a gradient component is implicitly024
computed in the forward pass during ICL. Our025
results suggest that both humans and LLMs026
make use of gradient-based, error-driven pro-027
cessing mechanisms.028

1 Introduction029

To what extent do humans and language models use030

similar processing mechanisms? This question is031

of interest to both Artificial Intelligence researchers032

and cognitive scientists. Language models and hu-033

man learners have some substantial differences:034

human learners often display a flexible learning035

ability to adapt to new examples, while language036

models require massive training data and a large037

number of parameters to exhibit human-like perfor-038

mance. Recent pre-trained large language models039

(LLMs) have shown the emerging capability of040

in-context learning (ICL): LLMs can adapt to spe-041

cific tasks with a few demonstration-answer pairs042

served as prompts in the context window without 043

any parameter updates (Brown et al., 2020). This 044

intriguing emergent capability could provide a way 045

to bridge the divide between language models and 046

human learners: perhaps ICL is a processing mech- 047

anism that, like humans, can flexibly adapt to new 048

examples. 049

Among various works on the sources and inter- 050

pretations of the ICL capability, one line of research 051

aims to deepen the theoretical understanding of 052

ICL by offering functional interpretations of ICL 053

via gradient descent. Garg et al. (2022), Zhang 054

et al. (2023), and Ahn et al. (2024) have shown 055

that standard Transformers (Vaswani et al., 2017) 056

can be trained to implement learning algorithms for 057

linear regressions under the ICL training objectives. 058

Von Oswald et al. (2023) have demonstrated that 059

Transformer models, with appropriate choices of 060

parameters, can process in-context demonstrations 061

in a way that is functionally equivalent to perform- 062

ing gradient updates on the same demonstration 063

examples. Dai et al. (2023) provided a mathemat- 064

ical construction showing the dual form between 065

Transformer attention and gradient descent and in- 066

terpreted ICL as a meta-optimization process that 067

performs implicit fine-tuning. However, Shen et al. 068

(2023) pointed out that previous accounts are lim- 069

ited in treating ICL as a non-emergent property and 070

deviate from actual LLMs pre-trained with natural 071

data since those accounts involve hand-constructed 072

weights and use ICL objectives instead of the stan- 073

dard language modeling objectives. They found 074

inconsistent behaviors of ICL and GD in real mod- 075

els, and left the equivalence between ICL and GD 076

an open hypothesis. 077

In this paper, we aim to better characterize what 078

kind of learning mechanism ICL is by drawing a 079

connection between ICL and human learning mech- 080

anisms. Specifically, we examine the hypothesis 081

that ICL functionally performs gradient-based fine- 082

tuning (e.g., gradient descent) by empirically inves- 083
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tigating a weaker claim with off-the-shelf LLMs084

and with natural language data: whether ICL is a085

type of gradient-based, i.e., error-driven learn-086

ing such that a gradient component is computed087

during the forward pass. We approach this ques-088

tion by treating ICL as a processing mechanism089

of LLMs and borrowing insights from methods of090

studying processing mechanisms in humans: we091

examine to what extent LLMs show the inverse092

frequency effect (IFE), a phenomenon in the hu-093

man structural priming paradigm (Branigan and094

Pickering, 2017) that has been argued to require095

one particular processing mechanism in humans,096

namely implicit learning (e.g., Chang et al., 2006).097

We study the linguistic phenomenon of the dative098

alternation and demonstrate that LLMs show robust099

IFE under standard fine-tuning and varying degrees100

of IFE under the ICL setting, with larger models101

showing a stronger IFE. We conclude that ICL is102

indeed a gradient-based learning mechanism.103

Our study has implications for both104

NLP/machine learning (1 and 2) and linguistically-105

motivated analysis of LLMs (3 and 4):106

(1) We find evidence that ICL can be viewed as a107

form of gradient-based learning.108

(2) By establishing a connection between priming109

and prompting, we generalize the notion of110

ICL beyond the standardly assumed prompt111

format of input-output pairs.112

(3) We show that LLMs qualitatively display an113

important property of human language pro-114

cessing, namely the IFE in structural priming.115

(4) While most human-LLM comparisons focus116

on representations, our experiments go one117

step further by analyzing the processing mech-118

anisms used by LLMs.119

Overall, our results suggest that error-driven learn-120

ing is an aspect of processing that is shared between121

humans and LLMs.122

2 Background and Related Work123

In this section, we lay out the building blocks nec-124

essary for our reasoning of diagnosing the gradient-125

based nature of ICL through the IFE. Our approach126

is formally stated in Section 3.1.127

2.1 Structural Priming in Psycholinguistics128

Structural priming refers to the phenomenon that129

speakers tend to reuse recently encountered syntac-130

tic structures (Bock, 1986). For example, speakers131

tend to produce a double object (DO) structure 132

(e.g., The student sent the professor a letter) rather 133

than a prepositional dative (PD) structure (e.g., The 134

student sent a letter to the professor) after encoun- 135

tering a DO sentence (e.g., Alice gave Bob a book). 136

Similar to adapting to prompts in LLMs, structural 137

priming has also been interpreted an adaptation 138

mechanism, where speakers adapt lexical and syn- 139

tactic predictions to the current context (Jaeger and 140

Snider, 2013). 141

One important aspect of structural priming is the 142

inverse frequency effect (Jaeger and Snider, 2008; 143

Bernolet and Hartsuiker, 2010; Kaschak et al., 144

2011): less preferred syntactic alternatives (mea- 145

sured by the relative frequency in the speaker’s ex- 146

perience against their counterparts) cause stronger 147

overall priming than more preferred structures. The 148

gradient degrees of each unique verb’s structural 149

preference is called verb biases (or alternation bi- 150

ases, see Hawkins et al., 2020 for a systematic 151

investigation on verb biases in neural models). For 152

example, since give is biased towards DO in En- 153

glish, a prime sentence with give in PD structure 154

will cause a greater priming effect than that prime 155

sentence in DO structure. That is, the strength of 156

PD priming (i.e., the increase in the probability of 157

a PD target given a PD prime) inversely correlates 158

with the expectation on a PD prime, determined by 159

its verb bias (Bernolet and Hartsuiker, 2010). 160

Two mainstream theories have been proposed to 161

account for structural priming. Transient activation 162

theory (Pickering and Branigan, 1998) claims that 163

the activation of structural representations from the 164

prime persists for a short time (in working mem- 165

ory), so the structural information has a higher 166

probability of being reactivated on the next rele- 167

vant opportunity. The current form of transient 168

activation theory does not account for the IFE be- 169

cause it is independent from verb biases and does 170

not involve any error-driven mechanism. Alterna- 171

tively, implicit learning theory (Chang et al., 2006) 172

claims that humans implicitly learn probabilistic in- 173

formation about different structures (including verb 174

biases) from experience (in the long-term memory) 175

and use such information to predict the form of 176

prime sentences. Crucially, under standard theories 177

of learning, the update performed by the learner is 178

error-driven, such that a larger update is performed 179

in situations where the learner’s predictions are far- 180

ther from the truth. In the context of priming, this 181

would mean that priming strength is determined 182

by the difference between the learner’s predictions 183
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Figure 1: Reasoning behind our current study.

and the actual prime sentence: the less expectation184

the learner has on the observed prime structure, the185

larger the gradient is, resulting in a larger priming186

strength. Therefore, the implicit learning theory -187

unlike transient activation - predicts the IFE. The188

two theories are not mutually exclusive and can189

co-exist to account for priming, stated as the dual190

mechanism account (Tooley and Traxler, 2010).191

In this study, we assume the correctness of the192

psycholinguistic theories that only some kinds of193

error-driven learning mechanisms could predict the194

IFE. Therefore, by examining whether LLMs show195

IFE in the ICL setting, we can infer whether some196

type of gradient component is computed in the for-197

ward pass without explicit weight updates, which198

informs us about whether there is a gradient-based199

component in ICL.200

2.2 Connections among Distributional201

Properties of Pre-Training Data, Priming,202

and In-Context Learning203

Another line of research explains the origin of204

ICL from the distributional properties of the pre-205

training data. Chan et al. (2022) showed that ICL206

emerges when the training data exhibits particu-207

lar distributional properties (such as burstiness, in208

which items appear in clusters rather than being209

uniformly distributed over time). Hahn and Goyal210

(2023) argued that ICL emerges from the compo-211

sitional structures found in the pre-training data212

under the standard next-token prediction objective.213

Chen et al. (2024) found that parallel structures214

in the pre-training data give rise to the ICL capa-215

bility in LLMs. They defined parallel structures216

as pairs of phrases following similar templates in217

the same context window and found that removing218

parallel structures in the pre-training data signifi-219

cantly reduces LLMs’ ICL accuracy. Chen et al.220

also pointed out that despite the fact that the pre-221

training data is not formatted strictly as in-context222

prompts, i.e., input-output pairs, the naturalistic223

data often contains phrases following similar tem- 224

plates. Those phrase pairs could be conceptualized 225

as in-context examples of implicitly defined, less 226

structured shared “tasks”, such as n-gram copying, 227

syntactic constructions, and world knowledge. 228

As structural priming is a well-attested phe- 229

nomenon in humans, it is reasonable for us to hy- 230

pothesize that structural priming is a factor that 231

shapes the distribution of the pre-training data 232

since humans tend to produce abundant parallel 233

structures in the naturalistic setting. For this rea- 234

son, we view the repeated structures from structural 235

priming as a case of the parallel structures in Chen 236

et al.’s (2024) sense. Inspired by the data-centric 237

perspective, we think of ICL as not necessarily 238

involving explicit demonstration-answer pairs for 239

specific tasks, as is typically understood in the lit- 240

erature. Instead, we conceptualize ICL as a more 241

generalized notion that involves a sensitivity of 242

parallelism through generic next-token prediction: 243

any text in the context window will affect the con- 244

ditional probability distribution over the logits of 245

the next token. This generalized notion of ICL, 246

namely, having prompts in the context window, is 247

analogous to priming in humans, as is elaborated 248

in Section 3.1. 249

2.3 Structural Priming in Neural Language 250

Models 251

As structural priming has been proposed as a means 252

of probing the abstract mental representations of 253

structural information in humans (Branigan and 254

Pickering, 2017), previous works have adopted this 255

paradigm for probing learned linguistic represen- 256

tations in neural networks. It has been shown that 257

LSTMs (Gulordava et al., 2018) are capable of 258

adapting to syntactic structures under the adapta- 259

tion way of priming (Van Schijndel and Linzen, 260

2018; Prasad et al., 2019): fine-tuning model 261

weights on prime sentences and testing target sen- 262

tence probabilities on the updated model, which 263
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Figure 2: An overview of our experiment design.

is analogous to the implicit learning account of264

structural priming and involves weight updates. Re-265

cently, Sinclair et al. (2022) have shown that the266

GPT2 family (Radford et al., 2019) showed ro-267

bust structural priming through encoding structural268

information given in the preceding context (i.e., di-269

rectly concatenating target sentences with prime270

sentences), which does not involve any weight up-271

dates.1 Other works have demonstrated crosslin-272

gual structural priming in large language models273

(Michaelov et al., 2023), suggesting that structural274

priming is robustly detected in LLMs.275

Previous works have demonstrated the behav-276

ioral alignment of LLMs with humans on showing277

structural priming, which set the ground for our278

current study of investigating the processing mech-279

anisms underlying priming. So far, no study has in-280

vestigated whether LLMs also show the IFE, which281

serves as a separate motivation for our experiments.282

3 Current Study283

3.1 Overview of Our Approach284

We first clarify our conceptualization of ICL. As is285

stated in Section 2.2, instead of following the no-286

tion of ICL as having demonstration-answer pairs287

of some tasks as prompts in the context window,288

here we propose that any text in the context window289

will condition the model’s next word prediction:290

how the probability distribution over the next token291

changes depends on what the model captures or en-292

codes from the context. Therefore, the generalized293

notion of ICL is analogous to adapting to encoun-294

tered syntactic structures with structural priming295

in humans. On the humans’ side, encountering a296

DO sentence will temporarily condition the speaker297

towards producing or more quickly comprehending298

1Sinclair et al. (2022) have also demonstrated that the
GPT2 models showed the lexical boost effect, another well-
attested sub-phenomenon of structural priming, which is not
our main focus here.

another sentence of the same structure. On the mod- 299

els’ side, processing a DO sentence in the prompt 300

will condition the model to increase its probability 301

of producing another DO structure sentence dur- 302

ing generation, as is reviewed in Section 2.3. That 303

is, the less structured, implicitly defined “task” en- 304

coded by the DO sentence as the prompt could be 305

interpreted as “producing another sentence follow- 306

ing the DO structural template exemplified in the 307

prompt.” 308

Then, our research question is whether a gradi- 309

ent component is computed during the forward 310

pass of processing the prompt in the general- 311

ized ICL setting. We investigate the question by 312

testing whether LLMs show the IFE in the ICL set- 313

ting. As is illustrated in Figure. 1, given that (i) it 314

has been argued by psycholinguists that only some 315

error-driven learning mechanism will give rise to 316

the IFE; (ii) processing the prime sentence in the 317

context window conditions the probability of the 318

target sentence in the generalized notion of ICL; 319

(iii) standard structural priming in the ICL setting 320

has been robustly observed, we hypothesize that 321

the strength of the IFE positively correlates with 322

the strength of the ICL capability of LLMs: the 323

stronger the ICL capability is, the better the gradi- 324

ent will be computed in the forward pass, which 325

leads to a stronger IFE. 326

Specifically, we simulate structural priming 327

across LLMs of various sizes with the two modes 328

mention in Section 2.3. As is illustrated in Figure. 329

2, the Fine-Tuning mode fine-tunes the parame- 330

ters on a single prime sentence, and the updated 331

model is used to infer the probability of the target 332

sentence. The Concatenation mode resembles the 333

ICL setting, where the prime sentence is directly 334

concatenated with the target sentence as the prompt 335

in the context window, and the probability of the 336

target sentence is measured. The Fine-Tuning 337

mode serves as a sanity check that LLMs are able 338
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to show the IFE when there is explicit error-driven,339

gradient-based learning. It sets the ground for our340

main focus: using the Concatenation mode to341

diagnose the gradient-based nature of ICL.342

3.2 Corpus343

We adapted the Core Dative PRIME-LM Corpus344

from Sinclair et al. (2022) to create our dataset.345

We briefly introduce the desired properties of the346

corpus and refer the readers to the original paper347

for details. The dative corpus consists of sentences348

in two forms:349

(5) DO: DPsubj V DPiobj DPdobj350

e.g., A girl bought a guy a coffee.351

(6) PD: DPsubj V DPdobj Prep DPiobj352

e.g., A girl bought a coffee for a guy.353

Each DP is a determiner with a common noun354

(120 distinct nouns in total). The corpus was con-355

structed in the way that controlled for the degree356

of semantic association and lexical overlapping be-357

tween prime and target sentences, and sentences358

are semantically plausible as the ditransitive verbs359

were manually labeled with their verb frames.360

Since our goal is to study the IFE, which depends361

on the verb biases of particular verbs, we want362

each pair of prime and target verbs to be equally363

represented. Thus, for each of the 22 prime verbs,364

we sampled 50 target sentences for each of the 21365

target verbs (we excluded cases where prime and366

target verbs overlap). For each target sentence, we367

sampled a prime sentence with no lexical overlap-368

ping to form a prime-target pair. Each prime-target369

pair yields 4 instances of structural combinations370

(TPD|PPD, TPD|PDO, TDO|PPD, TDO|PDO, i.e., tar-371

get sentence T conditioned on prime P ), result-372

ing in 92400 prime-target pairs.2 An example of373

TPD|PDO is “A doctor brought a chief a plate. The374

secretary drew the card for the band.”375

Crucially, we also created an alternative dataset376

of the same size by replacing the indirect object377

DP with a pronoun.3 This was motivated by a cor-378

pus parse4 we did that showed that the most com-379

2In this paper, we use P for prime sentences and P for
probability.

3Details of the set of pronouns and their relative probabili-
ties are in Appendix A.

4In order to find the verb biases represented in the training
corpus of GPT2 models, we parsed a fragment (around 160
million tokens) of the OpenWebText corpus (Gokaslan and
Cohen, 2019) with python package spaCy (Honnibal et al.,
2020) to get a distribution of the DO vs. PD ratio for each
verb. We found that the verb biases from the corpus are less
well-represented in GPT2 models.

Figure 3: A demonstration of the IFE: a stronger prim-
ing effect of a DO prime is predicted as PD-bias in-
creases. The numerical values of the primed log proba-
bilities are for illustration purpose.

mon indirect object in DO sentences are animate 380

pronouns, suggesting that animacy is crucial for 381

naturally capturing verb biases, confirming results 382

reported in Bresnan et al. (2007). The presence and 383

absence of pronouns lead to different verb biases 384

for LLMs, which affect their IFE behaviors. We 385

will return to this point in discussion. 386

3.3 Language Models 387

We considered a set of Transformer models that 388

have been claimed to show ICL capabilities to vari- 389

ous extents (Lee et al., 2023): 390

• GPT2 (Radford et al., 2019) in three of 391

its sizes (SMALL, MEDIUM, LARGE), with 392

85M, 302M, and 708M number of parame- 393

ters, respectively. All versions were loaded 394

from package transformerLens (Nanda and 395

Bloom, 2022). 396

• LLAMA2 (Touvron et al., 2023) in three ver- 397

sions: 7B (6.5B parameters), 7B-CHAT (6.5B 398

parameters), 13B (13B parameters). All ver- 399

sions were loaded from Huggingface (Wolf 400

et al., 2019). 401

• GPT3-base (Brown et al., 2020) with the 402

DAVINCI-002 version (175B parameters), ac- 403

cessed via OpenAI API. 404

The models are sorted by size, and correspond- 405

ingly, by their ICL capabilities, so we predicted a 406

stronger IFE as size increases.5 407

3.4 Quantifying Verb Biases 408

The verb bias for a specific verb is the likelihood of 409

producing structure X compared to the alternative 410

5We also tested LSTMs (Gulordava et al., 2018) with the
current Concatenation mode and we found that they did not
show structural priming, although LSTMs did show structural
priming in the Fine-tuning mode (Van Schijndel and Linzen,
2018; Prasad et al., 2019).
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structure Y . In human experiments, baseline verb411

biases are estimated as the ratio of the number of412

one structure over the sum of two structures in nat-413

ural production settings or corpus searches (Zhou414

and Frank, 2023). Here, we computed a continuous415

verb bias for each verb analogously as the ratio of416

the probability of one structure over the sum of the417

probabilities of both structures. The probability of418

a sentence s is the product of probabilities assigned419

by LMs to each token wi: P(s) =
∏

i P(wi).6420

This measures how likely it is for the model to421

see or produce this sentence. Then, given a set422

of sentences SV with ditransitive verb V , where423

each sentence TX with structure X always has its424

counterpart TY (see 5 and 6) in the opposite struc-425

ture, the X-bias of verb V is the mean normalized426

probability of sentences in structure X:427

bias(V,X) =
1

|SV |
∑

TX∈SV

P(TX)

P(TX) + P(TY )

(1)428

3.5 Simulating Structural Priming429

As is stated in Section 3.1, we use two modes to430

simulate structural priming. Following Van Schijn-431

del and Linzen (2018), for the Fine-Tuning mode,432

we update the parameters by fine-tuning the model433

on a single prime sentence with learning rate 1e−5434

for 10 epochs (see the full fine-tuning details in435

Appendix B), and we take the updated model to436

do inference on the target sentence. Following Sin-437

clair et al. (2022), for the Concatenation mode,438

we condition a target sentence on a prime sentence439

through directly concatenating them, separated by440

a period, without any weight updates.441

The probability of the target sentence after prim-442

ing is the product of probabilities assigned to its443

tokens: P(TX |PX) =
∏

i P(TXi |PX , TX<i). Fol-444

lowing from standard priming effect, the prob-445

ability of the same target sentence TX should446

be greater after primed by a sentence with the447

same structure: P(TX |PX) > P(TX); primed448

by the opposite structure decreases its probability:449

P(TX |PY ) < P(TX).450

3.6 Predictions on the Inverse Frequency451

Effect452

Recall that the IFE states that the priming strength453

of structure X inversely correlates with the prime454

6In practice, we took the sum of the log probabilities as-
signed by LLMs to each token in the target sentence, which is
equivalent to the summation notation.

verb’s X-bias. That is, IFE is solely about the effect 455

of the prime verbs, i.e., the degree of deviation 456

of the target production from baseline it causes. 457

Therefore, for each prime verb V , we computed the 458

PrimeBias for the PD target structure given a DO 459

prime sentence as the normalized target probability 460

primed by this verb over a set of target sentences 461

in Equation. 2: 462

PrimeBias(PD|DO, V ) =
1

|TPD| · |PDOV |
∑

tPD∈TPD

∑
pDOV ∈PDOV

P(tPD|pVDO)

P(tDO|pVDO) + P(tPD|pDOV )
(2) 463

As is shown in Figure. 3, the IFE predicts that 464

with a PD target and DO prime sentence, as the 465

prime verb V ’s PD-biases increase, the prime sen- 466

tence is less expected, resulting in a larger priming 467

strength towards the DO direction in target pro- 468

duction, i.e., a smaller PrimeBias(PD|DO, V ) 469

value. Similarly, as PD-biases increase, a PD prime 470

sentence will result in a smaller priming strength 471

towards the PD direction in target production, 472

i.e., again a smaller PrimeBias(PD|PD, V ) value. 473

Therefore, when plotting PrimeBias(PD|DO, V ) 474

and PrimeBias(PD|PD, V ) against increasing 475

verb biases and fitting a line with linear regres- 476

sion, the IFE predicts negative slopes for both 477

plots. Moreover, standard priming predicts that 478

PrimeBias(PD|PD, V ) should have a higher in- 479

tercept than PrimeBias(PD|DO, V ) since the for- 480

mer increases the probability of TPD while the latter 481

decreases the probability of TPD.7 482

4 Results and Analysis 483

For each model and for each prime verb, 484

we plotted PrimeBias(PD|PD, V ) and 485

PrimeBias(PD|DO, V ) against increasing 486

verb biases and used linear regression to find the 487

pattern of priming strength with respect to verb 488

biases. We reported the R-squared (R2) coefficient 489

and the root mean squared error (RMSE) to assess 490

the significance of the fitted lines. 491

4.1 Fine-tuning Mode 492

We applied the Fine-tuning mode to GPT2- 493

SMALL.8 As is shown in Figure. 4, the 494

7The other two conditions, namely TDO|PPD and TDO|PDO,
should have exactly the opposite slopes, and the intercepts
should add up to 1 with its counterparts.

8We did not carry out this mode for larger models because
of the substantial computational resources they require: each
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Figure 4: GPT2-SMALL shows robust IFE under the
Fine-tuning mode. Both the TPD|PPD condition (left)
and the TPD|PDO (right) have negative slopes, and the
TPD|PPD has a higher intercept than TPD|PDO.

TPD|PPD condition having a larger intercept495

than the TPD|PDO condition, suggesting that the496

Fine-tuning mode is able to capture the standard497

structural priming. We indeed observe two negative498

slopes, suggesting that the Fine-tuning mode is499

able to capture the IFE. The TPD|PDO condition has500

a higher R2 score of 0.75, demonstrating a stronger501

IFE than the TPD|PDO condition.502

Overall, this shows that even the smallest model503

shows the IFE under explicit gradient-based weight504

update, which passes the sanity check and suggests505

that LLMs are capable of showing the IFE with506

explicit gradient-based weight updates.507

4.2 Concatenation Mode508

We applied the Concatenation mode to all mod-509

els, and we only show one plot for each of the510

three types of models and report the full results511

in Table 1. As is shown in Figure. 5, for all mod-512

els across all conditions, the TPD|PPD intercept is513

greater than the TPD|PDO intercept, showing the514

standard structural priming effect, which is consis-515

tent with our prediction. The RMSE score for all516

conditions are less than 0.04, suggesting a signif-517

icant predictability of the fitted lines to the data518

points. For the IFE, we found that all three sizes519

of GPT2 failed to show the IFE, as the slopes are520

either positive or close to zero. This suggests that521

in GPT2, the priming strength is not correlated522

with the verb biases under current metric. All three523

LLAMA2 models showed the two negative slopes,524

which is consistent with our prediction. However,525

only in the Pronoun TPD|PDO condition are the R2526

coefficients constantly greater than 0.5 across the527

priming instance requires a separate fine-tuning process. How-
ever, this is unproblematic for our conclusions, given that the
Fine-tuning mode is expected to show the IFE in all cases,
given its explicit gradient updates.

three models,9 suggesting that the negative slopes 528

themselves are not well accounted for given the 529

distribution of prime verb’s IFE scores. Finally, 530

for GPT3, both TPD|PPD and TPD|PDO conditions 531

with Pronoun have R2 coefficient greater than 0.5, 532

while neither holds in the NoPronoun condition. 533

Therefore, besides confirming previous results 534

that LLMs show structural priming effect, the cur- 535

rent results suggest that in general, larger models 536

tend to show stronger IFE, which analogously 537

correlates with their ICL capability. Assuming 538

that LLMs’ ICL capability correlates with their 539

sizes, given the currently observed pattern, we fur- 540

ther predict larger models such as GPT4 should 541

show a stronger and more significant IFE, which is 542

left for future study to verify. 543

4.3 The Distinction between the Pronoun vs. 544

NoPronoun Conditions 545

As is shown in Table. 1, the majority of cases with 546

R2 score above 0.5 are the WithPronoun TPD|PDO 547

cases. The fact that the observed patterns fit bet- 548

ter with our predictions in the Pronoun condition 549

than NoPronoun condition remains curious. The 550

main difference lies in the default verb biases: as 551

is shown in Figure. 6 in Appendix C, the GPT3 552

model shows an overwhelming bias towards PD 553

without pronoun but a reverse pattern favoring DO 554

with pronoun. This pattern holds across all mod- 555

els and is consistent with our corpus parse result, 556

which suggests that the most common indirect ob- 557

ject DP in the DO sentences are animate pronouns, 558

causing the model to assign a higher probability of 559

pronoun sentences. However, it still remains puz- 560

zling why and how differences in verb biases could 561

lead to different significance of the IFE behavior in 562

the two conditions. 563

5 Discussion and Conclusion 564

ICL is a gradient-based learning mechanism 565

We started with the question whether ICL could be 566

a processing mechanism of LLMs that resembles 567

human learning mechanisms that flexibly adapt to 568

recently encountered examples. To better charac- 569

terize what kind of learning ICL is, we examined 570

existing proposals of explaining ICL through func- 571

tional gradient descent or implicit fine-tuning and 572

focused on one particular aspect of ICL: whether it 573

involves a gradient component during the forward 574

9Given no consensus on standard R2 score thresholds, we
picked this criterion by default.
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Figure 5: The IFE across models of different sizes in the WithPronoun condition under the Concatenation mode.

Models With Pronoun PDPD_slope PDPD_intercept PDPD_R2 PDPD_RMSE DOPD_slope DOPD_intercept DOPD_R2 DOPD_RMSE
GPT2-small True 0.011 0.370 0.014 0.020 -0.007 0.278 0.008 0.017
GPT2-small False 0.014 0.746 0.024 0.016 0.006 0.653 0.003 0.019

GPT2-medium True -0.013 0.351 0.015 0.023 -0.026 0.256 0.107 0.016
GPT2-medium False -0.023 0.748 0.067 0.017 -0.035 0.590 0.060 0.027

GPT2-large True 0.011 0.330 0.017 0.019 -0.037 0.241 0.173 0.018
GPT2-large False -0.003 0.698 0.001 0.018 -0.020 0.487 0.026 0.024

LLAMA2-7b True -0.020 0.392 0.073 0.015 -0.086 0.229 0.645 0.013
LLAMA2-7b False -0.026 0.807 0.046 0.019 -0.111 0.627 0.149 0.042

LLAMA2-7b-chat True -0.012 0.413 0.019 0.018 -0.095 0.263 0.587 0.017
LLAMA2-7b-chat False -0.013 0.788 0.007 0.024 -0.102 0.605 0.107 0.044

LLAMA2-13b True -0.059 0.434 0.323 0.018 -0.099 0.256 0.760 0.011
LLAMA2-13b False -0.066 0.859 0.160 0.019 -0.177 0.685 0.224 0.042

davinci-002 True -0.078 0.403 0.570 0.013 -0.078 0.223 0.662 0.011
davinci-002 False -0.064 0.851 0.172 0.020 -0.145 0.632 0.257 0.035

Table 1: The slope, intercept, R2, and RMSE of the fitted lines for each condition under the Concatenation mode.
Conditions with both negative slopes are bold (which suggests capturing the IFE), and R2 scores higher than 0.5 are
bold (which means a more significant fitted line).

computation. We differ from previous approaches575

by testing real LLMs and with natural language576

data. We established the connection between ICL577

and human structural priming, and we used the IFE578

to diagnose the presence or absence of the gradient579

component when LLMs process the prime sentence580

as the prompt. We found that larger models exhibit581

a stronger IFE, which suggest that the stronger ICL582

capability in larger models enables them to better583

capture the gradient nature of the verb biases en-584

coded in the prime sentence as the prompt, which585

leads to a more significant IFE.586

Therefore, our findings support the hypothesis587

that a gradient component is implicitly involved in588

the forward computation of ICL. This suggests that589

gradient-based learning might be a crucial property590

that enables generalizations from a few samples,591

which is shared between LLMs and human learn-592

ers. Our study not only provides behavioral results593

that align LLMs’ behaviors with human behaviors594

on structural priming at the processing mechanism595

level, but also demonstrates the possibility of study-596

ing the nature of ICL with off-the-shelf pre-trained597

LLMs and with naturalistic data.598

ICL emerges from Language modeling ICL 599

is typical understood as involving demonstration- 600

answer pairs in the prompt. Inspired by the data- 601

centric views that explain ICL from the distribu- 602

tional properties of pre-training data, we proposed 603

a generalized notion of ICL that is sensitive to gen- 604

eral parallelisms. As a result, any text in the prompt 605

could serve as an implicitly defined “task” of fol- 606

lowing the template provided in the context and 607

generating a parallel structure. Therefore, ICL 608

could be viewed as a side product of the general 609

language modeling task. We leave this perspective 610

for future investigation. 611

Future Directions If ICL is indeed gradient- 612

based, our reasoning predicts that we should ob- 613

serve the IFE in other ICL tasks, including non- 614

linguistic problems. For instance, for the Country- 615

Capital mapping task, prompting the model with 616

demonstrations with lower zero-shot probabilities 617

is predicted to yield a larger improvement to the 618

model performance than prompting with demon- 619

strations with higher zero-shot probabilities. We 620

leave this prediction for future study. 621
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Limitations622

Behavioral versus Mechanistic Accounts Al-623

though ICL is generally identified as a phenomenon624

at the behavioral level, having an explanation at625

the mechanistic level is desirable since it brings626

greater interpretability and is more concrete on the-627

ory building. Our current study, despite using real628

pre-trained models and naturalistic data, remains629

at the behavioral level and is empirical in nature.630

Given our current contribution of establishing a631

connection between ICL and human priming and632

using the IFE as a diagnostics on the presence or633

absence of the gradient-based nature of ICL, future634

work could improve our understanding by incorpo-635

rating techniques from mechanistic interpretability636

to explain our current finding at the mechanistic637

level. For instance, it is possible to find a function638

vector (or, task vector) proposed by Hendel et al.639

(2023) and Todd et al. (2023) for the implicitly de-640

fined task of “producing a sentence in the DO (or641

PD) structure” (or, in general, produce the next to-642

ken that resembles the structural template observed643

in the prompt).644

Examining the IFE on Other Models As the645

ICL capability is argued to scale with the model646

sizes, we predict in Section 4.2 that the IFE effect647

will be more robust in larger models. Although648

the difference in the IFE behavior between GPT2649

and GPT3-BASE is significant enough, we have650

not observed a saturation of the IFE. GPT3-BASE651

is currently the biggest model on which we have652

access to the logit predictions, but we believe the653

same behavioral test could be applied to larger mod-654

els in order to verify our prediction.655

Extending the IFE to other ICL Tasks In this656

study, we only examined the IFE on one single657

“task” of structural priming. If our reasoning is cor-658

rect, that it is indeed the gradient component of the659

ICL that results in LLMs’ capability of capturing660

the IFE, then we predict that the IFE diagnostics661

could be generalized to other ICL tasks, even non-662

linguistic tasks. As is outlined in Section 5, future663

work could extend our current method to ICL tasks664

such as Country-Capital mapping, two-digit multi-665

plication, etc. Finding the IFE on a wider range of666

tasks would better strengthen our reasoning, while667

not observing IFE on other tasks is also helpful668

for developing mechanistic level explanations to-669

wards a better understanding of ICL as a processing670

mechanism.671
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A Finding pronoun probabilities in the829

OpenWebText corpus with spaCy830

As is mentioned in Section 3.2, we constructed831

the with-pronoun version of the corpus in order to832

investigate the impact of animacy of the indirect833

object on the verb biases. To do this, we approx-834

imated the distribution of the natural occurrence835

frequencies over the set of English pronouns in da-836

tive alternation sentences from a fragment of the837

OpenWebText corpus (Gokaslan and Cohen, 2019),838

which is used to train the GPT2 model family.839

We parsed a fragment (around 160 mil-840

lion tokens) of the corpus with spaCy (Honni-841

bal et al., 2020). Specifically, we used the842

en_core_web_trf specification of the spaCy843

model, and we identified the set of dative alter-844

nation sentences by doing dependency parsing on845

each sentence. Then, we counted the frequencies of846

the set of English pronouns occurred as the indirect847

object of the ditransitive verb. The list of pronouns848

and their frequencies are presented in Table. 2,849

sorted by frequency:850

Pronoun Frequency

you 4621
me 2962
us 2959

him 2210
them 1847

it 1297
her 738

Table 2: The respective frequencies of the English pro-
nouns occurring as the indirect object of ditransitive
sentences in a fragment of the OpenWenText corpus.

To convert the existing dative alternation priming851

corpus to the with-pronoun version, we replaced852

the indirect object of every sentence in the exist-853

ing corpus by one of the pronouns through random854

sampling according to their respective relative fre-855

quencies.856

B Fine-tuning details857

As is presented in Section 3.5, to simulate structural858

priming in the Fine-tuning mode, we fine-tuned859

a pre-trained GPT2-SMALL model on every prime860

sentence and used the updated model to do infer-861

ence on the target sentences.862

We loaded the pre-trained GPT2-SMALL model863

from the TransformerLens (Nanda and Bloom,864

2022) package and used the train function from 865

TransformerLens to do fine-tuning. To avoid 866

catastrophic forgetting during fine-tuning, we ap- 867

plied a regularization term to the loss function for 868

gradient descent. We randomly sampled a fixed 869

set of 5000 adjacent tokens from the OpenWeb- 870

Text (so that it resembles the distribution of the 871

pre-training data) and computed the loss on them 872

of the pre-trained GPT2-SMALL model. Then, at 873

each step during fine-tuning, we added to the loss 874

term the squared difference between the current 875

loss and the raw (pre-trained) loss of the model on 876

these 5000 tokens, scaled by a coefficient λ = 0.8. 877

We found that this regularization term helped keep- 878

ing the model stable during fine-tuning on a single 879

sentence. 880

We did a hyperparameter search and chose the 881

set of parameters in Table 3. We used the de- 882

fault values from TransformerLens for the rest 883

of the relevant hyperparameters (such as warmup, 884

maximum gradient norm, etc.). 885

Parameter Value

number of epochs 10
batch size 1

learning rate 1e−5

optimizer AdamW
lambda 0.8

Table 3: Hyperparameters used as the training configu-
ration for the Fine-tuning mode of structural priming
on GPT2-SMALL.

C Verb biases with and without pronoun 886

Figure 6: Comparison of PD biases with (top) and with-
out (bottom) pronouns for GPT3. As is shown in Equa-
tion. 1, a high PD-bias means a larger proportion of
probability assigned to the PD structure against the DO
structure in LLMs.
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