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Abstract

Large language models (LLMs) have shown
the emerging capability of in-context learning
(ICL). One line of research has explained ICL
as functionally performing gradient descent. In
this paper, we introduce a new way of diagnos-
ing whether ICL is functionally equivalent to
gradient-based learning. Our approach is based
on the inverse frequency effect (IFE)—a phe-
nomenon in which an error-driven learner is
expected to show larger updates when trained
on infrequent examples than frequent ones. The
IFE has previously been studied in psycholin-
guistics because humans show this effect in the
context of structural priming (the tendency for
people to produce sentence structures they have
encountered recently); the IFE has been used
as evidence that human structural priming must
involve error-driven learning mechanisms. In
our experiments, we simulated structural prim-
ing within ICL and found that LLMs display
the IFE, with the effect being stronger in larger
models. We conclude that ICL is indeed a type
of gradient-based learning, supporting the hy-
pothesis that a gradient component is implicitly
computed in the forward pass during ICL. Our
results suggest that both humans and LLMs
make use of gradient-based, error-driven pro-
cessing mechanisms.

1 Introduction

To what extent do humans and language models use
similar processing mechanisms? This question is
of interest to both Artificial Intelligence researchers
and cognitive scientists. Language models and hu-
man learners have some substantial differences:
human learners often display a flexible learning
ability to adapt to new examples, while language
models require massive training data and a large
number of parameters to exhibit human-like perfor-
mance. Recent pre-trained large language models
(LLMs) have shown the emerging capability of
in-context learning (ICL): LLMs can adapt to spe-
cific tasks with a few demonstration-answer pairs

served as prompts in the context window without
any parameter updates (Brown et al., 2020). This
intriguing emergent capability could provide a way
to bridge the divide between language models and
human learners: perhaps ICL is a processing mech-
anism that, like humans, can flexibly adapt to new
examples.

Among various works on the sources and inter-
pretations of the ICL capability, one line of research
aims to deepen the theoretical understanding of
ICL by offering functional interpretations of ICL
via gradient descent. Garg et al. (2022), Zhang
et al. (2023), and Ahn et al. (2024) have shown
that standard Transformers (Vaswani et al., 2017)
can be trained to implement learning algorithms for
linear regressions under the ICL training objectives.
Von Oswald et al. (2023) have demonstrated that
Transformer models, with appropriate choices of
parameters, can process in-context demonstrations
in a way that is functionally equivalent to perform-
ing gradient updates on the same demonstration
examples. Dai et al. (2023) provided a mathemat-
ical construction showing the dual form between
Transformer attention and gradient descent and in-
terpreted ICL as a meta-optimization process that
performs implicit fine-tuning. However, Shen et al.
(2023) pointed out that previous accounts are lim-
ited in treating ICL as a non-emergent property and
deviate from actual LLMs pre-trained with natural
data since those accounts involve hand-constructed
weights and use ICL objectives instead of the stan-
dard language modeling objectives. They found
inconsistent behaviors of ICL and GD in real mod-
els, and left the equivalence between ICL and GD
an open hypothesis.

In this paper, we aim to better characterize what
kind of learning mechanism ICL is by drawing a
connection between ICL and human learning mech-
anisms. Specifically, we examine the hypothesis
that ICL functionally performs gradient-based fine-
tuning (e.g., gradient descent) by empirically inves-



tigating a weaker claim with off-the-shelf LLMs
and with natural language data: whether ICL is a
type of gradient-based, i.e., error-driven learn-
ing such that a gradient component is computed
during the forward pass. We approach this ques-
tion by treating ICL as a processing mechanism
of LLMs and borrowing insights from methods of
studying processing mechanisms in humans: we
examine to what extent LLMs show the inverse
frequency effect (IFE), a phenomenon in the hu-
man structural priming paradigm (Branigan and
Pickering, 2017) that has been argued to require
one particular processing mechanism in humans,
namely implicit learning (e.g., Chang et al., 2006).
We study the linguistic phenomenon of the dative
alternation and demonstrate that LLMs show robust
IFE under standard fine-tuning and varying degrees
of IFE under the ICL setting, with larger models
showing a stronger IFE. We conclude that ICL is
indeed a gradient-based learning mechanism.

Our study has implications for both
NLP/machine learning (1 and 2) and linguistically-
motivated analysis of LLMs (3 and 4):

(1) We find evidence that ICL can be viewed as a
form of gradient-based learning.

(2) By establishing a connection between priming
and prompting, we generalize the notion of
ICL beyond the standardly assumed prompt
format of input-output pairs.

(3) We show that LLMs qualitatively display an
important property of human language pro-
cessing, namely the IFE in structural priming.

(4) While most human-LLLM comparisons focus
on representations, our experiments go one
step further by analyzing the processing mech-
anisms used by LLMs.

Overall, our results suggest that error-driven learn-
ing is an aspect of processing that is shared between
humans and LLMs.

2 Background and Related Work

In this section, we lay out the building blocks nec-
essary for our reasoning of diagnosing the gradient-
based nature of ICL through the IFE. Our approach
is formally stated in Section 3.1.

2.1 Structural Priming in Psycholinguistics

Structural priming refers to the phenomenon that
speakers tend to reuse recently encountered syntac-
tic structures (Bock, 1986). For example, speakers

tend to produce a double object (DO) structure
(e.g., The student sent the professor a letter) rather
than a prepositional dative (PD) structure (e.g., The
student sent a letter to the professor) after encoun-
tering a DO sentence (e.g., Alice gave Bob a book).
Similar to adapting to prompts in LLMs, structural
priming has also been interpreted an adaptation
mechanism, where speakers adapt lexical and syn-
tactic predictions to the current context (Jaeger and
Snider, 2013).

One important aspect of structural priming is the
inverse frequency effect (Jaeger and Snider, 2008;
Bernolet and Hartsuiker, 2010; Kaschak et al.,
2011): less preferred syntactic alternatives (mea-
sured by the relative frequency in the speaker’s ex-
perience against their counterparts) cause stronger
overall priming than more preferred structures. The
gradient degrees of each unique verb’s structural
preference is called verb biases (or alternation bi-
ases, see Hawkins et al., 2020 for a systematic
investigation on verb biases in neural models). For
example, since give is biased towards DO in En-
glish, a prime sentence with give in PD structure
will cause a greater priming effect than that prime
sentence in DO structure. That is, the strength of
PD priming (i.e., the increase in the probability of
a PD target given a PD prime) inversely correlates
with the expectation on a PD prime, determined by
its verb bias (Bernolet and Hartsuiker, 2010).

Two mainstream theories have been proposed to
account for structural priming. Transient activation
theory (Pickering and Branigan, 1998) claims that
the activation of structural representations from the
prime persists for a short time (in working mem-
ory), so the structural information has a higher
probability of being reactivated on the next rele-
vant opportunity. The current form of transient
activation theory does not account for the IFE be-
cause it is independent from verb biases and does
not involve any error-driven mechanism. Alterna-
tively, implicit learning theory (Chang et al., 2006)
claims that humans implicitly learn probabilistic in-
formation about different structures (including verb
biases) from experience (in the long-term memory)
and use such information to predict the form of
prime sentences. Crucially, under standard theories
of learning, the update performed by the learner is
error-driven, such that a larger update is performed
in situations where the learner’s predictions are far-
ther from the truth. In the context of priming, this
would mean that priming strength is determined
by the difference between the learner’s predictions
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Figure 1: Reasoning behind our current study.

and the actual prime sentence: the less expectation
the learner has on the observed prime structure, the
larger the gradient is, resulting in a larger priming
strength. Therefore, the implicit learning theory -
unlike transient activation - predicts the IFE. The
two theories are not mutually exclusive and can
co-exist to account for priming, stated as the dual
mechanism account (Tooley and Traxler, 2010).

In this study, we assume the correctness of the
psycholinguistic theories that only some kinds of
error-driven learning mechanisms could predict the
IFE. Therefore, by examining whether LLMs show
IFE in the ICL setting, we can infer whether some
type of gradient component is computed in the for-
ward pass without explicit weight updates, which
informs us about whether there is a gradient-based
component in ICL.

2.2 Connections among Distributional
Properties of Pre-Training Data, Priming,
and In-Context Learning

Another line of research explains the origin of
ICL from the distributional properties of the pre-
training data. Chan et al. (2022) showed that ICL
emerges when the training data exhibits particu-
lar distributional properties (such as burstiness, in
which items appear in clusters rather than being
uniformly distributed over time). Hahn and Goyal
(2023) argued that ICL emerges from the compo-
sitional structures found in the pre-training data
under the standard next-token prediction objective.
Chen et al. (2024) found that parallel structures
in the pre-training data give rise to the ICL capa-
bility in LLMs. They defined parallel structures
as pairs of phrases following similar templates in
the same context window and found that removing
parallel structures in the pre-training data signifi-
cantly reduces LLMs’ ICL accuracy. Chen et al.
also pointed out that despite the fact that the pre-
training data is not formatted strictly as in-context
prompts, i.e., input-output pairs, the naturalistic

data often contains phrases following similar tem-
plates. Those phrase pairs could be conceptualized
as in-context examples of implicitly defined, less
structured shared “tasks”, such as n-gram copying,
syntactic constructions, and world knowledge.

As structural priming is a well-attested phe-
nomenon in humans, it is reasonable for us to hy-
pothesize that structural priming is a factor that
shapes the distribution of the pre-training data
since humans tend to produce abundant parallel
structures in the naturalistic setting. For this rea-
son, we view the repeated structures from structural
priming as a case of the parallel structures in Chen
et al.’s (2024) sense. Inspired by the data-centric
perspective, we think of ICL as not necessarily
involving explicit demonstration-answer pairs for
specific tasks, as is typically understood in the lit-
erature. Instead, we conceptualize ICL as a more
generalized notion that involves a sensitivity of
parallelism through generic next-token prediction:
any text in the context window will affect the con-
ditional probability distribution over the logits of
the next token. This generalized notion of ICL,
namely, having prompts in the context window, is
analogous to priming in humans, as is elaborated
in Section 3.1.

2.3 Structural Priming in Neural Language
Models

As structural priming has been proposed as a means
of probing the abstract mental representations of
structural information in humans (Branigan and
Pickering, 2017), previous works have adopted this
paradigm for probing learned linguistic represen-
tations in neural networks. It has been shown that
LSTMs (Gulordava et al., 2018) are capable of
adapting to syntactic structures under the adapta-
tion way of priming (Van Schijndel and Linzen,
2018; Prasad et al., 2019): fine-tuning model
weights on prime sentences and testing target sen-
tence probabilities on the updated model, which
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Figure 2: An overview of our experiment design.

is analogous to the implicit learning account of
structural priming and involves weight updates. Re-
cently, Sinclair et al. (2022) have shown that the
GPT2 family (Radford et al., 2019) showed ro-
bust structural priming through encoding structural
information given in the preceding context (i.e., di-
rectly concatenating target sentences with prime
sentences), which does not involve any weight up-
dates." Other works have demonstrated crosslin-
gual structural priming in large language models
(Michaelov et al., 2023), suggesting that structural
priming is robustly detected in LLMs.

Previous works have demonstrated the behav-
ioral alignment of LLMs with humans on showing
structural priming, which set the ground for our
current study of investigating the processing mech-
anisms underlying priming. So far, no study has in-
vestigated whether LLLMs also show the IFE, which
serves as a separate motivation for our experiments.

3 Current Study
3.1 Overview of Our Approach

We first clarify our conceptualization of ICL. As is
stated in Section 2.2, instead of following the no-
tion of ICL as having demonstration-answer pairs
of some tasks as prompts in the context window,
here we propose that any text in the context window
will condition the model’s next word prediction:
how the probability distribution over the next token
changes depends on what the model captures or en-
codes from the context. Therefore, the generalized
notion of ICL is analogous to adapting to encoun-
tered syntactic structures with structural priming
in humans. On the humans’ side, encountering a
DO sentence will temporarily condition the speaker
towards producing or more quickly comprehending

'Sinclair et al. (2022) have also demonstrated that the
GPT2 models showed the lexical boost effect, another well-
attested sub-phenomenon of structural priming, which is not
our main focus here.

another sentence of the same structure. On the mod-
els’ side, processing a DO sentence in the prompt
will condition the model to increase its probability
of producing another DO structure sentence dur-
ing generation, as is reviewed in Section 2.3. That
is, the less structured, implicitly defined “task” en-
coded by the DO sentence as the prompt could be
interpreted as “producing another sentence follow-
ing the DO structural template exemplified in the
prompt.”

Then, our research question is whether a gradi-
ent component is computed during the forward
pass of processing the prompt in the general-
ized ICL setting. We investigate the question by
testing whether LLMs show the IFE in the ICL set-
ting. As is illustrated in Figure. 1, given that (i) it
has been argued by psycholinguists that only some
error-driven learning mechanism will give rise to
the IFE; (ii) processing the prime sentence in the
context window conditions the probability of the
target sentence in the generalized notion of ICL;
(ii1) standard structural priming in the ICL setting
has been robustly observed, we hypothesize that
the strength of the IFE positively correlates with
the strength of the ICL capability of LLMs: the
stronger the ICL capability is, the better the gradi-
ent will be computed in the forward pass, which
leads to a stronger IFE.

Specifically, we simulate structural priming
across LLMs of various sizes with the two modes
mention in Section 2.3. As is illustrated in Figure.
2, the Fine-Tuning mode fine-tunes the parame-
ters on a single prime sentence, and the updated
model is used to infer the probability of the target
sentence. The Concatenation mode resembles the
ICL setting, where the prime sentence is directly
concatenated with the target sentence as the prompt
in the context window, and the probability of the
target sentence is measured. The Fine-Tuning
mode serves as a sanity check that LLMs are able



to show the IFE when there is explicit error-driven,
gradient-based learning. It sets the ground for our
main focus: using the Concatenation mode to
diagnose the gradient-based nature of ICL.

3.2 Corpus

We adapted the Core Dative PRIME-LM Corpus
from Sinclair et al. (2022) to create our dataset.
We briefly introduce the desired properties of the
corpus and refer the readers to the original paper
for details. The dative corpus consists of sentences
in two forms:

(5) DO: DPsubj \' DPiobj DPdobj
e.g., A girl bought a guy a coffee.

(6) PD: DPsubj \% DPdobj Prep DPz‘obj
e.g., A girl bought a coffee for a guy.

Each DP is a determiner with a common noun
(120 distinct nouns in total). The corpus was con-
structed in the way that controlled for the degree
of semantic association and lexical overlapping be-
tween prime and target sentences, and sentences
are semantically plausible as the ditransitive verbs
were manually labeled with their verb frames.

Since our goal is to study the IFE, which depends
on the verb biases of particular verbs, we want
each pair of prime and target verbs to be equally
represented. Thus, for each of the 22 prime verbs,
we sampled 50 target sentences for each of the 21
target verbs (we excluded cases where prime and
target verbs overlap). For each target sentence, we
sampled a prime sentence with no lexical overlap-
ping to form a prime-target pair. Each prime-target
pair yields 4 instances of structural combinations
(Tpp| Pep, Trp|Ppo, Tpo|Peps Too|Ppos, i.e., tar-
get sentence 7' conditioned on prime P), result-
ing in 92400 prime-target pairs.> An example of
Tep|Ppo is “A doctor brought a chief a plate. The
secretary drew the card for the band.”

Crucially, we also created an alternative dataset
of the same size by replacing the indirect object
DP with a pronoun.? This was motivated by a cor-
pus parse* we did that showed that the most com-

*In this paper, we use P for prime sentences and P for
probability.

3Details of the set of pronouns and their relative probabili-
ties are in Appendix A.

“In order to find the verb biases represented in the training
corpus of GPT2 models, we parsed a fragment (around 160
million tokens) of the OpenWebText corpus (Gokaslan and
Cohen, 2019) with python package spaCy (Honnibal et al.,
2020) to get a distribution of the DO vs. PD ratio for each
verb. We found that the verb biases from the corpus are less
well-represented in GPT2 models.

Trp|Ppo

Prime in DO Structure Target in PD Structure

Unprimed log probability = -50

Input: A doctor brought a chief a plate. The secretary drew the card for the band.
Verb PD Bias

Primed log probability

Bring 0.23 -50.5
Buy 0.27 -50.8
Find 0.41 -51.3

Draw 0.52 -52.0

Design 0.77 -52.9

When priming in DO structure

Prime Verb

larger PD biases > agreater priming effect

Figure 3: A demonstration of the IFE: a stronger prim-
ing effect of a DO prime is predicted as PD-bias in-
creases. The numerical values of the primed log proba-
bilities are for illustration purpose.

mon indirect object in DO sentences are animate
pronouns, suggesting that animacy is crucial for
naturally capturing verb biases, confirming results
reported in Bresnan et al. (2007). The presence and
absence of pronouns lead to different verb biases
for LLLMs, which affect their IFE behaviors. We
will return to this point in discussion.

3.3 Language Models

We considered a set of Transformer models that
have been claimed to show ICL capabilities to vari-
ous extents (Lee et al., 2023):

* GPT2 (Radford et al., 2019) in three of
its sizes (SMALL, MEDIUM, LARGE), with
85M, 302M, and 708M number of parame-
ters, respectively. All versions were loaded
from package transformerLens (Nanda and
Bloom, 2022).

* LLAMAZ2 (Touvron et al., 2023) in three ver-
sions: 7B (6.5B parameters), 7B-CHAT (6.5B
parameters), 13B (13B parameters). All ver-
sions were loaded from Huggingface (Wolf
et al., 2019).

¢ GPT3-base (Brown et al., 2020) with the
DAVINCI-002 version (175B parameters), ac-
cessed via OpenAl APL.

The models are sorted by size, and correspond-
ingly, by their ICL capabilities, so we predicted a
stronger IFE as size increases.’

3.4 Quantifying Verb Biases

The verb bias for a specific verb is the likelihood of
producing structure X compared to the alternative

SWe also tested LSTMs (Gulordava et al., 2018) with the
current Concatenation mode and we found that they did not
show structural priming, although LSTMs did show structural
priming in the Fine-tuning mode (Van Schijndel and Linzen,
2018; Prasad et al., 2019).



structure Y. In human experiments, baseline verb
biases are estimated as the ratio of the number of
one structure over the sum of two structures in nat-
ural production settings or corpus searches (Zhou
and Frank, 2023). Here, we computed a continuous
verb bias for each verb analogously as the ratio of
the probability of one structure over the sum of the
probabilities of both structures. The probability of
a sentence s is the product of probabilities assigned
by LMs to each token w;: P(s) = [[; P(w;).b
This measures how likely it is for the model to
see or produce this sentence. Then, given a set
of sentences Sy with ditransitive verb V', where
each sentence T’y with structure X always has its
counterpart Ty (see 5 and 6) in the opposite struc-
ture, the X-bias of verb V is the mean normalized
probability of sentences in structure X:

P(Tx)

TX%V P(Tx) + P(Ty)

1
v

(1
3.5 Simulating Structural Priming

As is stated in Section 3.1, we use two modes to
simulate structural priming. Following Van Schijn-
del and Linzen (2018), for the Fine-Tuning mode,
we update the parameters by fine-tuning the model
on a single prime sentence with learning rate 1e >
for 10 epochs (see the full fine-tuning details in
Appendix B), and we take the updated model to
do inference on the target sentence. Following Sin-
clair et al. (2022), for the Concatenation mode,
we condition a target sentence on a prime sentence
through directly concatenating them, separated by
a period, without any weight updates.

The probability of the target sentence after prim-
ing is the product of probabilities assigned to its
tokens: P(T'x|Px) =[], P(Tx,|Px,Tx_,). Fol-
lowing from standard priming effect, the prob-
ability of the same target sentence 7'x should
be greater after primed by a sentence with the
same structure: P(Tx|Px) > P(Tx); primed
by the opposite structure decreases its probability:
P(TX|P}/) < P(Tx).

3.6 Predictions on the Inverse Frequency
Effect

Recall that the IFE states that the priming strength
of structure X inversely correlates with the prime
®1n practice, we took the sum of the log probabilities as-

signed by LLMs to each token in the target sentence, which is
equivalent to the summation notation.

verb’s X -bias. That is, IFE is solely about the effect
of the prime verbs, i.e., the degree of deviation
of the target production from baseline it causes.
Therefore, for each prime verb V', we computed the
PrimeBias for the PD target structure given a DO
prime sentence as the normalized target probability
primed by this verb over a set of target sentences
in Equation. 2:

_ 1

PrimeBias(PD|DO, V) = Too] [ Pocy
PD| " [4 DOV

> X

tppE€TPD Ppov €EFpov
P (tep|pho)
P(tpolpho) + P(teo|ppov)

2
As is shown in Figure. 3, the IFE predicts that
with a PD target and DO prime sentence, as the
prime verb V’s PD-biases increase, the prime sen-
tence is less expected, resulting in a larger priming
strength towards the DO direction in target pro-
duction, i.e., a smaller PrimeBias(PD|DO,V)
value. Similarly, as PD-biases increase, a PD prime
sentence will result in a smaller priming strength
towards the PD direction in target production,
i.e., again a smaller PrimeBias(PD|PD, V') value.
Therefore, when plotting PrimeBias(PD|DO, V')
and PrimeBias(PD|PD, V') against increasing
verb biases and fitting a line with linear regres-
sion, the IFE predicts negative slopes for both
plots. Moreover, standard priming predicts that
PrimeBias(PD|PD, V') should have a higher in-
tercept than PrimeBias(PD|DO, V') since the for-
mer increases the probability of Tpp while the latter
decreases the probability of Tpp.’

4 Results and Analysis

For each model and for each prime verb,
we plotted  PrimeBias(PD|PD,V) and
PrimeBias(PD|DO, V)  against increasing
verb biases and used linear regression to find the
pattern of priming strength with respect to verb
biases. We reported the R-squared (R?) coefficient
and the root mean squared error (RMSE) to assess
the significance of the fitted lines.

4.1 Fine-tuning Mode

We applied the Fine-tuning mode to GPT2-
SMALL.% As is shown in Figure. 4, the

"The other two conditions, namely Tpo|Pep and Tpo| Poo,
should have exactly the opposite slopes, and the intercepts
should add up to 1 with its counterparts.

8We did not carry out this mode for larger models because
of the substantial computational resources they require: each
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Figure 4: GPT2-SMALL shows robust IFE under the
Fine-tuning mode. Both the Tpp|Ppp condition (left)
and the Tpp| Ppo (right) have negative slopes, and the
Trp| Pep has a higher intercept than Tpp| Ppo.

Tep|Ppp condition having a larger intercept
than the Tpp|Ppo condition, suggesting that the
Fine-tuning mode is able to capture the standard
structural priming. We indeed observe two negative
slopes, suggesting that the Fine-tuning mode is
able to capture the IFE. The Tpp|Ppo condition has
ahigher R? score of 0.75, demonstrating a stronger
IFE than the Tpp|Ppo condition.

Overall, this shows that even the smallest model
shows the IFE under explicit gradient-based weight
update, which passes the sanity check and suggests
that LLMs are capable of showing the IFE with
explicit gradient-based weight updates.

4.2 Concatenation Mode

We applied the Concatenation mode to all mod-
els, and we only show one plot for each of the
three types of models and report the full results
in Table 1. As is shown in Figure. 5, for all mod-
els across all conditions, the Tpp|Ppp intercept is
greater than the Tpp|Ppo intercept, showing the
standard structural priming effect, which is consis-
tent with our prediction. The RMSE score for all
conditions are less than 0.04, suggesting a signif-
icant predictability of the fitted lines to the data
points. For the IFE, we found that all three sizes
of GPT?2 failed to show the IFE, as the slopes are
either positive or close to zero. This suggests that
in GPT2, the priming strength is not correlated
with the verb biases under current metric. All three
LLAMAZ2 models showed the two negative slopes,
which is consistent with our prediction. However,
only in the Pronoun Tpp|Ppo condition are the R?
coefficients constantly greater than 0.5 across the

priming instance requires a separate fine-tuning process. How-
ever, this is unproblematic for our conclusions, given that the
Fine-tuning mode is expected to show the IFE in all cases,
given its explicit gradient updates.

three models,’ suggesting that the negative slopes
themselves are not well accounted for given the
distribution of prime verb’s IFE scores. Finally,
for GPT3, both Tpp|Pep and Tpp| Ppo conditions
with Pronoun have R? coefficient greater than 0.5,
while neither holds in the NoPronoun condition.

Therefore, besides confirming previous results
that LL.Ms show structural priming effect, the cur-
rent results suggest that in general, larger models
tend to show stronger IFE, which analogously
correlates with their ICL capability. Assuming
that LLMs’ ICL capability correlates with their
sizes, given the currently observed pattern, we fur-
ther predict larger models such as GPT4 should
show a stronger and more significant IFE, which is
left for future study to verify.

4.3 The Distinction between the Pronoun vs.
NoPronoun Conditions

As is shown in Table. 1, the majority of cases with
R? score above 0.5 are the WithPronoun Tpp|Ppo
cases. The fact that the observed patterns fit bet-
ter with our predictions in the Pronoun condition
than NoPronoun condition remains curious. The
main difference lies in the default verb biases: as
is shown in Figure. 6 in Appendix C, the GPT3
model shows an overwhelming bias towards PD
without pronoun but a reverse pattern favoring DO
with pronoun. This pattern holds across all mod-
els and is consistent with our corpus parse result,
which suggests that the most common indirect ob-
ject DP in the DO sentences are animate pronouns,
causing the model to assign a higher probability of
pronoun sentences. However, it still remains puz-
zling why and how differences in verb biases could
lead to different significance of the IFE behavior in
the two conditions.

5 Discussion and Conclusion

ICL is a gradient-based learning mechanism
We started with the question whether ICL could be
a processing mechanism of LLMs that resembles
human learning mechanisms that flexibly adapt to
recently encountered examples. To better charac-
terize what kind of learning ICL is, we examined
existing proposals of explaining ICL through func-
tional gradient descent or implicit fine-tuning and
focused on one particular aspect of ICL: whether it
involves a gradient component during the forward

Given no consensus on standard R? score thresholds, we
picked this criterion by default.
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Figure 5: The IFE across models of different sizes in the WithPronoun condition under the Concatenation mode.

Models With Pronoun | PDPD_slope PDPD_intercept PDPD_R?> PDPD_RMSE DOPD_slope DOPD_intercept DOPD_R? DOPD_RMSE
GPT2-small True 0.011 0.370 0.014 0.020 -0.007 0.278 0.008 0.017
GPT2-small False 0.014 0.746 0.024 0.016 0.006 0.653 0.003 0.019

GPT2-medium True -0.013 0.351 0.015 0.023 -0.026 0.256 0.107 0.016
GPT2-medium False -0.023 0.748 0.067 0.017 -0.035 0.590 0.060 0.027
GPT2-large True 0.011 0.330 0.017 0.019 -0.037 0.241 0.173 0.018
GPT2-large False -0.003 0.698 0.001 0.018 -0.020 0.487 0.026 0.024
LLAMA2-7b True -0.020 0.392 0.073 0.015 -0.086 0.229 0.645 0.013
LLAMA2-7b False -0.026 0.807 0.046 0.019 -0.111 0.627 0.149 0.042
LLAMA2-7b-chat True -0.012 0.413 0.019 0.018 -0.095 0.263 0.587 0.017
LLAMA2-7b-chat False -0.013 0.788 0.007 0.024 -0.102 0.605 0.107 0.044
LLAMA2-13b True -0.059 0.434 0.323 0.018 -0.099 0.256 0.760 0.011
LLAMA2-13b False -0.066 0.859 0.160 0.019 -0.177 0.685 0.224 0.042
davinci-002 True -0.078 0.403 0.570 0.013 -0.078 0.223 0.662 0.011
davinci-002 False -0.064 0.851 0.172 0.020 -0.145 0.632 0.257 0.035

Table 1: The slope, intercept, R?, and RMSE of the fitted lines for each condition under the Concatenation mode.
Conditions with both negative slopes are bold (which suggests capturing the IFE), and R? scores higher than 0.5 are

bold (which means a more significant fitted line).

computation. We differ from previous approaches
by testing real LLMs and with natural language
data. We established the connection between ICL
and human structural priming, and we used the IFE
to diagnose the presence or absence of the gradient
component when LLMs process the prime sentence
as the prompt. We found that larger models exhibit
a stronger IFE, which suggest that the stronger ICL
capability in larger models enables them to better
capture the gradient nature of the verb biases en-
coded in the prime sentence as the prompt, which
leads to a more significant IFE.

Therefore, our findings support the hypothesis
that a gradient component is implicitly involved in
the forward computation of ICL. This suggests that
gradient-based learning might be a crucial property
that enables generalizations from a few samples,
which is shared between LL.Ms and human learn-
ers. Our study not only provides behavioral results
that align LLMs’ behaviors with human behaviors
on structural priming at the processing mechanism
level, but also demonstrates the possibility of study-
ing the nature of ICL with off-the-shelf pre-trained
LLMs and with naturalistic data.

ICL emerges from Language modeling ICL
is typical understood as involving demonstration-
answer pairs in the prompt. Inspired by the data-
centric views that explain ICL from the distribu-
tional properties of pre-training data, we proposed
a generalized notion of ICL that is sensitive to gen-
eral parallelisms. As a result, any text in the prompt
could serve as an implicitly defined “task” of fol-
lowing the template provided in the context and
generating a parallel structure. Therefore, ICL
could be viewed as a side product of the general
language modeling task. We leave this perspective
for future investigation.

Future Directions If ICL is indeed gradient-
based, our reasoning predicts that we should ob-
serve the IFE in other ICL tasks, including non-
linguistic problems. For instance, for the Country-
Capital mapping task, prompting the model with
demonstrations with lower zero-shot probabilities
is predicted to yield a larger improvement to the
model performance than prompting with demon-
strations with higher zero-shot probabilities. We
leave this prediction for future study.



Limitations

Behavioral versus Mechanistic Accounts Al-
though ICL is generally identified as a phenomenon
at the behavioral level, having an explanation at
the mechanistic level is desirable since it brings
greater interpretability and is more concrete on the-
ory building. Our current study, despite using real
pre-trained models and naturalistic data, remains
at the behavioral level and is empirical in nature.
Given our current contribution of establishing a
connection between ICL and human priming and
using the IFE as a diagnostics on the presence or
absence of the gradient-based nature of ICL, future
work could improve our understanding by incorpo-
rating techniques from mechanistic interpretability
to explain our current finding at the mechanistic
level. For instance, it is possible to find a function
vector (or, task vector) proposed by Hendel et al.
(2023) and Todd et al. (2023) for the implicitly de-
fined task of “producing a sentence in the DO (or
PD) structure” (or, in general, produce the next to-
ken that resembles the structural template observed
in the prompt).

Examining the IFE on Other Models As the
ICL capability is argued to scale with the model
sizes, we predict in Section 4.2 that the IFE effect
will be more robust in larger models. Although
the difference in the IFE behavior between GPT2
and GPT3-BASE is significant enough, we have
not observed a saturation of the IFE. GPT3-BASE
is currently the biggest model on which we have
access to the logit predictions, but we believe the
same behavioral test could be applied to larger mod-
els in order to verify our prediction.

Extending the IFE to other ICL Tasks In this
study, we only examined the IFE on one single
“task” of structural priming. If our reasoning is cor-
rect, that it is indeed the gradient component of the
ICL that results in LLMs’ capability of capturing
the IFE, then we predict that the IFE diagnostics
could be generalized to other ICL tasks, even non-
linguistic tasks. As is outlined in Section 5, future
work could extend our current method to ICL tasks
such as Country-Capital mapping, two-digit multi-
plication, etc. Finding the IFE on a wider range of
tasks would better strengthen our reasoning, while
not observing IFE on other tasks is also helpful
for developing mechanistic level explanations to-
wards a better understanding of ICL as a processing
mechanism.
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A Finding pronoun probabilities in the
OpenWebText corpus with spaCy

As is mentioned in Section 3.2, we constructed
the with-pronoun version of the corpus in order to
investigate the impact of animacy of the indirect
object on the verb biases. To do this, we approx-
imated the distribution of the natural occurrence
frequencies over the set of English pronouns in da-
tive alternation sentences from a fragment of the
OpenWebText corpus (Gokaslan and Cohen, 2019),
which is used to train the GPT2 model family.

We parsed a fragment (around 160 mil-
lion tokens) of the corpus with spaCy (Honni-
bal et al., 2020). Specifically, we used the
en_core_web_trf specification of the spaCy
model, and we identified the set of dative alter-
nation sentences by doing dependency parsing on
each sentence. Then, we counted the frequencies of
the set of English pronouns occurred as the indirect
object of the ditransitive verb. The list of pronouns
and their frequencies are presented in Table. 2,
sorted by frequency:

Pronoun Frequency

you 4621
me 2962

us 2959
him 2210
them 1847
it 1297
her 738

Table 2: The respective frequencies of the English pro-
nouns occurring as the indirect object of ditransitive
sentences in a fragment of the OpenWenText corpus.

To convert the existing dative alternation priming
corpus to the with-pronoun version, we replaced
the indirect object of every sentence in the exist-
ing corpus by one of the pronouns through random
sampling according to their respective relative fre-
quencies.

B Fine-tuning details

As is presented in Section 3.5, to simulate structural
priming in the Fine-tuning mode, we fine-tuned
a pre-trained GPT2-SMALL model on every prime
sentence and used the updated model to do infer-
ence on the target sentences.

We loaded the pre-trained GPT2-SMALL model
from the TransformerLens (Nanda and Bloom,
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2022) package and used the train function from
TransformerLens to do fine-tuning. To avoid
catastrophic forgetting during fine-tuning, we ap-
plied a regularization term to the loss function for
gradient descent. We randomly sampled a fixed
set of 5000 adjacent tokens from the OpenWeb-
Text (so that it resembles the distribution of the
pre-training data) and computed the loss on them
of the pre-trained GPT2-SMALL model. Then, at
each step during fine-tuning, we added to the loss
term the squared difference between the current
loss and the raw (pre-trained) loss of the model on
these 5000 tokens, scaled by a coefficient A = 0.8.
We found that this regularization term helped keep-
ing the model stable during fine-tuning on a single
sentence.

We did a hyperparameter search and chose the
set of parameters in Table 3. We used the de-
fault values from TransformerLens for the rest
of the relevant hyperparameters (such as warmup,
maximum gradient norm, etc.).

Parameter Value
number of epochs 10
batch size 1
learning rate le™®
optimizer AdamW
lambda 0.8

Table 3: Hyperparameters used as the training configu-
ration for the Fine-tuning mode of structural priming
on GPT2-SMALL.
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Figure 6: Comparison of PD biases with (top) and with-
out (bottom) pronouns for GPT3. As is shown in Equa-
tion. 1, a high PD-bias means a larger proportion of
probability assigned to the PD structure against the DO
structure in LLMs.
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