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ProactiveBench: Benchmarking Proactiveness in
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Figure 1: We propose ProactiveBench, a multimodal benchmark to evaluate proactiveness in
multimodal large language models, i.e., the ability to ask for additional visual cues from the user to
answer a query under ambiguity. ProactiveBench tests proactiveness in seven scenarios involving
partially observable objects and individuals, blurred input and temporally evolving scenes.

Abstract

How do multimodal large language models (MLLMs) respond when the object
of interest in an image is partially or fully occluded? While a human would
naturally ask follow-up questions or seek additional visual cues before arriv-
ing at the correct answer, do MLLMs exhibit similar “proactive” behavior by
prompting the user for more information? Despite their growing use in human-
machine collaborative settings, no existing benchmark systematically evaluates
the proactiveness of MLLMs. To address this gap, we introduce ProactiveBench,
a benchmark constructed from seven repurposed datasets tailored to evaluate
the task at hand. Given that proactiveness can manifest itself in several forms,
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our benchmark involves recognizing occluded objects and individuals, enhanc-
ing image quality, and interpreting coarsely drawn sketches, to name a few. We
evaluated 14 open-weight MLLMs on ProactiveBench and found that MLLMs
generally lack proactiveness. Critical analyses reveal no clear correlation between
model capacity and proactiveness. Adding “hints” in the query to encourage
proactive suggestions only results in marginal performance improvement. Sur-
prisingly, including conversation histories introduces negative biases in proposing
actions. Overall, the experimental results show that instilling proactiveness in
MLLMs is indeed challenging, and we hope that ProactiveBench will positively
contribute to building more proactive models. Code and benchmark are available
at: https://anonymous.4open.science/r/ProactiveBench.

1 Introduction

Making decisions under uncertainty is the hallmark of human intelligence. Studies in neuroscience
suggest that meaningful perception of the world arises from dynamic interaction with our environ-
ment [18] 22} 24} |56]]. Faced with incomplete or ambiguous information, we instinctively generate
hypotheses, proactively search for additional clues, and revise our interpretations. This ongoing
cycle of inquiry and refinement — central to how humans build coherent understanding of complex
situations — has inspired machine vision, particularly in active vision [3} 15} 48]

Ambiguities may arise when a user’s query is unanswerable due to false user premises [68] or bad
image quality [9], like Fig. [I[s example “What is behind the blue blocks?” For such an input, a
model can either hallucinate an incorrect answer [37], or it can abstain from answering [21} |66].
We call such models reactive. Conversely, a more desirable response from the model is to ask the
user to provide additional visual cues by moving the blocks to reveal the hidden object. We refer to
such models as proactive, since they refine their predictions by asking the user to intervene, which
provides additional information. With the growing adoption of multimodal large language models
(MLLMs) [5,132}[76]] for complex computer vision tasks in ambiguous settings — such as embodied
navigation [36,157] and autonomous driving [55}[70] — it becomes increasingly important to assess
whether MLLMS{]_-] actively seek additional visual cues like humans.

Despite its relevance, MLLM’s proactiveness has received little to no attention in the literature. The
only prior work, Liu et al. [42], examined the use of MLLMs for directional guidance, i.e., requesting
camera movements in poorly framed images to assist visually impaired people in recognizing objects.
Yet, we argue that proactiveness is not limited to directional guidance but can manifest in many other
ways. As Fig. E]shows, MLLMs can also, e.g., ask users to rotate an object, draw additional details to
a sketch, or deblur an image. These examples highlight the need to broaden the scope of studying
proactiveness in MLLMs across a wide range of tasks and modalities.

To fill this gap we introduce ProactiveBench, a novel benchmark that evaluates MLLMS’ proactiveness
in multiple scenarios by repurposing seven existing datasets (ROD [31]], VSOD [38], MVP-N [64],
ImageNet-C [23]], QuickDraw [19]], Changelt [60], and MS-COCO [39]) with different target tasks
(e.g., object/sketch recognition, product identification) that require user intervention to predict the
correct answer. As Fig. [I|shows, ProactiveBench datasets capture different aspects of proactiveness:
(temporal) occlusion removal, camera movement, object movement, image quality enhancement, and
asking for details. In total, ProactiveBench contains more than 108k images, leading to a much larger
benchmark than [42]. These are grouped into 14k samples featuring 25 proactive suggestions, where
each sample (see Fig.[2) contains the starting ambiguous frame, the reference frame with complete
information, and all the frames in between. The user intervention results in a new frame with more
visual cues based on the model’s guidance (termed proactive suggestion).

We tested 14 state-of-the-art MLLMs (e.g., LLaVA-OV 7B [32], Qwen2.5-VL 7B [5], and InternVL3
8B [[76]) on ProactiveBench, reporting accuracy and number of proposed proactive suggestions
before predicting the category. Our experiments suggest that evaluated models lack proactiveness,
i.e., are reactive. Thus, they either tend to abstain from answering (saying, e.g., “I don’t know”) or
predict random categories when the visual cues are insufficient, as Fig. [T| shows. Providing hints
about proactive suggestions increases their sampling probability, which marginally raises accuracy.

"Following prior work [16] [61.[63]], we define MLLMs as LLM:s fine-tuned to process visual inputs.
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Figure 2: ProactiveBench evlaution. At step 1, the MLLM should propose to move the occluding
object (proactive suggestion), as the question is unanswerable. ProactiveBench, then, returns a new
frame following MLLM’s suggestion. Since the model is still unsure, it asks to move the blocks
again. Finally, step 3 holds sufficient information, allowing the MLLM to predict the answer.

Interestingly, underperforming MLLMs (e.g., LLaVA-NeXT Vicuna, InternVL3 1B) appear on the
surface as more proactive than SOTA MLLMs (e.g., LLaVA-OV 7B, Qwen2.5-VL 7B, InternVL3
8B). A controlled experiment, however, indicates that the higher proactiveness results from a lower
rate of abstention on unanswerable questions, not a deep understanding of the problem. Instead,
conditioning on the conversation history or few-shot samples increases proactiveness, but at the cost
of reduced accuracy. Finally, our results highlight that proactiveness is not an emerging property in
MLLMs and must be explicitly elicited, showcasing the challenging nature of ProactiveBench.

Contributions: (i) We formalize and explore MLLMs proactiveness in a wide spectrum, promoting
the development of models that can ask user assistance under ambiguity; (ii) We introduce Proac-
tiveBench, a novel open-source benchmark that assesses MLLM’s proactiveness in diverse contexts;
(iii) Our evaluation of 14 MLLMs on ProactiveBench revealed limited proactiveness and a trade-off
between proactiveness and prediction accuracy.

2 The ProactiveBench

This section presents ProactiveBench, formalizing how MLLM proactiveness is evaluated (Sec. [2.1)),
describing the datasets included in the benchmark and how they were repurposed to assess proactive-
ness across diverse scenarios (Sec.[2.2)).

2.1 Evaluating Proactiveness in MLLMs

We study MLLMS’ proactiveness, where a model should either answer correctly or suggest how to
make a question answerable. Since suggestions may leave questions unresolved (e.g., Fig. [J]'s central
frame), we evaluate proactiveness in a multi-turn setting, allowing the MLLM to interact with the
environment over multiple steps. We use the multiple-choice question-answering framework where
models select from multiple options, enabling structured evaluation over various turns.

We follow previous works 143]), framing the evaluation as a Markov decision process (S, A, 7y,
R), over a finite states space S, a discrete set of actions .4, a policy 7y (the MLLM), and reward R. At
step ¢, the model observes state s; € S, which comprises the image Z; and the valid actions A; C A
(e.g., “wait for the occlusion to disappear”, “I do not know”, “the answer is dog”). Then, it selects
an action a; conditioned by the question ¢ (e.g., “what is this object?”) and the state s; = {Z;, A, }.
Thus, the transition function 7 : S x A — S is defined by the conditioned policy 7 (at|q, s¢). By
selecting a proactive suggestion (e.g., “move the occluding object to the side”), state s; transitions to
S¢+1, leading to a new image and a new set of valid actions. Instead, by either abstaining (e.g., “I
do not know”) or selecting a wrong category (e.g., dog vs cat), the evaluation stops with a wrong
prediction. As the environments are discrete, the policy can select proactive suggestions a finite
number of times, depending on the datasets, after which the evaluation also terminates with a wrong
prediction. Finally, the evaluation also terminates if the model predicts the correct answer. For each
MLLM, we report the average accuracy and the average number of proactive suggestions for each
dataset. Further details about the environment implementation are in the Appendix.
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2.2 Benchmark construction

We introduce seven scenarios to evaluate MLLMSs’ proactiveness by drawing samples from diverse
datasets, which multi-choice options comprise proactive suggestions, the abstain option, and four
categories, out of which only one is correct. The Appendix provides further details on each dataset.

Moving occluding objects. We repurposed the ROD [31]
dataset by creating samples of 14 frames each, where the two
possible suggestions are: moving the occluding object to the left
or the right. The environment presents the model with the fully
occluded image and the prompt, as Fig. [3|shows. The proactive
suggestion asks the user to move occluding objects (e.g., the
blue blocks) that obscure the object of interest (e.g., an orange),
which the model aims to recognize. The model should ask to
move the blocks, and, depending on the visibility of the occluded
object, either predict its category or repeat.

Handling temporal occlusions. We repurposed VSOD [38]], a
dataset of public event videos with bounding-box annotations for
occlusions, to evaluate proactiveness under temporal occlusions.
‘We manually annotated public figures, number of people, and
evant type for each frame, which we prompt the model to answer
as the target category. Each sample contains on average ~230
image frames. As Fig. ] shows, the environment returns the
model the most occluded frame of the sample. The proactive
suggestion involves the model asking the user to rewind the
video or wait for the occlusion to disappear before answering,
which in this case is a public figure (e.g., Anne Hathaway).

Handling uninformative views. We repurposed MVP-N [64] —
a dataset of fine-grained object categories viewed from multiple
angles — to evaluate proactiveness in handling uninformative
views by constructing samples with one or more uninformative
views followed by an informative one. As Fig. [5] shows, the
environment returns the first image from a sample, which is not
informative to predict the correct target category. The proactive
suggestion of the model is to ask the user to rotate the object (or
the camera) until it returns an informative view where the target
category can be reliably predicted (e.g., Activia Yogurt Apple).

Improving image quality. We repurposed ImageNet-C (IN-
C) [23] to test proactivess under corruptions, by creating samples
where the first and the last images are the most and the least cor-
rupted, respectively. As Fig.[6]shows, the environment returns
a corrupted image (e.g., defocus blur), which is not suitable to
predict the correct category (e.g., White shark). The proactive
suggestion of the model in this case is to conduct image quality
enhancements (e.g., deblurring, reducing brightness, removing
artifacts, increasing contrast) from a total of eight possible en-
hancements. In this example, the model should propose to deblur
the image to predict the correct category.

Asking for visual details. Different from the previous cases, we
consider a scenario in which the proactiveness of the model is
assessed by its ability to propose proactive suggestions when pre-
sented with a partial sketch at input. To this end, we repurposed
the QuickDraw (QD) [19] dataset, which contains 345 target
categories, by creating samples of rendered PNGs where each
image includes one additional stroke compared to the previous
one. As more strokes are added, the input image becomes more
recognizable to the model. As Fig. [7]shows, the environment
first presents an image to the model that does not have enough

moving occluding objects

| prompt:

What is behind the blue blocks?

A. |l cannot answer this question.
L]

o

ROD statistics:
ul 88 samples K 1.2k images I 14 images/sample
7 16 categories ® 4 occluding objects # 2 proactive actions

Figure 3: ROD overview.

handling temporal occlusions

prompt:
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A L]
B.1do not know the answer.
C.

D. Warren Buffet.

E. Anne Hathaway.

F. Dwayne Johnson.

G. José Mourinho.
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Figure 4: VSOD overview.

handling uninformative views
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A | B

C. Activia Yogurt Aloe.
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Figure 5: MVP-N overview.
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Figure 6: IN-C overview.

asking for details
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Figure 7: QD overview.
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detail to recognize the target category (e.g., clock). In this case, the proactive suggestion by the model
is to improve the drawing, i.e., adding another stroke.

Handling temporal ambiguities. We consider a more challeng- handling temporal ambiguities

ing scenario in which proactiveness is adjudged by the ability prompt: v
to seek information situated in a different instant of time in a 8 e R obiectin the video?
long video. We repurposed the Changelt (CIT) dataset [60], 5 L

D. V]

consisting of videos of people interacting with objects, by cre- ' oo T
ating samples comprising image frames that depict the objects’ L
transformation (e.g., preparing tacos) from the start to the end. o statistics: _ ,
. . . ul 1.1k samples K 22.8k images [E~20 images/sample

As Fig. [§]shows, the environment presents an input frame where e categories ? 2 question types M2 proactive ations
the target category (e.g., tacos) is not visible. Similar to handling
temporal occlusions, the proactive suggestion of the model is to
ask the user to either rewind the video or wait for the informative moment to appear.

Figure 8: CIT overview.

Proppsing camera movements. Finally, we cpnsider a very proposing camera movements
practical scenario that prompts the user to spatially move the prompt:

camera in a 2D plane to obtain more informative visual cues. Identif the objectn the image.
In detail, we repurposed the MS-COCO [39] images to create
samples that contain different crops of the same image, where
some crops are more informative than others. As Fig.[9]shows,

the environment presents an uninformative crop to the model, coco statistics:

where the target category (e.g., clock) is barely visible. The —ferimries mosakmages 053 imagesisample
proactive suggestion of the model to the user is to move the
camera in one of four cardinal and four ordinal directions, or
perform a zooming operation. In this case, the user will be
prompted by the model to move the camera towards the right.

[!‘ B. I cannot answer this question.

Figure 9: Overview of MS-
COCO.

3 Experiments

Section [3.1] describes our evaluation protocol, tested models, and metrics used. Then, Sec. 3.2
describes ProactiveBench results, evaluating the proactiveness of several SOTA MLLMs. Finally,
Sec. 33| reports additional ProactiveBench analysis, evaluating ways to elicit proactive suggestions.

3.1 Experimental setup

Evaluation protocol. For each evaluation step, we feed the MLLM with the user prompt (the
question), the current image, and the valid set of suggestions, as described in Sec. @ Therefore,
the multi-choice question prompt consists of three parts: the question, optionally a hint to elicit
proactiveness, and the options (Sec.[2.2)). The conversational history is always discarded from one
step to another unless explicitly mentioned (see Sec. [3.3). Finally, as VSOD and Changelt consist of
video frames, we also tell the model that the visual input is taken from a video.

Tested models. We categorize the chosen MLLMs into high- and low-performing open-weight
models. The high-performing ones rank in the top 50 models with less than 10B parameters in the
OpenVLM Leaderboard [13]: LLaVA-OV 7B [32]], Qwen2.5-VL 7B [3], InternVL3 8B [76]], and
Phi-4-Multimodal [1]]. We choose the low-performing models from well-established MLLMs or that
have low parameter count, namely: LLaVA-1.5 7B [41], LLaVA-NeXT 7B [41] with Mistral [26] and
Vicuna [8] LLMs, InstructBLIP [[11]], Idefics3 8B [30], LLaVA-OV 0.5B [32], Qwen2.5-VL 3B [J3],
SmolVLM2 2.2B [46], and InternVL3 [76] with 1B and 2B parameters.

Metrics. We evaluate each model with two metrics: the accuracy (acc) and the number of proactive
suggestions (ps). We also report the averaged results over the seven scenarios of Sec.[2.2]

Computational resources. All experiments ran using one or two Nvidia A100 GPUs with Py-
Torch [52f], depending on the experiment, and each took around 1-2 GPU hours or less to complete.

3.2 MLLMs results in ProactiveBench

Figure[TT]shows models’ accuracy (acc) using Sec. 2] protocol, comparing it with the oracle setting,
where we use a reference frame (i.e., with no occlusions or ambiguity). This comparison’s goal is to
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Table 1: MLLMs results on ProactiveBench. We report the accuracy (acc) in percentages (%) and
average number of proactive suggestions (ps) for all datasets, with global averages in the last column.

model ROD VSOD MVP-N IN-C QD CIT COCO avg.
acc ps acc ps acc ps acc ps acc ps dcc ps  acc ps  acc ps
LLaVA-1.5-7B [40] 125 0.7 413 13 277 00 594 04 43.0 05 703 07 676 04 460 0.6

LLaVA-NeXT-Mistral-7B [41] 0.0 00 95 02 137 0.1 539 02 122 0.1 463 14 491 00 264 03
LLaVA-NeXT-Vicuna-7B [41] 193 0.7 254 09 262 01 692 05 220 0.7 68.6 04 677 0.1 426 0.5

= LLaVA-OV-0.5B [32] 443 23 206 19 307 04 536 0.7 458 1.1 59.0 06 61.0 0.1 450 1.0
2 Qwen2.5-VL-3B [5] 00 0.0 317 00 254 00 695 09 29.1 0.1 589 02 566 00 387 02
< SmolVLM2-2.2B [46] 00 00 238 03 266 00 558 05 270 05 640 03 599 00 367 02
= Idefics3-8B [30] 31.8 1.6 31.7 21 277 01 700 04 279 05 580 02 622 0.1 442 0.7
InternVL3-1B [76] 614 2.1 397 02 293 03 694 05 292 04 613 01 696 00 514 05
InternVL3-2B [76] 1.1 00 492 02 305 01 769 06 379 04 693 03 771 0.1 489 02
InstructBLIP [[11] 00 00 127 15 128 0.1 189 0.1 260 0.1 476 0.1 267 00 20.7 03
4+ LLaVA-OV-7B [32] 00 0.0 302 03 242 00 703 04 467 03 564 0.1 60.0 00 41.1 0.2
Q§. Qwen2.5-VL-7B [5] 00 0.0 175 00 247 00 785 05 343 0.1 606 00 595 00 393 0.1
5, InternVL3-8B [76] 00 00 317 01 232 00 759 03 360 03 583 0.1 671 00 41.7 0.1
< Phi-4-Multimodal [T] 1.1 00 270 07 295 00 664 0.7 423 03 660 02 646 0.1 424 03
proactive abstain predict target
0.63
0.56 0.62 0.61
0.46 0.48
0.39 0.36
0.26 0.23 0.22 0.23
0.18 0.15 0.16 0.15 0.16 0.14
LLaVA-NeXT-Vicuna-7B LLaVA-NeXT-Mistral-7B LLaVA-OV-0.5B LLaVA-OV-7B InternVL3-1B InternVL3-8B
different LLM different param. count different param. count

Figure 10: Action distributions. While high-performing models (LLaVA-OV 7B and InternVL3 8B)
and LLaVA-NeXT Mistral tend to abstain or try to predict the correct answer, the other three models
prefer to predict proactive suggestions, which can lead them to the correct action.

disentangle MLLMs recognition ability and their proactiveness. Results correspond to the average
performance of all evaluated MLLMs. There is a large discrepancy between the two settings. While
in the oracle setting MLLMs score 81.1% on average, they underperform by more than 50% when
tasked with navigating to the correct answer through proactive suggestions. The discrepancy is quite
stark in the ROD dataset, with models reaching 12.2%, while the oracle counterpart reaches 98.1%
on average. The gap closes in IN-C and COCO, but never matches the reference. This demonstrates a
severe lack of MLLMs’ proactiveness. The full results table is reported in the Appendix.

Table[T] reports models’ individual performance on Proac-
tiveBench. Surprisingly, low-performing MLLMs (top 98.1
half) tend to outperform more powerful models (bottom
half). Specifically, InternVL3 1B, InternVL3 2B, and
LLaVA-1.5 7B achieved the best, second-best, and third-
best accuracy, respectively. Additionally, LLaVA-OV 0.5B
and LLaVA-NeXT Vicuna also achieved higher scores
than the four high-performing models evaluated. Interest- ROD VSODMVP-N IN-GC QD CIT COCO avg.
ingly, the LLM has an impact on the results, with LLaVA-

NeXT Mistral achieving lower performance than its coun- Figure 11: Results vs. oracle perfor-

terpart using Vicuna (26.4% vs 42.6%). mance (acc). Models underperform by
over 50% with ambiguous inputs.

reference B zero-shot
92.1 93.4

We investigate these unexpected behaviors by visualizing

the action distributions of predicting proactive, abstain, and target categories in Fig.[I0] Specifically,
we compare six MLLMs having different LLMs (i.e., LLaVA-NeXT Mistral and Vicuna) and different
parameter counts (i.e., LLaVA-OV 0.5B and 7B, InternVL3 1B and 8B). While the high-performing
models (LLaVA-OV 7B and InternVL3 8B) and LLaVA-NeXT Mistral tend to abstain from sampling
proactive suggestions, the other three show the exact opposite behavior, i.e., they are more likely to
be proactive (more than twice as likely for LLaVA-OV 0.5B). A similar behavior was reported in
[67], with LLaVA-NeXT Mistral abstaining more than LLaVA-NeXT Vicuna.
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Figure 12: Action distributions with random proactive options. Lighter bars describe variations
when using random proactive suggestions.

hint N 80.3 hint
I zero-shot I zero-shot

25 2.7
10 08 10 10 .,
ROD VSOD MVP-N IN-C QD CIT COCO avg. ROD VSOD MVP-N IN-C QD CIT COCO avg.
(a) Avg. dataset accuracy per dataset. (b) Avg. proactive suggestions per dataset.

Figure 13: Performance when conditioning action sampling with hints. Results are averaged across
all MLLMs. Zero-shot refers to models not prompted with hints.

3.3 Analyzing and eliciting MLLMs proactiveness

Are low-performing MLLMs more proactive than high-performing ones? Following Tab. []
findings, we investigate why low-performing models seem more proactive than high-performing
ones. To answer this question, we replaced valid proactive suggestions with invalid ones chosen from
other datasets (e.g., “rewind the video” for QuickDraw). Choosing random options over abstaining
indicates random selection and not proactiveness. Figure [12| shows the action distribution in this
experiment with the same six models as Fig.[T0] Replacing valid proactive suggestions with invalid
ones substantially reduces proactiveness for LLaVA-NeXT Mistral, LLaVA-OV 7B, and InternVL3
8B (i.e., -73%, —-89%, and -92% relative decrease, respectively). Instead, the other models seem less
bothered by the random practice options, with LLaVA-NeXT Vicuna even increases the probability
of predicting one (from 26% to 27%). These insights suggest that low-performing models are not
proactive, but rather they are less prone to abstain [58], preferring unknown answers.

Does hinting boost proactiveness? Explicitly hinting at proactive suggestions may help navigate
to the correct answer by eliciting MLLMs’ proactiveness. To evaluate this hypothesis, we add
environment-specific hints to the prompt (e.g., “Hint: moving the occluding object might reveal what
is behind it” for ROD), measuring how it affects the accuracy and number of proactive suggestions.
Figure[T3b|shows that hinting increases the proactive suggestions by 2.3 on average, with a significant
boost in VSOD, likely caused by numerous frames. Nonetheless, the accuracy does not improve
equally, only increasing by 2.9% on average and even reducing in ImageNet-C and Changelt. We also
noticed that 14.9% of the time, MLLMs entered “infinite loops” in which they constantly proposed
proactive suggestions, failing to predict the correct category. Thus, although hinting increases
proactiveness, models may over-exploit proactive suggestions, failing to classify the object even if
they stumble across the reference image. Figure [I4]further visualizes this by showing how action
distributions change using the same six models as Fig. While original distributions (in darker
colors) suggest that models infrequently chose proactive options, adding hints completely changes this
behavior (especially for LLaVA-NeXT Mistral, LLaVA-NeXT Vicuna, and InternVL3 1B), preferring
hinted actions over predicting the correct category. We report the full results in the Appendix.

Does knowledge of the past elicit proactiveness? Section[2.1|formalizes ProactiveBench evaluation,
allowing MLLMs to only observe the current state. A key question is whether incorporating previous
states and actions into the policy, i.e., mg(at|g, o, ao, .., S¢), elicits proactiveness. Thus, in this
experiment, we keep the MLLM conversation history, limiting this evaluation to models supporting
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Figure 14: Action distributions with hints. Bars describe action distributions with (light) or without
(dark) hints in the prompt. Hinting tilts the action distributions in favor of the proactive suggestion.
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Figure 15: Performance when conditioning on conversation histories. Results are averaged across
all MLLMs. Zero-shot refers to models not integrating information about previous states.

multi-image inference. Figure[T3|show the results of this experiment. The accuracy drops by 5.2%
while the number of proactive suggestions increases from 0.4 to 1.2 on average, compared to the
zero-shot case. ROD average accuracy, in particular, is lowered by almost ten times (1.5% vs.
14.0%). Although models are not explicitly “told” to be proactive, like in Fig. [I3] past proactive
suggestions bias the models towards preferring them. In fact, 9.8% of the time models enter “infinite
loops”, repeatedly selecting the proactive suggestions until reaching the maximum number of allowed
steps. This value is lower compared to 14.9% of hinting, as the first action is always unconditioned;
thus, infinite loops occur only if the first action is proactive. Finally, low-performing models prefer
proactive suggestions while the other ones are more robust (results are shown in the Appendix).

Do few-shot samples improve proactiveness? We now investigate whether conditioning the policy
on a few correct examples elicits proactiveness, improving accuracy. Let ¢ = (¢°, s§, a, ..., $§,a¢)
be a conversation example leading to the correct answer a$. We condition the action sampling on m of
such examples, 7y (a¢|co, ..., Cm, ¢, S¢) on ROD and MVP-N, the only datasets supporting automatic
few-shot sample generation (image informativeness is annotated), conducted with 1 and 3 shots.
Figure [T6] shows how proactiveness changes

icl zero-shot icl zero-shot
with few-shot in-context learning (ICL). Com- 272 20 272 22
pared to the previous setting (indicated as zero-
shot in the figure), the avg. proactive suggestions g - =1 o
increase by 1.4 and 0.2 on ROD and MVP-N, 67 03 120 01
and 1.6 and 0.5 with one and three samples, re- ~ RoD MvPN  ROD MVPN  ROD MVPN  ROD  MVPN
spectively. Furthermore, the accuracy drops in accuracy proactive sugg. accuracy proactive sugg.
ROD and MVP-N, resulting in 6.7% and 20.7% (a) 1 sample (b) 3 samples

with one sample and 12.0% and 18.2% with

three. When conditioning ROD experiments Figure 16: Performance when conditioning on few
with one sample, we notice that models either shots. Results are averaged across all MLLMs.
tend to predict the same category of the ICL ex-

ample or enter infinite loops. Instead, scaling ICL to three samples helps some high-performing
models (i.e., LLaVA-OV 7B and Phi-4-Multimodal) predicting the correct answer. Generally, small
MLLMs enter infinite loops, while larger ones tend to abstain. Similarly, in MVP-N, model errors
arise either from random guesses, abstentions, or, occasionally, valid proactive sequences ending with
incorrect predictions. Full results are shown in the Appendix.
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4 Related work

MLLMs. Earlier MLLMs emerged from pioneering efforts to extend frozen LLMs multimodally,
such as Frozen [62] and Flamingo [2]. These seminal works convert pre-trained LLMs by injecting
visual tokens in the language model’s attention layers and fine-tuning them. Subsequent models,
like PaLI [7]], BLIP [33| 34], LLaVA [40,41]], and InstructBLIP [11], simplified the architecture by
forwarding projected visual tokens as input to the LLM, reduced parameter count, and improved
performance. Furthermore, LLaVA [40] proposes fine-tuning LL.Ms using instruction tuning data,
improving data efficiency and reasoning capabilities. We focus on benchmarking the proactive
capabilities of such models on a broad spectrum of tasks, a currently unexplored research direction.

Benchmarking for MLLMs. While early efforts evaluate MLLMSs on visual question answering [4,
20, 47], a second wave of benchmarks relied on numerous tasks requiring reasoning abilities and
world knowledge [27, 137, 144145 [72]. As recent MLLMs support multiple images and videos as
inputs, more complex, multi-input benchmarks have been introduced to evaluate their reasoning
capabilities [[12} 16} [25] 28], [29] 135|149} |61 |63]]. A parallel effort has emerged in the embodied Al
literature, where numerous studies evaluate agents that integrate LLMs [36} 51154} 157, 165]. However,
none of these works benchmark MLLMs’ proactiveness to ambiguous or even unanswerable queries.
Related to our work, Liu et al. [42] explores whether MLLM’s directional guidance can help visually
impaired individuals in capturing images. However, [42] limits the evaluation to a single type of
proactive suggestion and to single-turn conversations, not measuring the effectiveness of the MLLM’s
proposed suggestion. Instead, we investigate models’ proactiveness in seven distinct scenarios over
multiple turns, enabling a more comprehensive analysis of failure cases and false proactive behaviors.

Active vision improves perception [3]] by allowing an active observer to control sensing strategies (e.g.,
viewpoint) dynamically. Active vision has been extensively studied in view planning (i.e., determining
optimal sensor viewpoints) [73]], object recognition [6], scene and 3D shape reconstruction [59]], and
robotic manipulation [10]]. To overcome passive systems’ drawbacks, Xu et al. [69] introduces an
open-world synthetic game environment, where agents actively explore their surroundings, performing
multi-round abductive reasoning. Although we inherit the underlying spirit of active vision, our work
is unique from previous research as: (i) ProactiveBench contains real-world images from diverse
and complex scenarios, as opposed to synthetic toy environments, and (ii) unlike self-regulating
active vision models, in our case, the observer receives feedback from the MLLM, through proactive
suggestions, which results in additional information supplied by the mobile observer. Thus, it fosters
a collaboration of the model and the user, which is ideal for human-machine cooperative tasks.

5 Conclusion

This paper presents ProactiveBench, a novel benchmark that evaluates MLLMSs’ proactiveness by
pairing multi-choice questions with visual inputs that require human intervention (e.g., move the
occluding object) to make it answerable. We built ProactiveBench by repurposing seven existing
datasets designed for different tasks, creating sequences that allow evaluating proactiveness in seven
distinct scenarios in a multi-turn fashion. Our findings suggest that existing MLLMs are not proactive
and prefer to abstain or predict random categories. Additionally, our analysis shows that hinting at
the proactive action improves proactivity, with marginal accuracy gains. Furthermore, conditioning
models on conversation histories and few-shot examples negatively biases the action distribution,
with lower accuracy scores. These findings highlight ProactiveBench challenges, which we publicly
release for future research.

Limitations. While our work is the first to evaluate the proactiveness of MLLMs, we acknowledge a
few limitations. First, ProactiveBench is built upon existing datasets, and each evaluated scenario is
limited to a single dataset. However, collecting new data is costly, and identifying additional datasets
that capture diverse, realistic scenarios remains challenging, particularly because ProactiveBench
requires a large number of images per sample and detailed annotations of proactive suggestions.
Additionally, our evaluation relies on multiple-choice questions that include proactive options that
might encourage proactiveness [17, 50,153} 71, [74]. Open-ended generated answers would provide a
better estimate of MLLMs’ proactiveness, but this is highly impractical as multi-turn open-ended
conversations typically require human judgment, which is particularly costly for numerous long
sequences. For the sake of completeness, we assess proactiveness in open-ended generation using the
LILM-as-a-judge paradigm [75] and report the results in the Appendix.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This work proposes a benchmark that evaluates proactive reasoning in mul-
timodal large language models. The benchmark is described in Sec. [2} highlighting the
repurposed datasets, and model evaluation is reported in Sec.[3] detailing the experiments
conducted; thus covering all the abstract claims.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper limitations are described in the ‘{Conclusion|” section (Sec. [5).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The benchmark construction and the evaluation protocol are described in
Sec. E], while Sec. E]describes the evaluated models, metrics, and prompt used. Moreover,
our code and benchmark are attached to this submission, allowing for full reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The provided code contains detailed instructions in the README on how to
replicate the exact Python environment, download evaluated models, the proposed bench-
mark, and run all main paper experiments.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental procedure to evaluate models in the proposed benchmark is
described in Sec. E} Furthermore, we also provide the code with the submission.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although our benchmark allows for computing the statistical significance of
each experiment, we follow previous works [[16} 49| 63]] and did not report these results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The required computational resources are detailed in Sec.[3.1] Further details
are in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully reviewed the NeurIPS Code of Ethics and believe our work
conforms.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper’s Appendix describes the potential societal impacts of our work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not collect new data but repurposes existing datasets for
benchmarking multimodal large language models. Therefore, our work inherits the safeguard
measures implemented in such datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We reviewed all the repurposed datasets’ and evaluated models’ licences and
all permits to use and redistribute their data. Moreover, creators of existing datasets and
models are properly credited throughout the paper (e.g., Sec. [I). Licences, instead, are
reported in the Appendix.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The provided code is well-documented both in the README and with inline
comments in source files.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not crowdsource experiments nor conduct research with human sub-
jects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not crowdsource experiments nor conduct research with human sub-
jects.

Guidelines:
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838 * The answer NA means that the paper does not involve crowdsourcing nor research with
839 human subjects.

840 * Depending on the country in which research is conducted, IRB approval (or equivalent)
841 may be required for any human subjects research. If you obtained IRB approval, you
842 should clearly state this in the paper.

843 * We recognize that the procedures for this may vary significantly between institutions
844 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
845 guidelines for their institution.

846 * For initial submissions, do not include any information that would break anonymity (if
847 applicable), such as the institution conducting the review.

848 16. Declaration of LLM usage

849 Question: Does the paper describe the usage of LLMs if it is an important, original, or
850 non-standard component of the core methods in this research? Note that if the LLM is used
851 only for writing, editing, or formatting purposes and does not impact the core methodology,
852 scientific rigorousness, or originality of the research, declaration is not required.

853 Answer: [NA]

854 Justification: Our goal is to only benchmark multimodal large language models’ proactive-
855 ness, not proposing a method; thus, it is inapplicable to us.

856 Guidelines:

857 * The answer NA means that the core method development in this research does not
858 involve LLMs as any important, original, or non-standard components.

859 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
860 for what should or should not be described.
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