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Figure 1: We propose ProactiveBench, a multimodal benchmark to evaluate proactiveness in
multimodal large language models, i.e., the ability to ask for additional visual cues from the user to
answer a query under ambiguity. ProactiveBench tests proactiveness in seven scenarios involving
partially observable objects and individuals, blurred input and temporally evolving scenes.

Abstract

How do multimodal large language models (MLLMs) respond when the object1

of interest in an image is partially or fully occluded? While a human would2

naturally ask follow-up questions or seek additional visual cues before arriv-3

ing at the correct answer, do MLLMs exhibit similar “proactive” behavior by4

prompting the user for more information? Despite their growing use in human-5

machine collaborative settings, no existing benchmark systematically evaluates6

the proactiveness of MLLMs. To address this gap, we introduce ProactiveBench,7

a benchmark constructed from seven repurposed datasets tailored to evaluate8

the task at hand. Given that proactiveness can manifest itself in several forms,9
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our benchmark involves recognizing occluded objects and individuals, enhanc-10

ing image quality, and interpreting coarsely drawn sketches, to name a few. We11

evaluated 14 open-weight MLLMs on ProactiveBench and found that MLLMs12

generally lack proactiveness. Critical analyses reveal no clear correlation between13

model capacity and proactiveness. Adding “hints” in the query to encourage14

proactive suggestions only results in marginal performance improvement. Sur-15

prisingly, including conversation histories introduces negative biases in proposing16

actions. Overall, the experimental results show that instilling proactiveness in17

MLLMs is indeed challenging, and we hope that ProactiveBench will positively18

contribute to building more proactive models. Code and benchmark are available19

at: https://anonymous.4open.science/r/ProactiveBench.20

1 Introduction21

Making decisions under uncertainty is the hallmark of human intelligence. Studies in neuroscience22

suggest that meaningful perception of the world arises from dynamic interaction with our environ-23

ment [18, 22, 24, 56]. Faced with incomplete or ambiguous information, we instinctively generate24

hypotheses, proactively search for additional clues, and revise our interpretations. This ongoing25

cycle of inquiry and refinement – central to how humans build coherent understanding of complex26

situations – has inspired machine vision, particularly in active vision [3, 15, 48].27

Ambiguities may arise when a user’s query is unanswerable due to false user premises [68] or bad28

image quality [9], like Fig. 1’s example “What is behind the blue blocks?” For such an input, a29

model can either hallucinate an incorrect answer [37], or it can abstain from answering [21, 66].30

We call such models reactive. Conversely, a more desirable response from the model is to ask the31

user to provide additional visual cues by moving the blocks to reveal the hidden object. We refer to32

such models as proactive, since they refine their predictions by asking the user to intervene, which33

provides additional information. With the growing adoption of multimodal large language models34

(MLLMs) [5, 32, 76] for complex computer vision tasks in ambiguous settings – such as embodied35

navigation [36, 57] and autonomous driving [55, 70] – it becomes increasingly important to assess36

whether MLLMs1 actively seek additional visual cues like humans.37

Despite its relevance, MLLM’s proactiveness has received little to no attention in the literature. The38

only prior work, Liu et al. [42], examined the use of MLLMs for directional guidance, i.e., requesting39

camera movements in poorly framed images to assist visually impaired people in recognizing objects.40

Yet, we argue that proactiveness is not limited to directional guidance but can manifest in many other41

ways. As Fig. 1 shows, MLLMs can also, e.g., ask users to rotate an object, draw additional details to42

a sketch, or deblur an image. These examples highlight the need to broaden the scope of studying43

proactiveness in MLLMs across a wide range of tasks and modalities.44

To fill this gap we introduce ProactiveBench, a novel benchmark that evaluates MLLMs’ proactiveness45

in multiple scenarios by repurposing seven existing datasets (ROD [31], VSOD [38], MVP-N [64],46

ImageNet-C [23], QuickDraw [19], ChangeIt [60], and MS-COCO [39]) with different target tasks47

(e.g., object/sketch recognition, product identification) that require user intervention to predict the48

correct answer. As Fig. 1 shows, ProactiveBench datasets capture different aspects of proactiveness:49

(temporal) occlusion removal, camera movement, object movement, image quality enhancement, and50

asking for details. In total, ProactiveBench contains more than 108k images, leading to a much larger51

benchmark than [42]. These are grouped into 14k samples featuring 25 proactive suggestions, where52

each sample (see Fig. 2) contains the starting ambiguous frame, the reference frame with complete53

information, and all the frames in between. The user intervention results in a new frame with more54

visual cues based on the model’s guidance (termed proactive suggestion).55

We tested 14 state-of-the-art MLLMs (e.g., LLaVA-OV 7B [32], Qwen2.5-VL 7B [5], and InternVL356

8B [76]) on ProactiveBench, reporting accuracy and number of proposed proactive suggestions57

before predicting the category. Our experiments suggest that evaluated models lack proactiveness,58

i.e., are reactive. Thus, they either tend to abstain from answering (saying, e.g., “I don’t know”) or59

predict random categories when the visual cues are insufficient, as Fig. 1 shows. Providing hints60

about proactive suggestions increases their sampling probability, which marginally raises accuracy.61

1Following prior work [16, 61, 63], we define MLLMs as LLMs fine-tuned to process visual inputs.
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Figure 2: ProactiveBench evlaution. At step 1, the MLLM should propose to move the occluding
object (proactive suggestion), as the question is unanswerable. ProactiveBench, then, returns a new
frame following MLLM’s suggestion. Since the model is still unsure, it asks to move the blocks
again. Finally, step 3 holds sufficient information, allowing the MLLM to predict the answer.

Interestingly, underperforming MLLMs (e.g., LLaVA-NeXT Vicuna, InternVL3 1B) appear on the62

surface as more proactive than SOTA MLLMs (e.g., LLaVA-OV 7B, Qwen2.5-VL 7B, InternVL363

8B). A controlled experiment, however, indicates that the higher proactiveness results from a lower64

rate of abstention on unanswerable questions, not a deep understanding of the problem. Instead,65

conditioning on the conversation history or few-shot samples increases proactiveness, but at the cost66

of reduced accuracy. Finally, our results highlight that proactiveness is not an emerging property in67

MLLMs and must be explicitly elicited, showcasing the challenging nature of ProactiveBench.68

Contributions: (i) We formalize and explore MLLMs proactiveness in a wide spectrum, promoting69

the development of models that can ask user assistance under ambiguity; (ii) We introduce Proac-70

tiveBench, a novel open-source benchmark that assesses MLLM’s proactiveness in diverse contexts;71

(iii) Our evaluation of 14 MLLMs on ProactiveBench revealed limited proactiveness and a trade-off72

between proactiveness and prediction accuracy.73

2 The ProactiveBench74

This section presents ProactiveBench, formalizing how MLLM proactiveness is evaluated (Sec. 2.1),75

describing the datasets included in the benchmark and how they were repurposed to assess proactive-76

ness across diverse scenarios (Sec. 2.2).77

2.1 Evaluating Proactiveness in MLLMs78

We study MLLMs’ proactiveness, where a model should either answer correctly or suggest how to79

make a question answerable. Since suggestions may leave questions unresolved (e.g., Fig. 2’s central80

frame), we evaluate proactiveness in a multi-turn setting, allowing the MLLM to interact with the81

environment over multiple steps. We use the multiple-choice question-answering framework where82

models select from multiple options, enabling structured evaluation over various turns.83

We follow previous works [14, 43], framing the evaluation as a Markov decision process (S, A, πθ,84

R), over a finite states space S , a discrete set of actions A, a policy πθ (the MLLM), and reward R. At85

step t, the model observes state st ∈ S , which comprises the image It and the valid actions At ⊆ A86

(e.g., “wait for the occlusion to disappear”, “I do not know”, “the answer is dog”). Then, it selects87

an action at conditioned by the question q (e.g., “what is this object?”) and the state st = {It ,At}.88

Thus, the transition function T : S ×A → S is defined by the conditioned policy πθ(at |q, st). By89

selecting a proactive suggestion (e.g., “move the occluding object to the side”), state st transitions to90

st+1, leading to a new image and a new set of valid actions. Instead, by either abstaining (e.g., “I91

do not know”) or selecting a wrong category (e.g., dog vs cat), the evaluation stops with a wrong92

prediction. As the environments are discrete, the policy can select proactive suggestions a finite93

number of times, depending on the datasets, after which the evaluation also terminates with a wrong94

prediction. Finally, the evaluation also terminates if the model predicts the correct answer. For each95

MLLM, we report the average accuracy and the average number of proactive suggestions for each96

dataset. Further details about the environment implementation are in the Appendix.97
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2.2 Benchmark construction98

We introduce seven scenarios to evaluate MLLMs’ proactiveness by drawing samples from diverse99

datasets, which multi-choice options comprise proactive suggestions, the abstain option, and four100

categories, out of which only one is correct. The Appendix provides further details on each dataset.101

prompt:
What is behind the blue blocks?
A. I cannot answer this question.
B. Move the blocks to the left. 🎮
C. Move the blocks to the right. 🎮
D. Skillet.
E. Baseball.
F. Orange. ✅
G. Screwdriver.

moving occluding objects

ROD statistics:
📊 88 samples   🌄 1.2k images   🎇 14 images/sample
🌐 16 categories   🧱 4 occluding objects   🎮 2 proactive actions

Figure 3: ROD overview.

Moving occluding objects. We repurposed the ROD [31]102

dataset by creating samples of 14 frames each, where the two103

possible suggestions are: moving the occluding object to the left104

or the right. The environment presents the model with the fully105

occluded image and the prompt, as Fig. 3 shows. The proactive106

suggestion asks the user to move occluding objects (e.g., the107

blue blocks) that obscure the object of interest (e.g., an orange),108

which the model aims to recognize. The model should ask to109

move the blocks, and, depending on the visibility of the occluded110

object, either predict its category or repeat.111

prompt:
Who is this?
A. Rewind the video.🎮
B. I do not know the answer.
C. Wait. 🎮
D. Warren Buffet.
E. Anne Hathaway. ✅
F. Dwayne Johnson.
G. José Mourinho.

handling temporal occlusions

VSOD statistics:
📊 63 samples   🌄 14.4k images   🌐 94 categories
🎇 ~230 images/sample   ❓ 3 question types    
🎮 2 proactive actions

Figure 4: VSOD overview.

Handling temporal occlusions. We repurposed VSOD [38], a112

dataset of public event videos with bounding-box annotations for113

occlusions, to evaluate proactiveness under temporal occlusions.114

We manually annotated public figures, number of people, and115

evant type for each frame, which we prompt the model to answer116

as the target category. Each sample contains on average ∼230117

image frames. As Fig. 4 shows, the environment returns the118

model the most occluded frame of the sample. The proactive119

suggestion involves the model asking the user to rewind the120

video or wait for the occlusion to disappear before answering,121

which in this case is a public figure (e.g., Anne Hathaway).122

prompt:

What is this object?

A. I cannot answer this question.

B. Rotate the object.🎮

C. Activia Yogurt Aloe.

D. Activia Yogurt Grape.

E. Activia Yogurt Apple. ✅

F. Activia Yogurt Strawberry.

handling uninformative views

MVP-N statistics:
📊 4.2k samples   🌄 16.8k images   🎇 ~4 images/sample
🌐 42 categories   🎮 1 proactive actions

Figure 5: MVP-N overview.

Handling uninformative views. We repurposed MVP-N [64] –123

a dataset of fine-grained object categories viewed from multiple124

angles – to evaluate proactiveness in handling uninformative125

views by constructing samples with one or more uninformative126

views followed by an informative one. As Fig. 5 shows, the127

environment returns the first image from a sample, which is not128

informative to predict the correct target category. The proactive129

suggestion of the model is to ask the user to rotate the object (or130

the camera) until it returns an informative view where the target131

category can be reliably predicted (e.g., Activia Yogurt Apple).132

prompt:
What is this?
A. I cannot tell.
B. Deblur the image.🎮
C. Reduce the compression.🎮
...
F. Espresso.
G. Whale.
H. White shark.✅
I. Tench.

improving image quality

IN-C statistics:
📊 5k samples   🌄 25k images   🎇 5 images/sample
🌐 1k categories   💥 16 corruptions   🎮 8 proactive actions

Figure 6: IN-C overview.

Improving image quality. We repurposed ImageNet-C (IN-133

C) [23] to test proactivess under corruptions, by creating samples134

where the first and the last images are the most and the least cor-135

rupted, respectively. As Fig. 6 shows, the environment returns136

a corrupted image (e.g., defocus blur), which is not suitable to137

predict the correct category (e.g., White shark). The proactive138

suggestion of the model in this case is to conduct image quality139

enhancements (e.g., deblurring, reducing brightness, removing140

artifacts, increasing contrast) from a total of eight possible en-141

hancements. In this example, the model should propose to deblur142

the image to predict the correct category.143

prompt:

What is the quickdraw category?

A. I cannot answer this question.

B. Improve this drawing.🎮

C. The eiffel tower.

D. Potato

E. Bed.

F. Clock.✅

asking for details

QD statistics:
📊 3.4k samples   🌄 16.9k images   🎇 ~5 images/sample
🌐 345 categories   🎮 1 proactive actions

Figure 7: QD overview.

Asking for visual details. Different from the previous cases, we144

consider a scenario in which the proactiveness of the model is145

assessed by its ability to propose proactive suggestions when pre-146

sented with a partial sketch at input. To this end, we repurposed147

the QuickDraw (QD) [19] dataset, which contains 345 target148

categories, by creating samples of rendered PNGs where each149

image includes one additional stroke compared to the previous150

one. As more strokes are added, the input image becomes more151

recognizable to the model. As Fig. 7 shows, the environment152

first presents an image to the model that does not have enough153
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detail to recognize the target category (e.g., clock). In this case, the proactive suggestion by the model154

is to improve the drawing, i.e., adding another stroke.155

prompt:
What is main object in the video?
A. Wait.🎮
B. Rewind the video. 🎮
C. I cannot tell.
D. Tacos.✅
E. Butter.
F. Eggs.
G. Avocado.

handling temporal ambiguities

CIT statistics:
📊 1.1k samples   🌄 22.8k images   🎇 ~20 images/sample
🌐 69 categories   ❓ 2 question types   🎮 2 proactive actions

Figure 8: CIT overview.

Handling temporal ambiguities. We consider a more challeng-156

ing scenario in which proactiveness is adjudged by the ability157

to seek information situated in a different instant of time in a158

long video. We repurposed the ChangeIt (CIT) dataset [60],159

consisting of videos of people interacting with objects, by cre-160

ating samples comprising image frames that depict the objects’161

transformation (e.g., preparing tacos) from the start to the end.162

As Fig. 8 shows, the environment presents an input frame where163

the target category (e.g., tacos) is not visible. Similar to handling164

temporal occlusions, the proactive suggestion of the model is to165

ask the user to either rewind the video or wait for the informative moment to appear.166

prompt:
Identify the object in the image.
A. Move the camera right.🎮
B. I cannot answer this question.
C. Move the camera down. 🎮
D. Bowl.
E. Sink.
F. Cup.
G. Clock.✅

proposing camera movements

COCO statistics:
📊 4.8k samples   🌄 13.8k images   🎇 ~3 images/sample
🌐 78 categories   🎮 9 proactive actions

Figure 9: Overview of MS-
COCO.

Proposing camera movements. Finally, we consider a very167

practical scenario that prompts the user to spatially move the168

camera in a 2D plane to obtain more informative visual cues.169

In detail, we repurposed the MS-COCO [39] images to create170

samples that contain different crops of the same image, where171

some crops are more informative than others. As Fig. 9 shows,172

the environment presents an uninformative crop to the model,173

where the target category (e.g., clock) is barely visible. The174

proactive suggestion of the model to the user is to move the175

camera in one of four cardinal and four ordinal directions, or176

perform a zooming operation. In this case, the user will be177

prompted by the model to move the camera towards the right.178

3 Experiments179

Section 3.1 describes our evaluation protocol, tested models, and metrics used. Then, Sec. 3.2180

describes ProactiveBench results, evaluating the proactiveness of several SOTA MLLMs. Finally,181

Sec. 3.3 reports additional ProactiveBench analysis, evaluating ways to elicit proactive suggestions.182

3.1 Experimental setup183

Evaluation protocol. For each evaluation step, we feed the MLLM with the user prompt (the184

question), the current image, and the valid set of suggestions, as described in Sec. 2.1. Therefore,185

the multi-choice question prompt consists of three parts: the question, optionally a hint to elicit186

proactiveness, and the options (Sec. 2.2). The conversational history is always discarded from one187

step to another unless explicitly mentioned (see Sec. 3.3). Finally, as VSOD and ChangeIt consist of188

video frames, we also tell the model that the visual input is taken from a video.189

Tested models. We categorize the chosen MLLMs into high- and low-performing open-weight190

models. The high-performing ones rank in the top 50 models with less than 10B parameters in the191

OpenVLM Leaderboard [13]: LLaVA-OV 7B [32], Qwen2.5-VL 7B [5], InternVL3 8B [76], and192

Phi-4-Multimodal [1]. We choose the low-performing models from well-established MLLMs or that193

have low parameter count, namely: LLaVA-1.5 7B [41], LLaVA-NeXT 7B [41] with Mistral [26] and194

Vicuna [8] LLMs, InstructBLIP [11], Idefics3 8B [30], LLaVA-OV 0.5B [32], Qwen2.5-VL 3B [5],195

SmolVLM2 2.2B [46], and InternVL3 [76] with 1B and 2B parameters.196

Metrics. We evaluate each model with two metrics: the accuracy (acc) and the number of proactive197

suggestions (ps). We also report the averaged results over the seven scenarios of Sec. 2.2.198

Computational resources. All experiments ran using one or two Nvidia A100 GPUs with Py-199

Torch [52], depending on the experiment, and each took around 1-2 GPU hours or less to complete.200

3.2 MLLMs results in ProactiveBench201

Figure 11 shows models’ accuracy (acc) using Sec. 2 protocol, comparing it with the oracle setting,202

where we use a reference frame (i.e., with no occlusions or ambiguity). This comparison’s goal is to203
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Table 1: MLLMs results on ProactiveBench. We report the accuracy (acc) in percentages (%) and
average number of proactive suggestions (ps) for all datasets, with global averages in the last column.

model ROD VSOD MVP-N IN-C QD CIT COCO avg.
acc ps acc ps acc ps acc ps acc ps acc ps acc ps acc ps

lo
w

-p
er

f

LLaVA-1.5-7B [40] 12.5 0.7 41.3 1.3 27.7 0.0 59.4 0.4 43.0 0.5 70.3 0.7 67.6 0.4 46.0 0.6
LLaVA-NeXT-Mistral-7B [41] 0.0 0.0 9.5 0.2 13.7 0.1 53.9 0.2 12.2 0.1 46.3 1.4 49.1 0.0 26.4 0.3
LLaVA-NeXT-Vicuna-7B [41] 19.3 0.7 25.4 0.9 26.2 0.1 69.2 0.5 22.0 0.7 68.6 0.4 67.7 0.1 42.6 0.5
LLaVA-OV-0.5B [32] 44.3 2.3 20.6 1.9 30.7 0.4 53.6 0.7 45.8 1.1 59.0 0.6 61.0 0.1 45.0 1.0
Qwen2.5-VL-3B [5] 0.0 0.0 31.7 0.0 25.4 0.0 69.5 0.9 29.1 0.1 58.9 0.2 56.6 0.0 38.7 0.2
SmolVLM2-2.2B [46] 0.0 0.0 23.8 0.3 26.6 0.0 55.8 0.5 27.0 0.5 64.0 0.3 59.9 0.0 36.7 0.2
Idefics3-8B [30] 31.8 1.6 31.7 2.1 27.7 0.1 70.0 0.4 27.9 0.5 58.0 0.2 62.2 0.1 44.2 0.7
InternVL3-1B [76] 61.4 2.1 39.7 0.2 29.3 0.3 69.4 0.5 29.2 0.4 61.3 0.1 69.6 0.0 51.4 0.5
InternVL3-2B [76] 1.1 0.0 49.2 0.2 30.5 0.1 76.9 0.6 37.9 0.4 69.3 0.3 77.1 0.1 48.9 0.2
InstructBLIP [11] 0.0 0.0 12.7 1.5 12.8 0.1 18.9 0.1 26.0 0.1 47.6 0.1 26.7 0.0 20.7 0.3

hi
gh

-p
er

f LLaVA-OV-7B [32] 0.0 0.0 30.2 0.3 24.2 0.0 70.3 0.4 46.7 0.3 56.4 0.1 60.0 0.0 41.1 0.2
Qwen2.5-VL-7B [5] 0.0 0.0 17.5 0.0 24.7 0.0 78.5 0.5 34.3 0.1 60.6 0.0 59.5 0.0 39.3 0.1
InternVL3-8B [76] 0.0 0.0 31.7 0.1 23.2 0.0 75.9 0.3 36.0 0.3 58.3 0.1 67.1 0.0 41.7 0.1
Phi-4-Multimodal [1] 1.1 0.0 27.0 0.7 29.5 0.0 66.4 0.7 42.3 0.3 66.0 0.2 64.6 0.1 42.4 0.3

LLaVA-NeXT-Vicuna-7B

0.26
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0.56
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0.15

0.46
0.39

LLaVA-OV-0.5B
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0.48
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0.15
0.23

0.62

InternVL3-1B

0.22
0.16

0.61

InternVL3-8B

0.14
0.23

0.63

different LLM different param. count different param. count

proactive abstain predict target

Figure 10: Action distributions. While high-performing models (LLaVA-OV 7B and InternVL3 8B)
and LLaVA-NeXT Mistral tend to abstain or try to predict the correct answer, the other three models
prefer to predict proactive suggestions, which can lead them to the correct action.

disentangle MLLMs recognition ability and their proactiveness. Results correspond to the average204

performance of all evaluated MLLMs. There is a large discrepancy between the two settings. While205

in the oracle setting MLLMs score 81.1% on average, they underperform by more than 50% when206

tasked with navigating to the correct answer through proactive suggestions. The discrepancy is quite207

stark in the ROD dataset, with models reaching 12.2%, while the oracle counterpart reaches 98.1%208

on average. The gap closes in IN-C and COCO, but never matches the reference. This demonstrates a209

severe lack of MLLMs’ proactiveness. The full results table is reported in the Appendix.210

ROD VSOD MVP-N IN-C QD CIT COCO avg.

98.1

12.2

71.3

28.0

55.2

25.2

92.1

63.4

72.4

32.8

85.0

60.3

93.4

60.6

81.1

40.4

reference zero-shot

Figure 11: Results vs. oracle perfor-
mance (acc). Models underperform by
over 50% with ambiguous inputs.

Table 1 reports models’ individual performance on Proac-211

tiveBench. Surprisingly, low-performing MLLMs (top212

half) tend to outperform more powerful models (bottom213

half). Specifically, InternVL3 1B, InternVL3 2B, and214

LLaVA-1.5 7B achieved the best, second-best, and third-215

best accuracy, respectively. Additionally, LLaVA-OV 0.5B216

and LLaVA-NeXT Vicuna also achieved higher scores217

than the four high-performing models evaluated. Interest-218

ingly, the LLM has an impact on the results, with LLaVA-219

NeXT Mistral achieving lower performance than its coun-220

terpart using Vicuna (26.4% vs 42.6%).221

We investigate these unexpected behaviors by visualizing222

the action distributions of predicting proactive, abstain, and target categories in Fig. 10. Specifically,223

we compare six MLLMs having different LLMs (i.e., LLaVA-NeXT Mistral and Vicuna) and different224

parameter counts (i.e., LLaVA-OV 0.5B and 7B, InternVL3 1B and 8B). While the high-performing225

models (LLaVA-OV 7B and InternVL3 8B) and LLaVA-NeXT Mistral tend to abstain from sampling226

proactive suggestions, the other three show the exact opposite behavior, i.e., they are more likely to227

be proactive (more than twice as likely for LLaVA-OV 0.5B). A similar behavior was reported in228

[67], with LLaVA-NeXT Mistral abstaining more than LLaVA-NeXT Vicuna.229
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Figure 12: Action distributions with random proactive options. Lighter bars describe variations
when using random proactive suggestions.
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(b) Avg. proactive suggestions per dataset.

Figure 13: Performance when conditioning action sampling with hints. Results are averaged across
all MLLMs. Zero-shot refers to models not prompted with hints.

3.3 Analyzing and eliciting MLLMs proactiveness230

Are low-performing MLLMs more proactive than high-performing ones? Following Tab. 1231

findings, we investigate why low-performing models seem more proactive than high-performing232

ones. To answer this question, we replaced valid proactive suggestions with invalid ones chosen from233

other datasets (e.g., “rewind the video” for QuickDraw). Choosing random options over abstaining234

indicates random selection and not proactiveness. Figure 12 shows the action distribution in this235

experiment with the same six models as Fig. 10. Replacing valid proactive suggestions with invalid236

ones substantially reduces proactiveness for LLaVA-NeXT Mistral, LLaVA-OV 7B, and InternVL3237

8B (i.e., -73%, –89%, and -92% relative decrease, respectively). Instead, the other models seem less238

bothered by the random practice options, with LLaVA-NeXT Vicuna even increases the probability239

of predicting one (from 26% to 27%). These insights suggest that low-performing models are not240

proactive, but rather they are less prone to abstain [58], preferring unknown answers.241

Does hinting boost proactiveness? Explicitly hinting at proactive suggestions may help navigate242

to the correct answer by eliciting MLLMs’ proactiveness. To evaluate this hypothesis, we add243

environment-specific hints to the prompt (e.g., “Hint: moving the occluding object might reveal what244

is behind it” for ROD), measuring how it affects the accuracy and number of proactive suggestions.245

Figure 13b shows that hinting increases the proactive suggestions by 2.3 on average, with a significant246

boost in VSOD, likely caused by numerous frames. Nonetheless, the accuracy does not improve247

equally, only increasing by 2.9% on average and even reducing in ImageNet-C and ChangeIt. We also248

noticed that 14.9% of the time, MLLMs entered “infinite loops” in which they constantly proposed249

proactive suggestions, failing to predict the correct category. Thus, although hinting increases250

proactiveness, models may over-exploit proactive suggestions, failing to classify the object even if251

they stumble across the reference image. Figure 14 further visualizes this by showing how action252

distributions change using the same six models as Fig. 10. While original distributions (in darker253

colors) suggest that models infrequently chose proactive options, adding hints completely changes this254

behavior (especially for LLaVA-NeXT Mistral, LLaVA-NeXT Vicuna, and InternVL3 1B), preferring255

hinted actions over predicting the correct category. We report the full results in the Appendix.256

Does knowledge of the past elicit proactiveness? Section 2.1 formalizes ProactiveBench evaluation,257

allowing MLLMs to only observe the current state. A key question is whether incorporating previous258

states and actions into the policy, i.e., πθ(at |q, s0, a0, ..., st), elicits proactiveness. Thus, in this259

experiment, we keep the MLLM conversation history, limiting this evaluation to models supporting260
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Figure 14: Action distributions with hints. Bars describe action distributions with (light) or without
(dark) hints in the prompt. Hinting tilts the action distributions in favor of the proactive suggestion.
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Figure 15: Performance when conditioning on conversation histories. Results are averaged across
all MLLMs. Zero-shot refers to models not integrating information about previous states.

multi-image inference. Figure 15 show the results of this experiment. The accuracy drops by 5.2%261

while the number of proactive suggestions increases from 0.4 to 1.2 on average, compared to the262

zero-shot case. ROD average accuracy, in particular, is lowered by almost ten times (1.5% vs.263

14.0%). Although models are not explicitly “told” to be proactive, like in Fig. 13, past proactive264

suggestions bias the models towards preferring them. In fact, 9.8% of the time models enter “infinite265

loops”, repeatedly selecting the proactive suggestions until reaching the maximum number of allowed266

steps. This value is lower compared to 14.9% of hinting, as the first action is always unconditioned;267

thus, infinite loops occur only if the first action is proactive. Finally, low-performing models prefer268

proactive suggestions while the other ones are more robust (results are shown in the Appendix).269

Do few-shot samples improve proactiveness? We now investigate whether conditioning the policy270

on a few correct examples elicits proactiveness, improving accuracy. Let c = (qc, sc0, a
c
0, ..., s

c
t , a

c
c)271

be a conversation example leading to the correct answer acc . We condition the action sampling on m of272

such examples, πθ(at |c0, ..., cm , q, st) on ROD and MVP-N, the only datasets supporting automatic273

few-shot sample generation (image informativeness is annotated), conducted with 1 and 3 shots.274

ROD MVP-N

accuracy

14.0

6.7

27.2

20.7

ROD MVP-N

proactive sugg.

2.0

0.6 0.3

icl zero-shot

(a) 1 sample

ROD MVP-N

accuracy

14.0

12.0

27.2

18.2

ROD MVP-N

proactive sugg.

2.2

0.6
0.6

0.1

icl zero-shot

(b) 3 samples

Figure 16: Performance when conditioning on few
shots. Results are averaged across all MLLMs.

Figure 16 shows how proactiveness changes275

with few-shot in-context learning (ICL). Com-276

pared to the previous setting (indicated as zero-277

shot in the figure), the avg. proactive suggestions278

increase by 1.4 and 0.2 on ROD and MVP-N,279

and 1.6 and 0.5 with one and three samples, re-280

spectively. Furthermore, the accuracy drops in281

ROD and MVP-N, resulting in 6.7% and 20.7%282

with one sample and 12.0% and 18.2% with283

three. When conditioning ROD experiments284

with one sample, we notice that models either285

tend to predict the same category of the ICL ex-286

ample or enter infinite loops. Instead, scaling ICL to three samples helps some high-performing287

models (i.e., LLaVA-OV 7B and Phi-4-Multimodal) predicting the correct answer. Generally, small288

MLLMs enter infinite loops, while larger ones tend to abstain. Similarly, in MVP-N, model errors289

arise either from random guesses, abstentions, or, occasionally, valid proactive sequences ending with290

incorrect predictions. Full results are shown in the Appendix.291
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4 Related work292

MLLMs. Earlier MLLMs emerged from pioneering efforts to extend frozen LLMs multimodally,293

such as Frozen [62] and Flamingo [2]. These seminal works convert pre-trained LLMs by injecting294

visual tokens in the language model’s attention layers and fine-tuning them. Subsequent models,295

like PaLI [7], BLIP [33, 34], LLaVA [40, 41], and InstructBLIP [11], simplified the architecture by296

forwarding projected visual tokens as input to the LLM, reduced parameter count, and improved297

performance. Furthermore, LLaVA [40] proposes fine-tuning LLMs using instruction tuning data,298

improving data efficiency and reasoning capabilities. We focus on benchmarking the proactive299

capabilities of such models on a broad spectrum of tasks, a currently unexplored research direction.300

Benchmarking for MLLMs. While early efforts evaluate MLLMs on visual question answering [4,301

20, 47], a second wave of benchmarks relied on numerous tasks requiring reasoning abilities and302

world knowledge [27, 37, 44, 45, 72]. As recent MLLMs support multiple images and videos as303

inputs, more complex, multi-input benchmarks have been introduced to evaluate their reasoning304

capabilities [12, 16, 25, 28, 29, 35, 49, 61, 63]. A parallel effort has emerged in the embodied AI305

literature, where numerous studies evaluate agents that integrate LLMs [36, 51, 54, 57, 65]. However,306

none of these works benchmark MLLMs’ proactiveness to ambiguous or even unanswerable queries.307

Related to our work, Liu et al. [42] explores whether MLLM’s directional guidance can help visually308

impaired individuals in capturing images. However, [42] limits the evaluation to a single type of309

proactive suggestion and to single-turn conversations, not measuring the effectiveness of the MLLM’s310

proposed suggestion. Instead, we investigate models’ proactiveness in seven distinct scenarios over311

multiple turns, enabling a more comprehensive analysis of failure cases and false proactive behaviors.312

Active vision improves perception [3] by allowing an active observer to control sensing strategies (e.g.,313

viewpoint) dynamically. Active vision has been extensively studied in view planning (i.e., determining314

optimal sensor viewpoints) [73], object recognition [6], scene and 3D shape reconstruction [59], and315

robotic manipulation [10]. To overcome passive systems’ drawbacks, Xu et al. [69] introduces an316

open-world synthetic game environment, where agents actively explore their surroundings, performing317

multi-round abductive reasoning. Although we inherit the underlying spirit of active vision, our work318

is unique from previous research as: (i) ProactiveBench contains real-world images from diverse319

and complex scenarios, as opposed to synthetic toy environments, and (ii) unlike self-regulating320

active vision models, in our case, the observer receives feedback from the MLLM, through proactive321

suggestions, which results in additional information supplied by the mobile observer. Thus, it fosters322

a collaboration of the model and the user, which is ideal for human-machine cooperative tasks.323

5 Conclusion324

This paper presents ProactiveBench, a novel benchmark that evaluates MLLMs’ proactiveness by325

pairing multi-choice questions with visual inputs that require human intervention (e.g., move the326

occluding object) to make it answerable. We built ProactiveBench by repurposing seven existing327

datasets designed for different tasks, creating sequences that allow evaluating proactiveness in seven328

distinct scenarios in a multi-turn fashion. Our findings suggest that existing MLLMs are not proactive329

and prefer to abstain or predict random categories. Additionally, our analysis shows that hinting at330

the proactive action improves proactivity, with marginal accuracy gains. Furthermore, conditioning331

models on conversation histories and few-shot examples negatively biases the action distribution,332

with lower accuracy scores. These findings highlight ProactiveBench challenges, which we publicly333

release for future research.334

Limitations. While our work is the first to evaluate the proactiveness of MLLMs, we acknowledge a335

few limitations. First, ProactiveBench is built upon existing datasets, and each evaluated scenario is336

limited to a single dataset. However, collecting new data is costly, and identifying additional datasets337

that capture diverse, realistic scenarios remains challenging, particularly because ProactiveBench338

requires a large number of images per sample and detailed annotations of proactive suggestions.339

Additionally, our evaluation relies on multiple-choice questions that include proactive options that340

might encourage proactiveness [17, 50, 53, 71, 74]. Open-ended generated answers would provide a341

better estimate of MLLMs’ proactiveness, but this is highly impractical as multi-turn open-ended342

conversations typically require human judgment, which is particularly costly for numerous long343

sequences. For the sake of completeness, we assess proactiveness in open-ended generation using the344

LLM-as-a-judge paradigm [75] and report the results in the Appendix.345
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error rates).694

• If error bars are reported in tables or plots, The authors should explain in the text how695
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8. Experiments compute resources697

Question: For each experiment, does the paper provide sufficient information on the com-698

puter resources (type of compute workers, memory, time of execution) needed to reproduce699

the experiments?700

Answer: [Yes]701

Justification: The required computational resources are detailed in Sec. 3.1. Further details702

are in the Appendix.703

Guidelines:704

• The answer NA means that the paper does not include experiments.705

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,706

or cloud provider, including relevant memory and storage.707

• The paper should provide the amount of compute required for each of the individual708

experimental runs as well as estimate the total compute.709

• The paper should disclose whether the full research project required more compute710

than the experiments reported in the paper (e.g., preliminary or failed experiments that711

didn’t make it into the paper).712

9. Code of ethics713

Question: Does the research conducted in the paper conform, in every respect, with the714

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?715

Answer: [Yes]716

Justification: We carefully reviewed the NeurIPS Code of Ethics and believe our work717

conforms.718

Guidelines:719

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.720

• If the authors answer No, they should explain the special circumstances that require a721

deviation from the Code of Ethics.722

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-723

eration due to laws or regulations in their jurisdiction).724

10. Broader impacts725

Question: Does the paper discuss both potential positive societal impacts and negative726

societal impacts of the work performed?727

Answer: [Yes]728

Justification: The paper’s Appendix describes the potential societal impacts of our work.729

Guidelines:730

• The answer NA means that there is no societal impact of the work performed.731
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• If the authors answer NA or No, they should explain why their work has no societal732

impact or why the paper does not address societal impact.733

• Examples of negative societal impacts include potential malicious or unintended uses734

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations735

(e.g., deployment of technologies that could make decisions that unfairly impact specific736

groups), privacy considerations, and security considerations.737

• The conference expects that many papers will be foundational research and not tied738

to particular applications, let alone deployments. However, if there is a direct path to739

any negative applications, the authors should point it out. For example, it is legitimate740

to point out that an improvement in the quality of generative models could be used to741

generate deepfakes for disinformation. On the other hand, it is not needed to point out742

that a generic algorithm for optimizing neural networks could enable people to train743

models that generate Deepfakes faster.744

• The authors should consider possible harms that could arise when the technology is745

being used as intended and functioning correctly, harms that could arise when the746

technology is being used as intended but gives incorrect results, and harms following747

from (intentional or unintentional) misuse of the technology.748

• If there are negative societal impacts, the authors could also discuss possible mitigation749

strategies (e.g., gated release of models, providing defenses in addition to attacks,750

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from751

feedback over time, improving the efficiency and accessibility of ML).752

11. Safeguards753

Question: Does the paper describe safeguards that have been put in place for responsible754

release of data or models that have a high risk for misuse (e.g., pretrained language models,755

image generators, or scraped datasets)?756

Answer: [NA]757

Justification: The paper does not collect new data but repurposes existing datasets for758

benchmarking multimodal large language models. Therefore, our work inherits the safeguard759

measures implemented in such datasets.760

Guidelines:761

• The answer NA means that the paper poses no such risks.762

• Released models that have a high risk for misuse or dual-use should be released with763

necessary safeguards to allow for controlled use of the model, for example by requiring764

that users adhere to usage guidelines or restrictions to access the model or implementing765

safety filters.766

• Datasets that have been scraped from the Internet could pose safety risks. The authors767

should describe how they avoided releasing unsafe images.768

• We recognize that providing effective safeguards is challenging, and many papers do769

not require this, but we encourage authors to take this into account and make a best770

faith effort.771

12. Licenses for existing assets772

Question: Are the creators or original owners of assets (e.g., code, data, models), used in773

the paper, properly credited and are the license and terms of use explicitly mentioned and774

properly respected?775

Answer: [Yes]776

Justification: We reviewed all the repurposed datasets’ and evaluated models’ licences and777

all permits to use and redistribute their data. Moreover, creators of existing datasets and778

models are properly credited throughout the paper (e.g., Sec. 1). Licences, instead, are779

reported in the Appendix.780

Guidelines:781

• The answer NA means that the paper does not use existing assets.782

• The authors should cite the original paper that produced the code package or dataset.783

• The authors should state which version of the asset is used and, if possible, include a784

URL.785
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.786

• For scraped data from a particular source (e.g., website), the copyright and terms of787

service of that source should be provided.788

• If assets are released, the license, copyright information, and terms of use in the789

package should be provided. For popular datasets, paperswithcode.com/datasets790

has curated licenses for some datasets. Their licensing guide can help determine the791

license of a dataset.792

• For existing datasets that are re-packaged, both the original license and the license of793

the derived asset (if it has changed) should be provided.794

• If this information is not available online, the authors are encouraged to reach out to795

the asset’s creators.796

13. New assets797

Question: Are new assets introduced in the paper well documented and is the documentation798

provided alongside the assets?799

Answer: [Yes]800

Justification: The provided code is well-documented both in the README and with inline801

comments in source files.802

Guidelines:803

• The answer NA means that the paper does not release new assets.804

• Researchers should communicate the details of the dataset/code/model as part of their805

submissions via structured templates. This includes details about training, license,806

limitations, etc.807

• The paper should discuss whether and how consent was obtained from people whose808

asset is used.809

• At submission time, remember to anonymize your assets (if applicable). You can either810

create an anonymized URL or include an anonymized zip file.811

14. Crowdsourcing and research with human subjects812

Question: For crowdsourcing experiments and research with human subjects, does the paper813

include the full text of instructions given to participants and screenshots, if applicable, as814

well as details about compensation (if any)?815

Answer: [NA]816

Justification: We did not crowdsource experiments nor conduct research with human sub-817

jects.818

Guidelines:819

• The answer NA means that the paper does not involve crowdsourcing nor research with820

human subjects.821

• Including this information in the supplemental material is fine, but if the main contribu-822

tion of the paper involves human subjects, then as much detail as possible should be823

included in the main paper.824

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,825

or other labor should be paid at least the minimum wage in the country of the data826

collector.827

15. Institutional review board (IRB) approvals or equivalent for research with human828

subjects829

Question: Does the paper describe potential risks incurred by study participants, whether830

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)831

approvals (or an equivalent approval/review based on the requirements of your country or832

institution) were obtained?833

Answer: [NA]834

Justification: We did not crowdsource experiments nor conduct research with human sub-835

jects.836
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• The answer NA means that the paper does not involve crowdsourcing nor research with838

human subjects.839

• Depending on the country in which research is conducted, IRB approval (or equivalent)840

may be required for any human subjects research. If you obtained IRB approval, you841

should clearly state this in the paper.842

• We recognize that the procedures for this may vary significantly between institutions843

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the844

guidelines for their institution.845

• For initial submissions, do not include any information that would break anonymity (if846

applicable), such as the institution conducting the review.847

16. Declaration of LLM usage848
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