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Abstract

Measuring the alignment between a Knowl-
edge Graph (KG) and Large Language Mod-
els (LLMs) is an effective method to assess the
factualness and identify the knowledge blind
spots of LLMs. However, this approach en-
counters two primary challenges including the
translation of KGs into natural language and
the efficient evaluation of these extensive and
complex structures. In this paper, we present
KGLENS—a novel framework aimed at mea-
suring the alignment between KGs and LLMs,
and pinpointing the LLMs’ knowledge deficien-
cies relative to KGs. KGLENS features a graph-
guided question generator for converting KGs
into natural language, along with a carefully
designed sampling strategy based on parame-
terized KG structure to expedite KG traversal.
We conducted experiments using three domain-
specific KGs from Wikidata, which comprise
over 19,000 edges, 700 relations, and 21,000
entities. Our analysis across eight LLMs re-
veals that KGLENS not only evaluates the fac-
tual accuracy of LLMs more rapidly but also de-
livers in-depth analyses on topics, temporal dy-
namics, and relationships. Furthermore, human
evaluation results indicate that KGLENS can
assess LLMs with a level of accuracy nearly
equivalent to that of human annotators, achiev-
ing 95.7% of the accuracy rate.

1 Introduction

The factualness of Large Language Models (LLMs)
is crucial for their reliability and utility in various
applications. Nonetheless, studies have shown that
LLMs can produce information that is nonfactual,
hallucinated, or outdated (Perez et al., 2022; Ji
et al., 2023; Lee et al., 2022; Wang et al., 2021).
To evaluate the factualness of LLMs, researchers
have developed a variety of methodologies, broadly
categorized into fact-checking (Thorne et al., 2018;
Augenstein et al., 2023) and fact-answering ap-
proaches (Petroni et al., 2020; Press et al., 2022;
Dhingra et al., 2022). Despite these advancements,
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Question: In Tonga (also known as To), do
people drive on the right side of the road?
LLM Answer: No. In Tonga, people drive on
the left side of the road 4

Question: Is the left the driving side in
Tonga (also known as to)?

LLM Answer: No, the right is the driving
side in Tonga. X

Figure 1: Parameterized knowledge graph updated by
KGLENS. The edge color is associated with the expecta-
tion of  ~ Beta(a, 3), denoting an LLM’s deficiency
to the corresponding fact.

several challenges persist. For facts-checking, dis-
tinguishing faithful and unfaithful facts is different
from evaluating the generation of factual content.
For facts-answering, scaling up the evaluation is
challenging due to the expensive nature of the anno-
tation process. And once these evaluation datasets
are published, it is hard to exclude the test exam-
ples from the web-crawled LLM pretraining cor-
pus (Deng et al., 2023). Finally, both fact-checking
and fact-answering approaches assess LLMs on an
instance by instance basis, overlooking the relation-
ships among facts.

In contrast, knowledge graph (KG) encompasses
a vast amount of facts, maintains connections
among these facts, and can be easily updated. Once
an LLM’s knowledge reliability of each KG edge is



evaluated, the knowledge blind spots can be easily
identified (Figure 1). Furthermore, the evaluation
results for each edge can be aggregated at various
levels (e.g., over time, by predicate type), offering
valuable insights for model improvement.

However, there are several challenges for KG-
based LLM evaluation. The first is transforming
KG into natural language. Petroni et al. (2019)
proposed to transform KG triplet into text-cloze
task but the formulated sentences are ambiguous
and unnatural. Jiang et al. (2020) alleviate this
issue by mining the relation words from the web
for each subject-object pair, which is impractical
for large graph. Another challenge is the efficiency
of the evaluation. KGs are typically large. And
evaluating the robustness of an LLM’s knowledge
may necessitate multiple evaluation rounds using
the same KG, as an LLM may respond differently
to the same query.

In this study, we present a novel framework
named KGLENS (Figure 2) to assess LLMs’ knowl-
edge with KG and identify the knowledge blind
spots of LLMs. By ‘knowledge blind spots’, we
mean specific areas or topics where the LLM’s
understanding is lacking, potentially leading to fail-
ures in accurately answering questions related to
such knowledge. KGLENS features a graph-guided
question generator for converting KGs into natural
language with GPT-4 (OpenAl, 2023). We design
two types of questions to support both the facts
answering and facts checking, where the question
type is controlled by the graph structure. We also
include the entity aliases during the question gener-
ation to provide additional context and reduce the
entity ambiguity. Our experiment results show that
97.7% of our generated questions are understand-
able to human annotators.

To improve the evaluation efficiency, we intro-
duce a parameterized knowledge graph (PKG),
where each KG edge is augmented with a beta dis-
tribution, serving as an indicator of the LLM’s de-
ficiency on that specific edge. Navigation through
the PKG involves sampling and selecting the top-
ranked edges globally based on their deficiency. In
this way, when an LLM is unable to provide a satis-
factory response to a question, the KG structure en-
ables us to pinpoint the relevant source edge and en-
tities. This information can then be used to update
the PKG, and the process can be iteratively applied
until adequate coverage is achieved. Our simula-
tion experiments show that our sampling method

with PKG is more efficient than random sampling
and straightforward iteration methods. In our ex-
periments, we collected three domain-specific KG
from Wikidata, encompassing over 700 relations
and 21K entities. Our evaluation of 8 LLMs shows
KGLENS is capable not only of accessing the factu-
alness of LLMs but also of pinpoints LLMs’ knowl-
edge deficiencies relative to KGs in different lev-
els (e.g., temporal and topics). Human evaluation
indicates that KGLENS can assess LLMs with a
level of accuracy nearly equivalent to that of human
annotators with 95.7% accuracy rate.

2 Method

Our framework is shown in Figure 2. In this section,
we will introduce the parameterized KG, graph-
guided question generator, and evaluation metrics.

2.1 Parameterized Knowledge Graph

A knowledge graph G, is a set of triplets
{(sj,pj,04)}j=1..« where each tuple describes a
relationship (predicate) p; between a subject s;
and an object o;.

Intuitively, if an LLM failed in answering a ques-
tion, there is a higher chance that the LLM also
lacks knowledge of the related topics. To reflect
this inductive bias, we propose a parameterized
KG, by augmenting each edge (s;,p;,0;) of the
original KG with an additional error probability 6;
reflecting the probability that an LLM may fail on
this edge. We use beta distribution to model 6 due
to the conjugacy between Bernoulli distribution
and Beta distribution.

Gj ~ Beta(aj,ﬁj), (1)

The prior of each 6; is set to Beta(1,1).

The estimation of the posterior {«;, 3;}v; is
done in an iterative manner based on the outcome
from the LLM. This process consists two main
stages: 1) edge ranking and sampling and 2) pa-
rameter updating.

Edge sampling The edge sampling process fa-
vors the edges with larger 6 values. During the
graph traversal, we sample top-n challenging edges
ranked by the sampled 6 values from the PKG. The
top-n edges are then sent to LLM for examination
and verification. The signal regarding the correct-
ness of the output from LLM is collected for each
of the edges accordingly.
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Figure 2: KGLENS Framework. Here we illustrate this framework with a simple KG example. KGLENS starts from
the PKG initialization, where each edge is augmented with a beta distribution. Then a batch of edges is sampled
based on the edge probability 6. After that, questions are generated from these edges and an LLM will be examined
with question answersing task. Then we update the beta distribution of PKG edges based on the QA results. We
iterate this process until the running metrics are converged.

Parameter estimation and updating After the
signal is collect, the a and [ is updated based on
the new observation of whether the response from
LLM is correct, following the standard Beta distri-
bution posterior updates.

In order to account for the high correlation in
error probability among the connected edges, we
have additionally propagate the signal to the neigh-
boring edges. Specifically, the signal gathered from
pj is propagated to both the incoming and outgoing
edges that are connected to node s; and o;. To
optimize the computational process, we restrict the
signal propagation to one degree. Specifically,

2
3)

a; = a; + I(response is incorrect) + M;,

B; = Bj + I(response is correct) + N,

where M lincorrect neighborhood edges|
and N; = |correct neighborhood edges|.

2.2 Graph-guided Question Generation

We use GPT-4 to transform the sampled edge K;
into the natural questions with few-shot in-context
learning. The prompts and demonstrations are
shown in Appendix 8.4. We design two types of
questions for KGLENS: Yes/No Questions (judge-
ment) and Wh-Questions (generative), where the
question type is controlled by the graph struc-
ture (out degree). In addition, to reduce the am-
biguity of entities, we provide the entity alias for
question generation.

2.2.1 Yes/No Questions

Each KG edge can be transformed into a question
by asking if the subject’s relation is the object. But
in this way, the answer would always be Yes for all
the edges. To formulate hard negative examples,
we build a ground truth answer set T; for each
(s4,pj), and the candidate answer set Cj for each
pj. Both T and C; are derived from the full Wiki-
data knowledge graph to ensure the completeness.
Then, for a tuple {(sj,p;j,0;5)}, we use o; to consti-
tute the Yes question, and sample a random o, from
C; — T to formulate the No question. Considering
our QG process is on-the-fly during the evaluation,
KGLENS can formulate different QA pairs for the
same fact. The sampling rate between yes and no
question is evenly split, with a 50-50 distribution.

2.2.2  Wh-Questions

Another type of question is to ask the LLMs to
generate the object/objects given the subject and
the predicate, where the questions usually begin
with when/where/who/what. This question type
is more challenging but cannot be applied to all
edges. For example, there may be hundreds of
correct objects for a Wh-Question and it makes
no sense to check if a model can enumerate all of
them correctly. In KGLENS, we opt to generate
Wh-Questions only when the out degree of an entity
is less than 10. Otherwise, the Yes/No Questions
prompt is adopted.



KG Active Edges Dead Edges Nodes Predicates

Country 7844 9441 12760 338
NBA 2689 1158 805 57
Movies 8704 3053 7965 340

Table 1: Statistics of the testing knowledge graphs.

2.3 QAYV: Question Answering Verification

We design the QA testing under two different diffi-
culty levels: EASY and HARD. For EASY testing,
we only use Yes/No Questions to test the LLMs.
For HARD testing, we generate each type of ques-
tion at a 50% chance. We use few-shot in-context
learning to test the LLMs.

To verify the response, we guide the LLMs to
generate either “Yes” or “No” at the beginning
of the response for Yes/No Questions and subse-
quently generate accompanying explanations. This
approach facilitates a straightforward verification
process by examining the correspondence of the
initial word. For Wh-Questions, we instruct the
LLM to list all the correct answers. In this case, the
assessment of the answer cannot be done by string
matching. Therefore, we employ a GPT-4 model
to check the correctness of a response given the
question, the ground truth objects and their aliases.
The prompts are listed in Appendix 8.4.

2.4 Metrics

To measure the alignment between KGs and LLMs,
here we introduce two edge-level metrics.

Win rate. For each edge, LLM wins if the num-
ber of successes surpasses the number of failures.
The win rate signifies the portion of winning edges
out of all the examined edges.

Zero sense rate. An LLM would has zero sense
about an edge (fact) if the model has never an-
swered the edge correctly. The zero sense rate
signifies the portion of edges with zero sense.

Based on the definition above, win rate is the
portion of edges that an LLM has higher chance
to answer them correctly. Zero sense rate is the
portion of edges that an LLM always fails to an-
swer. Higher win rate tells us that the LLM is more
reliable for the testing KG. Higher zero sense rate
tells us the LLM knows less about the testing KG.

3 Experiments

In this paper, we develop three domain-specific
KGs using Wikidata to evaluate the knowledge ac-
curacy and reliability of two widely used LLM

APIs (GPT-3.5-turbo and GPT-4), two legacy
LLMs (Babbage-002 and Davinci-002), together
with an preview version of GPT-4 (GPT-4-1106-
preview). We also evaluated three open source
LLMs including Vicuna-33b-v1.3 (Chiang et al.,
2023), Xwin-LM-13B-V0.2 (Team, 2023), and
Yi-34B-Chat !. We narrow down the evaluation
to English language in three domains: country,
NBA (The National Basketball Association), and
movie. It should be noted that KGLENS is not
design for any specific domain or language.

3.1 Building Knowledge Graphs

We prepare the testing knowledge graphs with
Wikidata Query Web Service 2 in three topics:
country, NBA, and movie. The country KG in-
cludes knowledge about 16 countries. The NBA
KG contains the knowledge related to 30 NBA
teams. And the movies are sampled from films
after 2015.

The statistics of our KGs are shown in Table 1.
The term “dead edges” refers to edges that are
less intriguing to inquire about but are still crucial
for displaying entity relations. For example, cer-
tain predicates such as “member of”, “domestic
relation”, or “contains the administrative territo-
rial entity”, exemplify links between entities, but
they are less captivating to inquire about and are
too prevalent. Conversely, significant and mean-
ingful edges are referred to as “active edges”, and
we use them to generate questions. Active edges
represent the essential and noteworthy connections
in the knowledge graph, from which we extract
information to formulate insightful questions.

Developing and cleaning these domain specific
KG is not trivial. More details of KG construction
are provided in the Appendix 8.1.

3.2 Evaluation Efficiency Study

Before presenting the evaluation results, here we
first show the efficiency investigation of our pro-
posed method. We performed a simulation study
to evaluate how different methods perform under
the same computational resource. We compare
the following approches: 1) our method, 2) our
method without propagation, 3) the Monte Carlo
method, 4) Monte Carlo without propagation and 5)
the straightforward iteration method (base), which
involves iterating over all edges multiple times.

'nttps://www.01.ai
https://query.wikidata.org
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Figure 3: We measure the MSE distance between the ground truth 6 and the estimated # across different sampling
method. X-axis denotes the number of API request. Figure 3(a) shows the MSE of the whole graph, and Figure 3(b)
of the top 100 difficult edges (100 edges with largest €). 22.5K API requests corresponds to iterate over the entire

edge set 8 times.

We used a NBA PKG pretrained with the base
method as the ground truth PKG. This ground truth
was established without edge sampling nor signal
propagation, using only a straightforward iteration
over all edges 20 times. We then computed the
mean square error (MSE) between the estimated 6
and the ground truth 6 (only examined edges are se-
lected). We show the simulation results in Figure 3,
where the amount of compute resource allocated is
represented as the number of API requests.

Based on Figure 3(a), our proposed sampling
method appears to be advantageous. Notably, our
method converges to the ground truth 6 faster than
both Monte Carlo and Base method. Random sam-
pling from Monte Carlo approach only helped at
the very beginning when the compute resource is
limited. In term of signal propagation, there is no
significant benefit seen when the MSE is computed
across all the examined edges.

We also plot the MSE across the top 100 most
challenging edges, as shown in Figure 3(b). We
can see that our method with signal propagation
demonstrates its capability to swiftly identify diffi-
cult edges, compared to other methods. The simu-
lation results indicate our sampling method is more
efficient than the others and our propagated parame-
ter updating method can identify those challenging
edges earlier.

3.3 Main Results

To evaluate the KGs, we run KGLENS across
LLMs with 60 iterations and 64 batch size for each
graph. Table 2 and Table 3 show results of win
rate and zero sense rate over different knowledge

graphs under EASY and HARD evaluation modes.

Across varying difficulty levels, knowledge
graphs, and the tested models, GPT-4 consistently
outperforms the others in both metrics. Also, we
find the recent released GPT-4-1106-preview per-
forms worse than GPT-4, which is reasonable for a
preview version.

We find the gap between GPT-3.5-turbo and
GPT-4 relatively larger across all domains and all
difficulty levels, and GPT-3.5-turbo is even worse
than the legacy LLMs under NBA KG EASY mode.
Upon investigating the evaluation logs, GPT-3.5
exhibits a conservative approach, abstaining from
generating answers when lacking confidence rather
than providing speculative responses. Responses
following this protocol consistently begin with the
phrases, “I am sorry, but I couldn’t find any in-

formation on/about...”, “I’'m sorry, but as an Al
assistant, I do not have the capability to provide
real-time information ...”. In such cases, the edge

would be marked as failed when the model declines
to answer a question. We also observed such be-
havior in Yi-34B-Chat and Vicunna-33b-v1.3.

We find the open sourced model Yi-34B-Chat is
comparable to the GPT-3.5-turbo model and out-
performs GPT-3.5-turbo in the NBA KG dataset
on both Easy and Hard modes. This is a remark-
able achievement for Yi-34B-Chat, considering its
smaller size compared to GPT-3.5-turbo. A smaller-
sized LLM called Xwin-LM-13B-V0.2, also did
something very interesting. It followed the trend
set by Yi-34B-Chat and outperformed Vicuna-33b
in our experiments. Given Vicuna-33b-v1.3 is an



Country

NBA Movie

LLMs Average
EASY HARD EASY HARD EASY HARD
Babbage-002 57.46 3439  58.32 27.65  57.48 31.00 44.38
Davinci-002 58.85 3836  58.21 30.57  55.66 34.72 46.06
Vicuna-33b-v1.3 66.51 55.87  36.60 41.66  50.56 46.22 49.57
Xwin-LM-13B-V0.2 54.77 49.13  53.52 50.51 53.59 47.84 51.56
Yi-34B-Chat 66.72 56.16  65.66 62.06  59.86 55.78 61.04
GPT-3.5-turbo 74.43 6342  57.98 56.95  62.80 57.70 62.21
GPT-4-1106-preview  82.27 7242 79.09 70.57  83.15 66.95 75.74
GPT-4 84.79 74.06  84.23 7893 85.14 70.80 79.66

Table 2: Win rate results for different LLMs evaluated under EASY and HARD modes.

LLMs Country NBA Movie Average
EASY HARD EASY HARD EASY HARD
Babbage-002 24.51 51.56  15.34 38.61  26.70 56.77 35.58
Davinci-002 24.44 4727  17.69 37.89 2854 52.71 34.76
Vicuna-33b-v1.3 17.19 26.09 41.75 3730  36.01 42.47 33.47
Xwin-LM-13B-V0.2  28.96 35.12  19.06 2692 34.59 38.48 30.52
Yi-34B-Chat 16.15 2517  14.16 18.79  26.58 30.90 21.96
GPT-3.5-turbo 14.98 20.32  17.17 21.09  22.70 29.36 20.94
GPT-4-1106-preview 7.59 14.16 8.19 12.42 9.21 21.43 12.17
GPT-4 7.42 12.99 6.07 8.13 8.35 17.67 10.11

Table 3: Zero sense rate results for different LLMs evaluated under EASY and HARD modes.

instruction-fine-tuned model, it only has slightly
edged out legacy OpenAl completion models. In
fact Vicuna-33b-v1.3 only performs better in an-
swering Country related questions.

Lastly, we find the two legacy models exhibit
comparable performance across evaluations. The
random guessing baseline of the win rate is 50%
for EASY evaluation, and 25% for HARD evalua-
tion. We find Babbage-002 and Davinci-002 results
are just slightly better than the random guessing,
clearly showing the gap between the legacy LLMs
and the recent LLMs.

In addition to the quantitative analysis, we have
identified four categories of common errors within
LLMs: Factual errors, Obsolete Knowledge er-
rors, Self-contradiction errors, and Inconsistent Re-
sponse errors. We provide examples of each error
type in Table 5.

3.4 Results Analysis by Edge Attributes

One advantage of evaluating LLM with KG is that
the results can be aggregated by different edge at-
tributes. In this section, we show KGLENS can be
used for two different focuses of evaluation includ-
ing the temporal groups and entity groups.

3.4.1 Temporal Groups

We first show the HARD mode Movie KG results
which are grouped by the movie release years in

Figure 4. The EASY mode results are in Ap-
pendix 8. From this figure, we observe that both
the GPT-3.5 and GPT-4 perform worse for ques-
tions after 2020, which is reasonable as they were
mainly pretrained with data before September 2021.
Also, we found that GPT-4 significantly outperform
the other models in terms of zero-sense rate and
win rate. All models get worse when evaluated in
HARD mode, but GPT-3.5 is more robust. This
is because a big portion of GPT-3.5s failures are
caused by refusing to answer the questions, instead
of providing the wrong answers, which explains its
results in EASY and HARD testing. Interestingly,
we find all three recent LLMs perform worse for
movies released in 2018, which might related to
the pretraining data collection but need further in-
vestigation as their pretraining data are not publicly
available. It should be noted that it is reasonable
that the rankings in Figure 4 are not strictly aligned
with the years, as the temporal difference is not the
only factor that affect the evaluation results.

3.4.2 Entity Groups

In addition to the temporal group evaluation, we
also show results where we group the Country KG
edges by the entity type in Figure 7 in appendix.
The proficiency levels across countries can be vi-
sualized using a color coded table, where a darker
color signifies higher zero sense rate and thus a



gpt-4-1106-preview gpt-4 gpt-3.5-turbo davinci-002 babbage-002
2015 21.05 18.92 22.22 58.70
2016 25.53 2222 31.11 54.84 51.35
2017 19.44 18.87
2018 51.72 5581
2019 25.58 18.75 3333 51.52
2020 26.67 10.81 30.56 54.05
2021
2022 53.53
2023 55.56

Figure 4: Zero sense rate grouped by years for moive KG in HARD mode. The three recent LLMs perform worse
for knowledge after 2020, while the behaviors of the two legacy LLMs are more randomly.

lower level of proficiency. Taking GPT-4 evaluated
against country KG under HARD level difficulty
for example, GPT-4 exhibits a recognition accuracy
where the Austria, Mexico, and Italy are identified
and ranked as 1, 2, and 3 respectively. In con-
trast, countries such as Canada, Philippines, and
the United Kingdom are positioned at the lower
end of the ranking scale.

The rationale behind the ranking can be eluci-
dated by examining the dotted heatmap in the ap-
pendix(Figure 5). In this figure, the size of each
dot corresponds to the number of edges within the
predicate sub-group, normalized by the total size
of edges in the entire group. Additionally, the color
of each dot serves as an indicator of the knowledge
proficiency associated with the predicate sub-group
pertaining to the respective country. Contrary to
the table color theme, the darker color here indi-
cates lower zero sense rate and thus higher level of
proficiency.

We find KGLENS can easily tells where the er-
rors came from for each country group. Concen-
trating on the Austria and the Canada, which rep-
resent the highest and lowest ranked countries, re-
spectively, it becomes evident that GPT-4 exhibits
enhanced proficiency pertaining to specific predi-
cate sub-groups. Notably, these sub-groups include
“located in time zone”, “located in the administra-
tive territorial entity”, “electrical plug type,
gency phone number,” and “head of state”.

99 ¢
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3.5 Human Evaluation

We conduct human evaluation to verify the ques-
tion generation module and the question answering
module of KGLENS. A random sample of 300
instances was obtained (100 per domain, 50 per
question type), and human annotations were ac-
quired through five rounds of rating. The assess-

Country NBA Movie Average
QG 9%%  98% 9%  97.7%
- Wh-question 100% 100% 98%  99.3%
- Yes/No-question 2%  96% 100% 96%
QAV 96%  96% 96% 96%
QG+QAV 94%  96% 97%  95.7%

Table 4: Human assessment of question generation (QG)
module and question answering verification (QAV) mod-
ule. Majority voting among five annotators was em-
ployed as the method for rendering a final judgment.

ment process is conducted instance by instance,
where the annotators were tasked with evaluating
two aspects (QG and QA): firstly, the clarity of
the generated question’s intent, and secondly, the
correctness of the LLM’s response in relation to
the ground truth answer and its synonymous ex-
pressions. These second objective is to verify if
the annotator’s judgement agrees with KGLENS’s
judgement, and is only conducted for Wh questions,
as there is no need to verify Yes/No by human. Af-
ter collected the ratings, a majority voting mecha-
nism was employed for each instance, wherein a
label was assigned as "True" if at least three anno-
tators concurred on the evaluation criterion. The
evaluation results are presented in Table 4, and
KGLENS demonstrates robust performance in hu-
man evaluation across domains. It achieves a re-
markable 96% accuracy in question answering ver-
ification and an impressive 98% accuracy in ques-
tion generation. We also report the overall accuracy
of KGLENS . For the purpose of this evaluation,
we define an instance as correct when two condi-
tions are met: the generated question is marked as
correct by human; and the QA correctness judged
by KGLENS aligns with human judgment. The re-
sults indicate when using KGLENS to assess LLMs



with knowledge graph, it can approximate human-
level performance, achieving an accuracy rate of
95.7%.

4 Related Work

It’s an established fact that pre-trained models have
the ability to learn and retain knowledge. For exam-
ple, Petroni et al. (2019) discovered that BERT (De-
vlin et al., 2018), even without finetuning, har-
bors relational knowledge comparable to traditional
NLP methods. With LLLMs showcasing superior
in-context learning and knowledge retention, eval-
uating their knowledge becomes pivotal to bolster
performance and mitigate hallucination.

The knowledge assessment often tests the model
with specific knowledge-related datasets (Lewis
et al., 2021; Petroni et al., 2020; Roberts et al.,
2020; Peng et al., 2023; Press et al., 2022; Mallen
et al., 2023). However, given the fact that LLMs
are trained on web-crawled corpora and the data
is constantly evolving, it is hard to exclude the
test examples from the pretraining corpus. For ex-
ample, Deng et al. (2023) use fill-in probing and
multi-choice probing to check the data leakage of
pretrained LLMs. Their results show that GPT-
3.5-turbo exhibited a noteworthy ability to guess
the missing option. Another concern is that the
knowledge is dynamic, and the evaluation datasets
remain fixed, which makes it challenging to eval-
uate the LLLMs’ knowledge accurately. Dhingra
et al. (2022) propose a diagnostic dataset that pairs
the text and timestamp together and jointly mod-
els text and time. However, their dataset is static
and designed for 2010 to 2020, which is not suit-
able for evaluating the LLMs’ knowledge in the
future. Finally, the predominant metric employed
by these datasets revolves around the test set accu-
racy, making it challenging to identify solutions for
enhancing the LLM and reducing the hallucination.

On the other hand, knowledge graphs have the
advantages of customization to specific domains,
evolving knowledge, and reduced potential for test
set leakage, which has been employed as a struc-
tured knowledge source for LLMs (Lin et al., 2019;
Agarwal et al., 2020; Rosset et al., 2020) and also
been employed as a tool to probe knowledge in
LLMs. LAMA (Petroni et al., 2019) is the first
work to probe a pretrained model with KGs, where
they use the KG to generate the cloze statement and
evaluate the LM’s knowledge with accuracy. How-
ever the cloze statement is not a natural question,

and the correct answer is not unique in many cases,
making the evaluation inaccurate. LPAQA (Jiang
et al., 2020) propose to mine the relation words
from the web for each subject-object pair, which is
impractical for large knowledge graph. In addition,
these methods mainly focus on the accuracy but
neglect that LLMs may respond differently to the
same fact, where reliability should also be consid-
ered. KaRR (Dong et al., 2023) proposes to solve
this issue by using multiple prompts for each KG
edge and using the output logits of LLMs to mea-
sure the knowledge reliability. However, KaRR is
inefficient for large graphs, and it is not generaliz-
able due to the unavailable of LLM’s output logits.
Moreover, transforming KG triplets into questions
is more natural than the text cloze task, but pre-
vious works mainly adopt the text cloze task for
simplicity. Finally, to our best knowledge, there is
no existing work that visualizes the LLM’s knowl-
edge with KG (Figure 1).

5 Conclusion

In this work, we introduced KGLENS, a novel and
efficient method tailored for visualizing and eval-
uating the factual knowledge embedded in LLMs.
By evaluating various LLMs with our developed
domain-specific KGs, we show KGLENS provides
adaptable and customizable views of an LLM’s
knowledge. In addition to evaluating the accuracy
of facts, our proposed parameterized KG offers an
efficient way to assess the knowledge reliability
of LLMs. Human evaluation results indicate that
KGLENS can access LLMs with a level of accu-
racy nearly geuivalent to that of human annotators,
achieving 95.7% of the accuracy rate. Furthermore,
our tool KGLENS, together with our assessment
KGs, sourced from Wikidata, will be available to
the research community, fostering collaboration
and serving as a valuable resource for future inves-
tigations into language models.

6 Limitation

KG plays a pivotal role in our approach, and its
quality significantly impacts the effectiveness of
this method. A high-quality KG is essential not
only for the Question Generation step to generate
meaningful questions but also for signal propaga-
tion. If the KG is fragmented and scattered, signal
propagation then becomes less beneficial.

While our current method incorporates counting
updates for alpha and beta, we acknowledge the



potential for improvement. Exploring alternative
methods for updating these parameters is an area
of active research for us.

The signal propagation method is another direc-
tion that we can dive into, instead of only propagate
to neighbour edges, should we also propagate to
further edges? Instead of equally update the neigh-
bour edges, should we decay the signal? etc.

Question generation currently is limited to just
one hop, being able to generate complicated ques-
tions that evolves multiple edge hops would enable
our method to evaluation the model not only on
factual knowledge retrieval, but also complex rea-
soning capability.

7 Ethical Considerations

We foresee no ethical issues originating from this
work.
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8 Appendix
8.1 Knowledge Graph Building and Cleaning

Given Wikidata’s vastness and inherent noise, we implement multiple strategies to maintain focus,
relevance, and precision. Following techniques empower us to delve into specialized domains and ensure
us a targeted and reliable exploration of the data.

8.1.1 Sampling Strategies and Preserving Data Distribution

Maintaining the original data distribution is important when cleaning a knowledge graph. To achieve this,
random walk with both forward 8.5.1 and backward 8.5.2 dimension are employed. Sorting by random
value of each queried edges, the sub-knowledge graph contains the representative samples that mirror
the diversity of the original knowledge graph, we can preserve the inherent distribution of entities and
relationships. This approach guarantees that our cleaned knowledge graph remains a faithful representation
of the underlying data, enabling us to draw accurate conclusions from our research.

The extent of the random walk distance is flexible and tailored to specific requirements. Within our sub
knowledge graphs, we conduct random walks spanning three steps, encompassing both nodes and edges
within this range for analysis.

8.1.2 Focus and Curated Relevance

In the realm of knowledge graphs, Wikidata stands out as a repository of extensive information. However,
our research necessitates a more nuanced approach. While Wikidata offers comprehensive knowledge, our
focus lies in curated topics and entities tailored for specific purposes. This distinction is vital as it allows
us to delve deeper into specialized domains, ensuring the precision and relevance of the data we analyze.

To address this issue, the parameterized knowledge graph begins by establishing a set of human selected
central entities, from which it initiates random walks to explore neighboring entities. Additionally, we
perform predicate analysis to discern and exclude predicates of lesser importance or those that are overly
common. This approach ensures the focus on pertinent data while filtering out less relevant information.

8.1.3 Filtering Less Relevant Entities

The other challenges we encounter in Wikidata pertains to the noise within its knowledge graph. This
noise manifests in the form of entities that are rarely mentioned or of lesser importance in the context of
our research objectives. To maintain the integrity of our analysis, it is important to identify and filter out
these less relevant entities.

* Filtering by language count: entities mentioned in multiple languages are often more significant and
relevant to a broader audience. By focusing on such multilingual entities, we ensure the inclusion of
globally relevant information in our analysis.

* Filtering by word frequency: entities that are frequently mentioned in various contexts are likely to
hold greater importance. By considering word frequency, we prioritize entities that are central to
discussions, thereby enhancing the relevance and significance of the data included in our analysis.

* Filtering out entities with no alias: entities without aliases are less likely to be widely recognized
or referenced. By excluding these entities, we focus our analysis on well-known and frequently
mentioned entities, aligning our research with more meaningful and impactful data points.
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8.2 Uncovered Error Types

Error Type

Question

Response

Answer

Factual Error

On which side does the railway
traffic run in Israel?

Railway traffic in Israel runs on
the right-hand side.

Left side

Obsolete Knowledge

Who is the current head of state
in England?

The current head of state in Eng-
land is Queen Elizabeth II.

Charles III of the
United Kingdom

Self-contradiction

Is the Australian dollar the cur-
rency of Nauru (also known as
NR)?

No, the Australian dollar (AUD)
is the official currency of Nauru,
a small island nation in the Pa-
cific Ocean.

Yes

Inconsistent Response

In Tonga (also known as TO), do
people drive on the right side of
the road?

Is the left the driving side in
Tonga (also known as TO)?

No, in Tonga, people drive on
the left side of the road.

No, the right is the driving side
in Tonga.

No

Yes

8.3 Human Evaluation

Table 5: Error types uncovered from the country KG.

We conduct human evaluation with an internal paid crowdsouring service, where 5 annotators participated
the annotation process with their consent of using the data. All the annotators are from English speaking
countries. The annotation instruction is shown below.

Background

In this survey, you are provided with a question, the answer (and answer aliases separated by
comma), and an AI’s response to this question.

This survey is to check if the question is understandable, and if the Al’s response is matched with
the given answer.

Annotation Guideline

As an annotator, you are asked to judge whether the intent of the question is clear enough to be
understood (if you can understand the question, please select the option ‘Yes’, whether you know
the answer or not).

For some questions, you won’t see the answer and Al’s response.

For some questions, you will see the answer and AI’s response. Then you need to check if the
Al’s response is correct or not. Please select the option "correct” when the answer, or any of the
answer alias appears in AI’s response. Otherwise, select “Incorrect".

Note: You don’t need to do any research to find the answer. Just use the provided answer.

12



8.4 Prompt

Answer Verification

Given a question and its correct answers, please judge whether a response is correct or not, only
reply with yes or no.

User:

QUESTION: What writing system does the Ixcatec language use?

ANSWERS: latin script, latn, roman script

Assistant:

RESPONSE: the ixcatec language uses the latin alphabet for writing.

User:

QUESTION: On which side does railway traffic run in the philippines?

ANSWERS: left, left side, left-hand side

Assistant: RESPONSE: Railway traffic in the philippines runs on the right-hand side.
User:

QUESTION: <question>

ANSWERS: <answers>

| L

Yes/No Question Generation

Given a semantic triple (SUBJECT, PREDICATE, OBJECT), generate a QUESTION that asks if
the SUBJECT’s PREDICATE is the OBJECT, or includes the OBJECT. The alias of the SUBJECT
can be used in the question.

User: SUBJECT is Joroud, PREDICT is place of birth, OBJECT is Gamla Uppsala, SUB-
JECT _ALIAS is Jorundr
Assistant: Is Gamla Uppsala the birth place of Jorund (also known as Jorundr)?

User: SUBJECT is Asia, PREDICT is located in time zone, OBJECT is Nepal Standard Time,
SUBJECT_ALIAS is Asian continent
Assistant: Is Nepal Standard Time included in the time zones of Asia (also known as the Asian
continent)? User: <s, p, o, [subject alias]>

Wh-Question Generation

| \

Given a semantic triple SUBJECT, PREDICATE, OBJECT, generate a QUESTION that can be
answered by the OBJECT. The OBJECT must not occur in the question.

User: SUBJECT is Jorund, PREDICT is place of birth, OBJECT is Gamla Uppsala
Assistant: What is the birth place of the legendary Swedish king Jorund?

User: SUBJECT is Yellow Emperor, PREDICT is father, OBJECT is Shaodian, SUBJECT_ALIAS
Assistant: Who is the father of Yellow Emperor?

User: <s, p, 0>

Yes No Question Answer

You are a helpful assistant, please answer Yes or No to the user’s questions.
User:Is Belgium located in the continent of Europe?

Assistant: Yes.

User: Is Andrzej Duda the head of state of Belgium?

Assistant: No.

User: <yes no question>
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Generative Question Answer

You are a helpful assistant, please give short and accurate answers to the user’s question. If there
are multiple answers, please list as much as possible.

User:What is the birth place of Jorund?

Assistant: Gamla Uppsala.

User: Who is the father of Yellow Emperor?

Assistant: Shaodian

User: <generative question>

8.5 Wikidata Web Query
8.5.1 Forward Walk

I SELECT DISTINCT ?subject ?subjectLabel ?subjectDesc ?predicate ?predicatelabel ?
predicateDesc ?object ?objectLabel ?objectDesc

2> WHERE { {

3 VALUES ?subject {{

4 {values}

5 }}

6 ?subject ?predicate ?object

7 ?subject rdfs:label ?subjectLabel

8 ?subject schema:description ?subjectDesc

9 ?property wikibase:directClaim ?predicate

10 ?property rdfs:label ?predicatelabel

11 ?property schema:description ?predicateDesc

12 ?object rdfs:label ?objectlLabel

13 ?object schema:description ?objectDesc

14 FILTER (lang(?subjectLabel) = "en")

15 FILTER (lang(?subjectDesc) = "en")

16 FILTER (lang(?predicatelabel) = "en")
17 FILTER (lang(?predicateDesc) = "en")
18 FILTER (lang(?objectLabel) = "en")

19 FILTER (lang(?objectDesc) = "en")

20 }}
21 ORDER BY UUID ()
22 LIMIT {limit}

8.5.2 Backward Walk

SELECT DISTINCT ?subject ?subjectlLabel ?subjectDesc ?predicate ?predicatelabel ?
predicateDesc ?object ?objectLabel ?objectDesc

> WHERE {{
3 VALUES ?object {{
4 {values}

5 H}

6 ?subject ?predicate ?object

7 ?subject rdfs:label ?subjectLabel

8 ?subject schema:description ?subjectDesc

9 ?property wikibase:directClaim ?predicate
10 ?property rdfs:label ?predicatelabel

11 ?property schema:description ?predicateDesc
12 ?object rdfs:label ?objectlLabel

13 ?object schema:description ?objectDesc

14 FILTER (lang(?subjectLabel) = "en")

15 FILTER (lang(?subjectDesc) = "en")

16 FILTER (lang(?predicatelabel) = "en")
17 FILTER (lang(?predicateDesc) = "en")
18 FILTER (lang(?objectLabel) = "en")

19 FILTER (lang(?objectDesc) = "en")

20 }}
21 ORDER BY UUID ()
22 LIMIT {limit}
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8.6 Additional Figures
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Figure 5: Predicate level knowledge proficiency of GPT-4 evaluated under HARD difficulty. The darker color
indicates a lower zero sense rate. The dot size shows the proportional size of the number of edges in the predicate

sub-group.
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Singapore 7.09 26.40
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Figure 6: Country KG EASY-level zero sense rate grouped by countries.
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Figure 7: Country KG HARD-level zero sense rate grouped by countries.
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2017 8.00 14.58 22.64

2955
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2021 12.99 7.89
2022 16.22 47.10

|

27.50 22.03

2023 452 5038

Figure 8: Movie KG EASY-level zero sense rate grouped by years.
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Figure 9: NBA EASY-level zero sense rate grouped by teams
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Figure 10: NBA HARD-level zero sense rate grouped by teams
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