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Abstract

Multi-objective optimization is fundamental to early drug discovery, where improv-
ing one ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
property often degrades others. Existing generative approaches commonly rely on
scalarized rewards or descriptor-based objectives, limiting their ability to capture
complex pharmacokinetic trade-offs. We present RL-Pareto, a Pareto-guided rein-
forcement learning framework that directly optimizes predictor-driven ADMET
objectives using a transformer-based SELFIES generator and a panel of LightGBM
models. A compact reference Pareto set provides a dominance-based reward signal
that preserves the structure of trade-offs while encouraging broad exploration. The
framework scales flexibly to 1-22 simultaneous objectives without retraining and
includes a natural-language interface that enables users to specify goals in plain
text. In a benchmark involving simultaneous optimization of solubility and toxicity,
RL-Pareto outperforms five strong baselines, PMMG, REINVENT, DrugEx-PCD,
DrugEx-PTD, and GMD-MO-LSO, achieving 100% validity and novelty, strong
diversity, and the highest hypervolume, reflecting the broadest Pareto-front ex-
pansion. RL-Pareto also reaches the best solubility and lowest toxicity extremes.
These results highlight RL-Pareto with predictor-driven feedback as a principled,
scalable, and practical approach for multi-objective molecular design.

1 Introduction

Designing effective drug molecules is a costly and complex process, often spanning several decades
and requiring billions of dollars in investment (1). A key challenge arises because a candidate drug
must not only demonstrate potency against its intended target but also simultaneously satisfy multiple
pharmacokinetic and toxicity constraints, collectively known as ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity). These properties critically influence whether a compound can
progress from a lead molecule to a viable therapeutic (15 2).

Traditionally, adverse ADMET findings were frequently made at later stages of drug development,
leading to costly project terminations or restarts, thereby imposing an unacceptable burden on
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pharmaceutical research and development budgets (2). This challenge has led to a widespread
recognition of the critical need to consider ADMET and toxicity as early as possible in the drug
discovery pipeline. Optimizing ADMET endpoints is inherently difficult due to their conflicting
nature (1)). For example, improving cell permeability may reduce solubility or increase toxicity. This
interdependence transforms drug design into a multi-objective optimization (MOO) problem, where
balancing trade-offs is essential (1;2). The complexity of this task escalates rapidly with the number
of objectives being considered (3). Recent advances in artificial intelligence (Al), including deep
learning and large language models (LLMs), have unlocked new opportunities for de novo molecular
design. However, existing generative frameworks still struggle to capture the true complexity of
multi-objective optimization in drug discovery. Many of them rely on molecular descriptors that
often fail to capture pharmacologically meaningful endpoints. And when it comes to multi-objective
optimization, the prevalent use of reward linear scalarization can lead to the ignorance of trade-offs
between target objectives.

1.1 Related Work

Despite notable progress, current approaches face three major limitations.

1.1.1 Reliance on molecular descriptors

Many frameworks (45 |55 6) optimize molecules through molecular descriptors, such as logP, QED,
TPSA, molecular weight, hydrogen bond donors and acceptors, or synthetic accessibility, typically
aligned with Lipinski’s rules (7). While computationally convenient and useful for benchmarking,
these descriptors are proxies and fail to capture pharmacological relevance (). Gao et. al. (8)
implicitly categorized these as less complex or "trivial" compared to actual bioactivity predictions.
In contrast, predictor-driven objectives (e.g., LightGBMs), which are built from machine learning
models trained on ADMET datasets, provide direct pharmacological feedback (9). These models
have demonstrated their reliability as surrogates for experimental endpoints (2} [9).

1.1.2 Reward linear scalarization

Many existing multi-objective generative frameworks face the limitation of using reward linear
scalarization, where objective functions are aggregated into a single scalar objective using prede-
fined scalarization functions such as weighted arithmetic means, geometric means, or Chebychev
scalarization. Examples of such aggregations include the weighted sum (WS) and weighted product
(WP) schemes (1} [3). This approach hides inherent trade-offs between properties, biases exploration
toward predefined directions, and limits the diversity of generated solutions (1} 3). Although multiple
scalarizations using different weight vectors can be applied to approximate different regions of the
Pareto front, such approaches still require many independent optimization runs and remain sensitive to
the coverage of chosen weight combinations (10). Pareto optimization offers a principled alternative
by maintaining sets of non-dominated solutions that explicitly represent trade-offs across objectives,
enabling broader exploration of chemical space (1.1). By using Pareto ranking, it is possible to explore
chemical space while preserving diversity and trade-off structure, rather than enforcing arbitrary
weightings. Recent work confirms that Pareto-based methods outperform scalarized approaches in
generating balanced multi-objective molecules (1235135 [14)).

1.1.3 Limited scalability of Pareto-RL frameworks

Some frameworks combine reinforcement learning (RL) with Pareto ranking, such as (15)), which
optimized three objectives (A1AR activity, A2AAR activity, and reduced hERG binding). While
these methods demonstrate the potential of Pareto-RL, they are usually restricted to a small, fixed
set of objectives and do not allow flexible expansion. More recent methods such as CPRL (12)) also
focus on a small group of properties and have not scaled to broad ADMET endpoints. This lack of
scalability limits their adoption in real-world drug discovery, where different projects may require
very different objective sets.

1.2 Our framework

To overcome these limitations, we propose a Pareto-guided reinforcement learning framework for
multi-objective drug design. Our approach directly optimizes predictor-driven ADMET endpoints,
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Figure 1: Workflow of the proposed framework. User queries specifying desired molecular properties
are parsed into ADMET objectives. Predictor models trained with LightGBM provide real-time
property feedback, which is integrated with Pareto-based reward signals derived from a reference
set constructed via NSGA-II. A transformer-based generative model proposes candidate molecules,
while the RL agent iteratively refines generation to balance trade-offs between ADMET properties.

scoring each molecule with a vector of trained property predictors. Rewards are derived from Pareto
dominance with respect to a reference set, ensuring that trade-offs are preserved while maintaining
diversity across solutions. In order to guide the search more effectively and more efficiently, our
system builds indices of molecules from well-known databases such as ZinC or PubChem and the
search starts from promissing candidates selected from the databases. The framework is scalable and
flexible, with modular predictor models that can be easily extended to new ADMET endpoints without
retraining. Our current implementation supports simultaneous optimization of 1-22 user-selected
objectives. Furthermore, we integrate a natural language interface powered by large language models
(LLMs). Users can specify objectives in plain language (e.g., “generate molecules that have high
solubility and low toxicity and binding to a given target"). This makes the system more accessible,
lowering the barrier for non-experts to interact with molecular design models.

2 Method

Our framework operates as a guided search model that integrates: (i) a panel of endpoint-specific
ADMET predictors providing real-time feedback on candidate molecules, and (ii) a transformer-based
autoregressive generative model employing SELFIES (16)) as the molecular sequence representation.
Within this feedback loop, guidance from the predictors continuously informs and refines the gener-
ative process, enabling the simultaneous pursuit of novelty, drug-likeness, and favorable ADMET
profiles. In this section, we thoroughly examine the methodology components, spanning from the
dataset to the generative model and the elements of the reinforcement learning paradigm.

2.1 Generative model

The ZINC database (17) is a collection of commercially available chemical compounds prepared for
virtual screening, making it widely used for de novo molecule generation. From this resource, 35
million molecules were sampled and represented as SELFIES strings to train our generative model. A
GPT-2 (18) architecture was adopted as the backbone, and training followed a masked autoregressive
strategy: 15% of the tokens in each SELFIES string were randomly masked, and the model was
trained to reconstruct the original sequence by continuing the decoding process. Training was done
using 2 A100 GPUs, with minibatch size 128 per GPU and learning rate set as 5e-5. Training was
done with 140000 steps and the checkpoints are available in HuggingFace as an open modeﬂ
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2.2 ADMET predictors

ADMET endpoint predictors were trained on 22 datasets from the Therapeutics Data Commons
(TDC) (19), covering a broad range of absorption, distribution, metabolism, excretion, and toxicity
tasks. Molecules were encoded using a combination of Morgan, Avalon, and ErG fingerprints to
capture complementary structural features. LightGBM (20) models were employed for supervised
learning, with model performance estimated through 5-fold scaffold-based cross-validation resulting
in the best performance reported in the corresponding TDC ADMET leaderboards (19). We use the
raw predictor outputs without applying any normalization, rescaling, or additional transformations,
and the Pareto-ranking reward operates directly on these unmodified property values.

2.3 Reinforcement Learning Setup

The trl (21) library (Transformers Reinforcement Learning) supports advanced fine-tuning strategies
for large language models, including a technique called Guided Reward Policy Optimization (GRPO)
(22). GRPO is designed to balance the stability of supervised fine-tuning with the flexibility of
reinforcement learning by guiding the policy updates using a reward signal while still anchoring
the model to its original supervised behavior. This is achieved by interpolating between the policy
gradient objective and the supervised loss, allowing the model to improve with respect to a reward
function (e.g., human preferences or task-specific scores) without drifting too far from its initial
behavior. GRPO is particularly useful in scenarios where reward optimization alone may lead to
instability or undesirable outputs, and it provides a more controllable framework for aligning language
models with task goals or ethical constraints.

We use the trl library for our purpose. Given a query, GRPO trains the generative model to generate
corresponding molecules that optimize the set of objectives specified in the queries.

Let = denote a candidate molecule. A panel of d learned ADMET predictors produces a score vector

s(z) = (81(:1:)7 e sd(ac)) e [0,1]4,
where larger values are uniformly interpreted as better.

Reference set To provide stable rewards for evaluation, we construct a compact reference Pareto set
R = {8W}N . This set is obtained in three steps: First, we begin with a large archive of molecules
(2 millions samples from the ZINC database) and compute their predictor score vectors. The full
pool of score vectors is partitioned into Pareto fronts using standard non-dominated sorting (23)),
producing a global Pareto frontier. Since using the full frontier is computationally prohibitive and
may overweight densely clustered regions, we down-sample it to a fixed budget N = 3000. This is
done by stratified sampling across fronts and within-front clustering: dense regions are thinned, while
diverse representatives are retained. The result is a balanced set R that preserves both the shape of
the global frontier and the diversity of trade-offs across objectives.

The design goal is then to discover candidate molecules whose score vectors are Pareto-competitive
with respect to this reference set R while maintaining chemical diversity in the generated set.

We use standard Pareto dominance to compare vectors. For two vectors u, v € R¢ we write u > v iff
u; > v; forall ¢ and w > v if w = v and u # v. The reference set R is partitioned by non-dominated
sorting into ordered fronts Fy, F, ... where Fj is the (reference) Pareto front. Given a candidate
score vector s we define its reference-front index

m(s) = min{ f+1 : Jue Frwithu <s}.
and adopt the convention that m(s) = 0 if no reference vector dominates s (i.e., the candidate is

non-dominated w.r.t. the reference). The index m is a discrete ordinal indicator of candidate quality
relative to R.

To accelerate convergence and anchor the initial exploration phase in high-quality chemical space,
we employ a warm-start strategy for the RL fine-tuning. Instead of beginning with random or
uninformative prompts, the initial generation steps are seeded with molecules sampled from the top
tiers of our pre-computed reference set R. Specifically, we use molecules from the first two Pareto
fronts (Fy and F1) as starting points for the generator.

This initialization helps the learning process in two significant ways. First, it mitigates the cold-start
problem, ensuring the model receives a strong, positive reward signal from the very first training



batches, which leads to more stable and meaningful policy updates early on. Second, it focuses the
search on promising regions of the chemical space rather than exploring vast, low-reward regions
from scratch.

Reward assignment To interface with policy-gradient methods we convert the discrete Pareto
index m into a scalar base reward 7,50 (). The mapping used in experiments is intentionally coarse
for top ranks and exponentially decaying for distant ranks:

1.0, m =0,
0.8, m =1,
Thase(m) = ¢ 0.6, m=2, )
0.5, m =3,
max(O.OB7 0.5 exp[ —y(m — 3)]) , m>4,

where v > 0 is a small decay constant v = 0.02. This construction preserves ordinal Pareto
information (priority to non-dominated and near-front candidates) while ensuring a non-vanishing
yet diminishing signal for exploration.

Diversity filter The Pareto index provides the main quality signal, but without explicit control the
generator may collapse onto a few scaffold families. To address this, we introduce a scaffold-bin
penalty that limits over-exploitation of common chemotypes.

For each candidate molecule z, we extract its Bemis—Murcko scaffold (24) and a Morgan fingerprint.
We then define occ as the number of molecules already in the archive that share the same scaffold and
exceed a Tanimoto similarity threshold 7 (we used 7 = 0.5). This gives a local occupancy measure
of how overrepresented a scaffold class is.

If a molecule achieves a sufficiently high base reward 1,50 () (e.g., Pareto-based score), we apply a
linear penalty based on occ relative to a tolerance T" and a hard buffer B. The final reward R(z) is
then:

1, occ < T,
B—

R(l‘) = rbase(x) ’ ﬁ, T <occ < B, 2
0, occ > B,

where molecules below the minimum score threshold are not penalized.

3 Experiments

We present a case study demonstrating the performance of our framework in the ADMET and
physicochemical property optimization scenario. The generative model is tasked with creating novel
molecules that simultaneously exhibit high aqueous solubility and low toxicity. This task was
chosen as it represents a common and challenging trade-off in drug development.

Evaluation Metrics We evaluated our framework RL-Pareto on a two-objective ADMET task
designed to maximize predicted solubility while minimizing predicted toxicity. To provide a compre-
hensive view, we report both goal-directed optimization metrics, including success rate, hypervolume,
and the extrema and means of each objective, as well as distribution-learning metrics such as validity,
uniqueness, novelty, QED (25)), and SAS (26). These distribution metrics follow the GuacaMol
benchmark definitions (27). For comparison, we included four baselines:

* PMMG (3): Pareto-based Multi-objective Molecule Generation, a specialized framework
designed explicitly for multi-objective optimization. As it also leverages Pareto principles, it
serves as a strong baseline to determine the advantages of our specific reward and guidance
mechanisms.



* SELFIES-REINVENT (28): The original REINVENT framework adopts a policy-based
reinforcement learning (RL) approach to tune Recurrent Neural Networks (RNNs) for
generating molecule strings, initially designed to operate on SMILES representations. For
a fair comparison with our SELFIES-based generator, we utilize an adapted version that
generates SELFIES strings. The implementation for this baseline, hereafter referred to as
SELFIES-REINVENT, was sourced from the official code provided in the PMO benchmark
paper. There is a newer version of REINVENT, which implements Pareto in its method
(10). Although it interpolates across multiple weight combinations, it ultimately remains a
weighted-sum strategy where scalarized objectives are optimized independently for each
weight vector, and Pareto analysis is applied only as a post hoc filtering step. As the number
of objectives increases, the number of weight combinations required to adequately explore
the objective space grows. Even with subsampling strategies such as clustering, the method
still requires running many independent RL trajectories, and omitting most combinations
risks poor coverage of the chemical space. In contrast, our framework integrates Pareto
dominance directly into the reward function, enabling a single RL run to explore trade-
offs without relying on predefined weight vectors. For these reasons, we do not include
REINVENT_MOOQO as a baseline in this study.

* DrugEx (15): a SMILES-based recurrent neural network (RNN) generative model trained
under a Pareto-based multi-objective reinforcement learning framework. During training,
scores from multiple predictive models are used to construct Pareto fronts via non-dominated
sorting, and these ranks define the rewards that guide optimization. DrugEx incorporates
mutation and crossover operators inspired by evolutionary algorithms to enhance explo-
ration while steering the generator toward molecules that satisfy multiple pharmacological
objectives simultaneously. Within the Pareto-based scoring scheme, DrugEx offers two
complementary selection strategies—Pareto Crowding Distance (PCD) and Pareto Tani-
moto Distance (PTD), which emphasize exploitation and exploration, respectively. In our
benchmarking, we include both DrugEx_PCD and DrugEx_PTD configurations to provide
a representative assessment of their ability to generate Pareto-efficient ADMET-optimized
molecules.

* GMD-MO-LSO (29): a multi-objective latent-space optimization (MO-LSO) framework
that improves deep generative models such as Junction-Tree Variational Autoencoder (JT-
VAE) through iterative weighted retraining. At each iteration, molecules in the training set
are ranked using non-dominated sorting, and higher-ranked molecules receive larger weights,
biasing the latent space toward favorable multi-objective trade-offs. The retrained model
then explores the latent space, via random sampling or Bayesian optimization, to propose
improved candidates, which are incorporated back into the training set to progressively
expand the Pareto front. This process enables MO-LSO to balance multiple objectives
without relying on ad-hoc scalarization, making it an effective baseline for multi-objective
molecular generation.

At each baseline, we generated 1000 molecules to ensure comparability across methods. For our
method, the user query was explicitly phrased as “Generate 1000 molecules that have high solubility
and low toxicity,” which guided the predictor-driven reinforcement learning framework during
molecule generation. Success rate was calculated under the condition of solubility > -2 and toxicity <
3, which is the condition of a molecule to be considered as soluble and low toxicity (30;131). Solubility
is reported as LogS, where S is solubility in mol/L (30) and LogS is dimensionless. Toxicity refers
to the LD50 predictor trained on the Zhu et al. dataset (31)), where raw LD50 values (mol/kg) are
transformed into log(1/(LD50)), which is dimensionless.

4 Results and Discussion

Table [T] provides a comparison of our model (RL-Pareto) against five strong baselines: PMMG,
REINVENT, DrugEx-PCD, DrugEx-PTD, and GMD-MO-LSO. Across all distribution-learning
metrics, RL-Pareto achieves perfect validity (100%) and perfect novelty (100%), demonstrating that
the optimization process preserves structural correctness and does not rely on memorizing training
molecules. Our model achieves 67.13% uniqueness, which is lower than PMMG and the DrugEx
variants but still substantially higher than REINVENT (40.85%). This aligns with the GuacaMol
benchmark (27) definition of uniqueness as a measure of diversity across chemical space, confirming



DrugEx DrugEx GMD-MO

PMMG REINVENT PCD PTD LSO Our model
No. molecules 1000 1000 1000 1000 1000 1000
QED 1 0.43£0.00 0.40+£0.04 0.44+£0.01 0.45+0.03 0.77 £0.00 0.40£0.02
SAS | 5.58 +0.00 434£0.16 2.50+0.06 2.44+0.08 325+0.01 5.18+£0.69
Validity (%) T 100.00 = 0.00  100.00 +0.00  100.00 £+ 0.00 100.00 £0.00  100.00 +0.00  100.00 £ 0.00
Uniqueness (%) T 90.40 £ 0.00 40.85 £ 7.28 100.00 = 0.00  100.00 +£0.00  100.00 + 0.00 67.13+7.35
Novelty (%) 1 100.00 £ 0.00  100.00 + 0.00 99.93 + 0.06 99.90 + 0.00 99.97 £ 0.06 100.00 £ 0.00
Diversity 1 0.85+£0.00 0.74 £ 0.07 0.83£0.02 0.82+0.01 0.86 £ 0.00 0.87 +0.01
Hypervolume T 30.17 +0.00 32.36+0.09 33.254+0.51 32.89+0.22 23.85+1.07 35.25+0.09
Success Rate (%) T  100.00 4-0.00 99.90 +0.14 78.33 +5.31 77.37+14.03 9.90 £0.82 99.53+0.47
Mean Sol. T 0.22+0.00 0.65+0.12 -0.75+£0.33 -0.93£0.77 -3.11+£0.02 117 4+0.14
Max Sol. T 1.57+£0.00 1.53£0.01 1.60+0.10 1.49£0.01 -0.06 £0.31 212+£0.12
Mean Tox. | 2.19+0.00 1.75+0.07 1.80+0.07 1.824+0.04 2.69+0.01 1.77 £ 0.08
Min Tox. | 1.68 £ 0.00 1.47+0.01 1.39+£0.02 1.40 +0.02 1.86 £ 0.09 1.34 +0.04

Table 1: Benchmarking results for our model and baselines (PMMG, REINVENT). Metrics include
both distribution-learning benchmarks (QED, SAS, validity, uniqueness, novelty) and goal-directed
optimization benchmarks (success rate, hypervolume, solubility, toxicity). Values are reported
as mean * standard deviation, rounded according to IUPAC guideline. Solubility is reported as
LogS, where S is solubility in mol/L (30) and LogS is dimensionless. Toxicity refers to the LD50
predictor trained on the Zhu et al. dataset (31)), where raw LD50 values (mol/kg) are transformed into
log(1/(LD50)), which is dimensionless.

that RL-Pareto avoids mode collapse and consistently generates diverse chemical scaffolds. Overall,
these results highlight a balanced exploration strategy that prioritizes Pareto-front expansion while
still producing diverse scaffolds.

On the solubility—toxicity optimization task, our model achieves a 99.53 percent success rate, which
is the second highest, slightly below PMMG’s perfect score (100 percent) but higher than all other
baselines. More importantly, our method obtains a hypervolume score of 35.25, the highest among
all models, outperforming PMMG (30.17), REINVENT (32.36), DrugEx-PCD (33.25), Drugx-PTD
(32.89), and GMD-MO-LSO (23.85). Hypervolume is a standard metric quantifying the dominated
region of the objective space (11)), so higher values indicate a Pareto set that spans a broader range of
high-solubility and low-toxicity trade-offs. The superior hypervolume achieved by RL-Pareto reflects
not only strong extreme values but also a well-distributed Pareto front rather than collapsing into
narrow regions.

Figure [2illustrates these trends. Our model (brown) generates a wide Pareto front extending toward
high solubility and low toxicity. In contrast, PMMG (red) and REINVENT (purple) form clusters
concentrated near solubility approximately 0 and toxicity above 2, suggesting limited movement
toward optimal trade-off regions. DrugEx-PCD and DrugEx-PTD (blue and orange) successfully
cover lower-toxicity regions but fail to reach higher solubility. GMD-MO-LSO (green) collapses
almost entirely into low-solubility, high-toxicity space, consistent with its poor hypervolume reported
in Table [Tl

QED quantifies how closely a molecule matches the physicochemical profiles of approved oral drugs
(25), while SAS estimates synthetic feasibility based on fragment frequency and structural complexity,
with lower scores indicating easier synthesis (26). These metrics are widely used measures for
assessing drug-likeness and synthetic accessibility. Although neither metric was included as an
optimization target in our model, the generated molecules still achieve a QED of 0.40 (comparable
to PMMG and REINVENT) and an SAS of 5.18, which falls within a reasonable synthesizability
range relative to the baselines. These values show that even without explicit constraints, our model
naturally proposes molecules that remain both drug-like and synthetically tractable, making them
suitable candidates for downstream medicinal chemistry.

Solubility and toxicity statistics further highlight the strength of our approach. Our model attains the
highest mean solubility (1.17) and highest maximum solubility (2.12) among all methods, showing
its ability to reach high-solubility regions of chemical space. Molecules generated from our model
also achieve the lowest minimum toxicity (1.34) across the baselines, lower than PMMG (1.68),
REINVENT (1.47), Drugéx-PCD (1.39), DrugEx-PTD (1.40), and GMD-MO-LSO (1.86). These
results confirm that the Pareto-guided reward successfully drives the model toward low-toxicity
extremes while maintaining chemically meaningful structures.
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Figure 2: Scatter plot of predicted solubility versus predicted toxicity for all methods. Each point
represents a generated molecule (1000 per method). Our model (brown) produces a broad Pareto
front spanning higher solubility and lower toxicity regions, while PMMG (red) and REINVENT
(purple) concentrate near a solubility of 0 and higher toxicity. DrugEx (blue and orange)’s molecules
cover the acceptable toxicity region but have lower solubility, and GMD-MO-LSO (green) collapses
into low-solubility, high-toxicity space.

The robustness of our model (RL-Pareto) stems from two design choices. First, the use of predictor-
driven objectives ensures direct feedback on pharmacologically meaningful endpoints, unlike
descriptor-based proxies. Second, the Pareto-guided reward mechanism, which integrates dominance
ranking, preserves the natural structure of trade-offs and avoids the collapse observed in scalarized
reward schemes. Together, these features allow the model to scale across multiple objectives while
maintaining both effectiveness and diversity.

In summary, RL-Pareto achieved high performance in balancing solubility and toxicity and showed
promise for multi-objective drug molecule optimization. It combined a high success rate, high
diversity, and the best hypervolume with complete validity and novelty, drug-like QED and SAS
scores, and a diverse Pareto front. PMMG produced useful trade-offs but lacked wide front coverage,
REINVENT collapsed under the scalarized setup, while GMD-MO-LSO collapsed into a low-
solubility and high-toxicity region, and the DrugEx variants achieved reasonable toxicity levels but
failed to explore the high-solubility region, resulting in limited Pareto-front expansion. These findings
support the central claim that our model, which uses Pareto-guided reinforcement learning with
predictor-driven ADMET feedback, explores the chemical space more effectively than other baselines
and shows strong potential as a robust framework for multi-objective optimization in drug design.

5 Conclusion

This work introduced RL-Pareto, a Pareto-guided reinforcement learning framework for multi-
objective molecular generation with direct ADMET optimization. By combining predictor-driven
property feedback with a dominance-based reward scheme, the framework preserves natural trade-offs
between objectives and enables broad exploration of chemical space. In benchmarking against five
strong baselines, RL-Pareto achieved complete validity and novelty, competitive uniqueness, and the
highest hypervolume, indicating a well-distributed Pareto front. It also reached the highest solubility
values and the lowest toxicity minima, demonstrating strong capability in navigating conflicting
pharmacokinetic objectives.

Our results reinforce the growing consensus that Pareto-guided reinforcement learning offers a robust
strategy for capturing trade-offs in molecular optimization. The modularity of our predictor panel
and the ability to scale to up to, and potentially beyond, twenty-two objectives without retraining



further enhance the practical utility of the framework. The natural language interface additionally
lowers the barrier for defining complex objective combinations, making the system more accessible
for real-world drug discovery workflows.

Overall, RL-Pareto provides an effective and extensible solution for multi-objective de novo design
and represents a promising direction for incorporating robust Pareto optimization into LLM-driven
molecular generation pipelines. Future work may extend the framework toward larger objective
spaces, incorporate structure-based or physics-informed predictors, and explore integration with
closed-loop experimental validation.
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