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Abstract

Local convergence has emerged as a fundamental tool for analyzing sparse random
graph models. We introduce a new notion of local convergence, color convergence,
based on the Weisfeiler–Leman algorithm. Color convergence fully characterizes
the class of random graphs that are well-behaved in the limit for message-passing
graph neural networks. Building on this, we propose the Refined Configuration
Model (RCM), a random graph model that generalizes the configuration model.
The RCM is universal with respect to local convergence among locally tree-like
random graph models, including Erdős–Rényi, stochastic block and configuration
models. Finally, this framework enables a complete characterization of the random
trees that arise as local limits of such graphs.

1 Introduction

Understanding the local structure of random graphs is important for analyzing algorithms in network
science and machine learning (Van Der Hofstad, 2024; Lovász, 2012; Borgs et al., 2019, 2021;
Gamarnik & Sudan, 2014). Local convergence characterizes the structure around a randomly chosen
node in the large graph limit (Benjamini & Schramm, 2011). However, this level of detail exceeds
what can be exploited by color refinement (Weisfeiler & Leman, 1968; Babai et al., 1980; Huang
& Villar, 2021a) — a prominent algorithm that bounds the expressivity of Message Passing Graph
Neural Networks (MPNNs) (Gori et al., 2005; Scarselli et al., 2009; Xu et al., 2019; Morris et al.,
2019). In this paper we introduce a novel notion of local convergence, namely color convergence, that
is closely aligned with color refinement, and facilitates the analysis of MPNNs through the framework
of local convergence. We show that color convergence completely characterizes a general notion of
learnability for MPNNs. We then show that the class of color convergent random graphs subsumes
widely investigated locally tree-like models (Van Der Hofstad, 2014, 2024) including sparse variants
of Erdős–Rényi, stochastic block (Abbe et al., 2014), and configuration models (Bollobás, 1980).
Finally, we devise a random graph model, called the refined configuration model (RCM), that is
universal with respect to color convergence.

Related Work

Our work makes key contributions to the areas of graph limits, generalization analysis of MPNNs,
and random graph models. In the following, we briefly discuss the related work in these areas.

Graph limits. Our work expands the general investigation of random graph limits (Lovász, 2012).
Limits for dense random graphs are charecterized by graphons (Lovasz & Szegedy, 2004). In the
sparse setting, local convergance has emerged as an important tool for analyzing the limit behavior
of random graphs (Benjamini & Schramm, 2011; Aldous & Steele, 2004; Aldous & Lyons, 2007;
Hatami et al., 2014; Milewska et al., 2025; Dort & Jacob, 2024). In this paper, we introduce a novel
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relaxation of local convergence, that characterizes the structure around a randomly chosen node in
terms of the color refinement algorithm (Weisfeiler & Leman, 1968; Huang & Villar, 2021a).

MPNN Generalization. Our work advances the analysis of generalization behavior of MPNNs.
Previous works have investigated generalization behavior of MPNNs, e.g., via VC dimension,
Rademacher complexity or PAC-Bayesian analysis (Liao et al., 2021; Oono & Suzuki, 2020; Maskey
et al., 2022; Li et al., 2022; Tang & Liu, 2023; Rauchwerger et al., 2025; Morris et al., 2023). Most
of these works fix a class of random graphs as data distribution and are largely restricted to the dense
graph setting. We especially focus on generalization behavior of MPNNs for the node classification
task on sparse random graphs (Baranwal et al., 2023). However, instead of making assumptions on
the data distributions, we give a complete characterization of random graphs on which MPNNs can
be learned. We use a general notion of learnability, which is closely related to the notion of uniform
convergence in learning theory (Shalev-Shwartz et al., 2010). In particular, we show that MPNNs fail
to learn on dense random graphs, extending asymptotic analysis of MPNNs in this setting (Adam-Day
et al., 2024; Yehudai et al., 2021).

Random Graph Models. All dense random graph models admit a universal limit object (Aldous,
1981; Bloem-Reddy & Teh, 2020; Lovasz & Szegedy, 2004; Lloyd et al., 2012). However, no such
universal limit is known in the sparse setting (Lovász, 2012). This has led to a fragmented landscape
of sparse random graph models such as the sparse Erdős–Rényi, configuration and preferential
attachment model. Despite their differences, a unifying property of many models is their local
converge to Galton-Watson trees (GWT) (Janson, 2012), a family of random trees arising from
branching processes (Harris, 1963). These trees capture the typical local structure around a uniformly
chosen node and serve as a canonical, though not universal, object in the study of local limits.

Contributions

We introduce a generalization of local convergence, color convergence, based on the color refinement
algorithm. Color convergence defines sparse random graph limits based on the color of a random node
after finitely many iterations of the color refinement algorithm. We present a systematic investigation
of color convergence. Specifically,

• We show that color convergence completely characterizes the class of random graphs on
which MPNNs achieve probabilistic consistency of empirical risk for node classification
tasks. That is, color convergent random graphs are exactly the random graphs for which the
empirical risk converges to the true risk with high probability for all possible MPNNs.

• We introduce the refined configuration model, a generalization of the configuration model.
Leveraging color convergence, we show that it captures the limit behavior of MPNNs on
random graphs and is universal with respect to local convergence to Galton–Watson trees.
In the limit, it subsumes many widely-investigated sparse random graph models, including
Erdős–Rényi, stochastic block and configuration models.

2 Background

We use [n] to denote the set {0, . . . , n− 1} and 1A to denote the indicator function of a set A.

An undirected multigraph G consists of a set of nodes V and a set of edges E, possibly containing
loops and multi-edges. We use N(v) to denote the multiset of neighbors of a node v and dv to denote
its degree. In this paper, graphs are always finite, undirected multigraphs. Sometimes the nodes v are
attributed with a feature xv . We always assume that the space of features is countable and discrete.

A rooted graph B is a graph with a designated root node. The depth of a node v is its distance to the
root. The depth of a rooted graph B is defined as the maximum depth of its nodes. We denote by
Bk the set of isomorphism classes of rooted graphs of depth at most k. Given a graph G and node v,
the ball Bk(v) is the graph rooted at v, spanned by vertices w with d(v, w) ≤ k. If f is a function
defined on nodes and B is a rooted graph with root r, then we may write f(B) instead of f(r), e.g.,
we may write N(B) for the neighbors and dB for the degree of the root. An isomorphism between
rooted graphs is a graph isomorphism that also maps the root of one graph to the root of the other.

A tree is a connected acyclic graph. A rooted tree is a rooted graph whose underlying graph is a tree.
We denote by Tk the set of isomorphism classes of rooted graphs of depth k. We write T |k to denote
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the rooted subtree of T containing only nodes of depth at most k. Each node in a rooted tree, except
the root node, has a unique parent node, which is the only adjacent node that has a smaller depth.
The children of a node are the nodes adjacent to it with a larger depth. A leaf node is a node without
children. The sub-tree T (v) induced by a node v is the maximal sub-tree of T containing the node v
but not its parent.

All probability spaces considered in this paper are countable and discrete. A probability mass function
(PMF) µ is a function that assigns a probability to each outcome. A random element is a function
whose domain is a probability space. A stochastic process is a sequence of random elements. A
random PMF is a random element whose codomain is the set of PMFs over a fixed space. We say that
a sequence of random PMFs µt converges in probability to a PMF µ if, for all outcomes x and ε > 0,

P (|µt(x)− µ(x)| ≥ ε) → 0 (1)

as t → ∞. In the context of random graphs the notion of local convergence in probability is more
powerful and useful than, for instance, local weak convergence (Van Der Hofstad, 2024, p.58).

2.1 Random Graphs

A random graph Gt is a stochastic process {Gt}t∈N such that Gt is distributed on graphs on t vertices.
This formulation of a random graph as a stochastic process indexed by graph size naturally aligns
with the framework of graph limits.

Of special interest to us are the configuration model and the bipartite configuration model. Since we
are only interested in the limit, we consider a version with i.i.d. degrees. (Van Der Hofstad, 2014, 7.6)

Definition 2.1. Let µ be a PMF over N with finite mean. The configuration model CMt(µ) is defined
on the vertex set {vi}i∈[t] as follows:

• Each vertex vi is independently assigned a degree di ∼ µ.

• Each vertex is given di stubs. The stubs are paired uniformly at random to form edges,
allowing loops and multi-edges, until there are 0 or 1 stub(s) left.

Definition 2.2. Let µL, µR be PMFs over N with finite means. The bipartite configuration model
BCMt(µL, µR) is defined on the vertex set {vi}i∈[t] as follows:

• Partition the nodes into left nodes L and right nodes R by assigning each node independently
with probability E[µR]

E[µL]+E[µR] to L and otherwise to R.

• Each vertex vi ∈ U is independently assigned a degree di ∼ µU for U ∈ {L,R}.

• Each vertex is given di stubs. The stubs in L are matched uniformly at random with stubs in
R to form edges, allowing multi-edges, until there are no more stubs left in L or R.

2.2 Galton-Watson Trees

Another important graph-valued random process, with applications in population genetics, computer
science, and beyond, is the Galton–Watson tree. See for instance (Van Der Hofstad, 2024, 3.4).

Definition 2.3. A multi-type Galton–Watson tree (GWT) Wt is a stochastic process {Wt}t∈N, where
Wt is a random rooted tree of depth t. It is parameterized by:

• a finite or countable set of types S, with a type-to-feature mapping s 7→ xs,

• an initial PMF µ0 over S,

• for each s ∈ S, a PMF µs over MultiSet(S), the set of finite multisets of types.

The process is defined inductively:

• W0 consists of a root node r with type sr ∼ µ0 and feature xr = xsr .

• Given Wt, generate Wt+1 by extending each leaf node v at depth t:

3



– For each node v, sample a multiset {s1, . . . , sn} ∼ µsv .
– For each type si in the multiset, attach a child w to v with type si and feature xsi .

Example 2.4. Suppose S = { , } and xs = s. Let Wt be parametrized as follows:

µ0(s) =

{
3
5 s =
2
5 s =

µ (A) =


2
3 A = {{ , }}
1
3 A = {{ , }}
0 otherwise

µ (A) =


1
2 A = {{ , , }}
1
2 A = {{ }}
0 otherwise

Then W1 has the support and probability distribution depicted in figure 1.

T0

r

T1

r

T2

r

T3

r
P T0 T1 T2 T3

W1
2/5 1/5 1/5 1/5

Figure 1: Support and distribution of W1.

2.3 Local Convergence

We focus on local convergence in probability, which is most conveniently defined as the convergence
of a sequence of random PMFs (Van Der Hofstad, 2024, Remark 2.13).

Definition 2.5. For a random graph Gt and t ∈ N we define the random PMF bk,t on Bk by

bk,t(B) = t−1 · |{v ∈ V (Gt) : Bk(v) ≃ B}| .

If bk,t converges in probability as t → ∞, we denote its limit with bk,∞. If bk,∞ is defined, we call
Gt Bk-convergent. If Gt is Bk-convergent for all k ∈ N we call Gt locally convergent. Furthermore,
we call Gt locally tree-like if, for all ε > 0, as t → ∞,

P(t−1 · |{v ∈ V (Gt) : Bk(v) contains a cycle}| ≥ ε) → 0.

Example 2.6. Let Gt be a random graph that, with probability 1/2, is either a set of t isolated
vertices or a cycle on t vertices. Then Gt does not converge locally:

For every k ∈ N and t ≥ 2k + 2, the random PMF bk,t on Bk is, with probability 1/2, either 1K1 or
1P2k+1

, where K1 denotes the singleton graph and P2k+1 denotes the path graph of length 2k + 1.
That is, for any PMF µ on Bk, we have

P (|bk,t(K1)− µ(K1)| ≥ 1/2) ≥ 1/2 or P (|bk,t(P2k+1)− µ(P2k+1)| ≥ 1/2) ≥ 1/2.

Theorem 2.7 (Van Der Hofstad (2024)). Let Gt = CMt(µ). Then Gt converges locally to a GWT.
That is, there exists a GWT Wt such that for all k ∈ N and B ∈ Bk bk,∞(B) = P(Wk ≃ B).

Remark 2.8. Many important families of random graphs converge locally to Galton-Watson trees
such as inhomogeneous random graphs, including sparse version of Erdős–Rényi and stochastic block
models. (Van Der Hofstad, 2024, 3.14)

A central property of any locally convergent random graph is unimodularity (Aldous & Lyons,
2007), or, equivalently involution invariance (Hatami et al., 2014). Intuitively, in captures the idea
that, statistically, the local limit looks the same from the root as from anywhere else. Whether
unimodularity of a limit object is sufficient for the existence of a random graph with said limit is open
in general (Aldous & Lyons, 2007, 10.1). For certain classes of limit objects, including versions of
Galton-Watson trees, this implication is known (Aldous & Lyons, 2007; Benjamini et al., 2015).

2.4 Message Passing Graph Neural Networks

Message passing graph neural networks (MPNNs) are a class of deep learning models that operate
on graphs. MPNNs iteratively combine the feature vector of every node with the multiset of feature
vectors of its neighbors. Formally, let aggk and combk for k ∈ [l] be aggregation and combination
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functions. We assume that each node has an associated initial feature vector xv = x
(0)
v . An MPNN f

computes a vector x(k)
v for every node v via the following recursive formula

x(k+1)
v = combk+1(x

(k)
v , aggk+1({{x(k)

w : w ∈ N(v)}})), (2)

where k ∈ [l]. We call f(v) := x
(l)
v the output of the MPNN. Note that, in our setting, MPNNs do

not include a global readout mechanism. Equation (2) subsumes classical MPNN architectures such
as GraphSAGE (Hamilton et al., 2017), GCN (Kipf & Welling, 2017), and GIN (Xu et al., 2019), as
well as more abstract valuation mechanisms.

2.5 Color Refinement

The color refinement algorithm (Weisfeiler & Leman, 1968; Huang & Villar, 2021b) is an important
component of modern graph isomorphism test procedures. Starting with an initial coloring, the
algorithm repeatedly updates the color of each vertex by aggregating the colors of its neighbors.
Definition 2.9. Given a graph G we inductively define a sequence of rooted-tree-valued vertex
colorings crk:

• cr0(v) simply consists of a single root node with feature vector xv .

• crk+1(v) comprises a root node r with feature vector xr = xv and, for each neighbor w of
v, the tree crk(w) connected to r via its root.

For a given graph G, color refinement eventually stabilizes. That is, there exists k0 ∈ N such that

crk0
(v) = crk0

(w) ⇐⇒ crk(v) = crk(w).

for all k ≥ k0 and v, w ∈ V . crk0 is known as the stable coloring of G. Isomorphic graphs have the
same stable coloring, although the converse does not necessarily hold.
Example 2.10. Consider the graph G below. cr3(v3) yields the illustrated rooted tree.

G

v0

v1

v2

v3

v4

cr3(v3)

r

Importantly, color refinement bounds the expressivity of graph neural networks:
Theorem 2.11 (Xu et al. (2019); Morris et al. (2019)). For all v, w ∈ V and k ∈ N the following are
equivalent:

• For all k-layer MPNNs f we have f(v) = f(w).

• crk(v) = crk(w).

2.6 Learning and Data Generation Model

Existing work investigates specific parameterizations of sparse random graphs (Baranwal et al., 2023),
fixed graph size distributions (Maskey et al., 2022), or restricted classes of MPNNs on dense random
graphs (Adam-Day et al., 2024), whereas we aim for a general characterization of learnability for
large graphs. We assume that a large graph G with t nodes is sampled from a random graph model
Gt, followed by a uniform sampling of nodes, on which a node classification task is performed. This
setting reflects real-world scenarios such as social, biological, and epidemiological networks, where a
single large network emerges from an underlying random process, and the MPNNs are used for node
classification.

Our goal is to characterize distributions where learning an MPNN from a single, large graph can
achieve reliable generalization for node classification tasks. We formalize this by defining probabilis-
tic consistency of the empirical risk:
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Definition 2.12. Let Gt be a random graph and let f∗ be an arbitrary node labeling function
expressible by a (k-layer) MPNN. We say that Gt admits probabilistic consistency of the empirical
risk with respect to (k-layer) MPNNs if the generalization gap goes to zero with high probability in
the large graph limit. That is, for every ε > 0 and any (k-layer) MPNN f , we have that

P
(
|Remp(f,Gt)−R(f)| ≥ ε

)
→ 0 as t → ∞,

where the empirical risk and true risk are defined by

Remp(f,Gt) := t−1 · |{v ∈ Gt : f(v) ̸= f∗(v)}|, R(f) := lim
t→∞

E[Remp(f,Gt)].

Notably, all locally convergent random graphs admit probabilistic consistency of empirical risk.
However, local convergence is not a necessary condition. In section 3 we define a completely
equivalent limit notion, color convergence.

3 Color Convergence

We aim to characterize and examine the class of random graphs that satisfy probabilistic consistency
of empirical risk with respect to MPNNs. To this end, we reconcile ideas from color refinement and
local convergence, and introduce the notion of color convergence. Unlike local convergence, which is
defined via distributions over rooted graphs, color convergence is defined via distributions over the
set of rooted trees or colors as given in Definition 2.9.
Definition 3.1. The set Ck ⊆ Tk of refinement colors of depth k comprises the isomorphism classes of
rooted trees T ∈ Tk that occur as the result of color refinement. That is, trees T such that T ≃ crk(v)
for some graph G and vertex v ∈ V (G).

There is a convenient structural characterization of the elements of Ck.
Proposition 3.2. A rooted tree T ∈ Tk belongs to Ck if and only if for every node v ∈ V (T ) that is
neither the root nor at depth k, there exists a child c of v such that T (c) ≃ T (p)|d, where p is the
parent of v and d is the depth of the subtree T (c).
Example 3.3. The tree T belongs to C3. Every node at depth 1 has a child c such that T (c) ∼= T |1,
and every node at depth 2 has a child with the same color as its parent. T ′ does not belong to C3: the
nodes at depth 1 in T ′ lack a child c satisfying the condition T (c) ∼= T (p)|d. Note that cr3(T ′) = T .

T

r

T ′

r

Figure 2: Example demonstrating Proposition 3.2.

We can now give an analogue to local convergence based on refinement colors:
Definition 3.4. For any random graph Gt and t ∈ N we define the random PMF ck,t on Ck by

ck,t(T ) = t−1 · |{v ∈ V (Gt) : crk(v) ≃ T}| .
If ck,t converges in probability as t → ∞, we denote its limit with ck,∞. If ck,∞ is defined, we call
Gt Ck-convergent. If Gt is Ck-convergent for all k ∈ N we call Gt color convergent.

3.1 Color Convergence and Generalization Gap in MPNNs

In the following example we show that learning MPNNs on random graphs that do not admit color
convergence can lead to pathological generalization behavior.
Example 3.5. Recall Example 2.6 where Gt is, with probability 1/2, either a set of t isolated vertices
or a cycle on t vertices. Consider the node label f∗(v) = 1{dv=0}, which classifies isolated nodes.
Let f denote the constant 0 classifier. Then P(Remp(f,Gt) = 0) = 1/2 for t ∈ N but R(f) = 1/2.
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Example 3.5 shows that there exists a data distributions (expressed by the random graph Gt in the
example) for which an arbitrarily large sample (measured in graph size) can still lead to a constant
non-zero generalization gap. In the following theorem we show that such pathological behavior can
not occur for color convergent random graphs, i.e., any MPNN we learn on a color convergent random
graph generalizes well in the limit with high probability. In fact, we show that for distributions that
are not color convergent there is always an MPNN for which the generalization gap does not vanish.

Theorem 3.6. Let Gt be a random graph. The following are equivalent:

• Gt is Ck-convergent.

• Gt satisfies probabilistic consistency of empirical risk with respect to k-layer MPNNs.

The key insight behind the proof of Theorem 3.6 is that color refinement corresponds to a maximally
discriminative MPNN: If a k-layer MPNN has a non-zero generalization gap we can identify a distinct
refinement color on which this discrepancy arises. In such cases, ck,t cannot converge in probability.

Corollary 3.7. Let Gt be a random graph. The following are equivalent:

• Gt is color convergent.

• Gt satisfies probabilistic consistency of empirical risk with respect to MPNNs.

Corollary 3.7 separates random graph models in terms of MPNN learnability. Sparse SBM, pref-
erential attachment models, and inhomogeneous random graphs satisfy color convergence, while
dense random graphs (like SBM and Erdős-Rényi) with growing average degree are incompatible
with MPNN learning.

Example 3.8. Consider a node classifier f∗ which expresses the parity of degree, i.e. f∗(v) = 0 if dv
is even, and f∗(v) = 1 otherwise, and let Gt be an Erdős–Rényi graph with edge probability p ̸= 0.
For t ∈ N let ft denote the following node labeling function:

ft(v) =

{
f∗(v) if dv < t

1− f∗(v) otherwise

By construction, Remp(ft, Gt) = 0 with probability 1 for all t ∈ N. Since almost all nodes have
degree greater than t in the limit, we have R(ft) = 1. This is impossible for color convergent Gt.

3.2 Properties of Color Convergent Random Graphs

Color convergence is a strict relaxation of local convergence:

Proposition 3.9. Let Gt be a Bk-convergent random graph. Then Gt is Ck-convergent.

Remark 3.10. There are random graphs which are color convergent but not locally convergent:
Suppose Gt deterministically, i.e. with probability 1, consists of:

• t/3 cycles of length 3, if t is a multiple of 3,

• a single t-cylce, otherwise.

crk(v) is the perfect binary tree BTk of depth k for all t ∈ N, v ∈ Gt. Therefore, Gt is color
convergent. On the other hand, Gt is not B1-convergent: b1,t is 1C3

when t is a multiple of 3 and
1P3

otherwise, where C3 denotes the 3-cycle and P3 denotes the 3-node path.

In the case of tree-like random graphs, however, both notions are equivalent.

Proposition 3.11. Suppose Gt is a locally tree-like and Ck-convergent. Then Gt is Bk-convergent
and, for T ∈ Tk, we have

bk,∞(T ) = ck,∞(crk(T )).

From a learning perspective, the distribution ck,∞ completely captures the limit behavior of GNNs
on a given random graph Gt. However, not all distributions on Ck can arise as such a limit.

Definition 3.12. A PMF µ on Ck is sofic if there exists a random graph Gt such that µ = ck,∞.
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In the case of local convergence, involution invariance is an important property of sofic PMFs.
We define an analogous notion for color convergence. It is going to play an important role in the
motivation and analysis of our random graph model in Section 4.
Definition 3.13. Let µ be a PMF on Ck and define

dµ :=
∑
T∈Ck

dT · µ(T ).

If dµ < ∞, we define the edge-type marginal µ, a PMF on C2
k−1, as

µ(T0, T1) :=
1

dµ
·

∑
T∈Ck

T |k−1=T0

|{c ∈ N(T ) : T (c) = T1}| · µ(T ).

If dµ < ∞ and µ̄ is symmetric we call µ involution invariant with finite degree.

We can interpret dµ as the average degree and µ̄ as a PMF over the pair of vertex colors of a uniformly
chosen pair of connected vertices: their edge-type. Symmetry expresses that the probability of a given
edge-type (T0, T1) equals that of the inverse edge type (T1, T0). Analogous to local convergence, our
notion of involution invariance with finite degree is a necessary condition for soficity.
Theorem 3.14. Let k ≥ 2, µ a sofic PMF on Ck. Then µ is involution invariant with finite degree.

Note that E[2 · |E(Gt)|] = t · dc1,t and d1,t → d1,∞ < ∞ as t → ∞. That is, Theorem 3.14
immediately implies that color convergent random graphs must be sparse.
Corollary 3.15. Let k ≥ 2 and suppose Gt is Ck-convergent. Then E[|E(Gt)|] ∈ O(t).

4 Refined Configuration Model

We are now ready to introduce our generalization of the configuration model. We show its universality
with regard to color convergence, local convergence to GWTs and limit behavior of MPNNs.
Definition 4.1. The refined configuration model RCMt(µ) is parametrized by:

• a finite or countable set of types S, with a type-to-feature mapping s → xs,

• a PMF µ over S × Multiset(S), the product of types and finite multisets of types.

RCMt(µ) is defined on {vi}i∈[t] as follows:

• For each node vi assign a type-multiset pair (si, Ai) ∼ µ independently at random. si
determines the type of vi, while Ai determines the types of nodes vi may be connected to.
Let Us := {vi | si = s} denote the set of nodes which are assigned type s ∈ S.

• For each type s ∈ S, we independently generate a configuration model on Us:

– Each vertex vi with si = s is given a stub for each occurrence of s in Ai. The stubs are
paired uniformly at random to form edges, until there are 0 or 1 stubs left.

• For each pair of distinct types sL ̸= sR, we independently generate a bipartite configuration
model between UsL and UsR :

– Each vi ∈ UsL is given a stub for each occurrence of sR in Ai. Each vi ∈ UsR is given
a stub for each occurrence of sL in Ai. Then the stubs in UsL are matched uniformly at
random with the stubs in UsR to form edges, until there are no more stubs left in UsL
or UsR .

Example 4.2. Let S = X = { , } and xs = s. Consider vertices {vi}i∈[5] and, without
specifying the exact distribution, suppose µ assigns type-multiset pairs as illustrated in Figure 3. The
generation process occurs in 3 independent steps:

• Steps 1 & 2: Configuration models are generated on nodes of type and , respectively.

• Step 3: A bipartite configuration model is generated between nodes of type and .

The possible results are given as G0 and G1, which occur with probability 2/3 and 1/3, respectively.
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i si Ai

0
1
2
3
4

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

G0

v0

v1

v2

v3

v4

G1

v0

v1

v2

v3

v4

Figure 3: From left to right, we have: a table containing the assigned types, stubs occurring in steps
1, 2, and 3, and possible outputs G0 and G1 of the RCM algorithm.

For general distributions µ, RCMt(µ) may be poorly behaved. For instance, a type s could occur
with probability 0 as a node type si but multiple times in Ai with high probability. In this case µ
would suggest very different neighborhoods from those observed empirically. We give a condition
which guarantees local convergence to the distribution that µ would lead you to expect.
Definition 4.3. Let µ be a PMF on S × MultiSet(S) and define

dµ :=
∑
s∈S

∑
A∈MultiSet(S)

|A| · µ(s,A).

If dµ < ∞, we define the edge-type marginal µ̄, a PMF on S2, as

µ̄(s0, s1) :=
1

dµ
·

∑
A∈MultiSet(S)

|{{a ∈ A : a = s1}}| · µ(s0, A).

If dµ < ∞ and µ̄ is symmetric we call µ involution invariant with finite degree.

Given s ∈ S, the subgraph of RCMt(µ) spanned by Us is simply the configuration model CM|Us|(ν),
where

ν(n) =
1

Zs

∑
A∈MultiSet(S)

{{s′∈A:s′=s}}=n

µ(s,A) Zs :=
∑

A∈MultiSet(S)

µ(s,A)

Given distinct types sL ̸= sR, involution invariance with finite degree of µ ensures that
the bipartite subgraph of RCMt(µ) between UsL and UsR is the bipartite configuration model
BCM|UsL

|+|UsR
|(νL, νR) with

νL(n) =
1

ZsL

∑
A∈MultiSet(S)

{{s′∈A:s′=sR}}=n

µ(sL, A) νR(n) =
1

ZsR

∑
A∈MultiSet(S)

{{s′∈A:s′=sL}}=n

µ(sR, A)

It follows that RCMt(µ) converges locally to the following Galton-Watson tree:
Theorem 4.4. Suppose Gt = RCMt(µ) parametrized by types S0, type-to-feature mapping s →
xs and µ is involution invariant with finite degree. Then Gt converges locally to the GWT Wt

parametrized by type set S = ({⊥} ∪ S0)× S0, type-to-feature mapping (s0, s1) 7→ xs1 and

µ0(⊥, s) = Zs µ0(s0, s1) = 0 (3)

µ⊥,s(A) =

{
1
Zs

µ(s, {{q : (p, q) ∈ A}}) ∀(p, q) ∈ A : p = s

0 otherwise
(4)

µs0,s1(A) =
|{{s ∈ A : s = (s1, s0)}}| · µ⊥,s1(A)∑

B∈MultiSet(S)

|{{s ∈ B : s = (s1, s0)}}| · µ⊥,s1(B)
. (5)

for all s0, s1 ∈ S0.

Intuitively, the state-pair (s0, s1) of each node is aware of its own state s1 ∈ S0, but also its parent’s
state s0 ∈ S0. Root nodes have no parent (3). Given a root r, µ⊥,r(A) is given by µ(s,A) conditioned
on s = r, and requiring each element (p, q) of A to come with the correct parent type p = r (4).
Finally, µs0,s1 is simply µ⊥,s1 conditioned on there being a neighbor of type s0 (5).

With this, we can construct a refined configuration model that is color convergent to any sofic PMF ν
on Ck, and obtain universality of the refined configuration model with respect to MPNN learnability.
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Corollary 4.5. Suppose ν is a sofic distribution over Ck. Let S = Ck−1 and consider the PMF µ on
S × MultiSet(S) defined as follows:

µ(s,A) =

{
ν(T ) if there exists T ∈ Ck such that T |k−1 = s and {{T (c) | c ∈ N(T )}} = A

0 otherwise.

Then µ is involution invariant with finite degree and for Gt = RCMt(µ) we have ck,∞ = ν.
Corollary 4.6. Let Gt be a random graph. The following are equivalent:

• Gt satisfies probabilistic consistency of empirical risk with respect to k-layer MPNNs

• There exists an involution invariant PMF µ with finite degree such that RCMt(µ) is equiva-
lent to Gt in probability for all k-layer MPNNs f, f∗. That is, for all ε > 0, as t → ∞,

P (|Remp(f,RCMt(µ))−Remp(f,Gt)| ≥ ε) → 0.

Note that this holds only for fixed k. There may be deep dependencies which our model can not
capture. However, for Galton-Watson trees we show that this is not the case:
Theorem 4.7. The following are equivalent:

• Wt is the local limit of RCMt(µ) for some involution invariant PMF µ with finite degree.

• Wt is a GWT that arises as the local limit of some random graph.
Remark 4.8. Analogously to the configuration and bipartite configuration model, the refined configu-
ration model can be sampled in time proportional to the expected number of stubs. If dµ < ∞, we
can sample RCMt(µ) in linear time O(t) with high probability.

5 Discussion, Limitations and Broader Impact

We have introduced color convergence and shown that it characterizes learnability by MPNNs in the
large graph limit. We have investigated connections between color convergence, local convergence,
and Galton–Watson trees. We have introduced the refined configuration model — a tractable random
graph model which is universally expressive with respect to local limit behavior of MPNNs.

Limitations and Future Work. Although our results fill a significant gap in the understanding of
MPNNs on sparse random graphs they are inherently limited by the expressivity of color refinement
and cannot represent features used by more expressive machine learning architectures, such as
higher-order graph neural networks (Maron et al., 2019) or models leveraging subgraph informa-
tion (Bouritsas et al., 2022). These limitations could, for instance, be addressed by considering graph
limits with respect to higher-dimensional versions of the Weisfeiler–Leman algorithm. Furthermore,
while we have established a criterion for the learnability of MPNNs, we have not established formal
guarantees regarding convergence rates or error bounds. This limits our ability to rigorously quantify
the approximation quality or sample complexity of learning in this setting. A natural direction for
future work is to investigate under what conditions this framework can yield stronger learnability
guarantees. The refined configuration model defines a generative model for structured random graphs.
Its practical utility as a data model requires further investigation: Does it admit natural learning
algorithms tailored to its structure? Additionally, it is worth exploring whether specific restrictions
on its parametrization give rise to interesting subclasses.

Broader Impact. Understanding the theoretical foundations of graph neural networks is essential for
ensuring their robust and transparent use in high-stakes domains such as drug discovery, recommender
systems, and social network analysis. Our framework aims to contribute to the development of
principled, interpretable, and responsible machine learning on graphs.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Our key contribution is the introduction of a new notion of local convergence
and a novel random graph model, which are clearly and adequately highlighted in the
abstract. The contributions are explicitly summarized in the introduction and substantiated
in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in the discussion section at the end of the paper. In
particular, we reflect on assumptions and applicability of our quite theoretical results.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs of all statements are provided in the appendix. Known results are cited.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: There are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: There is no data or code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: There is no training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: There are no experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: There are no experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and agree to NeurIPS code of ethics.

Guidelines: Both authors have read and agreed to the ethics code.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impact in the conclusion section at the end of the paper.
Since our work is purely theoretical, direct societal impact is limited.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not come with any artifacts.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We do not use any external assets such as code, datasets, or models in this
paper. All referenced papers are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research involving human subjects was conducted in the
creation of this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: No crowdsourcing or research involving human subjects was conducted in the
creation of this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer:[NA]
Justification: LLMs were only used for grammar and style checking.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Color Convergence Proofs

Definition A.1. The set Ck ⊆ Tk of refinement colors of depth k comprises the isomorphism classes
of rooted trees T ∈ Tk that occur as the result of color refinement. That is, trees T such that
T ≃ crk(v) for some graph G and vertex v ∈ V (G).

There is a convenient structural characterization of the elements of Ck.

Proposition A.2. A rooted tree T ∈ Tk belongs to Ck if and only if for every node v ∈ V (T ) that is
neither the root nor at depth k, there exists a child c of v such that T (c) ≃ T (p)|d, where p is the
parent of v and d is the depth of the subtree T (c).

Proof. We proceed by induction on k.

The base case k = 1 is clear: We have cr1(T ) = T for all T ∈ T1, so C1 = T1. On the other hand,
the condition in Proposition A.2 becomes trivial since every node is the root or of depth 1.

Let’s do the induction step in both directions:

Let T ∈ Ck+1, that is, T = crk+1(rG) for some graph G and vertex rG ∈ V (G). By construction, we
have T (c) ∈ Ck for all c ∈ N(rT ), where rT denotes the root of T . That is, by induction hypothesis
all vertices at depth k ≥ 2 have a child as desired. Let vT be a vertex at depth 1 in T . By the
definition of color refinement, there is a vertex vG ∈ N(rG) such that crk(vG) = T (vT ). Since vG
and rG are adjacent, vT has a child c such that crk−1(rG) = T (c). That is, T (c) = T |k−1 as desired.

In the other direction, suppose T ∈ Tk+1 with all non-root vertices at depth less than k + 1 having a
child c satisfying T (c) = T (p)|d. We show that there is a rooted tree T ′ satisfying crk+1(T

′) = T .
Each child v of the root rT has a child cv such that T (cv) = T |k−1. For each v ∈ N(T ) consider the
subtree Tv of T (v) where T (cv) has been removed. By induction hypothesis there exists a rooted
tree T ′

v such that crk(T ′
v) = Tv . Now construct the tree T ′ by taking a root node r with xr = xT and

connecting to it the tree Tv via its root for each v ∈ N(T ). Then we have crk+1(T
′) = T .

Definition A.3. For any random graph Gt and t ∈ N we define the random PMF ck,t on Ck by

ck,t(T ) = t−1 · |{v ∈ V (Gt) : crk(v) ≃ T}| .

If ck,t converges in probability as t → ∞, we denote its limit with ck,∞. If ck,∞ is defined, we call
Gt Ck-convergent. If Gt is Ck-convergent for all k ∈ N we call Gt color convergent.

A.1 Color Convergence and Generalization Gap in MPNNs

Example A.4. Gt is, with probability 1/2, either a set of t isolated vertices or a cycle on t vertices.
Consider the node label f∗(v) = 1{dv=0}, which classifies isolated nodes. Let f denote the constant
0 classifier. Then P(Remp(f,Gt) = 0) = 1/2 for t ∈ N but R(f) = 1/2.

Theorem A.5. Let Gt be a random graph. The following are equivalent:

• Gt is Ck-convergent.

• Gt satisfies probabilistic consistency of empirical risk with respect to k-layer MPNNs.

We divide the proof into Lemma A.6, which covers the forward implication, and Lemma A.7 and
Lemma A.8, completing the equivalence.

Lemma A.6. Suppose Gt is Ck-convergent. Gt satisfies probabilistic consistency of empirical risk
with respect to k-layer MPNNs.

Proof. Since Gt is Ck-convergent, for every T ∈ Ck there exists cT ∈ [0, 1] such that for all ε we
have

P(|ck,t(T )− ct| ≤ ε) → 1

as t → ∞. Let
D := {T ∈ Ck : f(T ) ̸= f∗(Ck)}
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denote the disagreement set. Then, for every ε > 0, we have

P

(∣∣∣∣∣∑
T∈D

(ck,t(T )− cT )

∣∣∣∣∣ ≤ ε

)
→ 1

and thus
Remp(f,Gt) =

∑
T∈D

ck,t(T ) R(f) =
∑
T∈D

cT

and the empirical risk converges.

In the other direction we distinguish two ways in which Gt can fail to be Ck-convergent:

• Lemma A.7 captures the random graph failing to be sufficiently deterministic in the limit, as
in Example A.4.

• The other mode of failure captures some probability mass escaping to infinity, covered
by Lemma A.8. This happens for example in dense random graphs. “Tracking” the mass as
it escapes to infinity with the empirical risk turns out to be more technically involved.

Lemma A.7. Let Gt be a random graph that. Suppose ck,t does not converge pointwise. That is,
there exists T ∈ Ck such that for all c ∈ [0, 1] there exists ε > 0 such that

P(|ck,t(T )− c| ≤ ε) ̸→ 1

as t → ∞. Then Gt is does not satisfy probabilistic consistency of empirical risk with respect to
k-layer GNNs.

Proof. Let f be constant 0 and

f∗(v) =

{
1 crk(v) = T

0 else
.

Then Remp(f,Gt) = ck,t(T ), which, by assumption, does not converge.

Lemma A.8. Let Gt be a random graph. Suppose ck,t does not converge in probability, but converges
pointwise. That is, for every T ∈ Ck there exists cT such that for every ε > 0

P(|ck,t(T )− cT | ≤ ε) → 1

as t → ∞. Then Gt is does not satisfy probabilistic consistency of empirical risk with respect to
k-layer GNNs.

Proof. Since ck,t converges point-wise to cT ∈ [0, 1] but does not converge in probability, the
mapping T 7→ cT can not define a PMF. That is, there exists ε0 > 0 such that∑

T∈Ck

cT = 1− ε0.

Let An ⊆ Ck denote the set of refinement colors containing no node with more than n children.
Define

an,t :=
∑

T∈An

ck,t(T ).

and
an,∞ := lim

t→∞
an,t =

∑
T∈An

cT .

Note that for all n ∈ N, ε > 0 we have

P(|an,t − an,∞| ≤ ε) → 1

as t → ∞, an,∞ → 1− ε0 as n → ∞, and therefore

P(|an,t − (1− ε0)|) ≤ ε) → 1
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as n → ∞, t → ∞. Furthermore, for each t ∈ N, choose Kt ∈ N, such that

P(aKt,t ≥ 1− 0.1ε0) ≥ 0.9.

The key idea now is to construct sets Abn such that Abn+1 \Abn “tracks” the mass ε0 at time bn+1 as
it is escaping to infinity.

Let N, t0 ∈ N such that for all t ≥ t0 we have P (|aN,t − (1− ε0)| ≤ 0.1ε0) ≥ 0.9.
Construct the sequence bi over N as follows:

• Let b0 = Kt0 .

• For i ≥ 1, take bi > bi−1 such that

P(aKbi
,bi − aKbi−1

,bi ≥ 0.8ε0) ≥ 0.8.

Note that choosing such bi is always possible since

P(aKbi−1
,t ≥ 1− 0.9ε0) → 0

as t → ∞.

Let f be the constant 0 function and define f∗ as follows:

f∗(v) =

{
1 ∃n ∈ N : crk(v) ∈ Ab2n+1

\Ab2n

0 else

The disagreement set D is
D =

⋃
n∈N

(
Ab2n+1 \Ab2n

)
.

Then we have

P(|Remp(f,Gb2n+1
)|) ≥ 0.8ε0) ≥ P(aKb2n+1

,b2n+1
− aKb2n,b2n+1

≥ 0.8ε0) ≥ 0.8

P(|Remp(f,Gb2n+2
)|) ≤ 0.3ε0) ≥ P(aN,b2n+2

+ (aKb2n+2,b2n+2
− aKb2n+1

,b2n+2
) ≥ 1− 0.3ε0)

≥ P(aN,b2n+2 ≥ 1− 1.1ε0 ∧ aKb2n+2,b2n+2
− aKb2n+1

,b2n+2 ≥ 0.8ε0)

≥ P(aN,b2n+2
≥ 1− 1.1ε0) + P(aKb2n+2,b2n+2

− aKb2n+1
,b2n+2

≥ 0.8ε0)− 1

≥ 0.7

for all n ∈ N. That is, the empirical risk does not converge.

Corollary A.9 follows immediately from the definitions.
Corollary A.9. Let Gt be a random graph. Then the following are equivalent:

• Gt is color convergent.

• Gt satisfies probabilistic consistency of empirical risk with respect to MPNNs.

A.2 Properties of Color Convergent Random Graphs

Proposition A.10. Let Gt be a Bk-convergent random graph. Then Gt is Ck-convergent.

Proof. For T ∈ Ck define AT := {B ∈ Bk : crk(B) = T} and

cT =
∑

B∈AT

bk,∞(B).

Then T 7→ cT defines a PMF and, for every ε > 0, we have

P(|ck,t(T )− cT | ≤ ε) = P

(∣∣∣∣∣ ∑
B∈AT

(bk,t(B)− bk,∞(B)) ≤ ε

∣∣∣∣∣
)

→ 1

as t → ∞.
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Proposition A.11. Suppose Gt is a locally tree-like and Ck-convergent. Then Gt is Bk-convergent
and, for T ∈ Tk, we have

bk,∞(T ) = ck,∞(crk(T )).

Proof. Let ε, δ ≥ 0. Since Gt is locally tree-like, there exists Ntree such that for t ≥ Ntree we have

P
(
t−1 · |{v ∈ Gt : Bk(v) contains a cycle}| ≤ ε/2

)
≥ 1− δ/2.

Let T ∈ Ck. Since Gt is Ck convergent, there exists N such that for t ≥ N we have

P (|ck,t(crk(T ))− ck,∞(crk(T ))| ≤ ε/2) ≥ 1− δ/2.

Let t ≥ max(Ntree, N). Then we have

P(|t−1 · |{v ∈ Gt : crk(v) = crk(T ) ∧Bk(v) is a tree}| − ck,∞(crk(T ))| ≤ ε) ≥ 1− δ.

Since crk(v) = crk(T ) together with Bk(v) being a tree implies Bk(v) = T we are done.

Definition A.12. A PMF µ on Ck is sofic if there exists a random graph Gt such that µ = ck,∞.
Definition A.13. Let µ be a PMF on Ck and define

dµ :=
∑
T∈Ck

dT · µ(T ).

If dµ < ∞, we define the edge-type marginal µ, a PMF on C2
k−1, as

µ(T0, T1) :=
1

dµ
·

∑
T∈Ck

T |k−1=T0

|{c ∈ N(T ) : T (c) = T1}| · µ(T ).

If dµ < ∞ and µ̄ is symmetric we call µ involution invariant with finite degree.
Theorem A.14. Let k ≥ 2, µ a sofic PMF on Ck. Then µ is involution invariant with finite degree.

Proof. Consider a random graph Gt such that ck,∞ = µ.

Define the excess c′k,t as the PMF on Ck−1 of the following sampling process:

• Sample T ∼ ck,t.

• Uniformly at random chose a node c among the children of the root.

• Return T (c).

By construction, c′k,t(T ) is proportional to dT · ck−1,t(T ), More concretely, we have

dck,t
· c′k,t(T ) = dT · ck−1,t(T )

for all T ∈ Ck−1. Furthermore, c′k,∞ is a well-defined PMF and we have c′k,t(T ) → c′k,∞(T ) as
t → ∞. It follows that

dck,∞ · c′k,∞(T ) = dT · ck−1,∞(T )

for all T ∈ Ck−1. That is, dµ = dck,∞ < ∞.

The symmetry of µ then follows from the symmetry of ck,t, the convergence of ck,t to µ, and the
bound

|{c ∈ N(T ) : T (c) = T1}| ≤ dT0

for T ∈ Ck with T |k−1 = T0.

Corollary A.15. Let k ≥ 2 and suppose Gt is Ck-convergent. Then E[|E(Gt)|] ∈ O(t).

Proof. We have E[|E(Gt)|] = t · dck,t

2 and dck,t
∈ O(1).
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B Refined Configuration Model Proofs

Definition B.1. The refined configuration model RCMt(µ) is parametrized by:

• a finite or countable set of types S, with a type-to-feature mapping s → xs,

• a PMF µ over S × Multiset(S), the product of types and finite multisets of types.

RCMt(µ) is defined on {vi}i∈[t] as follows:

• For each node vi assign a type-multiset pair (si, Ai) ∼ µ independently at random. si
determines the type of vi, while Ai determines the types of nodes vi may be connected to.

• For each type s ∈ S, we independently generate a configuration model on the vertices of
type s:

– Each vertex vi with si = s is given a stub for each occurrence of s in Ai. The stubs are
paired uniformly at random to form edges, until there are 0 or 1 stubs left.

• For distinct types sL ̸= sR, we independently generate a bipartite configuration model on
the vertices of type sL and sR:

– Each vertex vi with si = sL is assigned to the set L of left nodes. Each vertex vi with
si = sR is assigned to the set R if right nodes.

– Each vi ∈ L is given a stub for each occurrence of sR in Ai. Each vi ∈ R is given
a stub for each occurrence of sL in Ai. Then the left stubs are matched uniformly at
random with the right stubs to form edges, until there are no more stubs left in L or R.

Our model is essentially not more complex than a combination of configuration and bipartite configu-
ration models, which are well-behaved under the conditions given in Definition B.2.

Definition B.2. Let µ be a PMF on S × MultiSet(S) and define

dµ :=
∑
s∈S

∑
A∈MultiSet(S)

|A| · µ(s,A).

If dµ < ∞, we define the edge-type marginal µ̄, a PMF on S2, as

µ̄(s0, s1) :=
1

dµ
·

∑
A∈MultiSet(S)

|{{a ∈ A : a = s1}}| · µ(s0, A).

If dµ < ∞ and µ̄ is symmetric we call µ involution invariant with finite degree.

Definition B.2 ensures that, for involution invariant µ with finite degree, the subgraph of RCMt(µ)
spanned by the nodes Us of a given type s ∈ S is equal to CM(ν), where

ν(n) =
1

Zs

∑
A∈MultiSet(S)

{{s′∈A:s′=s}}=n

µ(s,A) Zs :=
∑

A∈MultiSet(S)

µ(s,A)

and the bipartite subgraph of RCMt(µ) between nodes UsL and UsR for distinct types sL, sR ∈ S is
equal to BCM(νL, νR) with

νL(n) =
1

ZsL

∑
A∈MultiSet(S)

{{s′∈A:s′=sR}}=n

µ(sL, A) νR(n) =
1

ZsR

∑
A∈MultiSet(S)

{{s′∈A:s′=sL}}=n

µ(sR, A)

Given the corresponding results for these models given e.g. in Van Der Hofstad (2024), and due to
the independence of the edge sampling procedures, it follows that RCMt(µ) converges locally to the
following Galton-Watson tree:
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Theorem B.3. Suppose Gt = RCMt(µ) parametrized by types S0, type-to-feature mapping s →
xs and is involution invariant µ with finite degree. Then Gt converges locally to the GWT Wt

parametrized by type set S = ({⊥} ∪ S0)× S0, type-to-feature mapping (s0, s1) 7→ xs1 and

µ0(⊥, s) = Zs µ0(s0, s1) = 0 (6)

µ⊥,s(A) =

{
1
Zs

µ(s, {{q : (p, q) ∈ A}}) ∀(p, q) ∈ A : p = s

0 otherwise
(7)

µs0,s1(A) =
|{{s ∈ A : s = (s1, s0)}}| · µ⊥,s1(A)∑

B∈MultiSet(S)

|{{s ∈ B : s = (s1, s0)}}| · µ⊥,s1(B)
. (8)

for all s0, s1 ∈ S0.

Intuitively, the state-pair (s0, s1) of each node is aware of its own state s1 ∈ S0, but also its parent’s
state s0 ∈ S0. Root nodes have no parent (6). Given a root r, µ⊥,r(A) is given by µ(s,A) conditioned
on s = r, and each element (p, q) of A has to come with the correct parent node p = r (7). Finally,
µs0,s1 is simply µ⊥,s1 conditioned on there being a neighbor of type s0 (8). For a more detailed
intuition refer to Definition B.7. In fact, we shall see in Theorem B.11 that every GWT that arises as
the local limit of a random graph can be represented in this way.

Corollary B.4 is a direct consequences of Theorem B.3.

Corollary B.4. Let Gt = RCMt(µ), S = X and xs = s. If µ is involution invariant with finite
degree,

• Gt is locally tree-like.

• c1,∞(T ) = µ(xT , {{xv : v ∈ N(T )}}) for all T ∈ C1.

Proof. Gt being tree-like is clear. Furthermore, we have

c1,∞(T ) = µ0(⊥, xT ) · µ⊥,xT
({{(xT , xv) : v ∈ N(T )}}) = µ(xT , {{xv : v ∈ N(T )}})

for T ∈ Ck.

Corollary B.5. Suppose ν is a sofic distribution over Ck. Then there is a refined configuration model
Gt = RCMt(µ) with types S = Ck−1 such that ck,∞ = ν.

Proof. Let

µ(s,A) =

{
ν(T ) if there exists T ∈ Ck such that T |k−1 = s and {{T (c) | c ∈ N(T )}} = A

0 otherwise
.

By Corollary B.4, for every ε > 0, we have

P
(
t−1 ·

∣∣{vi ∈ V (Gt) : {{svj
: vj ∈ N(vi)}} = Ai

}∣∣ ≥ 1− ε
)
→ 1

as t → ∞. Setting the type-to-feature mapping s → xs, we obtain

P
(
t−1 · |{vi ∈ V (Gt) : {{crk−1(vj) : vj ∈ N(vi)}} = Ai}| ≥ 1− ε

)
→ 1

as t → ∞. It follows that ck,∞ = ν.

Corollary B.6. Let Gt be a random graph. The following are equivalent:

• Gt satisfies probabilistic consistency of empirical risk with respect to k-layer MPNNs

• There exists an involution invariant PMF µ with finite degree such that RCMt(µ) is equiva-
lent to Gt in probability for all k-layer MPNNs f . That is, for all ε > 0, as t → ∞,

P (|Remp(f,RCMt(µ))−Remp(f,Gt)| ≥ ε) → 0.
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Proof. Suppose Gt satisfies probabilistic consistency of empirical risk with respect to k-layer MPNNs.
By Theorem A.5 there exists a PMF ν over Ck such that ck,∞ = ν. By A.14 this PMF is involution
invariant with finite degree. By Corollary B.5 there exists an involution invariant distribution µ with
finite degree such that setting G′

t = RCMt(µ) yields ck,∞ = c′k,∞. Let f, f∗ be any k-layer GNN
and define

D := {T ∈ Ck : f(T ) ̸= f∗(T )}
the disagreement set. Since ck,∞ = c′k,∞ we have

P(|Remp(f,RCMt(µ))−Remp(f,Gt)| ≥ ε) = P

(∣∣∣∣∣∑
T∈D

(c′k,t(T )− ck,t(T ))

∣∣∣∣∣ ≥ ε

)
→ 0

as t → ∞.

Suppose on the other hand there exists an involution invariant µ with finite degree and G′
t = RCMt(µ)

such that for all ε > 0 and k-layer MPNNs f ,

P(|Remp(f,RCMt(µ))−Remp(f,Gt)| ≥ ε) = P

(∣∣∣∣∣∑
T∈D

(c′k,t(T )− ck,t(T ))

∣∣∣∣∣ ≥ ε

)
→ 0

as t → ∞. Then, in particular, this is true for f constant 0 and f∗ the indicator function of T . That is,
for all T ∈ Ck and ε > 0, we have

P
(∣∣c′k,t(T )− ck,t(T )

∣∣ ≥ ε
)
→ 0

as t → ∞. Since G′
t = RCMt(µ) is color convergent, ck,t converges in probability to c′k,∞.

For the final result we need to show that every GWT can be represented as in Theorem B.3.
Definition B.7. A simplified unimodular GWT Wt is a GWT parametrized by S, µ0, {µs}s∈S such
that

• there is a base type set S0 such that S = ({⊥} ∪ S0)× S0, that is, each node’s type records
its own base type and its parent’s base type (⊥ in the case of the root).

• The root distribution µ0 is supported on nodes of type (⊥, s), i.e., µ0(s0, s1) = 0 if s0 ̸= ⊥.

• For all s0, s1 ∈ S0, the offspring distribution µs0,s1 is supported only on multisets of
children of the form {{(s1, qi)}ni=1}, meaning every child has parent type s1:

µs0,s1(A) = 0 if ∃ (p, q) ∈ A with p ̸= s1.

Additionally, the following two conditions hold:

• (Root-to-child consistency) For all s0 ̸= ⊥, the pmf µs0,s1 coincides with the conditional
offspring distribution of a root with type (⊥, s1) and conditioned on having a child of type
(s1, s0), that is

µs0,s1(A) =
|{{s ∈ A : s = (s1, s0)}}| · µ⊥,s1(A)∑

B∈MultiSet(S)

|{{s ∈ B : s = (s1, s0)}}| · µ⊥,s1(B)
.

• (Edge-type symmetry) Let the expected degree of the tree be

dW :=
∑
s∈S0

∑
A

|A| · µ0(⊥, s) · µ⊥,s(A),

and define the edge-type marginal

µ̄(s0, s1) :=
1

dW

∑
A

|{a ∈ A : a = s1}| · µ0(⊥, s0) · µ⊥,s0({{s0, a}}a∈A).

Then we require that µ̄ is symmetric:

µ̄(s0, s1) = µ̄(s1, s0).
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Note that S0, µ0, {µ(⊥,s)}s∈S0 completely determine a simplified unimodular GWT. The GWT
in Theorem B.3 is an simplified unimodular GWT as edge-type symmetry is a direct consequence of
involution invariance with finite degree.
Lemma B.8. Suppose µ is involution invariant with finite degree. Then RCMt(µ) converges locally
to a simplified unimodular Galton-Watson tree.

In fact, Definition B.7 exactly captures the local limits of refined configuration models.
Lemma B.9. Suppose Wt is a simplified unimodular GWT determined by S0, µ0, {µ(⊥,s)}s∈S0 .
Then Wt is the local limit of RCMt(µ) where µ is involution invariant with finite degree.

Proof. Define the distribution µ over S0 × MultiSet(S) by

µ(s,A) = µ0(⊥, s) · µ⊥,s({{(s, a) : a ∈ A}}).

Involution invariance with finite degree of µ follows directly from edge-type symmetry of Wt.
Applying Theorem B.3 we recover Wt as the local limit of RCMt(µ).

All that’s left is to show that every sofic GWT is equivalent to a simplified, unimodular GWT.
Lemma B.10. Suppose W ′

t is a Galton Watson tree that is the local limit of a random graph. There
exists a simplified unimodular Galton Watson tree Wt that defines the same random process.

Proof. Suppose W ′
t is parametrized by S′, µ′

0. {µ′
s}s∈S′ and type-to-feature mapping s → x′

s, and
is the local limit of Gt. Define

S0 := {s ∈ S′ : µ′
0(s) > 0},

the set of vertices which appear with positive probability at the root.

Due to unimodularity Aldous & Lyons (2007), the nodes that appear as the neighbors of the root with
non-zero probability, must themselves appear as the root with non-zero probability as well. Therefore
this set of types is sufficient. Let us make this more formal:

Let µs
k denote the PMF of the conditional distribution of W ′

k given that the root has state s. Fix an
total order ⪯ on S0. For every s ∈ S0, there is a distribution νs over MultiSet(S0) such that, for
every k ∈ N, sampling T ∼ µs

k is equivalent to the following process:

• Consider a singleton graph comprising the root r with feature xr = xs.

• Sample a multiset {{s0 ⪯ · · · ⪯ sn}} ∼ νs.

• Sample B0, . . . , Bn ∼ µs0
k−1 × · · · × µsn

k−1, conditioned on the existence of a neighbor
vi of Bi such that xvi = xr and all the balls agreeing on the neighborhood of vi, that is,
Bk−2(vi) = Bk−2(vj) for i, j ∈ [n+ 1].

• Connect the graphs Bi to the root r via the neighbor whose existence we conditioned on,
and return the resulting tree.

Setting µ0(⊥, s) = µ0(s) and

µ⊥,s(A) =

{
νs({{q : (p, q) ∈ A}}) ∀(p, q) ∈ A : p = s

0 otherwise

for s ∈ S0 we obtain the desired simplified unimodular GWT.

Theorem B.11 now follows directly from Lemma B.8, Lemma B.9 and Lemma B.10.
Theorem B.11. The following are equivalent:

• Wt is the local limit of RCMt(µ) for some involution invariant PMF µ with finite degree.

• Wt is a GWT that arises as the local limit of some random graph.
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