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ABSTRACT

We present TiGER (Time-Integrated Graph for Efficient Retrieval), a novel ap-
proach for performing fast time-aware approximate nearest neighbor searches on
dynamic vector datasets with flexibility over any possible time range. Our proposed
algorithm builds and maintains a unified graph for all vectors by leveraging an
index structure based on integrated versioned connectivity, allowing arbitrary time
intervals to be queried directly on the unified graph without having to traverse
invalid vectors. This forgoes the need for post-search filtering or merging, or
separate graphs for each possible composite range. Empirical evaluations show
that our method attains up to a 5x improvement in queries per second (QPS) with-
out compromising accuracy over baselines based on filtering or per-time-segment
sub-graphs. We believe that this method will enable efficient temporal analysis
across evolving datasets in real-time recommendation systems, log analysis, and
any scenario requiring fast similarity search over dynamic, time-segmented data.

1 INTRODUCTION

As the volume of textual data continues to expand at an unprecedented rate, efficient and accurate text
retrieval has become a cornerstone for numerous online applications, including Retrieval-Augmented
Generation (RAG) (Fan et al., 2024; Gao et al., 2023) and news fact-checking (Capuano et al., 2023;
Liao et al., 2023). The ability to quickly retrieve relevant information is particularly critical in the
context of large-scale corpora, where similarity search serves as a foundational mechanism for modern
information retrieval systems. Its significance has grown with the rise of Large Language Model
(LLM) workflows, where effective retrieval underpins tasks ranging from contextual augmentation to
real-time query generation (Chen et al., 2022; Shorten et al., 2021; Wu et al., 2019).

To meet the demands of fast and accurate query processing, Approximate Nearest Neighbor (ANN)
search has emerged as a promising strategy (Macdonald & Tonellotto, 2021; Tu et al., 2020; Xiong
et al., 2021). By tolerating a small margin of error, ANN techniques achieve significant speedups,
enabling rapid nearest-neighbor queries even in massive datasets. Among the various ANN methods
developed (Cai, 2021; He et al., 2019; Jégou et al., 2011; Ram & Sinha, 2019), graph-based techniques
have consistently demonstrated superior performance, excelling in key metrics such as recall and
query time across a range of benchmarks (Fu et al., 2019; Li et al., 2020; Morozov & Babenko,
2018; Wang et al., 2021). This advantage stems from their ability to capture local neighborhood
relationships, making graph-based ANN an indispensable tool for large-scale retrieval.

Similarity Search with Time Constraints. However, in many real-world applications, straight-
forward similarity search is insufficient. We often need to retrieve topk results under specific
constraints—known as Range-Filtering Approximate Nearest Neighbor Search (RFANNS) (Zuo
et al., 2024)—such as categories, keywords, or temporal restrictions (Engels et al., 2024; Kovacs
et al., 2024; Zhang et al., 2022). Time-based constraints are particularly common, such as fetching
news articles or social network posts within a given timeframe (Awao et al., 2023; Wang et al., 2022a)
or w.r.t. periodic trends. (Bertrand et al., 2013; Golder & Macy, 2011)

Most graph-based ANN methods are not designed for such filtering and typically use post-filtering or
pre-filtering (Dilocker, 2021; Xu et al., 2024): (1) Post-filtering retrieves topk without constraints and
filters results afterward, leading to inefficiencies under tight constraints due to excess candidates. (2)
Pre-filtering tailors the initial index to the constraint, but constructing or maintaining graphs for all
possible filters is impractical. Dynamic graph construction for each query would be computationally
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costly, and maintaining per-timestamp graphs and performing searches individually across the relevant
graphs minimizes search cost, but requires expensive merging and ordering operations at query time.

Challenges. Existing approaches (Cai et al., 2024; Gollapudi et al., 2023; Xu et al., 2024; Zuo et al.,
2024) address constrained ANN search but often face challenges with dynamic updates, requiring
extensive graph rebuilding, or are designed for contiguous ranges, making them less suitable for more
complex or fragmented constraints. In dynamic or evolving datasets, where queries and constraints
frequently shift, these limitations necessitate a solution that can flexibly and efficiently integrate
temporal filtering without heavy reconstruction or excessive search overhead.

Our Approach. We propose a unified index that seamlessly integrates time constraints into similarity
search without requiring multiple graphs or extensive post-processing. Specifically, for any query
vector q and timestamp set Tq = {t1, t2, ...tn}, whether contiguous (e.g., [ta, tb]) or disjoint (e.g.,
{t1, t3, t9}), our method retrieves the top-k approximate neighbors matching any timestamp in Tq

directly during search.

Our core structure is a versioned proximity graph where each node represents an embedding with
temporal metadata. Nodes track active time periods, and edges are annotated with validity ranges,
allowing efficient time-constrained traversal without needing graph modifications for each query.
Additionally, to guarantee full reachability without costly reconstructions, we maintain dynamic
predecessor links that adapt as new nodes are inserted. This structure enables direct traversal
without unnecessary connections or broken graphs for any specified time range (continuous or not),
eliminating the need for post-filtering or maintaining multiple subgraphs while remaining scalable
for dynamic datasets.

Contributions. We summarize our main contributions as follows:

• We propose TiGER (Time-Integrated Graph for Efficient Retrieval), a unified graph-based ANN
framework that supports arbitrary temporal filtering during search while enabling dynamic updates.

• We introduce a dynamic edge management mechanism that preserves graph connectivity across
time, minimizing reconstruction costs.

• We design an integrated sparse edge database to efficiently aggregate edge information for broad or
continuous time filters, improving search speed.

• We experimentally show that TiGER achieves up to a 5x improvement in queries per second (QPS)
while maintaining comparable or superior recall compared to pre- and post-filtering baselines.

2 PRELIMINARY

2.1 SIMILARITY SEARCH WITH PROXIMITY GRAPHS

Due to their effectivenes in key metrics such as recall and query speed on many datasets (Fu
et al., 2019; Li et al., 2020; Morozov & Babenko, 2018; Wang et al., 2021), Proximity graphs
have emerged as a cornerstone option for efficient ANN search. These graphs leverage the spatial
relationships between data points, constructing a graph where edges connect nearby vectors. During
queries, traversal of this graph allows retrieval of neighbors with a fraction of the computational
cost of exhaustive searches, making proximity graphs ideal for large-scale datasets. However,
traditional proximity graphs are inherently designed for unconstrained searches, which limits their
ability to handle filtered ANN tasks. Incorporating constraints, such as time ranges or categories,
typically requires preprocessing (to construct filtered subgraphs) or postprocessing (to filter results
after retrieval), which introduce inefficiencies (Xu et al., 2024). When filters are applied after
retrieval, unnecessary candidates are traversed which wastes computations and may lead to suboptimal
performance when the selectivity of the filter is high, i.e., very small number of the retrieved candidates
satisfy the constraints. Conversely, pre-filtering often necessitates either on-the-fly graph construction
for a given filter (as maintaining all separate graphs for all possible filters at all times is clearly
impractical) or a recombination process after searches on multiple timestamp ranges.

2.2 PERSISTENT DATA STRUCTURES

Persistent data structures retain multiple versions of data, allowing access to historical states without
duplication (Driscoll, 1989). In the context of time-based constraints, persistent data structures
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provide an elegant solution for managing data across temporal dimensions (Lenhof & Smid, 1994). By
encoding the temporal validity of nodes and edges, a persistent proximity graph can conserve historical
data while allowing for continuous updating. Our approach applies this concept of persistence to
maintain a unified, versioned graph structure. Each node and edge is annotated with metadata
tracking their active states across time, ensuring the graph supports queries for any arbitrary time
range. Instead of creating separate graphs for each time slice, the persistent graph enables direct
traversal using the relevant versions of nodes and edges. This also allows for seamless handling of
dynamic workloads, where new data points and temporal constraints are continually introduced.

3 TIGER FRAMEWORK

In this section, we present the TiGER framework, which employs a unified graph index to seamlessly
integrate temporal constraints into its structure. This is achieved through three interconnected
components: the graph index construction process (Section 3.1) establishes a single, versioned
graph where nodes and edges are annotated with temporal metadata, ensuring connectivity across
arbitrary time ranges. A versioning mechanism (Section 3.2) tracks the evolution of nodes and edges
over time, enabling efficient retrieval without redundant reconstructions. Finally, an edge database
(Section 3.3) enhances query performance for contiguous ranges by precomputing and aggregating
edge information over continuous timeframes.

3.1 GRAPH INDEX CONSTRUCTION

TiGER builds a unified, versioned graph structure where each node represents an embedding with
associated temporal validity. Unlike static indexing schemes that require separate structures for each
time slice or complex post-processing, TiGER maintains a single, incrementally updated graph. This
allows time-based ANN queries to operate directly on the unified index, eliminating the need for
filtration or merging.

This process is illustrated in Figure 1, which shows the insertion of five vectors at a single timestamp
into an initially empty graph. We represent the evolving dataset as a directed graph G = (V,E),
where each vertex v ∈ V corresponds to a vector embedding xv ∈ Rd. Each vertex is assigned
a timestamp tv at which it was inserted, and maintains a set active(v) that records all timestamps
during which the vertex is considered active (i.e., eligible for inclusion in queries constrained to that
time). We also define a variable le ∈ N, which dictates the maximum number of outgoing edges that
an edge can have for a single timestamp.

Each edge euv = (u, v) ∈ E has an associated timestamp teuv
indicating when the edge was created.

Additionally, each vertex stores a record of its outgoing edge set whenever it changes. If the outgoing
edges of a vertex v change at timestamp tn, we record this edge state as vtn . For any timestamp ti
satisfying tn ≤ ti < tm, where tm is the next timestamp where the edges for v change, the outgoing
edges of v at time ti are defined as edge(vti) = vtn .

Two variables govern the maintenance of temporal connectivity and edge balance during insertion:

• prev(v) stores a parent node that is guaranteed to have an outgoing edge to v. This allows a path
to be reconstructed from the origin to any node v by following a chain of backward pointers.

• push(v) tracks the number of outgoing edges added from v specifically for the purpose of connect-
ing it to newly inserted nodes (outside of the initial greedy search connections). push(v) ≤ le is
enforced to guarantee that no edge added by said process is pushed out.

The insertion process is detailed in Algorithm 1. When a new vertex v is inserted, a greedy search is
performed (regardless of timestamp) to find the le closest nodes, and outgoing edges are added from
v to each of them. This process is in essence the same as that seen in standard proximity graphs (Zhao
et al., 2020).

Next, we identify a suitable preexisting node to assign as prev(v) and ensure it has an edge to v.
Among the candidates from the greedy search, we select a node vk that has not exhausted its edge
budget (i.e., push(vk) < le). If no such node is available, a secondary greedy search is performed
to find a nearby node that can accommodate an additional edge. If necessary, we remove the oldest
existing edge not inserted by a previous reconnection from that node, insert the edge (vk, v), assign
prev(v) = vk, and increment push(vk).
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Algorithm 1 Insertion into the versioned graph
Input: Graph index G; current timestamp tc; vector to
insert vi; origin vo; edge limit for timestamped node le
Output: Updated index G′

1. Perform a timestamp-blind greedy search on G
beginning at vo to obtain topk = {v1, v2, ...}, a
list of le closest nodes to vi (ascending distance).

2. Add edges (vi, vk) ∀vk ∈ topk
3. Vc = topk
4. [Connection]
5. tmin = tc
6. vmin = None
7. for each vk ∈ Vc do
8. if ti such that edge(vk) at ti = edge(vktc

)
and ti < tmin then

9. tmin = ti
10. vmin = vk
11. end if
12. if vmin == null then
13. Vc = outgoing edges of v1
14. goto [Connection]
15. end if
16. end for
17. Remove edge from edge(vmintc

) with the
earliest timestamp

18. Add edge (vmin, vi) with timestamp tc
19. push(vmin) + +
20. prev(v) = vmin

21. vpath = prev(v)
22. while vpath ̸= vo do
23. Add tc to active(vpath)
24. vpath = prev(vpath)
25. end while
26. Add tc to active(vo)

Algorithm 2 Timestamp-limited search on the
graph index
Input: Graph index G; timestamps to search T =
{t1, t2, ... }; origin vo, query vector vq
Output: Top K candidates for query topk
1. Initialize a binary min-heap as a priority queue

queue and a hash set visited. Construct an empty
binary max-heap as a priority queue topk.

2. queue← (distance(vo, vq), vo)
3. while queue ̸= ∅ do
4. (now_dist, now_vector)← queue.pop_min()
5. if tnow_vector ∈ T then
6. if topk.size = K and topk.max_dist() ≤

now_dist then
7. break
8. else
9. topk.push_heap((now_dist, now_vector))

10. end if
11. end if
12. for each edgeti ∈ edge(now_vectorti) of

now_vector where ti ∈ active(now_vector)
and ti ∈ T do

13. if (now_vector, v) = edgeti and
ti ∈ active(v) then

14. if visited.exist(v) ̸= true then
15. d← distance(vq ,v)
16. visited.insert(v)
17. queue.push_heap((d,v))
18. end if
19. end if
20. end for
21. end while
22. return topk

Finally, we recursively walk backward along the prev chain (i.e., prev(prev(. . . prev(v)))), and for
each vertex vpath along it, the current timestamp tc is added to its active(vpath) set. This ensures
that every node along at least one path to v from the origin on G is active in queries constrained to tc.
This mechanism guarantees that every vertex can be reached from the origin node (where all queries
are initiated), at every timestamp in which it is active, without violating edge limits or requiring
reconstruction of the index. The extension of this procedure to multiple timestamps is discussed in
Section 3.2.

3.2 VERSIONING

The construction process as described in section 3.1 is designed to naturally integrate timestamp data
into the graph, allowing for efficient search over flexible time ranges over the graph.

Specifically, each node maintains a versioned data structure that can quickly yield only those edges
valid within a given timestamp range, and whether said node is relevant to any given timestamp. This
avoids post-filtering invalid results and eliminates the need to maintain multiple time-specific indexes.
The graph thereby serves as a temporally integrated index that can be traversed directly to retrieve
time-consistent neighbors.

The graph building process for a multi-timestamp dataset as described in Algorithm 1 is demonstrated
in Figure 2 (Figure 7 in the Appendix shows the “effective graph” for each timestamp). It should be
noted that any edges that are pushed out by a future prev(v) update are still valid for any timestamps
after their initial creation and until their removal. For a search involving multiple timestamps
(Algorithm 2), the effective graph can be considered to be a combination of the relevant timestamp
graphs (see Figure 7e in the Appendix for a detailed demonstration).
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1

(a) Node 1 (v1) is inserted
and assigned as origin.

2

1

(b) Node 2 (v2) is inserted.
As only one other node
is present, steps 1 and 2
in Algorithm 1 add edge
(v2, v1) (black line).

2

1

(c) As node 1 is the clos-
est preexisting neighbor to
node 2, an edge (v1, v2)
(red dotted line) is added
and node 1 is assigned to
prev(v2).

2

1
3

(d) The same process as
(b) and (c) occurs for node
3. Node 1 is assigned to
prev(v3) as it is closer to
node 3. Note that now
push(v1) = le.

2

1
3

4

(e) The initial edge addi-
tion process for node 4. AS
le = 2, edges are limited
to the two nodes closer to
v4 (v1, v2).

2

1
3

4

(f) The prev(v4) assign-
ment and connection pro-
cess. as v3 is the clos-
est node to v4, the edge
(v3, v4) is added. To ac-
commodate this, one of
the existing edges of v3,
(v3, v2) is removed.

5

2

1
3

4

(g) The initial edge addi-
tion process for node 5.
Note that while v1 is the
closest node, push(v1) =
le, and thus is not able
to accommodate additional
edges.

5

2

1
3

4

(h) The prev(v5) assign-
ment and connection pro-
cess. As v1 is unavail-
able, the search extends to
other neighbors of v5 —
and v2 is thus selected to
be prev(v5).

Figure 1: Graph construction process (Algorithm 1) for a single timestamp with 5 vectors and le = 2,
which is for demonstrative purposes. In practice le will be significantly larger. Note that all points on
the graph can be reached from the origin (v1) by only the prev(v)-enforced edges (dotted red).

1
1

(a) Timestamp 1, with only
the origin (Node 1 (or v1))
added. The node is ac-
tive in timestamp 1, as indi-
cated by the number 1 be-
low the node number.

2

22

1
123

2

2
2

2

2

(b) Timestamp 2 with
nodes 2 and 3. Note that all
edges are for timestamp 2,
and node 1 is activated for
timestamp 2 (as expected
for the origin).

3

3

3

2

2
32

3

1
123

5
3

3
23

4
3

2
23

3

2

(c) Timestamp 3 with
nodes 4 and 5. As
prev(v4) = v3 and
prev(v5) = v2, nodes
2 and 3 are also active
for timestamp 3. Edge
(v3, v2), which was
present in timestamp 2, is
no longer present.

3

3

3

4
4

4
4

2

2
32

4

3

4

1
1234

6
4

5
3

7
4

3
234

4
34

2
23

(d) Timestamp 4 with
nodes 6 and 7. Note that
while node 2 has an in-
coming edge for this times-
tamp, prev(v6) ̸= 2 (as
shown by lack of a pushed
outgoing edge from node
2), and thus node 4, not 2,
is active in timestamp 4.

Figure 2: Graph construction process (Algorithm 1) for 7 nodes over 4 timestamps (1 on timestamp
1, 2 and 3 on timestamp 2, 4 and 5 on timestamp 3, and 6 and 7 on timestamp 4). Nodes 1-5 are
the same as in Figure 1, other than the timestamps being spread out. The smaller digits below the
node number indicates which timestamps the node is active, i.e. active(v). The number next to each
edge indicates the timestamp said edge corresponds to. Edges that are pushed out with increasing
timestamp (e.g. the edge (v3, v4) present in (c) but not (d) is still in timestamp 3 — the fact that that
it was pushed out in timestamp 4 is conserved in the graph) are not featured in further timestamps.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dbv[1][1]
search direction

active timestamps

dbv[2][2]

Figure 3: An example edge aggregation using the
database as constructed by Algorithm 3, for times-
tamps [4–12] inclusive (excluding 6) and ns of 5.
ns of 5 means that dbv[1] is based on timestamp
1 × ns = 5, dbv[2] = 10, and so on. The search
proceeds as follows; timestamps 12, 11 are checked
as individual timestamps, and a greedy search on the
first valid database timestamp, 10, fetches dbv[2][2]
(dbv[2][3] includes timestamp 6, which is not included
in the search) which covers timestamps [7–10]. 6 is
another individual timestamp, and dbv[1][1] covers
the remaining two timestamps [4–5]. Note that this
search only needs to be performed once for any batch
query w.r.t. the same timestamp range.

Algorithm 3 Sparse edge database construction
Input: node v (and corresponding sparse edge
database dbv and timestamp of previous update tdbv );
timestamp ts where ns divides ts
Output: updated sparse edge database db′v
1. if ts = tdbv then
2. return
3. end if
4. for (ti = tdbv + ns; ti ≤ ts; ti = ti + ns) do
5. Determine the largest integer jmax such that

2jmax ≤ ts
6. for (j = 0; j ≤ jmax − 1; j++) do
7. if j = 0 then
8. dbv[ti/ts][0] = edge(vti)
9. else

10. dbv[ti/ts][j] =∑
edge(vtk ) ∀tk where ti − 2j <

tk ≤ ti
11. end if
12. end for
13. end for

The search process itself proceeds similarly to a standard proximity graph search, other than a check
for valid range timestamps, as shown in Algorithm 2 (demonstrated graphically in Figure 8 in the
Appendix for the graph as described in Figure 2 and 7).

3.3 EDGE DATABASE

A very common use case for such time-based searches is searches w.r.t. a particular contiguous range
of time (Zeitun et al., 2023; Zhang et al., 2022). In cases where timestamps are relatively fine-grained
compared to the wanted timeframe, the required computational effort to aggregate the outgoing edges
(Line 12 in Algorithm 2, or

∑
edge(vti) |ti∈Tq

where Tq is the desired range of timestamps) for any
active node v can be substantial. To address this, we describe a sparse table structure to reduce the
computational cost of range aggregation during search, motivated by the structural similarity between
this process and the classic range minimum query (RMQ) problem (Baumstark et al., 2017), and
adopt similar construction techniques.

The process for the structure is as follows: for any timestamp ts, if ts is divisible by the spacing
parameter ns, a positive integer set during the initial construction of each graph (i.e. ns | ts),
Algorithm 3 is applied to each node active (whether by insertion or from a prev(v) call) on said
timestamp. This builds a database of periodic edge aggregations per node. As Algorithm 3 acts
backward (i.e. each call to it in a timestamp ts does not involve any future timestamps) means
that once a database entry for a particular node and timestamp has been established, said entry is
guaranteed to be static regardless of any future updates to the graph. For any timestamp-range-based
search, a greedy search on the available aggregations w.r.t. the timestamp range is performed (starting
from the latest timestamp) to find appropriate aggregations and remaining timestamps (Figure 3).

While one of the main advantages of TiGER is its ability to smoothly handle noncontiguous times-
tamps, the edge database allows for additional speedup in contiguous timestamps (which, as stated
previously, is a common use case), or cases where the query involves a discrete set of contiguous
timestamps (e.g. every Friday in a dataset with timestamps on an hourly basis).

4 EXPERIMENTS

4.1 COMPARISON WITH BASELINES

To evaluate the performance of TiGER in timestamp-based dynamic workloads, we compare it
against HNSW, a widely recognized state-of-the-art ANN graph-based method (Pham & Liu, 2022;

6
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Rahman & Tesic, 2022; Ren et al., 2020). The HNSW implementation is based on its original
C++ version (Malkov, 2023). We note that the broader challenges in employing other methods for
meaningful comparison for this workload are discussed in Section 5. Experiments are conducted
on a Linux server computer with Ubuntu 20.04.6, running on kernel version 5.4.0. Two Intel(R)
Xeon(R) Gold 6438N CPUs with a clock speed of 2.00GHz, each with 32 cores and 64 threads for
a total of 128 threads, are used. The system has a total memory capacity of 1.5TB. The TiGER
algorithm has been implemented in C++17 with a Python interface. The code is compiled using
g++-11.4.0 with “O3” optimization enabled. We incorporate two filtering strategies—post-filtering
and pre-filtering—as outlined in Section 1.

In the post-filtering approach, filtering is integrated into the search process. Specifically, constraints
are enforced during the insertion of nodes into the topk priority queue, ensuring that only nodes
satisfying the timestamp constraints are considered (Zhao et al., 2020). The graph construction
parameters follow the default settings from the original implementation, and the queries per second
(QPS) vs. recall tradeoff is analyzed by varying the maximum number of vectors traversed that
correspond to the timestamp range in question.

In the pre-filtering approach, a separate graph Gt is built for each timestamp t ∈ T , where T repre-
sents the set of timestamps in the dataset. During a search, we query only the graphs Gt corresponding
to timestamps t ∈ Tq, where Tq ⊆ T denotes the timestamps satisfying the given constraints. The
results from these individual searches are combined using parallel k-way merging (Lee & Batcher,
1995), with early stopping techniques as with the Best Position Algorithm (Akbarinia et al., 2007) to
optimize performance. The QPS vs. recall curve is generated by varying the size of the topk lists
obtained from each graph. Values of individual topk below final topk are also tested (as the true
topk is likely to be distributed among Tq and thus the full textittopk is likely to be not necessary for
individual searches).
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(b) SIFT dataset, tn = 2500
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(c) GloVe dataset, tn = 5000

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u
e
ri
e
s
 P

e
r 

S
e
c
o
n
d

TiGER

HNSW (post)

HNSW (pre)

(d4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d5) |Tq| = 50

(d) GloVe dataset, tn = 2500

Figure 4: Recall vs. queries per second (QPS) for contiguous Tq for TiGER and baselines for k = 100. “HNSW
(pre)” indicates pre-filtering HNSW (i.e. final topk is produced by merging of per-timestamp HNSW search
results) and “HNSW (post)” indicates post-filtering HNSW (i.e. topk is produced by filtering out vectors that do
not correspond to Tq during search). TiGER maintains a lead over baselines over a wide range of |Tq|.
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4.2 WORKLOAD SIMULATION

TiGER is designed to operate on time-based datasets with dynamic insertions, accommodating
continuous updates without requiring graph reconstruction. To simulate such a workload, we apply
the following process to standard ANN datasets:

1. Divide the dataset D into n artificial timestamps, as T = {t1, t2, . . . , tn}, in assumed chronologi-
cal order.

2. Construct an initial proximity graph G using the vectors associated with the earliest timestamp, t1.
3. Sequentially insert vectors associated with subsequent timestamps in ascending order.
4. Once all vectors up to tn are inserted, perform a search on the graph to retrieve the topk nearest

neighbors for a set of query vectors Q, constrained by timestamps Tq ⊆ T .

We apply the workload to vector datasets that are standard in ANN literature; namely, we use the
SIFT 1M dataset (Jégou et al., 2011), a 128-dimensional dataset consisting of 1 million vectors, and
the GloVe-100 (Pennington et al., 2014) dataset with 100 dimensions. We employ the query vector
set provided with each dataset, and set k = 100.
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(a) SIFT dataset, tn = 5000
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(b) SIFT dataset, tn = 2500

Figure 5: Recall vs. queries per second (QPS) for discrete Tq sets (i.e. no sequential timestamps in set) for
TiGER and baselines for k = 100. As with Figure 4, “HNSW (pre)” indicates pre-filtering HNSW and “HNSW
(post)” post-filtering HNSW. TiGER maintains a lead (although slightly less pronounced than for Figure 4) over
baselines over a wide range of |Tq|.

For tn and Tq, our settings are as follows: tn = 2500, 5000 and Tq = 3, 10, 20, 30, 50. We vary tn
to account for different per-timestamp dataset sizes and their effect on the results. We also vary Tq

sizes in order to cover both small sets (i.e. tighter filter) where pre-filtering would be effective (due to
the lower number of arrays required to merge) and large sets (i.e. looser filter) where post-filtering
would be effective (as proportionally more checked points are valid, fewer traversals are expected to
encounter a valid vector and in turn form a complete topk queue).

The experimental results for contiguous Tq (e.g. Tq = {13, 14, 15} for |Tq| = 3) are shown in
Figure 4. While pre- and post-filtering act as expected, with larger Tq (i.e., wider filters) improving
post-filtering, and pre-filtering dropping off at high recall, TiGER maintains a lead over either method
in QPS vs. recall consistently over the different filter lengths.

Discrete Tq are also applied to discern the effect of non-contiguous Tq (for which the edge database
described in section 3.3 would be ineffective). For such Tq , we apply a filter in which each t ∈ Tq is
at least spaced by 1 from all other t ∈ Tq (e.g. Tq = {26, 28, 30} for |Tq| = 3). This prohibits the
edge database from fetching any compacted ranges from its search. The results for SIFT dataset are
shown in Figure 5, which demonstrates that the gains of TiGER as shown in Figure 4 are still present.

5 RELATED WORK

Efficient approximate nearest neighbor search with additional constraints such as numeric ranges
has received significant attention in recent years. Various methods have been proposed to address

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the challenges associated with integrating these constraints into proximity graphs. We discuss the
relevant studies in this section.

Segment Graph for Range-Filtering ANNS (SeRF) (Zuo et al., 2024) introduces segment graphs in
which multiple indices for contiguous numeric ranges are compressed into a single structure. By
annotating edges with range validity, SeRF enables efficient traversal for contiguous range queries.
However, it does not natively support disjoint ranges, requiring multiple searches or preprocessing
steps for such constraints. Furthermore, SeRF lacks full support for dynamic updates, necessitating
substantial reconstruction when new data or ranges are added to the dataset.

Unified Navigating Graph (UNG) (Cai et al., 2024) employs a Label Navigating Graph (LNG) to
organize data hierarchically based on label containment relationships. This enables efficient filtered
ANNS for categorical or hierarchical labels. However, UNG also struggles with dynamic updates:
adding new data often requires cross-range reconstruction for integrity of hierarchical relationships.

iRangeGraph (Xu et al., 2024) addresses range filtering by precomputing elemental graphs for specific
ranges and dynamically merging them during query execution. This approach achieves a balance
between memory efficiency and query performance for continuous ranges. However, disjoint ranges
require combining multiple elemental graphs with substantial query-time overhead. iRangeGraph
also lacks inherent support for dynamic updates, making it less suitable for evolving datasets.

Filtered-DiskANN (Gollapudi et al., 2023) extends the Vamana proximity graph to support label-based
filtering. It introduces FilteredVamana, which incrementally builds a graph by pruning connections
based on filter-specific constraints, and StitchedVamana, which creates separate graphs for each filter
and merges them into a unified structure. While these methods enable efficient queries for predefined
filters, they are difficult to maintain for frequently evolving filters. StitchedVamana, in particular,
necessitates costly graph rebuilding or re-stitching to handle dynamic updates.

Native Hybrid Query (NHQ) (Wang et al., 2022b) aims to address queries by combining vector
similarity with attribute-based filtering. NHQ processes such queries using a composite proximity
graph and a fusion distance metric, which integrates feature similarity and attribute compatibility.
This metric guides a joint pruning strategy that eliminates candidates failing either constraint during
graph traversal. To handle range-based constraints, NHQ either has to: perform separate pruning and
merging for each range, which can increase query latency, or predefine connectivity for all possible
ranges during construction. NHQ also relies on a predefined fusion distance threshold to determine
graph connectivity. Adding new ranges not present during initial construction requires modifying the
composite index along with the changing fusion distance threshold, further complicating updates.
This limitation reduces its adaptability to datasets with evolving constraints or highly dynamic ranges.

DIGRA (Jiang et al., 2025) combines multi-way tree structures with navigable small-world (NSW)
graphs to support efficient range-aware queries. Unlike many earlier approaches, DIGRA provides
native support for dynamic updating. However, its update operations are currently restricted to
single-threaded execution, limiting scalability in high-throughput environments.

6 CONCLUSIONS

The rise of applications requiring time-sensitive ANN searches has highlighted significant limitations
in existing graph-based methods. However, current approaches have been computationally inefficient
or problematic w.r.t. dynamic updates and/or noncontiguous filters.

To this end, we introduce TiGER (Time-Integrated Graph for Efficient Retrieval), a novel graph-based
framework specifically designed to efficiently manage range-filtered approximate nearest neighbor
(RFANN) searches with time-based constraints in large, dynamic datasets. TiGER leverages a unified
proximity graph supplemented with versioned connectivity metadata, eliminating the need for post-
or pre-filtering strategies. This ensures both scalability and adaptability while enabling seamless
dynamic updates.

Empirical evaluations across standard ANN benchmarks, demonstrate the effectiveness of TiGER.
Our results show up to a 5x improvement in query performance in a wide range of filters compared
to baselines such as HNSW with both pre-filtering and post-filtering strategies. This consistent
advantage highlights TiGER’s ability to balance recall and query speed across diverse workloads
while maintaining adaptability to evolving datasets.
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This work does not involve human subjects, personally identifiable information, or the scraping of
private data. Experiments use only public vector datasets. We do not anticipate any ethical issues that
arise from this work beyond those associated with the standard use of databases.

REPRODUCIBILITY STATEMENT

We present our approach with both conceptual and algorithmic detail in Section 3, and clearly
document the experimental procedures in Section 4. All datasets used in our experiments are public
and well-documented. We also provide an anonymous repository for this work in Section D of the
Appendix.
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APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 EDGE DATABASE

To quantify the effects of the edge database on search speed as described in Section 3.3 and indirectly
compared in Figures 4 and 5, we evaluate TiGER’s search speeds both with and without utilizing the
edge database. For each filter with varying Tq sizes on the same graph, we conduct two searches:
one employing the standard edge database search and another where edge validity for each range is
determined by brute-forcing through each t ∈ Tq . We also apply this process for both contiguous and
discrete Tq , the latter of which the current edge database is not able to fetch useful aggregations and
is thus expected to behave in the same way as TiGER without the edge database applied.

The results are presented in Figure 6. Overall the performance is as expected, with a general visible
gain seen throughout the range of Tq for contiguous timestamp filters. This gain also substantially
increases with increasing Tq , as the edge database can compact an increasing number of timestamps.
Searches with discrete Tq shows little visible difference with or without the edge database.
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(a5) |Tq| = 50
(a) SIFT dataset, tn = 2500, contiguous Tq
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(b) SIFT dataset, tn = 2500, non-contiguous Tq

Figure 6: Comparison of TiGER search speeds with and without the edge database as described in
section 3 for contiguous and discrete Tq for k = 100. contiguous Tq filters show visible improvement
with the application of the edge database at higher Tq, with the gap increasing with larger Tq. With
discrete filters, no substantial gap is present at any size of Tq .
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B ADDITIONAL FIGURES
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(a) Effective graph of times-
tamp 1.
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(b) Effective graph of times-
tamp 2. The edge (v3, v2) will
be pushed out in timestamp 3.
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(c) Effective graph of times-
tamp 3. the edge (v4, v1) will
be pushed out in timestamp 4.
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(d) Effective graph of timestamp 4. Node 5 is
not active. node 2 is also not active, although it
is shown due to its connection with a timestamp
4 edge (v6, v2).)
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(e) Effective graph of timestamps 2 and 4 com-
bined. As node 5 is only active on timestamp 3,
it is not present. Additionally, the edge (v3, v2),
which has been pushed out in timestamps 3 and
4, is present due to its presence in timestamp 2.

Figure 7: The effective graphs for each timestamp w.r.t. construction process as in Figure 2 ((a)-(d)))
and (e) the effective graph for a search on timestamps 2 and 4. As node 5 is only present and/or active
on timestamp 3, it does not appear on the effective combined timestamp graph.
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assigned to topk. Node 2 and 3 are
active in timestamp 2 and are placed
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(c) Second step of search. Node 2
yields no new connections. Node 3
is then popped and its edges eval-
uated, which adds 4 and 7 (from
timestamp 4) to the queue.
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(d) Third step of search. Node 4
is popped but not evaluated due to
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traversed).
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(e) Fourth step of search. Node 6 is
evaluated.
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(f) End of search. the queue is
empty, and thus the search is ended
with a topk of 6, 2.

Figure 8: A search on the graph index for Tq = {2, 4} as constructed in Figure 2 for a topk limit of
2. The target query vector is marked with a green crosshair. paths and nodes traversed are marked in
blue. Note that node v4 is not evaluated as tv4 = 3 /∈ {2, 4}, but as ∃x ∈ active(v4) = {3, 4} for
which x ∈ {2, 4} (as active(v4) = {3, 4}), is assessed for valid edges, bridging nodes 3 and 6.
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C USE OF LARGE LANGUAGE MODELS

Large Language Models were used to aid in debugging, as well as to polish the grammar and clarity of
the text in this paper. The responsibility for all content within this paper lies solely with the authors.

D SUPPLEMENTARY MATERIALS

We provide an anonymous repository corresponding to this work for reproducibility: https:
//anonymous.4open.science/r/TiGER-CF36
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