
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A VERSIONED UNIFIED GRAPH INDEX FOR DYNAMIC
TIMESTAMP-AWARE NEAREST NEIGHBOR SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

We present TiGER (Time-Integrated Graph for Efficient Retrieval), a novel ap-
proach for performing fast time-aware approximate nearest neighbor searches on
dynamic vector datasets with flexibility over any possible time range. Our proposed
algorithm builds and maintains a unified graph for all vectors by leveraging an
index structure based on integrated versioned connectivity, allowing arbitrary time
intervals to be queried directly on the unified graph without having to traverse
invalid vectors. This forgoes the need for post-search filtering or merging, or
separate graphs for each possible composite range. Empirical evaluations show
that our method attains up to a 5x improvement in queries per second (QPS) with-
out compromising accuracy over baselines based on filtering or per-time-segment
sub-graphs. We believe that this method will enable efficient temporal analysis
across evolving datasets in real-time recommendation systems, log analysis, and
any scenario requiring fast similarity search over dynamic, time-segmented data.

1 INTRODUCTION

As the volume of textual data continues to expand at an unprecedented rate, efficient and accurate text
retrieval has become a cornerstone for numerous online applications, including Retrieval-Augmented
Generation (RAG) (Fan et al., 2024; Gao et al., 2023) and news fact-checking (Capuano et al., 2023;
Liao et al., 2023). The ability to quickly retrieve relevant information is particularly critical in the
context of large-scale corpora, where similarity search serves as a foundational mechanism for modern
information retrieval systems. Its significance has grown with the rise of Large Language Model
(LLM) workflows, where effective retrieval underpins tasks ranging from contextual augmentation to
real-time query generation (Chen et al., 2022; Shorten et al., 2021; Wu et al., 2019).

To meet the demands of fast and accurate query processing, Approximate Nearest Neighbor (ANN)
search has emerged as a promising strategy (Macdonald & Tonellotto, 2021; Tu et al., 2020; Xiong
et al., 2021). By tolerating a small margin of error, ANN techniques achieve significant speedups,
enabling rapid nearest-neighbor queries even in massive datasets. Among the various ANN methods
developed (Cai, 2021; He et al., 2019; Jégou et al., 2011; Ram & Sinha, 2019), graph-based techniques
have consistently demonstrated superior performance, excelling in key metrics such as recall and
query time across a range of benchmarks (Fu et al., 2019; Li et al., 2020; Morozov & Babenko,
2018; Wang et al., 2021). This advantage stems from their ability to capture local neighborhood
relationships, making graph-based ANN an indispensable tool for large-scale retrieval.

Similarity Search with Time Constraints. However, in many real-world applications, straight-
forward similarity search is insufficient. We often need to retrieve topk results under specific
constraints—known as Range-Filtering Approximate Nearest Neighbor Search (RFANNS) (Zuo
et al., 2024)—such as categories, keywords, or temporal restrictions (Engels et al., 2024; Kovacs
et al., 2024; Zhang et al., 2022). Time-based constraints are particularly common, such as fetching
news articles or social network posts within a given timeframe (Awao et al., 2023; Wang et al., 2022a)
or w.r.t. periodic trends. (Bertrand et al., 2013; Golder & Macy, 2011)

Most graph-based ANN methods are not designed for such filtering and typically use post-filtering or
pre-filtering (Dilocker, 2021; Xu et al., 2024): (1) Post-filtering retrieves topk without constraints and
filters results afterward, leading to inefficiencies under tight constraints due to excess candidates. (2)
Pre-filtering tailors the initial index to the constraint, but constructing or maintaining graphs for all
possible filters is impractical. Dynamic graph construction for each query would be computationally

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

costly, and maintaining per-timestamp graphs and performing searches individually across the relevant
graphs minimizes search cost, but requires expensive merging and ordering operations at query time.

Challenges. Existing approaches (Cai et al., 2024; Gollapudi et al., 2023; Xu et al., 2024; Zuo et al.,
2024) address constrained ANN search but often face challenges with dynamic updates, requiring
extensive graph rebuilding, or are designed for contiguous ranges, making them less suitable for more
complex or fragmented constraints. In dynamic or evolving datasets, where queries and constraints
frequently shift, these limitations necessitate a solution that can flexibly and efficiently integrate
temporal filtering without heavy reconstruction or excessive search overhead.

Our Approach. We propose a unified index that seamlessly integrates time constraints into similarity
search without requiring multiple graphs or extensive post-processing. Specifically, for any query
vector q and timestamp set Tq = {t1, t2, ...tn}, whether contiguous (e.g., [ta, tb]) or disjoint (e.g.,
{t1, t3, t9}), our method retrieves the top-k approximate neighbors matching any timestamp in Tq

directly during search.

Our core structure is a versioned proximity graph where each node represents an embedding with
temporal metadata. Nodes track active time periods, and edges are annotated with validity ranges,
allowing efficient time-constrained traversal without needing graph modifications for each query.
Additionally, to guarantee full reachability without costly reconstructions, we maintain dynamic
predecessor links that adapt as new nodes are inserted. This structure enables direct traversal
without unnecessary connections or broken graphs for any specified time range (continuous or not),
eliminating the need for post-filtering or maintaining multiple subgraphs while remaining scalable
for dynamic datasets.

Contributions. We summarize our main contributions as follows:

• We propose TiGER (Time-Integrated Graph for Efficient Retrieval), a unified graph-based ANN
framework that supports arbitrary temporal filtering during search while enabling dynamic updates.

• We introduce a dynamic edge management mechanism that preserves graph connectivity across
time, minimizing reconstruction costs.

• We design an integrated sparse edge database to efficiently aggregate edge information for broad or
continuous time filters, improving search speed.

• We experimentally show that TiGER achieves up to a 5x improvement in queries per second (QPS)
while maintaining comparable or superior recall compared to pre- and post-filtering baselines.

2 PRELIMINARY

2.1 SIMILARITY SEARCH WITH PROXIMITY GRAPHS

Due to their effectivenes in key metrics such as recall and query speed on many datasets (Fu
et al., 2019; Li et al., 2020; Morozov & Babenko, 2018; Wang et al., 2021), Proximity graphs
have emerged as a cornerstone option for efficient ANN search. These graphs leverage the spatial
relationships between data points, constructing a graph where edges connect nearby vectors. During
queries, traversal of this graph allows retrieval of neighbors with a fraction of the computational
cost of exhaustive searches, making proximity graphs ideal for large-scale datasets. However,
traditional proximity graphs are inherently designed for unconstrained searches, which limits their
ability to handle filtered ANN tasks. Incorporating constraints, such as time ranges or categories,
typically requires preprocessing (to construct filtered subgraphs) or postprocessing (to filter results
after retrieval), which introduce inefficiencies (Xu et al., 2024). When filters are applied after
retrieval, unnecessary candidates are traversed which wastes computations and may lead to suboptimal
performance when the selectivity of the filter is high, i.e., very small number of the retrieved candidates
satisfy the constraints. Conversely, pre-filtering often necessitates either on-the-fly graph construction
for a given filter (as maintaining all separate graphs for all possible filters at all times is clearly
impractical) or a recombination process after searches on multiple timestamp ranges.

2.2 PERSISTENT DATA STRUCTURES

Persistent data structures retain multiple versions of data, allowing access to historical states without
duplication (Driscoll, 1989). In the context of time-based constraints, persistent data structures

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

provide an elegant solution for managing data across temporal dimensions (Lenhof & Smid, 1994). By
encoding the temporal validity of nodes and edges, a persistent proximity graph can conserve historical
data while allowing for continuous updating. Our approach applies this concept of persistence to
maintain a unified, versioned graph structure. Each node and edge is annotated with metadata
tracking their active states across time, ensuring the graph supports queries for any arbitrary time
range. Instead of creating separate graphs for each time slice, the persistent graph enables direct
traversal using the relevant versions of nodes and edges. This also allows for seamless handling of
dynamic workloads, where new data points and temporal constraints are continually introduced.

3 TIGER FRAMEWORK

In this section, we present the TiGER framework, which employs a unified graph index to seamlessly
integrate temporal constraints into its structure. This is achieved through three interconnected
components: the graph index construction process (Section 3.1) establishes a single, versioned
graph where nodes and edges are annotated with temporal metadata, ensuring connectivity across
arbitrary time ranges. A versioning mechanism (Section 3.2) tracks the evolution of nodes and edges
over time, enabling efficient retrieval without redundant reconstructions. Finally, an edge database
(Section 3.3) enhances query performance for contiguous ranges by precomputing and aggregating
edge information over continuous timeframes.

3.1 GRAPH INDEX CONSTRUCTION

TiGER builds a unified, versioned graph structure where each node represents an embedding with
associated temporal validity. Unlike static indexing schemes that require separate structures for each
time slice or complex post-processing, TiGER maintains a single, incrementally updated graph. This
allows time-based ANN queries to operate directly on the unified index, eliminating the need for
filtration or merging.

This process is illustrated in Figure 1, which shows the insertion of five vectors at a single timestamp
into an initially empty graph. We represent the evolving dataset as a directed graph G = (V,E),
where each vertex v ∈ V corresponds to a vector embedding xv ∈ Rd. Each vertex is assigned
a timestamp tv at which it was inserted, and maintains a set active(v) that records all timestamps
during which the vertex is considered active (i.e., eligible for inclusion in queries constrained to that
time). We also define a variable le ∈ N, which dictates the maximum number of outgoing edges that
an edge can have for a single timestamp.

Each edge euv = (u, v) ∈ E has an associated timestamp teuv
indicating when the edge was created.

Additionally, each vertex stores a record of its outgoing edge set whenever it changes. If the outgoing
edges of a vertex v change at timestamp tn, we record this edge state as vtn . For any timestamp ti
satisfying tn ≤ ti < tm, where tm is the next timestamp where the edges for v change, the outgoing
edges of v at time ti are defined as edge(vti) = vtn .

Two variables govern the maintenance of temporal connectivity and edge balance during insertion:

• prev(v) stores a parent node that is guaranteed to have an outgoing edge to v. This allows a path
to be reconstructed from the origin to any node v by following a chain of backward pointers.

• push(v) tracks the number of outgoing edges added from v specifically for the purpose of connect-
ing it to newly inserted nodes (outside of the initial greedy search connections). push(v) ≤ le is
enforced to guarantee that no edge added by said process is pushed out.

The insertion process is detailed in Algorithm 1. When a new vertex v is inserted, a greedy search is
performed (regardless of timestamp) to find the le closest nodes, and outgoing edges are added from
v to each of them. This process is in essence the same as that seen in standard proximity graphs (Zhao
et al., 2020).

Next, we identify a suitable preexisting node to assign as prev(v) and ensure it has an edge to v.
Among the candidates from the greedy search, we select a node vk that has not exhausted its edge
budget (i.e., push(vk) < le). If no such node is available, a secondary greedy search is performed
to find a nearby node that can accommodate an additional edge. If necessary, we remove the oldest
existing edge not inserted by a previous reconnection from that node, insert the edge (vk, v), assign
prev(v) = vk, and increment push(vk).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Insertion into the versioned graph
Input: Graph index G; current timestamp tc; vector to
insert vi; origin vo; edge limit for timestamped node le
Output: Updated index G′

1. Perform a timestamp-blind greedy search on G
beginning at vo to obtain topk = {v1, v2, ...}, a
list of le closest nodes to vi (ascending distance).

2. Add edges (vi, vk) ∀vk ∈ topk
3. Vc = topk
4. [Connection]
5. tmin = tc
6. vmin = None
7. for each vk ∈ Vc do
8. if ti such that edge(vk) at ti = edge(vktc

)
and ti < tmin then

9. tmin = ti
10. vmin = vk
11. end if
12. if vmin == null then
13. Vc = outgoing edges of v1
14. goto [Connection]
15. end if
16. end for
17. Remove edge from edge(vmintc

) with the
earliest timestamp

18. Add edge (vmin, vi) with timestamp tc
19. push(vmin) + +
20. prev(v) = vmin

21. vpath = prev(v)
22. while vpath ̸= vo do
23. Add tc to active(vpath)
24. vpath = prev(vpath)
25. end while
26. Add tc to active(vo)

Algorithm 2 Timestamp-limited search on the
graph index
Input: Graph index G; timestamps to search T =
{t1, t2, ... }; origin vo, query vector vq
Output: Top K candidates for query topk
1. Initialize a binary min-heap as a priority queue

queue and a hash set visited. Construct an empty
binary max-heap as a priority queue topk.

2. queue← (distance(vo, vq), vo)
3. while queue ̸= ∅ do
4. (now_dist, now_vector)← queue.pop_min()
5. if tnow_vector ∈ T then
6. if topk.size = K and topk.max_dist() ≤

now_dist then
7. break
8. else
9. topk.push_heap((now_dist, now_vector))

10. end if
11. end if
12. for each edgeti ∈ edge(now_vectorti) of

now_vector where ti ∈ active(now_vector)
and ti ∈ T do

13. if (now_vector, v) = edgeti and
ti ∈ active(v) then

14. if visited.exist(v) ̸= true then
15. d← distance(vq ,v)
16. visited.insert(v)
17. queue.push_heap((d,v))
18. end if
19. end if
20. end for
21. end while
22. return topk

Finally, we recursively walk backward along the prev chain (i.e., prev(prev(. . . prev(v)))), and for
each vertex vpath along it, the current timestamp tc is added to its active(vpath) set. This ensures
that every node along at least one path to v from the origin on G is active in queries constrained to tc.
This mechanism guarantees that every vertex can be reached from the origin node (where all queries
are initiated), at every timestamp in which it is active, without violating edge limits or requiring
reconstruction of the index. The extension of this procedure to multiple timestamps is discussed in
Section 3.2.

3.2 VERSIONING

The construction process as described in section 3.1 is designed to naturally integrate timestamp data
into the graph, allowing for efficient search over flexible time ranges over the graph.

Specifically, each node maintains a versioned data structure that can quickly yield only those edges
valid within a given timestamp range, and whether said node is relevant to any given timestamp. This
avoids post-filtering invalid results and eliminates the need to maintain multiple time-specific indexes.
The graph thereby serves as a temporally integrated index that can be traversed directly to retrieve
time-consistent neighbors.

The graph building process for a multi-timestamp dataset as described in Algorithm 1 is demonstrated
in Figure 2 (Figure 7 in the Appendix shows the “effective graph” for each timestamp). It should be
noted that any edges that are pushed out by a future prev(v) update are still valid for any timestamps
after their initial creation and until their removal. For a search involving multiple timestamps
(Algorithm 2), the effective graph can be considered to be a combination of the relevant timestamp
graphs (see Figure 7e in the Appendix for a detailed demonstration).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1

(a) Node 1 (v1) is inserted
and assigned as origin.

2

1

(b) Node 2 (v2) is inserted.
As only one other node
is present, steps 1 and 2
in Algorithm 1 add edge
(v2, v1) (black line).

2

1

(c) As node 1 is the clos-
est preexisting neighbor to
node 2, an edge (v1, v2)
(red dotted line) is added
and node 1 is assigned to
prev(v2).

2

1
3

(d) The same process as
(b) and (c) occurs for node
3. Node 1 is assigned to
prev(v3) as it is closer to
node 3. Note that now
push(v1) = le.

2

1
3

4

(e) The initial edge addi-
tion process for node 4. AS
le = 2, edges are limited
to the two nodes closer to
v4 (v1, v2).

2

1
3

4

(f) The prev(v4) assign-
ment and connection pro-
cess. as v3 is the clos-
est node to v4, the edge
(v3, v4) is added. To ac-
commodate this, one of
the existing edges of v3,
(v3, v2) is removed.

5

2

1
3

4

(g) The initial edge addi-
tion process for node 5.
Note that while v1 is the
closest node, push(v1) =
le, and thus is not able
to accommodate additional
edges.

5

2

1
3

4

(h) The prev(v5) assign-
ment and connection pro-
cess. As v1 is unavail-
able, the search extends to
other neighbors of v5 —
and v2 is thus selected to
be prev(v5).

Figure 1: Graph construction process (Algorithm 1) for a single timestamp with 5 vectors and le = 2,
which is for demonstrative purposes. In practice le will be significantly larger. Note that all points on
the graph can be reached from the origin (v1) by only the prev(v)-enforced edges (dotted red).

1
1

(a) Timestamp 1, with only
the origin (Node 1 (or v1))
added. The node is ac-
tive in timestamp 1, as indi-
cated by the number 1 be-
low the node number.

2

22

1
123

2

2
2

2

2

(b) Timestamp 2 with
nodes 2 and 3. Note that all
edges are for timestamp 2,
and node 1 is activated for
timestamp 2 (as expected
for the origin).

3

3

3

2

2
32

3

1
123

5
3

3
23

4
3

2
23

3

2

(c) Timestamp 3 with
nodes 4 and 5. As
prev(v4) = v3 and
prev(v5) = v2, nodes
2 and 3 are also active
for timestamp 3. Edge
(v3, v2), which was
present in timestamp 2, is
no longer present.

3

3

3

4
4

4
4

2

2
32

4

3

4

1
1234

6
4

5
3

7
4

3
234

4
34

2
23

(d) Timestamp 4 with
nodes 6 and 7. Note that
while node 2 has an in-
coming edge for this times-
tamp, prev(v6) ̸= 2 (as
shown by lack of a pushed
outgoing edge from node
2), and thus node 4, not 2,
is active in timestamp 4.

Figure 2: Graph construction process (Algorithm 1) for 7 nodes over 4 timestamps (1 on timestamp
1, 2 and 3 on timestamp 2, 4 and 5 on timestamp 3, and 6 and 7 on timestamp 4). Nodes 1-5 are
the same as in Figure 1, other than the timestamps being spread out. The smaller digits below the
node number indicates which timestamps the node is active, i.e. active(v). The number next to each
edge indicates the timestamp said edge corresponds to. Edges that are pushed out with increasing
timestamp (e.g. the edge (v3, v4) present in (c) but not (d) is still in timestamp 3 — the fact that that
it was pushed out in timestamp 4 is conserved in the graph) are not featured in further timestamps.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dbv[1][1]
search direction

active timestamps

dbv[2][2]

Figure 3: An example edge aggregation using the
database as constructed by Algorithm 3, for times-
tamps [4–12] inclusive (excluding 6) and ns of 5.
ns of 5 means that dbv[1] is based on timestamp
1 × ns = 5, dbv[2] = 10, and so on. The search
proceeds as follows; timestamps 12, 11 are checked
as individual timestamps, and a greedy search on the
first valid database timestamp, 10, fetches dbv[2][2]
(dbv[2][3] includes timestamp 6, which is not included
in the search) which covers timestamps [7–10]. 6 is
another individual timestamp, and dbv[1][1] covers
the remaining two timestamps [4–5]. Note that this
search only needs to be performed once for any batch
query w.r.t. the same timestamp range.

Algorithm 3 Sparse edge database construction
Input: node v (and corresponding sparse edge
database dbv and timestamp of previous update tdbv);
timestamp ts where ns divides ts
Output: updated sparse edge database db′v
1. if ts = tdbv then
2. return
3. end if
4. for (ti = tdbv + ns; ti ≤ ts; ti = ti + ns) do
5. Determine the largest integer jmax such that

2jmax ≤ ts
6. for (j = 0; j ≤ jmax − 1; j++) do
7. if j = 0 then
8. dbv[ti/ts][0] = edge(vti)
9. else

10. dbv[ti/ts][j] =∑
edge(vtk) ∀tk where ti − 2j <

tk ≤ ti
11. end if
12. end for
13. end for

The search process itself proceeds similarly to a standard proximity graph search, other than a check
for valid range timestamps, as shown in Algorithm 2 (demonstrated graphically in Figure 8 in the
Appendix for the graph as described in Figure 2 and 7).

3.3 EDGE DATABASE

A very common use case for such time-based searches is searches w.r.t. a particular contiguous range
of time (Zeitun et al., 2023; Zhang et al., 2022). In cases where timestamps are relatively fine-grained
compared to the wanted timeframe, the required computational effort to aggregate the outgoing edges
(Line 12 in Algorithm 2, or

∑
edge(vti) |ti∈Tq

where Tq is the desired range of timestamps) for any
active node v can be substantial. To address this, we describe a sparse table structure to reduce the
computational cost of range aggregation during search, motivated by the structural similarity between
this process and the classic range minimum query (RMQ) problem (Baumstark et al., 2017), and
adopt similar construction techniques.

The process for the structure is as follows: for any timestamp ts, if ts is divisible by the spacing
parameter ns, a positive integer set during the initial construction of each graph (i.e. ns | ts),
Algorithm 3 is applied to each node active (whether by insertion or from a prev(v) call) on said
timestamp. This builds a database of periodic edge aggregations per node. As Algorithm 3 acts
backward (i.e. each call to it in a timestamp ts does not involve any future timestamps) means
that once a database entry for a particular node and timestamp has been established, said entry is
guaranteed to be static regardless of any future updates to the graph. For any timestamp-range-based
search, a greedy search on the available aggregations w.r.t. the timestamp range is performed (starting
from the latest timestamp) to find appropriate aggregations and remaining timestamps (Figure 3).

While one of the main advantages of TiGER is its ability to smoothly handle noncontiguous times-
tamps, the edge database allows for additional speedup in contiguous timestamps (which, as stated
previously, is a common use case), or cases where the query involves a discrete set of contiguous
timestamps (e.g. every Friday in a dataset with timestamps on an hourly basis).

4 EXPERIMENTS

4.1 COMPARISON WITH BASELINES

To evaluate the performance of TiGER in timestamp-based dynamic workloads, we compare it
against HNSW, a widely recognized state-of-the-art ANN graph-based method (Pham & Liu, 2022;

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Rahman & Tesic, 2022; Ren et al., 2020). The HNSW implementation is based on its original
C++ version (Malkov, 2023). We note that the broader challenges in employing other methods for
meaningful comparison for this workload are discussed in Section 5. Experiments are conducted
on a Linux server computer with Ubuntu 20.04.6, running on kernel version 5.4.0. Two Intel(R)
Xeon(R) Gold 6438N CPUs with a clock speed of 2.00GHz, each with 32 cores and 64 threads for
a total of 128 threads, are used. The system has a total memory capacity of 1.5TB. The TiGER
algorithm has been implemented in C++17 with a Python interface. The code is compiled using
g++-11.4.0 with “O3” optimization enabled. We incorporate two filtering strategies—post-filtering
and pre-filtering—as outlined in Section 1.

In the post-filtering approach, filtering is integrated into the search process. Specifically, constraints
are enforced during the insertion of nodes into the topk priority queue, ensuring that only nodes
satisfying the timestamp constraints are considered (Zhao et al., 2020). The graph construction
parameters follow the default settings from the original implementation, and the queries per second
(QPS) vs. recall tradeoff is analyzed by varying the maximum number of vectors traversed that
correspond to the timestamp range in question.

In the pre-filtering approach, a separate graph Gt is built for each timestamp t ∈ T , where T repre-
sents the set of timestamps in the dataset. During a search, we query only the graphs Gt corresponding
to timestamps t ∈ Tq, where Tq ⊆ T denotes the timestamps satisfying the given constraints. The
results from these individual searches are combined using parallel k-way merging (Lee & Batcher,
1995), with early stopping techniques as with the Best Position Algorithm (Akbarinia et al., 2007) to
optimize performance. The QPS vs. recall curve is generated by varying the size of the topk lists
obtained from each graph. Values of individual topk below final topk are also tested (as the true
topk is likely to be distributed among Tq and thus the full textittopk is likely to be not necessary for
individual searches).

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a5) |Tq| = 50

(a) SIFT dataset, tn = 5000

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b5) |Tq| = 50

(b) SIFT dataset, tn = 2500

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(c1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(c2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(c3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(c4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(c5) |Tq| = 50

(c) GloVe dataset, tn = 5000

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

TiGER

HNSW (post)

HNSW (pre)

(d4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(d5) |Tq| = 50

(d) GloVe dataset, tn = 2500

Figure 4: Recall vs. queries per second (QPS) for contiguous Tq for TiGER and baselines for k = 100. “HNSW
(pre)” indicates pre-filtering HNSW (i.e. final topk is produced by merging of per-timestamp HNSW search
results) and “HNSW (post)” indicates post-filtering HNSW (i.e. topk is produced by filtering out vectors that do
not correspond to Tq during search). TiGER maintains a lead over baselines over a wide range of |Tq|.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 WORKLOAD SIMULATION

TiGER is designed to operate on time-based datasets with dynamic insertions, accommodating
continuous updates without requiring graph reconstruction. To simulate such a workload, we apply
the following process to standard ANN datasets:

1. Divide the dataset D into n artificial timestamps, as T = {t1, t2, . . . , tn}, in assumed chronologi-
cal order.

2. Construct an initial proximity graph G using the vectors associated with the earliest timestamp, t1.
3. Sequentially insert vectors associated with subsequent timestamps in ascending order.
4. Once all vectors up to tn are inserted, perform a search on the graph to retrieve the topk nearest

neighbors for a set of query vectors Q, constrained by timestamps Tq ⊆ T .

We apply the workload to vector datasets that are standard in ANN literature; namely, we use the
SIFT 1M dataset (Jégou et al., 2011), a 128-dimensional dataset consisting of 1 million vectors, and
the GloVe-100 (Pennington et al., 2014) dataset with 100 dimensions. We employ the query vector
set provided with each dataset, and set k = 100.

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(a5) |Tq| = 50

(a) SIFT dataset, tn = 5000

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

HNSW (post)

HNSW (pre)

(b5) |Tq| = 50

(b) SIFT dataset, tn = 2500

Figure 5: Recall vs. queries per second (QPS) for discrete Tq sets (i.e. no sequential timestamps in set) for
TiGER and baselines for k = 100. As with Figure 4, “HNSW (pre)” indicates pre-filtering HNSW and “HNSW
(post)” post-filtering HNSW. TiGER maintains a lead (although slightly less pronounced than for Figure 4) over
baselines over a wide range of |Tq|.

For tn and Tq, our settings are as follows: tn = 2500, 5000 and Tq = 3, 10, 20, 30, 50. We vary tn
to account for different per-timestamp dataset sizes and their effect on the results. We also vary Tq

sizes in order to cover both small sets (i.e. tighter filter) where pre-filtering would be effective (due to
the lower number of arrays required to merge) and large sets (i.e. looser filter) where post-filtering
would be effective (as proportionally more checked points are valid, fewer traversals are expected to
encounter a valid vector and in turn form a complete topk queue).

The experimental results for contiguous Tq (e.g. Tq = {13, 14, 15} for |Tq| = 3) are shown in
Figure 4. While pre- and post-filtering act as expected, with larger Tq (i.e., wider filters) improving
post-filtering, and pre-filtering dropping off at high recall, TiGER maintains a lead over either method
in QPS vs. recall consistently over the different filter lengths.

Discrete Tq are also applied to discern the effect of non-contiguous Tq (for which the edge database
described in section 3.3 would be ineffective). For such Tq , we apply a filter in which each t ∈ Tq is
at least spaced by 1 from all other t ∈ Tq (e.g. Tq = {26, 28, 30} for |Tq| = 3). This prohibits the
edge database from fetching any compacted ranges from its search. The results for SIFT dataset are
shown in Figure 5, which demonstrates that the gains of TiGER as shown in Figure 4 are still present.

5 RELATED WORK

Efficient approximate nearest neighbor search with additional constraints such as numeric ranges
has received significant attention in recent years. Various methods have been proposed to address

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the challenges associated with integrating these constraints into proximity graphs. We discuss the
relevant studies in this section.

Segment Graph for Range-Filtering ANNS (SeRF) (Zuo et al., 2024) introduces segment graphs in
which multiple indices for contiguous numeric ranges are compressed into a single structure. By
annotating edges with range validity, SeRF enables efficient traversal for contiguous range queries.
However, it does not natively support disjoint ranges, requiring multiple searches or preprocessing
steps for such constraints. Furthermore, SeRF lacks full support for dynamic updates, necessitating
substantial reconstruction when new data or ranges are added to the dataset.

Unified Navigating Graph (UNG) (Cai et al., 2024) employs a Label Navigating Graph (LNG) to
organize data hierarchically based on label containment relationships. This enables efficient filtered
ANNS for categorical or hierarchical labels. However, UNG also struggles with dynamic updates:
adding new data often requires cross-range reconstruction for integrity of hierarchical relationships.

iRangeGraph (Xu et al., 2024) addresses range filtering by precomputing elemental graphs for specific
ranges and dynamically merging them during query execution. This approach achieves a balance
between memory efficiency and query performance for continuous ranges. However, disjoint ranges
require combining multiple elemental graphs with substantial query-time overhead. iRangeGraph
also lacks inherent support for dynamic updates, making it less suitable for evolving datasets.

Filtered-DiskANN (Gollapudi et al., 2023) extends the Vamana proximity graph to support label-based
filtering. It introduces FilteredVamana, which incrementally builds a graph by pruning connections
based on filter-specific constraints, and StitchedVamana, which creates separate graphs for each filter
and merges them into a unified structure. While these methods enable efficient queries for predefined
filters, they are difficult to maintain for frequently evolving filters. StitchedVamana, in particular,
necessitates costly graph rebuilding or re-stitching to handle dynamic updates.

Native Hybrid Query (NHQ) (Wang et al., 2022b) aims to address queries by combining vector
similarity with attribute-based filtering. NHQ processes such queries using a composite proximity
graph and a fusion distance metric, which integrates feature similarity and attribute compatibility.
This metric guides a joint pruning strategy that eliminates candidates failing either constraint during
graph traversal. To handle range-based constraints, NHQ either has to: perform separate pruning and
merging for each range, which can increase query latency, or predefine connectivity for all possible
ranges during construction. NHQ also relies on a predefined fusion distance threshold to determine
graph connectivity. Adding new ranges not present during initial construction requires modifying the
composite index along with the changing fusion distance threshold, further complicating updates.
This limitation reduces its adaptability to datasets with evolving constraints or highly dynamic ranges.

DIGRA (Jiang et al., 2025) combines multi-way tree structures with navigable small-world (NSW)
graphs to support efficient range-aware queries. Unlike many earlier approaches, DIGRA provides
native support for dynamic updating. However, its update operations are currently restricted to
single-threaded execution, limiting scalability in high-throughput environments.

6 CONCLUSIONS

The rise of applications requiring time-sensitive ANN searches has highlighted significant limitations
in existing graph-based methods. However, current approaches have been computationally inefficient
or problematic w.r.t. dynamic updates and/or noncontiguous filters.

To this end, we introduce TiGER (Time-Integrated Graph for Efficient Retrieval), a novel graph-based
framework specifically designed to efficiently manage range-filtered approximate nearest neighbor
(RFANN) searches with time-based constraints in large, dynamic datasets. TiGER leverages a unified
proximity graph supplemented with versioned connectivity metadata, eliminating the need for post-
or pre-filtering strategies. This ensures both scalability and adaptability while enabling seamless
dynamic updates.

Empirical evaluations across standard ANN benchmarks, demonstrate the effectiveness of TiGER.
Our results show up to a 5x improvement in query performance in a wide range of filters compared
to baselines such as HNSW with both pre-filtering and post-filtering strategies. This consistent
advantage highlights TiGER’s ability to balance recall and query speed across diverse workloads
while maintaining adaptability to evolving datasets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or the scraping of
private data. Experiments use only public vector datasets. We do not anticipate any ethical issues that
arise from this work beyond those associated with the standard use of databases.

REPRODUCIBILITY STATEMENT

We present our approach with both conceptual and algorithmic detail in Section 3, and clearly
document the experimental procedures in Section 4. All datasets used in our experiments are public
and well-documented. We also provide an anonymous repository for this work in Section D of the
Appendix.

REFERENCES

Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Best position algorithms for top-k queries. In
Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand
Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang
Klas, and Erich J. Neuhold (eds.), Proceedings of the 33rd International Conference on Very Large
Data Bases, University of Vienna, Austria, September 23-27, 2007, pp. 495–506. ACM, 2007.

Sayaka Awao, Crystal L. Park, Beth S. Russell, and Michael Fendrich and. Social media use early in
the pandemic predicted later social well-being and mental health in a national online sample of
adults in the united states. Behavioral Medicine, 49(4):352–361, 2023.

Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit. Practical range minimum queries
revisited. In Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman (eds.), 16th
International Symposium on Experimental Algorithms, SEA 2017, June 21-23, 2017, London, UK,
volume 75 of LIPIcs, pp. 12:1–12:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

Karla Z. Bertrand, Maya Bialik, Kawandeep Virdee, Andreas Gros, and Yaneer Bar-Yam. Sentiment
in new york city: A high resolution spatial and temporal view. CoRR, abs/1308.5010, 2013.

Deng Cai. A revisit of hashing algorithms for approximate nearest neighbor search. IEEE Trans.
Knowl. Data Eng., 33(6):2337–2348, 2021.

Yuzheng Cai, Jiayang Shi, Yizhuo Chen, and Weiguo Zheng. Navigating labels and vectors: A
unified approach to filtered approximate nearest neighbor search. Proc. ACM Manag. Data, 2(6):
246:1–246:27, 2024.

Nicola Capuano, Giuseppe Fenza, Vincenzo Loia, and Francesco David Nota. Content-based fake
news detection with machine and deep learning: a systematic review. Neurocomputing, 530:
91–103, 2023.

Wenhu Chen, Hexiang Hu, Xi Chen, Pat Verga, and William W. Cohen. Murag: Multimodal retrieval-
augmented generator for open question answering over images and text. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11,
2022, pp. 5558–5570. Association for Computational Linguistics, 2022.

Etienne Dilocker. Effects of filtered HNSW searches on Recall and Latency.
https://towardsdatascience.com/effects-of-filtered-hnsw-searches-on-recall-and-latency-
434becf8041c, 2021. Accessed: 08-01-2025.

James R. Driscoll. Making data structures persistent. Journal of Computer and System Sciences, 38
(1):86–124, 1989.

Joshua Engels, Benjamin Landrum, Shangdi Yu, Laxman Dhulipala, and Julian Shun. Approximate
nearest neighbor search with window filters. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Run-Ze Fan, Yixing Fan, Jiangui Chen, Jiafeng Guo, Ruqing Zhang, and Xueqi Cheng. RIGHT:
retrieval-augmented generation for mainstream hashtag recommendation. In Nazli Goharian,
Nicola Tonellotto, Yulan He, Aldo Lipani, Graham McDonald, Craig Macdonald, and Iadh Ounis
(eds.), Advances in Information Retrieval - 46th European Conference on Information Retrieval,
ECIR 2024, Glasgow, UK, March 24-28, 2024, Proceedings, Part I, volume 14608 of Lecture
Notes in Computer Science, pp. 39–55. Springer, 2024.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graph. Proc. VLDB Endow., 12(5):461–474, 2019.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu
Guo, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey. CoRR, abs/2312.10997, 2023.

Scott A. Golder and Michael W. Macy. Diurnal and seasonal mood vary with work, sleep, and
daylength across diverse cultures. Science, 333(6051):1878–1881, 2011.

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy, Nikit Begwani,
Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premkumar Srinivasan, Amit Singh, and
Harsha Vardhan Simhadri. Filtered-diskann: Graph algorithms for approximate nearest neighbor
search with filters. In Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and
Geert-Jan Houben (eds.), Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX,
USA, 30 April 2023 - 4 May 2023, pp. 3406–3416. ACM, 2023.

Xiangyu He, Peisong Wang, and Jian Cheng. K-nearest neighbors hashing. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pp. 2839–2848. Computer Vision Foundation / IEEE, 2019.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, 2011.

Mengxu Jiang, Zhi Yang, Fangyuan Zhang, Guanhao Hou, Jieming Shi, Wenchao Zhou, Feifei Li,
and Sibo Wang. DIGRA: A dynamic graph indexing for approximate nearest neighbor search with
range filter. Proc. ACM Manag. Data, 3(3):148:1–148:26, 2025.

Erik-Robert Kovacs, Liviu-Adrian Cotfas, and Camelia Delcea. January 6th on twitter: measuring
social media attitudes towards the capitol riot through unhealthy online conversation and sentiment
analysis. J. Inf. Telecommun., 8(1):108–129, 2024.

De-Lei Lee and Kenneth E. Batcher. A multiway merge sorting network. IEEE Trans. Parallel
Distributed Syst., 6(2):211–215, 1995.

Hans-Peter Lenhof and Michiel H. M. Smid. Using persistent data structures for adding range
restrictions to searching problems. RAIRO Theor. Informatics Appl., 28(1):25–49, 1994.

Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin. Approxi-
mate nearest neighbor search on high dimensional data - experiments, analyses, and improvement.
IEEE Trans. Knowl. Data Eng., 32(8):1475–1488, 2020.

Hao Liao, Jiahao Peng, Zhanyi Huang, Wei Zhang, Guanghua Li, Kai Shu, and Xing Xie. MUSER: A
multi-step evidence retrieval enhancement framework for fake news detection. In Ambuj K. Singh,
Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and
Jieping Ye (eds.), Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, pp. 4461–4472. ACM,
2023.

Craig Macdonald and Nicola Tonellotto. On approximate nearest neighbour selection for multi-
stage dense retrieval. In Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang,
and Hanghang Tong (eds.), CIKM ’21: The 30th ACM International Conference on Information
and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, pp.
3318–3322. ACM, 2021.

Yury A. Malkov. Hnswlib - fast approximate nearest neighbor search.
https://github.com/nmslib/hnswlib, 2023. Accessed: 2024-04-13.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stanislav Morozov and Artem Babenko. Non-metric similarity graphs for maximum inner product
search. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pp. 4726–4735, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp.
1532–1543. ACL, 2014.

Ninh Pham and Tao Liu. Falconn++: A locality-sensitive filtering approach for approximate nearest
neighbor search. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022.

M. M. Mahabubur Rahman and Jelena Tesic. Hybrid approximate nearest neighbor indexing and
search (HANNIS) for large descriptor databases. In Shusaku Tsumoto, Yukio Ohsawa, Lei Chen,
Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro
Abe, and Vijay Raghavan (eds.), IEEE International Conference on Big Data, Big Data 2022,
Osaka, Japan, December 17-20, 2022, pp. 3895–3902. IEEE, 2022.

Parikshit Ram and Kaushik Sinha. Revisiting kd-tree for nearest neighbor search. In Ankur Teredesai,
Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (eds.), Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4-8, 2019, pp. 1378–1388. ACM, 2019.

Jie Ren, Minjia Zhang, and Dong Li. HM-ANN: efficient billion-point nearest neighbor search
on heterogeneous memory. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Connor Shorten, Taghi M. Khoshgoftaar, and Borko Furht. Text data augmentation for deep learning.
J. Big Data, 8(1):101, 2021.

Zhengkai Tu, Wei Yang, Zihang Fu, Yuqing Xie, Luchen Tan, Kun Xiong, Ming Li, and Jimmy
Lin. Approximate nearest neighbor search and lightweight dense vector reranking in multi-stage
retrieval architectures. In Krisztian Balog, Vinay Setty, Christina Lioma, Yiqun Liu, Min Zhang,
and Klaus Berberich (eds.), ICTIR ’20: The 2020 ACM SIGIR International Conference on the
Theory of Information Retrieval, Virtual Event, Norway, September 14-17, 2020, pp. 97–100. ACM,
2020.

Jianghao Wang, Yichun Fan, Juan Palacios, Yuchen Chai, Nicolas Guetta-Jeanrenaud, Nick
Obradovich, Chenghu Zhou, and Siqi Zheng. Global evidence of expressed sentiment alterations
during the covid-19 pandemic. Nature Human Behaviour, 6:1–10, 2022a.

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor search. Proc. VLDB
Endow., 14(11):1964–1978, 2021.

Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni. Navigable
proximity graph-driven native hybrid queries with structured and unstructured constraints. arXiv
preprint arXiv:2203.13601, 2022b.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin Hu. Conditional BERT contextual
augmentation. In João M. F. Rodrigues, Pedro J. S. Cardoso, Jânio M. Monteiro, Roberto Lam,
Valeria V. Krzhizhanovskaya, Michael Harold Lees, Jack J. Dongarra, and Peter M. A. Sloot (eds.),
Computational Science - ICCS 2019 - 19th International Conference, Faro, Portugal, June 12-14,
2019, Proceedings, Part IV, volume 11539 of Lecture Notes in Computer Science, pp. 84–95.
Springer, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen. irangegraph: Impro-
vising range-dedicated graphs for range-filtering nearest neighbor search. CoRR, abs/2409.02571,
2024.

Rami Zeitun, Mobeen Ur Rehman, Nasir Ahmad, and Xuan Vinh Vo. The impact of twitter-based
sentiment on us sectoral returns. The North American Journal of Economics and Finance, 64:
101847, 2023.

Chunyan Zhang, Songhua Xu, Zongfang Li, Ge Liu, Duwei Dai, and Caixia Dong. The evolution and
disparities of online attitudes toward covid-19 vaccines: year-long longitudinal and cross-sectional
study. Journal of Medical Internet Research, 24(1):e32394, 2022.

Weijie Zhao, Shulong Tan, and Ping Li. SONG: approximate nearest neighbor search on GPU. In
36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April
20-24, 2020, pp. 1033–1044. IEEE, 2020.

Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. Serf: Segment graph for
range-filtering approximate nearest neighbor search. Proc. ACM Manag. Data, 2(1):69:1–69:26,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 EDGE DATABASE

To quantify the effects of the edge database on search speed as described in Section 3.3 and indirectly
compared in Figures 4 and 5, we evaluate TiGER’s search speeds both with and without utilizing the
edge database. For each filter with varying Tq sizes on the same graph, we conduct two searches:
one employing the standard edge database search and another where edge validity for each range is
determined by brute-forcing through each t ∈ Tq . We also apply this process for both contiguous and
discrete Tq , the latter of which the current edge database is not able to fetch useful aggregations and
is thus expected to behave in the same way as TiGER without the edge database applied.

The results are presented in Figure 6. Overall the performance is as expected, with a general visible
gain seen throughout the range of Tq for contiguous timestamp filters. This gain also substantially
increases with increasing Tq , as the edge database can compact an increasing number of timestamps.
Searches with discrete Tq shows little visible difference with or without the edge database.

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

TiGER (No edge database)

(a1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

TiGER

TiGER (No edge database)

(a2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

TiGER (No edge database)

(a3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

TiGER (No edge database)

(a4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

TiGER (No edge database)

(a5) |Tq| = 50
(a) SIFT dataset, tn = 2500, contiguous Tq

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

TiGER (No edge database)

(b1) |Tq| = 3

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

TiGER

TiGER (No edge database)

(b2) |Tq| = 10

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

TiGER

TiGER (No edge database)

(b3) |Tq| = 20

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

TiGER (No edge database)

(b4) |Tq| = 30

0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

TiGER

TiGER (No edge database)

(b5) |Tq| = 50
(b) SIFT dataset, tn = 2500, non-contiguous Tq

Figure 6: Comparison of TiGER search speeds with and without the edge database as described in
section 3 for contiguous and discrete Tq for k = 100. contiguous Tq filters show visible improvement
with the application of the edge database at higher Tq, with the gap increasing with larger Tq. With
discrete filters, no substantial gap is present at any size of Tq .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ADDITIONAL FIGURES

1
1

(a) Effective graph of times-
tamp 1.

2

22

1
12343

234

2
23

2

2

(b) Effective graph of times-
tamp 2. The edge (v3, v2) will
be pushed out in timestamp 3.

3

3

3

2

2
32

3

1
1234

5
3

3
234

4
34

2
23

3

2

(c) Effective graph of times-
tamp 3. the edge (v4, v1) will
be pushed out in timestamp 4.

3

4
4

4
4

2
4

3

4

1
1234

6
4

7
4

3
234

4
34

2
23

(d) Effective graph of timestamp 4. Node 5 is
not active. node 2 is also not active, although it
is shown due to its connection with a timestamp
4 edge (v6, v2).)

3

4
4

4
4

2
4

3

4

1
1234

6
4

7
4

3
234

4
34

2
23

2
2 2

2

(e) Effective graph of timestamps 2 and 4 com-
bined. As node 5 is only active on timestamp 3,
it is not present. Additionally, the edge (v3, v2),
which has been pushed out in timestamps 3 and
4, is present due to its presence in timestamp 2.

Figure 7: The effective graphs for each timestamp w.r.t. construction process as in Figure 2 ((a)-(d)))
and (e) the effective graph for a search on timestamps 2 and 4. As node 5 is only present and/or active
on timestamp 3, it does not appear on the effective combined timestamp graph.

4 4

4
4

2
4

3

4 6
4

7
4

4
34

2
23

2

1
1234

3

3
234 2 2

2

Init. queue : 1
topk: ∅

visited: 1
(a) Start of search (w.r.t. vector
marked with green crosshair) on the
graph, from origin (v1). Checked
nodes are marked with blue dotted
circles.

4 4

4
4

2
4

3

4 6
4

7
4

4
34

2
23

2

1
1234

3

3
234 2 2

2

Step 1 queue : 2 3
topk: 1

visited: 1 2 3
(b) First step of search. 1 is been
assigned to topk. Node 2 and 3 are
active in timestamp 2 and are placed
on the queue.

4 4

4
4

2
4

3

4 6
4

7
4

4
34

2
23

2

1
1234

3

3
234 2 2

2

Step 2 queue : 4 7
topk: 2 1

visited: 1 2 3 4 7
(c) Second step of search. Node 2
yields no new connections. Node 3
is then popped and its edges eval-
uated, which adds 4 and 7 (from
timestamp 4) to the queue.

4 4

4
4

2
4

3

4 6
4

7
4

4
34

2
23

2

1
1234

3

3
234 2 2

2

Step 3 queue : 6 7
topk: 2 3

visited: 1 2 3 4 6 7
(d) Third step of search. Node 4
is popped but not evaluated due to
tv4 = 3 /∈ {2, 4} (but its edges are
traversed).

4 4

4
4

2
4

3

4 6
4

7
4

4
34

2
23

2

1
1234

3

3
234 2 2

2

Step 4 queue : 7
topk: 6 2

visited: 1 2 3 4 6 7
(e) Fourth step of search. Node 6 is
evaluated.

4 4

4
4

2
4

3

4 6
4

7
4

4
34

2
23

2

1
1234

3

3
234 2 2

2

Step 5 queue :
topk: 6 2

visited: 1 2 3 4 6 7
(f) End of search. the queue is
empty, and thus the search is ended
with a topk of 6, 2.

Figure 8: A search on the graph index for Tq = {2, 4} as constructed in Figure 2 for a topk limit of
2. The target query vector is marked with a green crosshair. paths and nodes traversed are marked in
blue. Note that node v4 is not evaluated as tv4 = 3 /∈ {2, 4}, but as ∃x ∈ active(v4) = {3, 4} for
which x ∈ {2, 4} (as active(v4) = {3, 4}), is assessed for valid edges, bridging nodes 3 and 6.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C USE OF LARGE LANGUAGE MODELS

Large Language Models were used to aid in debugging, as well as to polish the grammar and clarity of
the text in this paper. The responsibility for all content within this paper lies solely with the authors.

D SUPPLEMENTARY MATERIALS

We provide an anonymous repository corresponding to this work for reproducibility: https:
//anonymous.4open.science/r/TiGER-CF36

16

https://anonymous.4open.science/r/TiGER-CF36
https://anonymous.4open.science/r/TiGER-CF36

	Introduction
	Preliminary
	Similarity Search with Proximity Graphs
	Persistent Data Structures

	TiGER Framework
	Graph Index Construction
	Versioning
	Edge Database

	Experiments
	Comparison with Baselines
	Workload Simulation

	Related Work
	Conclusions
	Additional Experiments
	Edge Database

	Additional Figures
	Use of Large Language Models
	Supplementary Materials

