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ABSTRACT

Offline reinforcement learning is a promising approach for practical applications since it
does not require interactions with real-world environments. However, existing offline RL
methods only work well in environments with continuous or small discrete action spaces.
In environments with large and discrete action spaces, such as recommender systems and
dialogue systems, the performance of existing methods decreases drastically because they
suffer from inaccurate value estimation for a large proportion of out-of-distribution (0.0.d.)
actions. While recent works have demonstrated that online RL benefits from incorporating
semantic information in action representations, unfortunately, they fail to learn reasonable
relative distances between action representations, which is key to offline RL to reduce the
influence of 0.0.d. actions. This paper proposes an action representation learning framework
for offline RL based on a pseudometric, which measures both the behavioral relation and the
data-distributional relation between actions. We provide theoretical analysis on the continuity
and the bounds of the expected Q-values using the learned action representations. Experimental
results show that our methods significantly improve the performance of two typical offline RL
methods in environments with large and discrete action spaces.

1 INTRODUCTION

Reinforcement learning (RL) approaches have been applied successfully in many decision-making tasks. In
a conventional setting, RL agents learn policies through an online fashion, where they collect trial-and-error
experiences directly from the environment to improve the current policy. This can be done when the environment
can be easily established, and the cost of deploying new policies online is low (e.g., computer games). However,
many real-world scenarios allow only offline access to the environment due to cost or safety concerns (Thomas,
2015), meaning that the algorithm cannot access the environment during the training phase. This setting is
known as offline RL, or batch RL (Levine et al., |2020). Despite the success that offline RL has achieved in
robotic control tasks (Fujimoto et al.l 2019b)) and some Atari games (Gulcehre et al.| 2021)), the applicability
of offline RL is still limited in many practical scenarios where the action space is large and discrete, including
recommender systems and dialogue systems.

Prior works on offline RL mainly focus on the setting that the action space is continuous or only consists of a
few discrete actions. To address the issue of overestimating the values of 0.0.d. actions, they usually constrain
the learned policy to stay close to the data-generating policies (Fujimoto et al,[2019b; [Kumar et al.| | 2019; [Wu
et al.,2019; Kumar et al.| |2020; [Kostrikov et al.,|2021; Zhou et al., |2020). However, this family of algorithms
might suffer from poor performance when there are a large number of discrete actions. Firstly, the value function
hardly generalizes over the entire action space without proper action representations because the actions are
isolated in nature. By contrast, actions can be naturally represented in continuous control tasks by their physical
semantics (e.g., directions, forces); thus, the value functions could generalize well. Secondly, with the size of the
action space increasing, the state-action pairs are more sparse to the entire state-action space, resulting in a large
proportion of 0.0.d. actions. Consequently, the learned policies would be overly restrictive — they are constrained
to only select actions within the support of in-distribution actions, without considering a large number of other
0.0.d. actions that might contain the optimal action (Zhou et al., 2020; |Kumar et al., [2019).

In this paper, we propose a novel framework for learning Behavioral Metric of Actions (BMA) to accelerate
the offline RL tasks with large discrete action spaces. In BMA, the policy of an agent is trained with a latent,
state-conditional action space, where the action representations are learned under a pseudometric that reflects
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their behavioral and data-distributional similarities. The behavioral metric, inspired by the bisimulation metric
defined on states (Zhang et al[2021), aiming to explicitly quantify how similar that two actions’ effects are on
the environment. We also define a data-distributional metric, aiming to quantify how an action deviates from
those actions in the dataset. Then, we propose an architecture of action encoder to learn action representations in
a self-supervised way, where ¢; distances between representations correspond to the defined metric. The learned
action representations can be combined with any offline RL algorithms and improve them in two ways. On the
one hand, benefiting from the behavioral similarity between actions, the Q-function would be more smooth on
the action space and, therefore, easier to converge. On the other hand, the quantified distributional distance
enables the algorithm to balance between penalizing and exploring the o0.0.d. actions.

We theoretically prove the continuity and the bound of the Q-values using our proposed action representations.
We also empirically evaluate our methods on two simulated tasks and two real-world applications with large
action sets. Experimental results show that policies trained under the BMA framework significantly outperform
those trained using original actions. Our pseudometric-based action representations are substantially more
effective to offline RL tasks when compared to prior action representations widely used in online RL tasks.

2 RELATED WORKS

Offline RL Offline RL aims to learn policies from logged transition data without any active data collection
(Levine et al.| [2020). Recently, many works have been proposed in this area (Kumar et al.;[2019; Wu et al.,[2019;
Kumar et al., |2020; Kostrikov et al.,[2021; [Fujimoto et al.,|2019b). They empirically and theoretically reveal that
the critical issue in offline RL is the overestimation error induced by 0.0.d. actions. As a result, they propose a
variety of behavioral regularizations in RL training that compel the learned policy to stay close to the offline data.
These regularizations consist of incorporating some divergence regularization into the critic (Kumar et al.|[2020;
Nachum et al., [2019), policy divergence penalties (Kumar et al., 2019;Wu et al.||2019), and appropriate network
initializations (Matsushima et al., [2021)). These works show effective results in simulated tasks, like Mujoco
(Todorov et al.;,|2012)) and Atari games (Gulcehre et al.,|2021). However, we empirically show that they fail in
the real-world applications with large discrete actions, likely due to the difficulty of generalization over large
action sets or the excessive restriction induced by a large proportion of 0.0.d. actions.

Action representations in RL In online RL, continuous action representations are usually used to exploit
underlying structures of large discrete action spaces, thereby accelerating policy optimization in large-scale
real-world tasks, like recommender systems (Ie et al.,[2019) and dialogue systems (Lee et al.,|2019)). In prior
works, [Lee et al.| (2018)) uses predefined action embeddings to represent discrete actions and utilize continuous
policy gradients for policy optimization. (Chandak et al.|(2019) avoid predefined embeddings by linking action
representations to state transitions. [Tennenholtz and Mannor| (2019) regard action trajectories as natural languages
and thus learn action representations from trajectories of expert demonstrations. Wang et al.| (2021) learn action
representations that focus on accurate reconstruction of rewards and next observations. Though these works
show good results in online RL tasks, we empirically show that their performance is extremely unstable when
combined with offline RL algorithms. The reason might be that they build statistical-based representations from
raw data and thus struggle in the data-poor problem in the offline settings, especially when the action spaces
are large. Furthermore, they lack an explicit scheme to regularize distances between action representations,
which we find are important to the behavioral regularizations of offline RL algorithms. Our method utilizes a
relation network (Santoro et al.l 2017) to enforce the distances between action representations to reflect their
behavioral and data-distributional relations. This provides extra information for building action representations
when the offline data is sparse in the entire state-action space and helps offline RL algorithms to derive more
proper behavioral regularizations. Some other works use action representations as pre-training behavioral priors
or primitives (Zhou et al.|[2020; |Ajay et al., 2021} Singh et al., 2021)). They train policies on latent action spaces
which are learned from past successful trials and thus avoid a serious distributional shift in offline RL. However,
these works seriously rely on the offline dataset’s quality; experience data with poor performance heavily limits
the policy improvement. On the other hand, they focus on continuous control tasks without any specific design to
address large discrete action spaces.

Metrics in RL A crucial principle to generalization in reinforcement learning is to assign similar predictions
to similar states. A standard implementation is to use the similarity in an adaptive fashion and group states
into clusters while preserving some desired properties. The fundamental assumption behind it is the existence
of a metric characterizing the real-valued distance between states (Le Lan et al.| 2021). A related concept is
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bisimulation metrics that measure how “behaviorally similar" states are [Ferns et al.| (2004)). Recently, [Zhang
et al.|(2021) extend this concept by proposing a gradient-based method for learning a representation space with
the properties of bisimulation metrics. In the field of offline RL, Dadashi et al.|(2021) propose a pseudometric
to measure the closeness of state-action pairs to the support of logged transitions, but does so directly, without
learning a representation. These works mainly focus on metrics on states or state-action pairs but ignore relations
between actions. We believe that our work is the first to define a behavioral and data-distributional metric on
actions and show that action representations based on this metric are beneficial to offline policy improvements.

3 PRELIMINARIES

We start by introducing notation in this work. We consider the underlying environment as a Markov decision
process (MDP) with a discrete action space, represented by the tuple M = (S, A, P, R,~). Here, S is the state
space. A is a finite set of actions, called the action set, and |.A| denotes the size of the action set. P and R are the
transition function and the reward function, respectively, indicating that when the agent takes the action a € A
under the state s € S, the probability of transitioning from state s to state s’ € S is P(s’|s, a), and there is a
environmental reward R (s, a) € R. The goal of the agent is to learn a good policy a ~ 7(s) that maximizes the
expected cumulative discounted rewards: Ep[> ;2 [V R(s¢, w(s¢)]])-

In online RL, the agent usually learns policy from its interacting experience with the current environment. By
contrast, our work focus on the offline setting, in which the agent cannot collect new experience data and learns
policy from a static dataset D = {(s, a, s’,r)} generated by some other policy. We call the policy that generates
D the behavioral policy and denote it as wg(als).

4 OFFLINE RL wiITH BMA

In this section, we elaborate on BMA, our proposed method for leveraging pseudometric-based action representa-
tions to address offline RL tasks with large discrete action spaces. We begin by describing the paradigm of how
to train and execute policies according to the learned action representations. Next, we discuss which properties
of action representations are crucial to the performance of this framework and define a pseudometric function to
measure these properties. Then, we propose an action encoder structure to learn action representations complying
with the desired properties from the offline dataset. Finally, we give a theoretical analysis of the generalization
ability and the bound of the value function based on the learned action representation space.

Overview. We first introduce a two-phase paradigm for solving such tasks. It first learns an action representation
space from the experience dataset by a self-supervised learning framework, and then, train an internal policy
m; on the action representation space. This internal policy can build upon arbitrary offline RL algorithms with
continuous control. In detail, we first train an action eocoder ¢ for generating action representations and then
convert the original dataset to a new dataset D, = {(s, e, s’,r)}, where e = ¢(a; s) is the state-conditional action
representation and e € £. Note that we introduce how to train ¢ in next subsections. Then, the applied offline RL
algorithm would learn an interal policy ;(é|s) from D.. It provides a latent action é € & for a given state, but é
would likely not be a valid action, i.e., it does not equal any action representation e of a € A. Therefore, we
need to map from é to an element in .A. Here, we adopt a simple nearest neighbor lookup g(é) introduced in |Lee
et al.|(2018):

g(é) = argmin ||é — ¢(a; 9)|1 (N
acA
where ¢ is a mapping function from the continuous representation space to the discrete action set. It returns

the original action whose representation is the closest to é by ¢; distance. Therefore, the overall policy
To = g(m;(els)). Its scheme is also described by Fig[l](a) and Alg.1 in the appendix.

4.1 A PSEUDOMETRIC FUNCTION FOR MEASURING RELATIONS BETWEEN ACTIONS

In this section, we discuss which properties are important to our action representations and introduce a pseudo-
metric function to measure these properties.

How to formulate the structure of action representations is crucial to the performance of our framework. The
agent acting in the representation space would generalize the information of an action to other actions with
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Figure 1: BMA framework. (a) The overall policy scheme. (b) The architecture of pseudometric-based action
representation learning. The action encoder aims to generate action representations, whose ¢; distances between
each other equals the expected pseudometric distance between their corresponding original actions. The generated
action embeddings e’ and e/ are both conditioned on the same state s. During training, since it is hard to find two
transitions that have the same state but different actions from the dataset, (s, a;, R%?) is sampled from the dataset,
and a; is uniformly sampled from the finite action set .A. The reward of (s, a;) and the transitions of (s, a;) and

(s, a;) are estimated by corresponding models. I s 1s a function to estimate whether a; is an in-distribution action
and thus determine whether there is an 0.0.d. penalty on the pseudometric distance. The objective 7 is the mean
square error between ||l — e||; and the summation of the reward distance, the discounted transition distribution
distance, and the o.0.d. penalty.

similar representations. However, if actions with similar representations have different environmental effects,
this generalization might result in poor performance. Furthermore, existing offline RL algorithms usually adopt
various approaches for behavioral regularizations to avoid serious overestimation errors; they enforce the learned
policy to choose actions close to the in-distribution actions. Therefore, different action spaces induce distinct
results of the behavioral regularizations, and an inappropriate representation space would destroy the effect of
behavioral regularizations in our paradigm. For example. If the behaviorally different actions, which induce
distinct transitions and rewards, are close in the representation space, a false result of behavioral regularization
would happen. By contrast, the representation space where behaviorally similar actions are clustered helps the
agent choose the optimal or safe actions. To this end, we expect that the learned action representations’ relative
distances reflect two major relations between any two discrete actions:

(i) The behavioral relation: The distance between any two actions in the representation space should reflect the
difference between their induced transitions and rewards. This helps the behavioral regularized policy select
actions close to the in-distribution actions in terms of their effects on the MDPs.

(ii) The data-distributional relation: The distance between any two actions in the representation space should
reflect whether they are in the same distribution of the experience dataset or not. If they are not in the same
distribution, there is a penalty distance between them. This helps offline RL algorithms tend to choose in-
distribution actions, avoiding serious overestimation errors.

To derive the first relation, we first define a distance function d : A x A — R>( measuring the behavioral
similarity between two actions.
Definition 1 (Behavioral Metric of Actions) iven an MDP M, a behavioral metric of actions is a function
d: Ax A~ Rxq such that:

d(a;,a;) = Eses RS — R [+ v - Wa(P{*, PgY) 2
where Wy is the 2% Wasserstein distance between two distributions.

The Wasserstein metric is widely used in prior works (Zhang et al., 2021} Ferns et al., 2004) for measuring
the distance between two probability distributions of states, indicating the cost of transporting mass from one

'Note that d is a pseudometric, meaning that it allows the distance between two different actions to be 0.
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distribution to another. Here, we adopt 2-Wasserstein metric W5 in Eq[2] as it has a convenient formulation:
1/2 1/2 . .
Wo (N (s 3000, N (15 2°50) = i — 513 + 11 Z—/ -3 j/ |%, where || - || 7 is the Frobenius norm.

Exactly computing the behavioral distance between two actions according to Eq[2]is generally impractical in
the offline setting since the data points of states in the offline dataset are difficult to cover the entire state space,
especially when the action space is large. Estimating the results of the max expectation over S might induce a
large variance. Therefore, we extend the deﬁnitionﬂ] to a conditional version as follows:

Definition 2 (State-conditional Behavioral Metric of Actions) Given an MDP M and a state s, a state-
conditional behavioral metric of actions is a functiond : S x A x A +— R>q such that:

d(as,ajls) = [RE = R|+ - Wa(P2:,P2) 9

This definition avoids estimating the expectation over S and brings a higher representation capability: It allows
the actions’ relations to be changed under different states.

Data-distribution detection. The major issue in offline RL is the overestimation problem caused by o.0.d.
actions. Since 0.0.d. actions are data-poor in the dataset, the estimation about relations of them might be
inaccurate. This mismatch enables them to be close to those in-distribution actions which have distinct behavioral
effects from them. So we also expect that there is a penalty distance between the o.0.d. actions and the in-
distribution actions, forcing the behavioral regularized policy tends to choose in-distribution actions. Thus, we
modify the pseudometric function d (Eq[3) to reflect the data-distributional relation between actions:

d(a;, aj|s) =[RS — RE |4y - Wa(Pg, P) +p - I(ai, ajls) “)

where p > 0 is a penalty coefficient, I5(a;, a;|s) is a function indicating the relation of actions: If a; and a; are
from two data distributions, Ig(a;, a,|s) = 0, otherwise, Ig(a;, a;|s) = 1.

4.2 LEARNING PSEUDOMETRIC-BASED ACTION REPRESENTATIONS

This section introduces how to learn action representations complying with the pseudometric d (EqH) and
gives a theoretical analysis about the generalization ability and the bound of the value function using our action
representations.

In detail, we expect to train an action encoder ¢ : S x A +— &£ for generating action representations that possess
the desired property d(a;, a;|s) == ||¢(a;; s) — ¢(a;; s)||1. It means that the ¢; distance between any two actions
in the learned representation space equals their pseudometric distance. Concretely, the learning objective can be
written as follows:

T(6) = (et = ellls — d(as, az]s))’ 5)

where e! = ¢(a;;s), el = ¢(a;; s). In practice, this objective requires sampling state-action pairs with the same
state s but different actions a; and a;. However, it is challenging to search for sufficient such pairs from the
offline dataset. Thus, we modify the objective by using the estimated samples:

. . A 2
J(9) =, o i ayma (b = €lll1 = d(ai, a;19)) ©)

where

d(ai’ aj"s) = |R§1 - ﬁ(svég)l +- WQ(ﬁ(lS,E;),ﬁ(LS,E‘;)) +p- fﬁ(aj‘s) (N

Specifically, d(a;, a,;|s) is an estimation of d(a;, a;|s). €5 denotes ¢(a; s) with stop gradients, R and P is the
reward model and transition model, which have their own training steps. s(a;|s) is also a trainable model to
predict whether a; is an 0.0.d. action. If a; is out of distribution, I5(a;|s) = 1, otherwise I5(a;|s) = 0. In

practice, we follow the prior work to derive I5(a|s) (Fujimoto et al., 2019a). We train a model G(al|s) ~ 7 (als)
to predict the probabilities of every action in the dataset and then scale all probabilities by the maximum
probability. a; would be predicted as the 0.0.d. action if the relative probability is below a threshold constant 7.
G(als) <7T.

This procedure can be summarized as I3 (als) = Tax GRS
acA
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During training, we sample the tuple (s, a;, R%*) from D and directly sample the other action a; from the finite
action set .A. Then, other lacked data would be estimated by the trained models and the modified objective
can be computed. To a certain extent, this estimation operation would reduce the accuracy of the learned
action representations, but our empirical study shows that it is sufficient to derive a latent space with effective
representative ability in offline RL tasks. Further details of training the action encoder and all models are
described in Fig[I]() and Alg. 2 in the appendix.

Theoretical Analysis. We first theoretically analyze the generalization ability of the value function using our
action representations. We prove that the value function of any given policy 7 is Lipschitz with respect to our
proposed pseudometric function d.

Theorem 1 (Q™ is Lipschiz with respect to d) Given a policy w, let Q™ be the value function for a given
discount factor . Q™ is Lipschitz continuous with respect to d with a Lipschitz constant ﬁ

Q7 (sv00) = Q7 (s )] < 5

Ld(ai, ajls) )
-7
Proofs in appendix. This theorem means that, the closer two actions are in terms of d, the more likely they
are to share the similar value. If we explicitly force the distance between action representations to comply
with d, the value function of the learned policy would be Lipschitz continuous in the action representation
space. This continuity brings an effective generalization capability to the value function, and thus, intuitively,
reduces the estimation errors of 0.0.d. actions (Le Lan et al.| [2021). On the other hand, when the policy is
regularized to select actions close to the in-distribution actions in our representation space, it would choose
similar actions in terms of the long-term return, avoiding selecting actions with distinct effects. Further,
This conculsion can be further represented as: If one of a; and a; is the 0.0.d. action but the other is not,

|Q7r(5v ai) - QW(Sa aj)| < ﬁ ' (|R(57ai) - R(57aj)| + - WQ(P(5/|S7ai)v7D(S/‘Sv aj) + p)7 otherwise,
Q™ (s,a;) — Q7 (s,a;)| < ﬁ “(|R(s,a;) = R(s,a;)| +~-Wa(P(s'|s,a;), P(s'|s, a;)).This indicates that if
two actions are from two distributions, the difference between their values tend to have a looser upper bound
depending on the constant p, and p plays a role in balancing between penalizing and exploring the 0.0.d. actions.
If p is big, the difference between two values tends to be large, so the offline algorithms would ignore most 0.0.d.
actions. If p is proper and the two actions’ behavioral relation is close, the values 0.0.d. actions and the values
of in-distribution actions would be similar but avoid to be the same. This can encourage the offline policy to
cautiously explore the effect of 0.0.d. actions.

Now, we would show how action representations complying the pseudemetric d improve dowenstream offline
RL. Assuming that the BMA action encoder ¢(a; s) has a learning error e: If the pseudometric distance between
any two action is smaller than e, they would be aggregated together. Building on the policy theoretical analysis
from (Ajay et al., 2021)) and (Kumar et al., 2020), we now bound the performance of the policy obtained when
offline RL is performed with BMA.

Theorem 2 (Performance bound in offline RL.) Let 7} (e|s) be the policy obtained by CQL performing with
BMA in the constructed MDP M and ,(als) refer to the overall policy when }(els) is used together
with nearest lookup function g. Let J(w, M) refer to the expected return of w in M and ¢(a;s) is the
BMA action encoder, which has a learning error €. Let mg refer to the behavioral policy genearting D and
wp(els) = e = d(a;s),a ~ mg(als).Then, J(n} ,, M) > J(mg, M) — k where

) ©))

Proofs in appendix. This bound suggests that the lower bound over the performance of the learned overall policy
depends on three factors: 1) the divergence between the learned latent-space policy and the latent behavioral
policy (Deqr (7}, 73)(s)), which is controlled by the applied offline algorithm. 2) The size of the latent space
|€]. According to Eq.(6) in (Kumar et al., 2020), note that if we directly learn an offline policy from the original
action space A, the lower bound of offline policy performance would depend on |.4]|. This indicates that a latent

k=0 <(1E m¥(s) [¢|5|DCQL(W;7W5)(S) +1

1 —7)2 svd
(6% €
— sy [ D 5T
Ty sl [Deqr(my, ms)(s)] + T
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action space would induce an improvement on the worst-case deterioration over the learned policy, since we can
set |€| < |A], especially when |.A| is enormous. 3) The learning error of BMA action encoder €. This term is
induced by a self-supervised loss function. Compared with errors induced by offline RL algorithms, this term is
much easier to be controlled. In conclusion, BMA provides a therotically gurrantee of policy improvement for
offline RL task with large discrete action spaces.

5 EXPERIMENTS

In this section, we empirically show that BMA could be used as a drop-in extension for improving the policy
performance in existing offline RL algorithms for problems with large discrete action spaces. Combing BMA
with two standard offline RL algorithms, we evaluate our method in two simulated tasks and two real-world
problems. All experiments in this paper are carried out with 5 different random seeds, and results are shown with
a 95% confidence interval of standard deviation. We believe that the reported results can be further improved by
using our framework with other offline RL algorithms; we leave this for future work. Details of architectures and
hyperparameters can be found in the appendix.

Evaluation Environments. We consider four environments with large discrete action spaces: A maze environ-
ment introduced in |(Chandak et al.[|(2019). It has 4096 discrete actions. A multi-step maze environment that
requires select actions from the 6-step planning decisions. It is modified from the maze environment and also has
4096 actions. A video recommender system that sets 1000 videos as the action set (Ie et al.,[2019). A dialogue
system that sets 1500 dialogues as the action set. The experience trajectories are policies with sub-optimal
performance. They are all trained by online methods. Note that more details of environments and datasets can be
found in the appendix.

5.1 EXPERIMENTAL RESULTS

We empirically reveal that optimizing policies on the learned action representation spaces leads to better
performance than directly training policies on the original action spaces. We consider two widely-used offline RL
algorithms: CQL (Kumar et al.| |2020) and BCQ (Fujimoto et al.}2019b). We first learn our pseudometric-based
action representations from the given datasets. Then, we utilize our framework to train policies using the two
offline RL algorithms. The developed policies are annotated by BMA-CQL and BMA-CQL, respectively. The
baselines are the discrete versions of CQL and BCQ and behavior cloning (BC).

The average performance curves are illustrated in Fig]2] (a). We also visualize the average performance of
the behavioral policy. Overall, we find that BMA-CQL and BMA-BCQ show faster convergence and better
performance than their discrete versions in the four environments. Furthermore, discrete CQL and discrete BCQ
cannot outperform the behavior policies and show unstable learning curves in some situations. This indicates
that in offline RL with large action sets, directly training policies on the original action spaces might suffer from
serious generalization or extrapolation errors. In addition, the poor performance of BC in most environments
indicates that simple imitation learning cannot address this problem well.

Comparison with Other Action Encoders. A natural question is whether training policies on other kinds of
action representation spaces can lead to similar results? To reply to this question, we compare BMA-CQL against
baselines using the same architecture but exchange our action representations with other representations. We
first consider two random action representations to examine whether simply projecting discrete actions into
continuous action spaces can improve the performance. The first scheme generates random vectors ranging from
-1 to 1 as action representations (Rand-1). The other scheme also generates random vectors but forces the ¢;
distance between any two action embeddings to be larger than a constant. This scheme avoids actions overlapping
together (Rand-2). Then, we consider three schemes for learning action representations widely used in online
tasks: (1) Transition (Chandak et al.,2019): An encoder that captures information about corresponding state
transitions into action representations. (2) Reconstruction: An encoder-decoder scheme in which the decoder
takes the state and the action representation generated by the encoder as input, and its objective is to predict the
next state and reward. (3) External (Lee et al.||2018): Action representations are given by external information.
In the maze environment, the action embeddings are set as the movement vectors. In the multi-step environment,
the actions are represented as the concatenation of the base action at each step of the plan. In the recommendation
system, the action embedding is the concatenation of video type (expressed as a one-hot vector), video quality,
and video length. Note that there is no proper external information to represent dialogue actions, so we did not
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Figure 2: Experimental results. (a) Comparing BMA equipped with BCQ and CQL against directly training
offline RL algorithms (Discrete BCQ, Discrete CQL, and BC) on the original action spaces in 4 environments with
large action spaces. (b) Comparing the performance of BMA against other widely used action representations
(transition-based representation, reconstruction-based representation, two kinds of random representations, and
external representation ) in 4 environments with large action spaces. (c¢) Ablations. We perform two offline
algorithms (CQL and BCQ) with BMA in two environments (Multi-step maze and Recommendation system).
We consider BMA with different penalty distances (BMA with p = 0.1, 0.3, 0.5), removing the penalty distance
from the learning objective (BMA w/o p), and removing the distance learning objective (Eq[6) from the learning
procedure (CVAE).

consider external action representations in this task. Finally, we consider a similar work for offline RL (PLAS

(Zhou et al., 2020)) since it also trains policies on the latent action spaces.

The average performance curves in four environments are illustrated in Fig[2] (b). Two random action representa-
tions both fail in the four environments, indicating that simply converting discrete action spaces to continuous
action spaces cannot address this task. By comparison, transition and reconstruction representations show better
performance in certain situations, revealing that generalization over actions with similar effects can improve the
policy performance. However, these two representations also show poor performance in most environments. In
contrast, our methods show superior events among all environments, revealing that action representations com-
plying with the proposed pseudometric are more suitable to offline RL. In addition, external representations and
PLAS both show poor performance in all tasks. The reason might be that external representations do not capture
the information of dynamics in MDPs, resulting in misleading generalization effects. The objective of PLAS is
to constrain policies more naturally instead of improving the generalization ability of action representations, so it
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Figure 3: Visualization of different representation spaces. Since we set the dimension of representations as
2 in the multi-step maze environment, we directly plot the action representations. The position of each dot in
these plots equals the corresponding action embeddings, and the color corresponds to the ground-truth action
value predicted by a model (Chandak et al.|[2019) with online training. Two rows are in terms of two different
states. Each column from left to right corresponds to the representations learned by the online model, the rand-1
representations, the reconstruction representations, and ours.

cannot address the tasks with large discrete action spaces well. Fig[3|illustrates the action representations. We
sample two states from the multi-step maze environment and plot the different action representations. We see
that, in offline settings, the rand action representations cannot generalize well since actions with different values
are mixed together. The reconstruction-based representations and our pseudometric-based representations both
show generalization over actions: The changes of action value are continuous in both representation spaces to a
certain extent. Furthermore, the reconstruction-based representations are scattered throughout the space while
our representations with similar values are arranged as a more compact structure. Intuitively, we believe that this
is the reason why our method shows faster convergence performance than reconstruction-based representations.

Ablations We perform several ablations on the multi-step maze environment and recommendation system to
try and determine the importance of each component in our framework. Fig[Z](c) illustrate the results. We
first consider the effects of different scales of the penalty constant. We set p = 0.1, 0.3, 0.5 respectively. The
results show that a proper penalty constant would bring better performance, but a large penalty constant might
make the performance collapse in some situations. The reason might be that large penalty distances destroy the
generalization structure of action representations. Then, we consider removing the penalty constant (denoted
as BMA w/o p). The results of this ablation show that without the distance penalty mechanism to ensure the
distribution detection, there is performance degradation in our framework. Finally, we remove the objective
function (EqJ6) for controlling the distances between actions. As a result, the architecture of this scenario
is similar to a conditional variational auto-encoder that takes current states and actions as input and aims to
reconstruct next states and rewards (denoted as CVAE) from the action embeddings. This ablation shows worse
performance than BMA w/o p in many situations, indicating that controlling the pseudometric distances between
actions provides extra information for action representations, leading to better policy performance.

5.2 CONCLUSIONS

This paper proposes Behavioral Metrics of Actions: a new action representation learning framework for offline
RL tasks with large discrete action spaces. In the learned action representation spaces, distances between
representations of discrete actions reflect their behavioral and data-distributional relations. We derive theoretically
statements about the benefits of learning policies based on our action representations. Experimental results show
that our methods significantly outperform prior works in a variety of environments.
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A APPENDIX

A.1 ADDITIONAL THEOREMS AND PROOFS

Theorem [T|(Q™ is Lipschiz with respect to d) Given a policy ©(als), let Q™ be the value function for a given
discount factor . Q™ is Lipschitz continuous with respect to d with a Lipschitz constant ﬁ

1
Q™ (s,ai) — Q" (s,a;)| < md(%aﬂs) (10

Proofs. follows by expanding each @, rearranging terms and then simplifying the expression.

Q" (s, a:) — Q7 (s,0;)| = [R(s,a:) + v+ > _P(s|s,a)V(s') = (R(s,0;) +v- 3 _ P(s'|s,a;))V7 ()]

< [R(s,ai) = R(s,aj)| +7- Y IP(s']s,ai) = P(s']s,a5)] - V(')

(11)
We assume that R < 1, so we geﬂ

> 1
Vi) =2 7" RS 7 (12)
t=0

Combing the above equations, we have

Q7 (s,a1) = Q7(s,45)] < [R(s,a5) = R(s,a5)[ + 7Y |P(s]s, i) = P(s']s,05)] - V7 (s)

v ’
< [Rls, ai) = Rls, )| + 37— D [P(sls,a5) = P(s'|s, a;)]

=T <(1 =) R(s,ai) = R(s,a5)| +7- D [Ps]s, ai) — 7’(8’«%%’))

N <|’R(s, a;) — R(s,a;)| +- Z [P(s'|s,a;) — 77(5'|5,aj)|>

1—7

IN

13)

?In practice, there might be some environments in which R € [~Romaz; Rimaz] and Romaz > 1. To address this issue,
we normalize the reward signals by setting R < R/Rmax
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Since in Eq.(@#), p > 0 and I5(a;, a;]s) € {0,1}, we get

1

|Qﬂ(87ai) - Qﬂ(&aj)l < ﬁ

: (IR(s,ai) —R(s,a)| +7- D [P(s']s,ai) = P(s]s, a5)| +p- I/a(%ajIS))

< d(ar,asls)
1—n~
(14)
According to theorem|[I] we can derive the bound between value functions in the original MDP and the MDP
constructed by the learned BMA action representations. Assuming that the BMA action encoder ¢(a; s) has a
learning error e: If the pseudometric distance between any two action is smaller than e, they would be aggregated
together.

Lemma 1 (Value bound based on ¢) Given the BMA action encoder ¢(a; s) which has a learning error € and
maps from actions in the original MDP M to actions in the MDP M constructed by the action representations.
The value functions for a given policy 7 in the orginal MDP and its converted version T in the constructed MDP

are bounded as: c

1—v

|Q(s,a) — Q% (s, ¢(a; 8))| < (15)

Proofs. First, let us give some notation and assumptions concerning the form of the constructed MDP M. We
assume M = (S, Ag, Py, Ry, ), where S is the same state space, A is the action representation space where
the ¢; distances between any two representations corresponds to our defined pseudometric distance, and there
exists a learning error of ¢: If the pseudometric distance between any two action is smaller than e, they would be
aggregated together. Recall that the nearest neighbor lookup g is as follow:

g(e) = argmin [[e — ¢(a; s)[|y (16)

acA
As aresult, we can get the relationships between the transition probabilities and rewards in the two MDPs, i.e.
Py(s'|s,€) = P(s']s, g(e))

Ry(s,e) = R(s, g(e)) (17)

By this way, we can get
Q5. a) — Q7z(s, d(as 5)))|
= [R(s,a) +7- Y P(s's,a)Vig(s') — (Ro(s,8(as8)) + 7+ D Pol(s'ls, d(a; ) V()|

= [R(s,a) +7- S P(s']s, ) Vi (s') — (R(s,g(d(as ) +7- 3 P(s']s, g(d(as ) Vi(s))| D)
< [R(s,a) = R(s, g(@a; ) +7- | S P(s']s,a) — S P(s'|s, g((as )V (s)

According to the proofs of theorem|[I] we get

Q(5,0) = Q5,00 3))| < 1= dla,(0(ai )]

€

1—7

19)

<

We have argued that there exists some near-optimal value functions based on the constructed MDP M, if ¢ is
sufficiently learned. Now, we would show how action representations complying the pseudemetric d improve
dowenstream offline RL. Building on the policy theoretical analysis from (Ajay et al.,[2021) and (Kumar et al.,
2020), we now bound the performance of the policy obtained when offline RL is performed with BMA.

Theorem 2] (Performance bound in offline RL.) Let 7} (e|s) be the policy obtained by CQL performing with
BMA in the constructed MDP M and 77 ,(a|s) refer to the overall policy when w}(e|s) is used together

12
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with nearest lookup function g. Let J(m, M) refer to the expected return of w in M and ¢(a;s) is the
BMA action encoder, which has a learning error €. Let mg refer to the behavioral policy genearting D and
wa(e|s) = e = é(a;s),a ~ mg(als).Then, J(n} ,, M) > J(ng, M) — k where

) (20)

zg?

1
k = O (WESNdﬂ;(s) [¢|5|DCQL(WJ,Wﬂ)(S) + 1
M

a €
1 _7E5~L< o [Doqr(mi, me)(s)] + 1 —
Proofs. First, let’s break |J (7} ,, M) — J (75, M)| into
[T (7} g M) = J (w5, M) < | (7] g, M) = T (], M)
+ | (mf, M) = I (7, M) @n

+ |J(7TB7M) - J(T‘—BvM)l

where 7 is the converted behavioral policy executed on the constructed MDP M mentioned in the proofs of
thereom 2?2. It can be defined as e ~ T3 = e = ¢(a; s), a ~ mz(als). According to theorem 3.6 in (Kumar et al.,

2020), we apply it to M, we get
| J(n}, M) — J (75, M)|

Crs Py, )
<2 — + ’ E
(1 -7 (1 77)2 Swdﬁ

«
T P @[Deqr(mi,mp)(s)] = ki

&
|D(|)|DCQL(7T177T5)(S)+1 (22)

Then, we try to bound |J (7}
dence, we get |J (7}

7 g M) = J (7], M)|. Since the decisions of 7} and m; , are in one-to-one correspon-

M) — J(mr, M)| = 0.

zg’

Now, we try to bound |J (75, M) — J(7r5,./\/l)|:
|J(ﬁ57M) Wﬁv | = | ZdO ZdO

s~S s~S
= [ do(s) Zfﬁ(dS)Q = > do(s) Y mplals)QN(s, )]
s~S e~E s~S a~A (23)
=1 do(s) Y ms(als) =D do(s) Y mslals)QYy(s, a)|
s~S a~A s~S a~A
=D do(s) Y ma(als)| Q7 (s,€) — QNy(s, )l
s~S ar~A
i/li(s,eg) —Q4(s,0)| = 15,50 | (T, M) — J(mp, M)| = 1 = k». Finally, we

get k = k1 + ko. We apply O to get the notation in the theorem

A.2 ALGORITHMS
A.3 ARCHITECTURE, HYPERPARAMETERS, AND INFRASTRUCTURE

In our implementations, the nearest neighbor lookup function g can be regarded as finding the minimum distance
between ¢ and all actions’ embeddings. So, we directly adopted the torch.min () function in the PyTorch
python package. Its time complexity is O(N), so there would not be a serious scale problem when the action set
is enormous.

For I3(als). We train a model G(als) ~ ms(als) to predict the probabilities of every action under a given
state s and then scale all probabilities by the maximum probability. a; would be predicted as the 0.0.d. action

13
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Algorithm 1: Train policy

Data: Offline Dataset D, the action encoder ¢, Any offline RL algorithm Y, and number of iterations 7.
Result: Policy m; g(é|s)
for t =0T do
Sample data (s, a, s’,r) ~ D;
e ola s);
Update policy m; ¢(é|s) with (s, e, s’,r) using the given algorithm Y’
end

Algorithm 2: Pseudometric-based representation learning

Data: Offline Dataset D and number of iterations 7.

Result: Action encoder ¢

for t =01t T do

Sample data (s, a;, R(s,a;)) ~ D;

Sample the other action a; ~ A;

Compute representations e}, = ¢(a;; s) and el = ¢(a;; s);
Estimate the transition distributions: P(-|s, ¢’) and P(-|s, e7);
Estimate the reward of (s, a;): R (s, el);

Estimate whether a; is an 0.0.d. action: I5(a;]s);

Compute the estimated pseudometric distance: d(as, a;|s) Eq
Train encoder: J(¢) = (|l¢} — el|l1 — d(as, aj|s))%;

Train transition model: J(P, ¢) = (P(:|s, el) — &')%;

Train reward model: J(R, ¢) = (R(s,el) — R(s,a;))?;
Train prediction model: J(G) = CrossEntropy(G(-]s), a;) ;
end

14
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Figure 4: Details of the network architectures used in our experiments.

if its relative probability is below a threshold constant 7. This procedure can be summarized as I slals) =
Glals) <+ We have searched over 7 = {0,0.1,0.3,0.5,0.7,0.9,1} and found that the best setting is

raneaicG(db)
7=0.3

Furthermore, the transition model 75, the reward model 7@, and the distribution detection model G are all
implemented by neural networks. Their learning objective can be represented as follow:

J(P) = (P(|s,e;) —s)°
J(R) = (R(s,e,) — R(s, ai))? (24)
J(G) = CrossEntropy(G(-|s), a;)

During training, all data are randomly sampled from the offline dataset. We set the batch size as 128 and set
the training gradient steps for all models as 10000. We control the scale of the learning objective function in
all models by controlling the optimization procedure. It is conducted using Adam with a learning rate of 10~2,
and with no momentum or weight decay. We set the dimension of the action representations |£| = 2,2, 10, 30
and the penalty coefficient p = 0.01,0.1, 0.1, 0.3 respectively in the maze environment, the multi-step maze
environment, the recommender system, and the dialogue system respectively. Details of the neural network
architectures used in our experiments are provided in Fig.4 in the newest version.
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Figure 5: An example of the influence of different action spaces on the behavioral regularizations of offline
RL algorithms.

Online Performance in Multi-step maze

100
75
c
-]
£ 50
ol
9 25
£
0 —— Reconstruction
5 = Transition
—-25
0 10000 20000 30000 40000 50000

Steps

Figure 6: Online performance of BMA, the transition-based action representations, and the
reconstruction-based representations in the Multi-step maze environment.

For the applied offline RL algorithms: BCQ (Fujimoto et al., 2019b)), CQL(Kumar et al.l[2020), and their discrete
versions, we all adopt their open-source implementations released by the authors. For the discrete CQL, We
have searched over the crucial hyperparameter « = {0.1,0.3,0.5,0.7,0.9}, which determines the extent of
conservative estimation of value functions. The best settings for four environments (Maze, Multi-step maze,
Recommendation system, Dialogue system) are 0.5, 0.5, 0.5, 0.3, respectively. For the discrete BCQ, we have
searched over 0.1, 0.3, 0.5, 0.7, 0.9 for the hyperparameter of the threshold 7, which determines the range of the
candidate actions. The best settings for four environments (Maze, Multi-step maze, Recommendation system,
Dialogue system) are 0.3, 0.3, 0.3, 0.3, respectively.

A.4 ENVIRONMENTS AND DATASETS

Maze: We first adopt the maze environment introduced in|Chandak et al.|(2019). The state is the coordinates of
the agent’s current location, and the agent has n equally spaced actuators (each actuator corresponds to a unit of
movement in one direction). It can choose whether each actuator should be on or off. The effect of an action is
the vectorial summation of the movements associated with the selected actuators. Thus, the size of the action
space |A| = 2™. We set n = 12, so there are 4096 actions in total. There are three reward types: a reward of 10
is given if the agent visits a rewarding region, a reward of -20 is given for visiting a puddle region, and a reward
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of 100 is given with the episode ending if it is on a goal region. The noise was added to the action 10% of the
time, and the maximum episode length was 60 steps.

Multi-step maze: Selecting one decision from all possible m-step plans is a general problem with a large
action set. If an environment has ¢ actions available at each step, the number of m-step plans would increase
exponentially. In this setting, |.A| = m®. We implement a version of this task on the maze environment mentioned
above. The reward settings are the same in this task, but the agent only has 4 base actions: down, right, upward,
agd left. It needs to choose a 6-step plan per 6 time steps. Thus, the actual action size in this environment is
4% = 4096.

Recommender environment: We consider a real-world domain with a large action set. The agent needs to
recommend different videos to the simulated users, and its goal is to extend the user’s viewing time. We utilize the
open-source platform Recsim (le et al.,[2019) and adopt the provided scenario called interest_evolution
as our simulated environment. There are 1000 candidate videos in the action set. All videos are split into 20 types,
and each video has its quality and video length. The sampled user has different initial interest values ranging
from -1 to 1 on different video types at each episode. The user would decide whether to view the recommended
video according to the interest value of the video’s type. The higher the interest value, the more likely the user
is to view the video. The user has a latent attribute called time budget to control whether to continue to view
another video. The episode ends when the time budget is smaller than 0. The initial time budget is 100, and it
would be deducted by the video length if the user has viewed a video. In addition, the viewed video’s quality
would also influence the user’s interest value and time budget: a high-quality video brings an increase, but a
low-quality video leads to a decrease. To improve the diversity of the recommended videos, we deduct the time
budget by 2.5 if two videos of the same type are recommended successively. The observed state at each time step
is the users’ interest values and the history of its viewed videos’ types. A reward equaling the video length is
given once one video is viewed.

Dialogue environment: Building dialogue systems for providing information (Young, [2006)) or improving
engagement (Li et al.| |2016)) is a real-world challenge. One solution is to employ RL to optimize dialog strategies
in multi-turn dialog models. We adopt an open-source platform called convlab (Lee et al., 2019) to simulate
a dialogue environment in which each action is a dialogue. We focus on the MultiWOZ domain (Eric et al.|
2019). Its main task is to help a tourist in various situations involving multiple sub-domains, such as requesting
basic information about attractions and booking a hotel room. Specifically, there are 7 sub-domains - Attraction,
Hospital, Police, Hotel, Restaurant, Taxi, Train. We adopt dialogues in the top 1500 using frequencies as our
action set. In detail, we utilize the provided scenario called UserPolicyAgendaMultiwoz to simulate the
tourists’ policies and use Mult iWozStateEncoder to encode the histories of dialogs into vectorized states.

Data collection: Since there are no open-source datasets for the offline RL tasks with large discrete action
spaces, we collected logged experience trajectories generated from online RL policies. These policies were all
developed by the open-source implementation of the work (Chandak et al.l 2020), which can be used to address
tasks with large discrete action spaces by setting the hyperparameter of the action change number as 1. We
trained policies until they achieved sub-optimal performance. Then, policies of checkpoints were used to collect
transition data, and the noise was added to the action 50% of the time. In this way, we collected 100000 pieces of
transition data in each environment.

A.5 EXAMPLE

To better understand the influence of action spaces to the behavioral regularization of offline algorithms, we give
a toy example iluustrated in Fig.5. The task is to reach the goal from the starting position as fast as possible, and
collisions with the wall induce negative reward. The agent needs to learn a policy from the logged suboptimal
(blue) trajectory. Assuming that a simple behavioral regularization scenario is applied to the target policy: the
agent can only select actions within a particular range near the in-distribution action. At the agent’s current
position, we can find that different action spaces induce different results of the behavioral regularization. The
target policy is limited to selecting the sub-optimal in-distribution action (move upward) in the discrete action
space since other actions are isolated from it. By contrast, the policy is permitted to choose actions near the
in-distribution action in the other representation spaces where there could be some other actions in the range
of behavioral regularization. This is crucial to the policy improvement since the agent has the opportunity to
choose the optimal action (move right). However, actions’ relative distances also largely influence the results
of the behavioral regularization. In representation space 1, behaviorally different actions (the transitions and
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rewards induced by them are different) are grouped together, so the agent is more likely to choose ‘bad’ actions.
By contrast, if the relative distances between behaviorally similar actions are close (like in representation space
2), the agent tends to select the optimal or other ‘safe’ actions.

A.6 ONLINE PERFORMANCE OF BMA

Actually, BMA action representations can be directly applied on the online setting. Utilizing the framework
mentioned in |Chandak et al.|(2019) which can incorporating action representaions and online RL algorithms.
We get the online performance of BMA, the transion-based representations, and the reconstruction-based
representations in the Multi-step maze environment. The results are illustrated in Fig.6. We can find that, in
the online setting, three action representations can all achieve fast convergence, while only BMA can get good
performance in the offline setting (Fig (b)). This indicates that the BMA is more effective in offline RL tasks
with large discrete action spaces.
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