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ABSTRACT

The bandit problem with high-dimensional continuum arms and high-dimensional
contextual covariates is often faced by decision-makers but remains unsolved. Re-
cent developments in contextual bandit problems focus on the setting where the
number of arms are small but are impracticable with high-dimensional continuous
arm spaces. To bridge the gap, we propose a novel model for the high-dimensional
continuum armed and high-dimensional contextual bandit problem that captures
the effect of the arm and covariates on the reward via a low-rank representation
matrix. The representation matrix is endowed with interpretability and predictive
power. We further propose an efficient bandit algorithm based on a low-rank ma-
trix estimator with theoretical justifications. The generality of our model allows
wide applications including business and healthcare. In particular, we apply our
method to assortment and pricing, both of which are important decisions for firms
such as online retailers. Our method can solve the assortment-pricing problem
simultaneously while most existing methods address them separately. We demon-
strate the effectiveness of our method to jointly optimize assortment and pricing
for revenue maximization for a giant online retailer.

1 INTRODUCTION

The bandit problem dates back to when Robbins (1952) formulated the problem as the sequential
design of experiments and has been studied to a great extent recently due to the demand for online
decision-making, especially from e-commerce and health care. A decision-maker chooses an action
(arm) at each round and observes a reward and the goal is to act strategically so as to find an optimal
action that maximizes the long-term reward without sacrificing too much.
The bandit literature mostly focuses on the problem of a finite number of independent arms, but it is
often the case that infinite number of of arms and the arms share some common structure and thus
can be indexed by variables as a continuum armed bandit problem. In e-commerce, the retailer needs
to decide the product assortment and pricing to maximize long-term profits; in mobile health, the
personal device provides exercise and dietary suggestions to improve physical and mental health.
The possible actions in both examples can be parameterized as continuous variables, which are
possibly high dimensional. In addition, decision-makers observe other covariates/features, i.e., the
contextual bandit problem where the reward is modeled as a function of unknown parameters and
the contextual variables, and in many practical settings, the covariates are high-dimensional.
As the dimensionalities of the action space (for arms) and the contextual variables grow, the tradi-
tional bandit algorithms suffer from the curse of dimensionality and it is impossible or prohibitively
costly to learn the optimal decision. Albeit both the arm and the contextual are high-dimensional, the
dimension of the underlying factors is often, fortunately, small – for high-dimensional bandit prob-
lems, one can assume a low-dimensional structure on the unknown parameters, such as the LASSO
bandit (Bastani & Bayati, 2020); and for high-dimensional continuum armed bandit problems, one
can assume the reward function depends only on the low-dimensional subspace of the action space
(Tyagi et al., 2016). While low-dimensional representation has been successfully adopted in high-
dimensional bandit problems and high-dimensional continuum armed bandit problems respectively,
a natural but important question remains open: can we efficiently solve the bandit problem with both
high-dimensional continuum arms and high-dimensional contextual variables simultaneously?
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In this paper, we tackle the above problem by proposing a novel model that captures the effect of the
arm and the contextual with an approximately low-rank matrix representation as well as an efficient
algorithm (Hi-CCAB) to efficiently solve the problem with theoretical justifications. Specifically,
for an action that is presented as a vector a ∈ Rda and the corresponding contextual covariates
x ∈ Rdx , we yield reward

r = a⊤Θx+ ε

where Θ ∈ Rda×dx is the unknown representation matrix, which is assumed to have rank d ≪
min{da, dx} and ε is the independent error. To learn the low-rank representation matrix, we adapt
the low-rank matrix estimator to the bandit setting. We further demonstrate the benefits of our
methodologies in e-commerce with real sales data where the online retailer needs to decide on the
product assortment and pricing jointly. The generality of our model makes it possible to learn policy
on product assortment and pricing at the same time, while previous literature mostly studies the
assortment and pricing problem separately.

Contributions. We highlight the following contributions of our paper:

1. We propose a new model for high-dimensional continuum armed and high-dimensional contex-
tual bandit problem, which is often faced by decision-makers but very little existing literature
attempts to solve. The crux of our model is the low-rank representation matrix that exploits the
low-dimensional structure of both the high-dimensional arms and high-dimensional covariates.
Our model unifies a large class of bandit models.

2. The low-rank representation matrix is endowed with interpretability and predictive power. One
can perform singular value decomposition (SVD) on the representation matrix – the left singular
vectors reveal the latent structure and relationships among the arms, while the right singular
vectors show the latent factors of the covariate. In other words, our model implicitly performs
principle component analysis (PCA) on the effect of arms and covariates on the mean reward.
On the other hand, given the covariate, our model is able to predict the reward of an unseen arm.
Both interpretability and predictive power can be tremendously useful for decision-makers.

3. We propose an efficient algorithm for the High-dimensional Contextual and High-dimensional
Continumm Armed Bandit (Hi-CCAB) by adopting the low-rank matrix estimator. We further
provide an upper bound for the convergence rate of Hi-CCAB in terms of the time-averaged
expected cumulative regret.

4. The generality of our model allows for a wide range of applications. Specifically, we apply
Hi-CCAB to the joint assortment and pricing problem. We show that our model reveals insights
for product designs, assortment, and pricing and that the assortment-pricing policy based on
Hi-CCAB yields sales four times as high as the original strategy.

Literature review. Literature on high-dimensional bandit problems has been expanding recently,
especially after statistical tools for high-dimensional problems become mature (Negahban & Wain-
wright, 2011; Wainwright, 2019). Lots of high-dimensional bandit literature focuses on contextual
bandits with high-dimensional covariates, such as the LASSO bandit problem (Abbasi-Yadkori et al.,
2012; Kim & Paik, 2019; Bastani & Bayati, 2020; Hao et al., 2020; Papini et al., 2021) where they
assume the mean reward is a linear function of a sparse unknown parameter vector, the low-rank
matrix bandit where the covariate and unknown parameter are both of matrix form (Kveton et al.,
2017; Lu et al., 2021), and other non-parametric methods that learns the reward function using ran-
dom forest or deep learning (Féraud et al., 2016; Zhou et al., 2020; Ban et al., 2022; Chen et al.,
2022; Xu et al., 2022). The high-dimensional bandit models are special cases of our model.
Another stream of high-dimensional bandit literature studies representation learning in linear ban-
dits, specifically for multi-task learning where several bandits are played concurrently. The arms
for each task are embedded in the same space and share a common low-dimensional representation
(Lale et al., 2019; Yang et al., 2020; Hu et al., 2021; Xu & Bastani, 2021). Our problem is different
from multi-task learning since at each time we only have one bandit and thus observe one reward
while in the multi-task bandit problem, multiple bandits are played at the same time.
For continuum armed bandits, there exists a thread of literature that assumes the mean reward func-
tion is smooth and continuous on the action space in some sense, e.g., the function lies in the
Lipschitz or Hölder space (Agrawal, 1995; Kleinberg, 2004; Kleinberg et al., 2019). Most work
discretizes the arm space or adopts the non-parametric regression to estimate the reward function,
which is very different from our approach. Recent literature studies on continuum armed bandit with
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contextual covariates further assumes the mean reward function is continuous on the arm-covariate
space (Lu et al., 2010; Slivkins, 2011; Krishnamurthy et al., 2020). Literature on high-dimensional
continuum armed bandits, however, is scarce (Turğay et al., 2020; Majzoubi et al., 2020). Again,
the techniques and assumptions therein are different from ours and their model is hard to interpret.
In terms of matrix estimation techniques, low-rank matrix estimation and recovery have been studied
extensively in statistics and widely used in numerous applications (Candes & Plan, 2010; Candès &
Tao, 2010; Negahban & Wainwright, 2011; Shabalin & Nobel, 2013; Gavish & Donoho, 2014; Cai &
Zhang, 2018; Wainwright, 2019). We adapt the techniques in this literature to provide convergence
analysis for our algorithm.
Finally, in operation research, assortment and pricing are important decisions for firms and there
exists voluminous literature on dynamic assortment and dynamic pricing. Most of the work on
assortment is based on the multinomial logit (MNL) choice model (Caro & Gallien, 2007; Kök et al.,
2008; Sauré & Zeevi, 2013) and recently a strand of work adopt the multi-arm bandit technique to
the MNL model (Chen & Wang, 2017; Agrawal et al., 2019; Kallus & Udell, 2020; Chen et al.,
2021). For dynamic pricing, the problem usually comes with demand learning. In presence of
covariates, the demand can be modeled as a parametric function (Qiang & Bayati, 2016; Ban &
Keskin, 2021) or a nonparametric function (Chen & Gallego, 2021) which adopt the continuum
armed bandit techniques in Slivkins (2011). However, there are relatively few papers on the joint
assortment-pricing problem. Recently, Miao & Chao (2021) provides a solution using the MNL
choice model with finite arms, while our model targets at infinite many arms. In addition, their
model assumes the products are independent of each other and can only handle a small number of
products. Their model can neither incorporates contextual information nor predicts new products.
Roadmap. The rest of the paper is organized as follows. Section 2 describes the problem formu-
lation and introduces our model with two concrete examples in assortment-pricing and health care.
Section 3 presents our Hi-CCAB algorithm and its convergence result. Finally, Section 4 shows the
empirical results on simulated data and a case study on real sales data from one of the largest online
retailers. The proof of our theorem and additional empirical results are provided in the Appendix.

2 PROBLEM FORMULATION
In this section, we first introduce our high-dimensional continuum armed and high-dimensional
contextual bandit model. Since our model is novel and different from traditional bandit models, we
further provide intuition and two real applications of our model in assortment-pricing and healthcare.
Finally, we show that a large class of bandit models can be reformulated into our model.
Notation. We use bold lowercase for vectors and bold uppercase for matrices. For any vector
a, we use ∥a∥ to denote its ℓ2 norm. For any matrix A, we use ∥A∥F :=

∑
ij a

2
ij to denote

its Frobenius norm, ∥A∥2 to denote its ℓ2 spectrum norm, i.e., ∥A∥2 := sup∥x∥2=1 ∥Ax∥2, and

∥A∥∗ :=
∑d

k=1 sk to denote its nuclear norm where d is the rank and sk’s are the singular values
of A. We use ⟨a, b⟩ := a⊤b to denote the inner product between two vectors and ⟨A,B⟩ :=
trace(A⊤B) between two matrices.
Problem setup. At each time t, we make one decision for a batch of objects of size L. Before
making the decision, we observe the attributes of these L objects, which can be characterized in
potentially high-dimensional contextual vectors: xt,1, · · · ,xt,L ∈ Rdx . Then based on all the
observations we have before time t and the contextual vectors at time t, we decide on an action to
take (or equivalently an arm to choose), which can be characterized as a high-dimensional vector at

that takes value in a constraint set A in high-dimensional space Rda . After we take the action each
time, we observe a batch of rewards,

rt,j = a⊤
t Θxt,j + εt,j , j = 1, 2, · · · , L (1)

where Θ is a low-rank matrix and εt,j is independent noise with E[εt,j ] = 0 and Var[εt,j ] ≤ σ2.
As a bandit problem, our goal is to design a sequential decision-making policy π that maximizes the
expected cumulative reward, or equivalently, minimizes the expected cumulative regret. Specifically,
suppose policy π governs the way we take actions a1,a2,a3, · · · , we have an expected cumulative
regret measuring the difference between the cumulative expected reward of the best possible action
when the underlying true parameter (i.e., Θ) is known and that we can achieve under policy π,

Rπ
T = E

 T∑
t=1

max
a∈At

 L∑
j=1

a⊤Θxt,j − a⊤
t,πΘxt,j

 (2)
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where the expectation is taken with respect to (xt,j , εt,j) since at,π depends on both. We seek an
optimal policy π∗ that minimizes the expected cumulative regret Rπ

T . Note that Rπ
T grows with T .

To better measure the performance of a policy, we focus on the time-averaged expected cumulative
regret, Rπ

T /T . We will ignore the subscript π for a for notation simplicity in the rest of the paper.
At first sight, our model seems remote from other bandit models and hard to interpret. Our model is,
in fact, a generalization of a large class of bandit models, and the generality of our model makes it
applicable to a wide range of decision-making problems. In the following, we will parse the model
and provide more intuitions.
Let us consider the classical K-arm bandit model (without context). Each arm can be represented by
a k-dimensional standard basis and the covariate vector is simply 1. Then Θ becomes a vector where
each element is the mean reward for the corresponding arm. For the multi-arm contextual linear
bandit problem, we further observe covariate x as the contextual. Then each row of Θ becomes the
coefficient β for each arm, i.e., rk = β⊤

k x for k = 1, . . . ,K. Our model further unifies a large class
of bandit models and we will formalize the above statements later in Proposition 1.
The novelty of our model lies in the low-rank representation matrix Θ. It encapsulates the effect
of the arm and covariates on the reward and exploits the low-dimensional structure in the high-
dimensional arm and covariates. To be more specific, let us consider Θ to be exactly low-rank and
of rank d. Suppose its singular value decomposition is Θ = USV , where U⊤U = Id, S is a
d×d diagonal matrix with positive diagonal elements, and V ⊤V = Id. Let the left singular vectors
U = (u1, . . . ,ud), the singular values in the diagonal of S be s1 ≥ s2 ≥ . . . ≥ sd > 0 and the
right singular vectors V = (v1, . . . ,vd). Then the mean reward in (1) can be re-expressed as

E[r] = a⊤Θx =

d∑
i=1

si⟨a,ui⟩ · ⟨vi,x⟩. (3)

In other words, the mean reward is the summation of inner products between the action projected
on the left singular vector and the covariates projected on the right singular vector, weighted by the
singular values. By assuming Θ to be low-rank, the mean reward is assumed to be governed by only
a few linear combinations of the arm attributes and covariates. Hence our model automatically ex-
plores the low-dimensional structure of the arm vector and the contextual vector in terms of its effect
on the reward, from which we can draw interpretation and insights from the effective subspaces of
both the arm and covariates.
As a concrete illustration of our model and to explain why our model is reasonable in real applica-
tions, we provide the following use cases in the joint assortment-pricing problem and health care.
Example 1 (Assortment and Pricing). In retailing and e-commerce, the assortment problem is to
decide what combination of products to present at each given time with constraints on the capacity
(Kök et al., 2008), and the pricing problem is to decide the prices of the products. The goal of the
two problems is to maximize certain objective such as maximizing the revenue or profit.
Products can be usually characterized by attributes such as color, pattern, and fit for apparels or
technical specifications for electronics and appliance. We focus on instant noodles, which will be
our case study in Section 4. Each product is single-flavor or assorted with different packs and can
be represented as a feature vector p̃ = (#flavor1,#flavor2, · · · ,#flavorm) where m is the
number of possible flavors and is priced as p. Then the store needs to decide on what products
to present and their corresponding prices. Namely, the arm (action) vector can be represented as
a = (p̃1, p1, p̃2, p2, · · · , p̃K , pK , 1) where K is the maximum number of slots. The arm vector
is clearly in a high-dimensional continuous space. At the same time, we observe the contextual
covariates x for each period of time, such as the location and season at the aggregated level or
demographics information at the user level.
The demand and sales of products with similar attributes react similarly to the same market con-
ditions. It is often the case that there exists latent factors of the products that governs the demand
and sales. Therefore, it is reasonable to parameterize the reward function in the form of (1) rather
than ignoring the similarity between products as in the literature (Miao & Chao, 2021; Kallus &
Udell, 2020; Chen et al., 2021). Our model can further suggests new products rather than only the
products that has already been provided.
Example 2 (Healthcare). In healthcare, for the health-monitoring apps which both monitors health
conditions and give suggestions on actions to take for users, the arm (a) is high-dimensional and
continuous (e.g., sleeping time, length and kind of exercise, usage of social media, diet choices
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including energy, water, protein, minerals, and nutrition intakes), and the health outcome not only
depends on our suggestions, but also depends on the user’s characteristics (e.g., age, gender, weight,
height, basic health status, tendency of following suggestions) as contextual variables (x). Clearly,
both the arm and the contextual variable vector are possibly high-dimensional and the arm can take
continuous values. The classical bandit models do not fit the situation. The actions usually share
similar effect on health and the user’s characteristics can be usually captured by a few latent factors.
Therefore, it is reasonable to assume Θ to be low-rank.

To close the section, Proposition 1 shows that the traditional multi-arm bandit, multi-arm high-
dimensional contextual bandit, and continuum arm bandit can be written in the form of model (1).

Proposition 1. The following bandit models can be expressed as special cases of our model.

1. (multi-arm bandit) For i-th arm, a = (0, 0, · · · , 1, · · · , 0), where 1 is in i-th element. Suppose
x has its first element being constant. Then Θi,1 = µi, where µi is the mean reward of the i-th
arm, and Θi,j = 0 if j ̸= 1. Clearly, Θ has rank 1.

2. (multi-arm high-dimensional contextual bandit) For i-th arm, a = (0, 0, · · · , 1, · · · , 0), where
1 is in i-th element. x is the contextual vector. Then Θ = (β1,β2, · · · ,βm)⊤, where βi is the
parameter vector corresponding to i-th arm (Bastani & Bayati, 2020).

3. (continuum arm bandit (without contextuals)) Suppose the arm in original continuum arm ban-
dit is denoted by a, and the mean reward function is f(a). Since all continuous function on a
bounded interval can be approximated by polynomial functions to arbitrary precision, it’s rea-
sonable to assume f(a) to be polynomial of order n, which is not known precisely and only an
upper bound N is known. Let a = (1, a, a2, a3, · · · , an, · · · , aN ), and suppose the first element
of x is constant 1, then Θi,j =

1
i!f

(i)(a) for j = 1 and Θi,j = 0 for j ̸= 1. Clearly, Θ is rank n.

3 HI-CCAB ALGORITHM AND THEORETICAL RESULTS

In this section, we present our learning algorithm with a regret upper bound. Specifically, we detail
the Hi-CCAB algorithm in Section 3.1 and establish an upper bound for its convergence rate of the
time-averaged expected cumulative regret in Section 3.2.

3.1 DESCRIPTION OF THE LEARNING ALGORITHM

Our policy consists of two phases for each period t ∈ [T ]: the first phase learns a low-rank repre-
sentation and the second phase determines the assortment and the selling prices. In the first phase,
our policy estimates Θ̂t by an penalized least-square estimator using (ai,xi,j , ri,j) for i = 1, . . . , t

and l = 1, . . . , L. Based on Θ̂t, we look for the optimal assortment and pricing within the action
space At. Algorithm 1 describes the detailed procedure of our policy.

Low-rank representation learning. As mentioned in Section 2, both the arm and the contex-
tual vectors a ∈ Rda and x ∈ Rdx are high-dimensional, and thus Θ ∈ Rda×dx is also high-
dimensional. Fortunately, there often exists structure in both the arm and covariate space as ex-
plained in Section 1. To leverage the underlying structure, we impose a low-rank assumption on Θ,
which automatically explores the effect of the low-rank structure and the relationships between the
action and the contextual arms.
To estimate the low-rank representation of Θ at time t, one can adopt the rank-penalized least square:

Θ̂t := argmin
Θ

t∑
i=1

L∑
j=1

(
a⊤
i Θxi,j − ri,j

)2
+ λt · rank(Θ) (4)

where λt > 0 is the penalization parameter and rank(Θ) is the rank of the matrix Θ. However,
the rank penalization makes (4) a non-convex problem, leading to computational challenges. To
address the computational challenges, the rank penalization term is often replaced by the nuclear
norm in matrix estimation and completion literature so that the optimization problem becomes a
convex problem. We adopt a similar idea and our objective function then becomes:

Θ̂t := argmin
Θ

t∑
i=1

L∑
j=1

(
a⊤
i Θxi,j − ri,j

)2
+ λt · ∥Θ∥∗. (5)
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The penalization parameter λt is updated in each iteration such that λt = λ0/
√
t where λ0

is the initialized penalization parameter, which can be chosen by cross-validation or guided by
∥ 1
2t1L

∑t1
i=1

∑L
j=1 |a⊤

i Θ̂t1xi,j − ri,j |xi,ja
⊤
i ∥2.

Algorithm 1: The Hi-CCAB Algorithm.
Result: Actions at1+1, . . . ,aT .
Input: The number of steps for initialization t1, set of possible actions At1 , action vectors
based on domain knowledge {ai}t1i=1, covariates vector {xi,j}t1i=1, rewards ri,j for
j = 1, . . . , L, and exploration parameter h;

Initialization: λ0 ← ∥ 1
2t1L

∑t1
i=1

∑L
j=1 |a⊤i Θ̂t1xi,j − ri,j |xi,ja

⊤
i ∥2, t← t1;

while t < T do
λt ← λ0/

√
t;

Low-rank representation learning:
Θ̂t ← argminΘ

1
tL

∑t
i=1

∑L
j=1(a

⊤
i Θxi,j − ri,j)

2 + λt∥Θ∥∗;
Policy learning:
ât+1 ← argmaxa∈At

∑L
j=1 a

⊤Θ̂txt+1,j ;
Exploitation if t /∈ {⌊w 3

2 ⌋ : w ∈ Z+}: at+1 ← ât+1;
Exploration if t ∈ {⌊w 3

2 ⌋ : w ∈ Z+}: at+1 ← ât+1 + δt+1, update action space At+1

1. δt+1 ∼ N(0da
, hIda

) or;

2. δt+1 ∼ N(0da
, diag(τ̂ 2

t )) and τ̂ 2
t,j = sd({ãi,j}ti=1), sd(·) calculates the standard error;

Apply action at+1 and observe reward rt+1,j for j = 1, . . . , L;
t← t+ 1;

end

Policy learning. Once we estimated the low-rank representation of Θ, we can proceed to the
action step. The goal of the action step is to exploit the knowledge we learned from the previous
time, i.e., Θ̂t, so as to decide on the next action at+1 that maximizes the reward, and at the same
time to explore actions that better inform the true Θ, which in turns will help make better decision to
achieve higher long-term rewards. Specifically, given Θ̂t and the covariate xt+1,j for j = 1, . . . , L,
we look for an action ât+1 in the action spaceAt that maximizes the total rewards across L objects:

ât+1 := argmax
a∈At

L∑
j=1

a⊤Θ̂txt+1,j . (6)

We further perturb ât+1 for the purpose of exploration by adding random noise to each coordinate
when t ∈ {⌊w 3

2 ⌋ : w ∈ Z+}, i.e., at+1 = ât+1 + δt+1 where δt+1 ∼ N(0da , hIda) and h is a
tuning parameter. The intuition for ⌊w 3

2 ⌋ is to explore more in the initial stage and exploit more
in the later stage of the algorithm. To be specific, there are around T

2
3 steps for exploration before

time T . The density of exploration at a small time frame around T is T− 1
3 , which goes to zero as

T → ∞. Note that the exponent can be any number larger than 1, instead of 3
2 , which will affect

the convergence rate of the regret as we will discuss later in Remark 2. The polynomial form can be
changed as well. For each exploration step, one can also let δt+1 ∼ N(0da , diag(τ̂t)) where each
element of τ̂t is the coordinate-wise standard error of the previous actions {ai}ti=1. The intuition is
to avoid tuning parameter h while taking the right scale. Finally we update the action space At+1

according to at+1. For example, if the action space At ∈ Rda can be defined by an upper limit
āt and a lower limit at, then we simply expand the action space by pushing the boundary of each
coordinate to at+1,j if at+1,j /∈ [at,j , āt,j ] for j = 1, . . . , da.
Remark 1. To take advantage of the interpretability of our model, we can further explore the struc-
ture of the Θ̂t. Specifically, we can apply singular value decomposition (SVD) on Θ̂t to explore
the underlying latent structure of the covariates from the right singular vectors; and apply SVD on
(Θ̂t

∑L
j xt,j) to explore the latent structure of the arms from the left singular vectors. One can

further rotate the singular vectors so as to reveal the underlying factors using techniques in factor
analysis such as Varimax (Kaiser, 1958; Rohe & Zeng, 2020) or to perform clustering analysis by
performing K-means on the singular vectors.
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3.2 THEORETICAL RESULTS

In this section, we establish in Theorem 1 that the convergence rate of time-averaged expected
cumulative regret for Algorithm 1 is at least as fast as T− 2

15 and outline the proof strategy for
Theorem 1. We consider the time-averaged expected cumulative regret since it measures the trend of
the newly incurred regret, in the long run, more directly; on the other hand, the expected cumulative
regret grows with time T , which is less interpretable. This theorem implies that the newly incurred
regret, roughly speaking, converges to zero fast.

Theorem 1. Suppose xt,l
i.i.d∼ N(0dx

, Idx
), and the errors (εt,j) defined in reward model (1) follows

normal distribution: εt,j
i.i.d∼ N(0, σ2). Suppose Θ is rank d. Suppose the exploration step in

Algorithm 1 is at = ât + δt for t ∈ {⌊w 3
2 ⌋ : w ∈ Z+} where δt ∼ N(0da

, hIda
), At = {a ∈

Rda : ∥a∥ ≤ 1} , then there is a T1 such that for T ≥ T1, the expected cumulative regret of the
Algorithm 1, Rπ

T , satisfies

Rπ
T

T
≤ 2
√
Ldx∥Θ∥2T1T

−1 +
72

5
λ0

√
2ddxL

h2
T− 1

6 +
60

13

√
Ldx∥Θ∥2T− 2

15 +
90

13

σ(dx + 1)

h2
T− 2

15 ,

(7)
where T1 = Ch,L,λ0(dx + da)

6 (log(dx + da))
3 and the constant Ch,L,λ0 depends on h, L and λ0.

For T ≤ T1, Rπ
T

T ≤ 2
√
Ldx∥Θ∥2.

Remark 2 (Convergence rate). An intuitive understanding of Theorem 1 is that the expected regret
incurred each time converges to zero at a speed at least T− 2

15 as T going to infinity. The convergence
rate depends on the frequency of the exploration which depends on the exponent 3

2 in the exploration
set, {⌊w 3

2 ⌋ : w ∈ Z+}. Recall that the exponent can be changed with any number larger than 1,
which can be considered as a tuning parameter.
Remark 3 (“Burnout” term). The first term in inequality (7) is a “burnout” term, where the algo-
rithm is gaining knowledge of Θ from scratch. We do not impose any assumptions on these starting
steps so that we have a relative conservative “burnout” term. However, in practice, we usually have
historical data to start with so that the algorithm can start from a reasonable estimation of Θ and
much smaller “burnout” term. Recall that the exponent of the exploration set can be any number
larger than 1. The order of the “burnout” term depends on the exponent of the w in the exploration
set — the more exploration there is, the smaller the “burnout” term. The exponent can be chosen
depending on the situation — how ample the historical data is.
Remark 4 (Constant Ch,L,λ0

of T1). While constant Ch,L,λ0
depends on h, L, λ0, the primary

dependency is actually on h and L. The order of λ0 in terms of dimensions and noise level is σ
√
dx.

We do not assume the order of λ0 or bound it with a high probability bound in order to show its
role in time-averaged expected cumulative regret. If we utilize the order σ

√
dx, then Ch,L,λ0

can be
replaced by a constant depending on h and L only.
Remark 5 (Dependence on dimensions da, dx and rank d). When T is small, the “burnout”
term (the first term) dominates. It depends on T and the dimensions but not the rank as
(da + dx)

6(log(da + dx))
3T−1, whose order depends on the exponent defining the exploration set

(i.e., how frequent we explore). As T grows, the second term dominates. Recall Remark 4, λ0 is of
order σ

√
dx, so the second terms depends on T, dx and d but not da at the order of Ω(dx

√
dT− 1

6 ).

Without the low-rank assumption, the order would be Ω(d
3
2
x T− 1

6 ) instead. When T becomes even
larger, the last two terms dominates, at the order Ω(dxT− 2

15 ). However, the last case rarely happens,
as it requires the order of T equal to or larger than d15. Therefore, taking dimensions and rank into
consideration, the time-averaged expected cumulative regret is mostly at the order of Ω(dx

√
dT− 1

6 ).

Proof sketch We outline the proof strategy for Theorem 1. There are two major steps: (1) bound-
ing the estimation error for the low-rank representation matrix estimator; (2) bounding the expected
cumulative regret. The detailed proof of Theorem 1 is in Appendix A.

(1) Bounding the estimation error of Θ̂t with a high probability bound. Denote δΘt = Θ̂t −Θ.
We show that for a large t,

P

(
∥δΘt∥F ≤

3

T
2
15

σ
√
dx + 1√
Lh2

+ 6λ0

√
2d

h2T
1
6

)
≤ 1−

(
3

t
+

2

t2
+

2

Lt
+

2

L3t3
+

1

t
2
15

)
.

7



Under review as a conference paper at ICLR 2023

0

500

1000

1500

2000

0 250 500 750 1000
Time

C
um

ul
at

iv
e 

re
gr

et

da = 10, dx = 100

0

1000

2000

3000

0 250 500 750 1000
Time

C
um

ul
at

iv
e 

re
gr

et

da = 30, dx = 100

0

1000

2000

3000

4000

0 250 500 750 1000
Time

C
um

ul
at

iv
e 

re
gr

et

da = 50, dx = 100

0

500

1000

0 250 500 750 1000
Time

C
um

ul
at

iv
e 

re
gr

et

da = 10, dx = 100, s0 = 2

0

500

1000

1500

2000

2500

0 250 500 750 1000
Time

C
um

ul
at

iv
e 

re
gr

et

da = 30, dx = 100, s0 = 2

0

2000

4000

6000

0 250 500 750 1000
Time

C
um

ul
at

iv
e 

re
gr

et

da = 50, dx = 100, s0 = 2

Hi−CCAB LinUCB Lasso Bandit NeuralUCB EE−Net

Figure 1: Cumulative regret under the non-sparse (first row) and sparse (second row) settings.

Note that the action taken is based on previous estimators and affect the accuracy of future esti-
mators, leading to lots of dependencies. The classical matrix completion results can no longer
apply. Through careful use of conditional expectations, martingales, and empirical process
we separate out different sources of randomness (i.e., δ1, · · · , δt,x1,·, · · · ,xt,·) to derive the
bounds. Lemma 1 establishes a restricted-strong-convexity-type result of the sum of squares in
the objective function. Lemma 2 establishes a Lipschitz-type result of the sum of squares in the
objective function. Further analysis of the nuclear-norm-penalized sum of squares with the two
lemmas and low-rank properties gives the tail bound of the estimation error.

(2) Bounding the time-averaged expected regret. Let Qt = {∥δΘt∥F ≤ 3

T
2
15

σ
√
dx+1√
Lh2

+ 6λ0

√
2d

h2T
1
6
}

be the event such that δΘt is bounded. We know that from the first step, for large t, P (Qc
t) ≤

3
t +

2
t2 + 2

Lt +
2

L3t3 + 1

t
2
15

. Consider the expectation of the regret on Qt and Qc
t separately and

both terms vanish with t at the polynomial rate.

4 SIMULATION STUDY AND ASSORTMENT-PRICING CASE STUDY

In this section, we conduct simulation studies to compare the proposed Hi-CCAB with LinUCB (Li
et al., 2010), Lasso Bandit (Bastani & Bayati, 2020), NeuralUCB (Zhou et al., 2020) and EE-Net
(Ban et al., 2022); we then study the joint assortment-pricing problem on the e-commerce platform
for one of the largest instant noodles producers in China. Details on the tuning parameters of each
algorithms and additional results of the case study are provided in Appendix B-C.

Simulation study We consider the multi-armed linear bandit setup, a special case of our model as
shown in Proposition 1, i.e., Θ = (β1,β2, · · · ,βm)⊤ so that each row of Θ is the parameter of each
arm for the multi-arm contextual bandit. Specifically, we set the number of arms da = {10, 30, 50}
and the dimension of covariates dx = 100. For Θ, we consider a non-sparse and sparse case. For
the non-sparse case, we generate Θ = UDV ⊤ where U ∈ Rda×r,V ∈ Rdx×r (r = 5), and D
is a diagonal matrix with (1, .9, .9, .8, .5) as the diagonal entries. All entries of U and V are first
generated from i.i.d. N(0, 1), and then applied Gram–Schmidt to make each column orthogonal. U
is scaled to have length

√
da so that the rewards are comparable across different da’s. For the sparse

case, each row of Θ are set as zero except for s0 = 2 randomly selected elements that are drawn
from N(0, 1). We generate the covariate x

i.i.d∼ N(0, Idx
) and the rewards from (1) with σ = 0.1.

Figure 1 shows the cumulative regret (averaged over 50 simulations). For the non-sparse case,
Hi-CCAB converges faster than all other methods. The advantage of Hi-CCAB is more pronounced
when the dimension of the arms becomes larger. For the sparse case, which is not to the advantage
of Hi-CCAB, when the dimension of arms is relatively small (da = 10), Lasso Bandit converges
faster but the gap between Hi-CCAB and Lasso Bandit is small. As the number of arms increases,
Hi-CCAB outperforms all other methods.

Assortment-pricing case study. The original data contains daily sales of 176 products across 369
cities from March 1st, 2021 to May 31st, 2022 (T = 456 days). We aggregate the sales by 31
provinces. Each product is of either single or assorted flavors (13 possible flavors) with different
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(b) Percentage cumulative sales gain.

Figure 2: Performance of Hi-CCAB compared with real actions over 100 simulations. The bound-
aries of the shadow boundaries are the 5-th and 95-th quantiles.

counts. The assortment and price of each product changed daily. In addition, we know the dates for
promotion. The assortment, prices, and promotions were the same across locations. The maximum
number of products to be shown on the homepage is K = 30. The total possible combinations
are then

(
176
30

)
and therefore if we consider one combination as one arm, we are facing extremely

high-dimensional arms, for which most multi-arm bandit algorithms are not applicable.
To apply Hi-CCAB, we specify the arms at and the covariate vectors {xt,j}L=31

j=1
at given time t following the setup in Example 1. The arm is represented as
a = (p̃1, p̃

2
1, p1, p

2
1, promo1, promo21, · · · , p̃K , p̃2

K , pK , p2K , promoK , promo2K , 1) ∈
R2(m+2)K+1=901 where p̃k = (#flavork,1, · · · ,#flavork,m) is a vector of non-negative
integers to denote the counts of m = 13 flavors, pk is the price, promok is the indicator of
promotion of product k, and p̃2

k is the element-wise quadratics. The covariate xt,j ∈ R50 for
location j includes dummy variables of 31 provinces, year 2021/2022, 12 months, weekdays, and
an indicator of annual sales event on Jun 18 and Nov 11. More details are deferred to Appendix C.
To run simulations using the dataset, we first create a pseudo-truth model. To be specific, we esti-
mate Θ and σ using all data of 456 days and consider them as the pseudo ground truth. We perform
a sanity check on our model assumption (1), the pseudo ground truth against our data before pre-
ceding to the formal analysis and further examine the structure of the representation matrix Θ in
Appendix C. We evaluate the performance of Hi-CCAB in terms of the cumulative regret (2) and
the percentage gain of the cumulative sales by comparing with the original actions, since no existing
bandit algorithm is applicable to this problem.
Figure 2a shows the time-averaged cumulative regret (averaged over 100 simulations) and Figure
2b shows the percentage gain in cumulative sales compared to the real sales The time-averaged
cumulative regret of Hi-CCAB converges to zero while that of original actions remains flat. In
terms of percentage gain in cumulative sales, Hi-CCAB boosts cumulative sales by more than 4
times. On a separate note, Hi-CCAB with exploration performs better in terms of both cumulative
regret and percentage sales gain than Hi-CCAB without exploration.

5 CONCLUSION

With an increasing demand for online decision-making, the bandit problem is receiving increasingly
more attention from both theoreticians and practitioners. Even though the volume of bandit literature
has been expanding, there exists very little literature on high-dimensional continuum armed contex-
tual bandit with high-dimensional covariates. In this work, we formulate and propose a model for
this problem. Our model is general as it unifies a large class of bandit problems and has interpretabil-
ity and predictive power. We propose an efficient algorithm Hi-CCAB by adopting the low-rank
matrix estimator and provide an upper bound for its convergence rate in terms of the time-averaged
expected cumulative regret. The generality and flexibility of our model allow for its application in
the joint assortment-pricing problem, where the assortment and pricing optimization problems have
been studied extensively in operation research separately but not their joint optimization problem.
By applying our model and algorithm to the real case study on the joint assortment-pricing problem
for one of the largest instant noodles producers in China, we are able to boost the sales by four
times and provide insights into the underlying structure of the effect on the reward of the arms and
covariates such as purchasing behaviors. Therefore, both the theoretical and the real case study in-
dicate that our model and algorithm can be effective for the high-dimensional continuum armed and
high-dimensional contextual bandit problem faced by decision-makers in various fields. Since our
model is new to the bandit literature, there is space for improvement in our regret analysis. This is
an interesting future direction.
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APPENDIX A PROOF OF THEOREM 1
In this proof, we denote the true parameter as Θ∗.

Let LT (Θ) := 1
2LT

∑T
t=1

∑L
l=1(a

⊤
t,lΘxt,l − rt,l)

2. Then we have the following lemmas that we
will prove later.
Lemma 1. Suppose all the assumptions in Theorem 1 holds. Denote ET (∆) = LT (Θ

∗ + ∆) −
LT (Θ

∗)− ⟨∇LT (Θ
∗),∆⟩. Then with probability at least 1− 1

LT −
2
T −

1
T 2 ,

ET (∆) ≥ ⌊T
2
3 ⌋

2T
h2∥∆∥2F − 14T− 2

3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)
2
log T∥∆∥22. (8)

Lemma 2. Suppose all the assumptions in Theorem 1 holds. With probability at least 1 − 1

T
2
15
−

2
L3T 3 − 1

LT −
1
T −

1
T 2 , the following holds for all ∆

|⟨∇LT (Θ
∗),∆⟩| ≤∥∆∥F

σ
√
dx + 1√
LT

T
1
30+

(
2hσT−2/3logT

√
max{da, dx}log(da + dx)

L
+

8hσ

T

√
log(TL)

√
(dx + 3log(LT ))(da + 3logT )(log(dx + da) + 2logT )

)
∥∆∥∗.
(9)

Recall the definition of Θ̂t, we know that

LT (Θ̂T ) + λT ∥Θ̂T ∥∗ ≤ LT (Θ
∗) + λT ∥Θ∗∥∗. (10)

Denote δΘt = Θ̂t − Θ∗ and for notation simplicity we will drop the subscript t for δΘt in the
following when there is no confusion. Equation (10) then implies that

ET (δΘ) ≤ −⟨∇LT (Θ
∗), δΘ⟩+ λT (∥Θ∗∥∗ − ∥Θ∗ + δΘ∥∗) . (11)

Suppose the singular value decomposition of Θ∗ is Θ∗ = USV ⊤, where S is an d × d diagonal
matrix. Let U⊤ be an da × (da − d) matrix satisfying (U ,U⊥)(U ,U⊥)

⊤ = Ida . We define V⊥
similarly.
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Denote δΘ⊥ = U⊤
⊥ δΘV⊥. Then ∥Θ∗ + δΘ∥∗ ≥ ∥Θ∗ + δΘ⊥∥∗ − ∥δΘ − δΘ⊥∥∗ = ∥Θ∗∥∗ +

∥δΘ⊥∥∗ − ∥δΘ− δΘ⊥∥∗ ≥ ∥Θ∗∥∗ + ∥δΘ⊥∥∗ −
√
2d∥δΘ− δΘ⊥∥F .

Going back to Inequality (11), and combing with Lemma 1 and Lemma 2, we have, with probability
at least 1− 3

T −
2
T 2 − 2

LT −
2

L3T 3 − 1

T
1
3

, the following holds

(
⌊T 2

3 ⌋
2T

h2 − 14T− 2
3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)

2
log T

)
∥δΘ∥2F

≤∥δΘ∥F
σ
√
dx + 1√
LT

T
1
30+(8hσ

T

√
log(TL)

√
(dx + 3log(LT ))(da + 3logT )(log(dx + da) + 2logT )+

2hσT−2/3logT

√
max{da, dx}log(da + dx)

L

)
(∥δΘ− δΘ⊥∥∗ + ∥δΘ⊥∥∗)

+ λ0

√
T

T

√
2d∥δΘ∥F − λ0

√
T

T
∥δΘ⊥∥∗.

(12)

Note that ∥δΘ − δΘ⊥∥∗ ≤
√
2d∥δΘ − δΘ⊥∥F , divide both side with ∥δΘ∥F and multiply both

sides with 3T
1
3 /h2. Suppose T1 satisfies

T1 ≥8,

T
1
3
1 ≥12× 14(1 +

1

h
) (2dx + 2da + 6 log T1 + 6 logL)

2
log T1,

λ0T
1
6
1 ≥

8hσ

T
1
3
1

√
log (T1L)

√
(dx + 3 log(LT ))(da + 3 log T1)(log(dx + da) + 2logT1)+

2hσT
−2/3
1 log T1

√
max{da, dx} log (da + dx)

L

(13)

we have

∥δΘ∥F ≤
3

T
2
15

σ
√
dx + 1√
Lh2

+ 6λ0

√
2d

h2T
1
6

. (14)

Note that there is a constant Ch,L,λ0 depending on L, h and λ0 such that for

T1 ≥ Ch,L,λ0(dx + da)
6 (log(dx + da))

3
,

Inequalities (13) holds.
Next we will proceed to bound the regret. Denote the event that (14) holds to be Qt and its comple-
ment as Qc

t . Then P(Qc
t) ≤ 3

T + 2
T 2 + 2

LT + 2
L3T 3 + 1

T
2
15

and
(
Qc

t , Θ̂t

)
⊥⊥ bt+1 . Let the oracle

13



Under review as a conference paper at ICLR 2023

optimal action at time t be a∗
t and bt =

∑L
l=1 xt,l. Then

Rπ
T − E

(
T1−1∑
t=0

L∑
l=1

(
a∗⊤
t+1Θ

∗xt+1,l − a⊤
t+1Θ

∗xt+1,l

))

≤ E

(
T−1∑
t=T1

L∑
l=1

a∗⊤
t+1Θ

∗xt+1,l − a⊤
t+1Θ

∗xt+1,l

)

≤ E

(
T−1∑
t=T1

〈
Θ∗bt+1

∥Θ∗bt+1∥2
− Θ̂tbt+1

∥Θ̂tbt+1∥2
,Θ∗bt+1

〉)

=

T−1∑
t=T1

E

(〈
Θ∗bt+1

∥Θ∗bt+1∥2
− Θ̂tbt+1

∥Θ̂tbt+1∥2
,Θ∗bt+1

〉
1{Qt}

)
+ E

(〈
Θ∗bt+1

∥Θ∗bt+1∥2
− Θ̂tbt+1

∥Θ̂tbt+1∥2
,Θ∗bt+1

〉
1{Qc

t}

)

≤
T−1∑
t=T1

(
E

(〈
(Θ∗ − Θ̂t)bt
∥Θ∗bt+1∥2

+
∥Θ̂tbt+1∥2 − ∥Θ∗bt+1∥2
∥Θ̂tbt+1∥2∥Θ∗bt+1∥2

Θ̂tbt+1,Θ
∗bt+1

〉
1{Qt}

)

+ 2∥Θ∗∥2
√
E[∥bt+1∥2]

(
3

t
+

2

t2
+

2

Lt
+

2

L3t3
+

1

t
1
3

))

≤
T−1∑
t=T1

E [2∥δΘ∥2∥bt+1∥1{Qt}] + 2
√

Ldx∥Θ∗∥2
(
3

t
+

2

t2
+

2

Lt
+

2

L3t3
+

1

t
2
15

)

≤
T−1∑
t=T1

E [2∥δΘ∥F ∥bt+1∥1{Qt}] + 2
√

Ldx∥Θ∗∥2
(
3

t
+

2

t2
+

2

Lt
+

2

L3t3
+

1

t
2
15

)

≤ 2

T−1∑
t=T1

√
Ldx

(
3

t
2
15

σ
√
dx + 1√
Lh2

+ 6λ0

√
2d

h2t
1
6

)
+ 2
√
Ldx∥Θ∗∥2

(
3

t
+

2

t2
+

2

Lt
+

2

L3t3
+

1

t
2
15

)
.

(15)

Similar arguments also give

E

(
T1−1∑
t=0

L∑
l=1

E
(
a∗⊤
t Θ∗xt,l − a⊤

t Θ
∗xt,l

))
≤ T1 × 2

√
Ldx∥Θ∗∥2. (16)

Therefore, for T ≥ T1,

Rπ
T

T
≤ 2
√
Ldx∥Θ∗∥2T1T

−1+
60

13

√
Ldx∥Θ∗∥2T− 2

15 +
90

13

σ(dx + 1)

h2
T− 2

15 +
72

5
λ0

√
2ddxL

h2
T− 1

6

(17)

A.1 PROOF OF LEMMA 2

Suppose rt,l = at,lΘ
∗xt,l + σεt,l, then

∇LT (Θ
∗) =

σ

LT

T∑
t=1

L∑
l=1

−εt,lxt,la
⊤
t,l

=
σ

LT

L∑
l=1

−ε1,lx1,la
⊤
1,l

+
σ

LT

T∑
t=2

L∑
l=1

(
−εt,lxt,lâ

⊤
t − εt,lxt,lδ

⊤
t

)
(18)
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Now we consider the terms in (18) separately. Let

S2 =
σ

LT

L∑
l=1

−ε1,lx1,la
⊤
1,l +

σ

LT

T∑
t=2

L∑
l=1

−εt,lxt,lâ
⊤
t .

S3 =
σ

LT

T∑
t=2

L∑
l=1

−εt,lxt,lδ
⊤
t

(19)

Elementary Calculation show that

E(∥S2∥4F ) ≤
σ4(d2x + 2dx)

L2T 2
. (20)

Therefore,

P (∥S2∥F ≥
σ
√
dx + 1√
LT

T
1
30 ) ≤ 1

T
2
15

. (21)

For S3, let G be an event defined as

G =
{
max{|εt,l| : 1 ≤ t ≤ T, 1 ≤ l ≤ L} ≤ 3

√
log TL,

max{∥xt,l∥2 : 1 ≤ t ≤ T, 1 ≤ l ≤ L} ≤ 2dx + 6 logLT ,

max{∥δt/h∥22 : 1 ≤ t ≤ T} ≤ 2da + 6 log T
}
.

(22)

Then elementary calculation shows that

P (Gc) ≤ 2

T 3L3
+

1

LT
+

1

T
. (23)

Using Matrix Bernstein Inequality (Tropp, 2012) on event G, we have the operator norm of S3 on G
is bounded as follows

P ({∥LT
σ

S3∥2 ≥ α} ∩G) ≤ (dx + da) exp (
−α2

2σ2
S3

+ 2Dα/3
), (24)

where

σ2
S3
≥ max

{∥∥∥ T∑
t=1

E

(
(

L∑
l=1

εt,lxt,lδ
⊤
t )(

L∑
l=1

εt,lxt,lδ
⊤
t )⊤

)∥∥∥
2
,

∥∥∥ T∑
t=1

E

(
(

L∑
l=1

εt,lxt,lδ
⊤
t )⊤(

L∑
l=1

εt,lxt,lδ
⊤
t )

)∥∥∥
2

}
,

(25)

and

D = max
t

sup
event G holds

∥
L∑

l=1

−εt,lxt,lδ
⊤
t ∥2 ≤ 6L

√
log TLh

√
(dx + 3 logLT )(da + 3 log T ). (26)

Elementary calculation shows that taking

σ2
S3

= h2⌊T 2
3 ⌋Lmax{da, dx} (27)

satisfies Equation (25).
Taking

α =2hT
1
3 logT

√
Lmax{da, dx}log(da + dx)+

8hL
√
logTL

√
(dx + 3log(LT ))(da + 3logT )(log(dx + da) + 2logT )

(28)

P ({∥LT
σ

S3∥2 ≥ α} ∩G) ≤ 1

T 2
. (29)
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Therefore, we have

P
(
∥S3∥2 ≤ 2hσT−2/3logT

√
max{da, dx}log(da + dx)

L
+

8hσ

T

√
log(TL)

√
(dx + 3log(LT ))(da + 3logT )(log(dx + da) + 2logT )

)
≥ 1− 2

L3T 3
− 1

LT
− 1

T
− 1

T 2

(30)

Recalling that

|⟨∇LT (Θ
∗),∆⟩| = |⟨S2,∆⟩+ ⟨S3,∆⟩| ≤ ∥S2∥F ∥∆∥F + ∥S3∥2∥∆∥∗, (31)

we get the statement of the lemma.

A.2 PROOF OF LEMMA 1
Let bt =

∑L
l=1 xt,l. Let δt = 0 for exploitation rounds.

Then we know that

ET (∆) =
1

2LT

T∑
t=1

L∑
l=1

(a⊤
t,l∆xt,l)

2

=
1

2LT

T∑
t=1

L∑
l=1

((
b⊤t Θ̂

⊤
t−1

∥b⊤t Θ̂⊤
t−1∥

+ δ⊤t )∆xt,l)
2

(32)

Define

DT (∆) =
1

2LT

T∑
t=1

L∑
l=1

(
(

b⊤t Θ̂
⊤
t−1

∥b⊤t Θ̂⊤
t−1∥

∆xt,l)
2 + (δ⊤t ∆xt,l)

2

)
,

D1,T (∆) =
1

2LT

T∑
t=1

L∑
l=1

(
b⊤t Θ̂

⊤
t−1

∥b⊤t Θ̂⊤
t−1∥

∆xt,l)
2

D2,T (∆) =
1

2LT

T∑
t=1

L∑
l=1

(δ⊤t ∆xt,l)
2

(33)

Then

ET (∆)−DT (∆) =
1

LT

T∑
t=1

L∑
l=1

(
b⊤t Θ̂

⊤
t−1

∥b⊤t Θ̂⊤
t−1∥

∆xt,l)(δ
⊤
t ∆xt,l) (34)

Elementary calculation shows that

E(ET (∆)−DT (∆)) = 0, (35)

and

E(D2,T (∆)) ≥ ⌊T
2
3 ⌋

2T
h2∥∆∥2F . (36)

Now we proceed with proving that the following two holds with high probability:

inf
∥∆∥2>0

ET (∆)−DT (∆)

∥∆∥22
≥ −7T− 2

3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)
2
log T

inf
∥∆∥2>0

D2,T (∆)− E(D2,T (∆))

∥∆∥22
≥ −7T− 2

3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)
2
log T.

(37)

Note that ∥xt,l∥22 ∼ χ2
dx

, ∥δt/h∥22 ∼ χ2
da

. Therefore, we have that

P (sup
t,l
∥xt,l∥22 ≤ dx + 2ϵ1 + 2

√
ϵ1dx, sup

t
∥δt/h∥22 ≤ da + 2ϵ2 + 2

√
ϵ2da)

≥ 1− (LT exp (−ϵ1) + T exp (−ϵ2)) .
(38)
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Let ϵ1 = 2 logLT , ϵ2 = 2 log T .
Denote

U1 = dx + 2ϵ1 + 2
√
ϵ1dx, U2 = da + 2ϵ2 + 2

√
ϵ2da. (39)

And let the event O be

O = {sup
t,l
∥xt,l∥22 ≤ U1, sup

t
∥δt/h∥22 ≤ U2}. (40)

For the following, we restrict our attention to event O.
Note that

inf
U0/1.1∥∆∥2≤U0

ET (∆)−DT (∆) ≥ inf
U0/1.1∥∆∥2≤U0,Θ̂⊤

t−1 ̸=0 for 1≤t≤T
ET (∆)−DT (∆), (41)

also at most ⌊T 2
3 ⌋ terms in the sum of ET (∆) − DT (∆) are not zero, and for any term

in the exploration round
(
supU0/1.1≤∥∆∥2≤U0,Θ̂⊤

t−1 ̸=0 for 1≤t≤T (
b⊤
t Θ̂⊤

t−1

∥b⊤
t Θ̂⊤

t−1∥
∆xt,l)(δ

⊤
t ∆xt,l)

)
−(

infU0/1.1≤∥∆∥2≤U0,Θ̂⊤
t−1 ̸=0 for 1≤t≤T (

b⊤
t Θ̂⊤

t−1

∥b⊤
t Θ̂⊤

t−1∥
∆xt,l)(δ

⊤
t ∆xt,l)

)
≤ 2U1

√
U2hU

2
0

Therefore, through Functional Hoeffding theorem (Theorem 3.26 in Wainwright (2019))), we have

P (ET (∆)−DT (∆) ≤ −γ1|O) ≤ exp

− T 2

⌊T
2
3 ⌋
γ2
1

16U2
1U2h2U4

0

 (42)

for γ1 > 0.
Similarly, for the exploration rounds in D2,T (∆), we have(

sup
U0/1.1≤∥∆∥≤U0

(δ⊤t ∆xt,l)
2

)
−
(

inf
U0/1.1≤∥∆∥≤U0

(δ⊤t ∆xt,l)
2

)
≤ U1U2U

2
0h

2. (43)

Again, according to Functional Hoeffding theorem, we have

P (D2,T (∆)− E (D2,T (∆)) ≤ −γ2|O) ≤ exp (−
T 2

⌊T
2
3 ⌋
γ2
2

4U2
1U

2
2U

4
0h

4
) (44)

Take γ1 = γ2 = 7T− 2
3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)

2 ∥∆∥22 log T .
Therefore,

P
(
ET (∆)− E(D2,T ) ≤ −14T− 2

3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)
2 ∥∆∥22 log T

)
≤ P

(
ET (∆)−DT (∆) ≤ −7T− 2

3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)
2 ∥∆∥22 log T |O

)
+ P (D1,T (∆) ≤ 0|O)

+ P
(
D2,T − E(D2,T ) ≤ −7T− 2

3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)
2 ∥∆∥22 log T |O

)
+ P (Oc)

≤ 1

LT
+

2

T
+

1

T 2

(45)

Hence with probability at least 1− 1
LT −

2
T −

1
T 2 ,

ET (∆) ≥ ⌊T
2
3 ⌋

2T
h2∥∆∥2F − 14T− 2

3 (h+ h2) (2dx + 2da + 6 log T + 6 logL)
2 ∥∆∥22 log T. (46)

APPENDIX B DETAILS ON THE SIMULATION STUDY

In this section, we detail the tuning parameters of each algorithm we used for the simulation study.

17



Under review as a conference paper at ICLR 2023

Hi-CCAB. There are three tuning parameters for Hi-CCAB: we set the steps for initialization t1 =

100, the initialized penalization parameter λ0 = ∥ 1
2t1L

∑t1
i=1

∑L
j=1 |a⊤

i Θ̂t1xi,j − ri,j |xi,ja
⊤
i ∥2,

and the exploration parameter h = .1.
LinUCB (Li et al., 2010). We apply the LinUCB with disjoint linear models and set multiplier for
the upper confidence bound α = 1 +

√
ln(2/δ)/2 with δ = .05 as suggested in the paper.

Lasso Bandit (Bastani & Bayati, 2020). There are a couple of tuning parameters in the original
algorithm including h for the set of “near-optimal arms”, q for the force-sample set, and λ1 and
λ2,0 as the regularization parameters for the “forced sample estimate” and “all-sample estimate”.
We follow the original paper and set h = 5, λ1 = λ2,0 = 0.05. We set q = 2 so that the size of
initialized forced sample set is close to that we used for Hi-CCAB.
NeuralUCB (Zhou et al., 2020). The tuning parameters of NeuralUCB include the confidence
parameter as in all UCB-based algorithm, the size of neural network, as well as the step size, reg-
ularization parameter for gradient descent to train the neural network. We adapted the code from
https://github.com/uclaml/NeuralUCB and used the default settings.
EE-Net (Ban et al., 2022). EE-Net involves tuning parameters for gradient descent to train the ex-
ploitation network, exploration network, and the decision-maker network. We adapted the code from
https://github.com/banyikun/EE-Net-ICLR-2022 and used the default settings.

APPENDIX C MORE DETAILS ON THE CASE STUDY AND ADDITIONAL
NUMERICAL RESULTS

In this section, we provides more background information on the case study and additional interpre-
tations of the represetation matrix Θ and numerical results.
Figure 3a shows the daily sales by product and each color represents one product (only products
that appeared more than 95% of the days are colored; the rest are colored as grey). The days
corresponding to the vertical dashed grey lines are days with promotion. The two red vertical lines
correspond to the annual sales events. The variation between products was large and one product
dominated the rest most of the time. The sales were also driven by the promotion – the sales went
up when there is a promotion. Figure 3b shows the median unit price across time with the 25th and
75th quantiles as the boundaries of the grey area. The median unit price was around 3.2 RMB and
there were variations in unit price among products. Figure 3c shows the number of single-flavor
and multi-flavor products. Three-quarters of the products were single-flavored. Note that products
with the same flavor can have different package sizes. Figure 3d shows the number of products with
different package sizes. The package size of about 60% of the products is larger than 20 with 30%
having package sizes between 10 and 20 and the rest less than 10.
Figure 4 compares the real sales with the simulated sales based on model (1) using the pseudo
ground truth Θ and σ that we estimated using all the data, i.e., the teal line is

∑L
j=1 rt,j where rt,j

is generated by
rt,j = a⊤

t Θxt,j + εt,j , εt,j N(0, σ2)

where at and xt,j are from the real data. As shown in Figure 4, the real sales and the simulated sales
follow quite closely across time, which indicates that both our model and estimation are reasonable.
Structure of the representation matrix Θ. One advantage of model is the interpretability which
allows us to gain insights from the representation matrix Θ. Specifically, our model is able to
discover the underlying factors of the effect of both arms and covariates on the reward. In the
following, we will examine the pseudo ground truth Θ we obtained using all the data.
The rank of Θ is 5 with the singular values being (2.5, 0.3, 0.2, 0.02, 0.002). The leading singular
value dominates the rest and thus the leading left and right singular vectors are the most important
ones in explaining the effect on the reward and we focus on the leading singular vectors in what
follows.
Figure 5 shows the loadings for different covariates (i.e., the leading right singular vector) and our
algorithm is able to learn interpretable patterns of the effects on the reward – for weekday, the
effects are drastically different during the weekend and during the weekend; for months, the effects
show different patterns during the promotion month (June and November) from other months; for
location, the effects of the coastal provinces are different from the rest, which exactly corresponds to
the levels of economic development of different regions in China. In sum, our model can exploit the
underlying structure of the covariates and provide insights into purchasing behavior and seasonality.
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Figure 5: Loadings of the leading right singular vectors for the covariates.

On the other hand, Table 1 explores the loadings for the arm on May 29th 2022, the last Sunday
in our data (i.e., the leading left singular vectors multiplied with ⟨v1, x̄⟩ where x̄ is the average of
xj for j = 1, . . . , L on May 29th 2022). Specifically, we investigate the effect of flavors on the
reward given the context. We take the average of the loadings of the linear and quadratic terms for
each flavor in all 30 products and compare with the total sales of each flavor across all Sundays in
Mays. For ease of comparison, we further scale the sales and the loadings by their corresponding
largest numbers. The loadings and sales are closely related to each other.1 As in Table 1, on May
29th 2022, flavor 1 (F1) has the largest effect, followed by flavor 10, 13, 7, 9 and 11. Therefore, our
model learns the values of the flavors (per unit).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13
Sales 1.00 0.05 0.00 0.00 0.00 0.03 0.19 0.00 0.08 0.19 0.18 0.00 0.38

ũ1 (linear) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ũ1 (quadratic) 1.00 0.12 -0.00 0.00 0.00 0.03 0.19 0.00 0.15 0.39 0.16 0.03 0.33

Table 1: Total sales and loadings of the linear and quadratic terms (scaled) of the 13 flavors.

More on simulation with additional numerical results. We first detail how we ran the simulation
and then provide more simulation results. To be specific, we first use t1 = 100 for the initialization
step to estimate Θ̂t1 ; and then at each time t = t1 + 1, . . . , T , we follow Algorithm 1 to decide on
the action at for assortment and pricing. After determining at, we generate the sales rt according to
(1) using the pseudo true Θ and σ. We further compare the performance of the assortment-pricing
policy with exploration and without exploration and with different initialization time t1. Each setup
is simulated 100 times.
Figures 6a-6b show cumulative regret and Figures 6d show percentage gain in cumulative sales
when t1 = 20, 50, 100 with exploration and without exploration. Hi-CCAB with exploration per-
forms better then without exploration. As expected, longer initialization steps provide a better initial
estimation of the Θ and thus helps with the performance in a short time windows. As time goes by,
the time-averaged cumulative regret all converge to zero and the percentage gain in cumulative sales
should converge.

1The correlation of sales and the linear-term loadings is 0.91 and that of the quadratic-term loadings is 0.97.
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Figure 6: Performance of Hi-CCAB with different initialization times t1 and with exploration and
without exploration.
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