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ABSTRACT

Federated learning is a distributed learning setting where the main aim is to train
machine learning models without having to share raw data but only what is required
for learning. To guarantee training data privacy and high-utility models, differential
privacy and secure aggregation techniques are often combined with federated
learning. However, with fine-grained protection granularities the currently existing
techniques require the parties to communicate for each local optimization step, if
they want to fully benefit from the secure aggregation in terms of the resulting
formal privacy guarantees. In this paper, we show how a simple new analysis
allows the parties to perform multiple local optimization steps while still benefiting
from joint noise scaling when using secure aggregation. We show that our analysis
enables higher utility models with guaranteed privacy protection under limited
number of communication rounds.

1 INTRODUCTION

Federated learning (FL; McMahan et al. 2017; Kairouz et al. 2019) is a common distributed learning
setting, where a central server and several clients holding their own local data sets collaborate to train
a single global model. The main feature in FL is that the clients do not directly communicate data, but
only what is required for learning, e.g., gradients or updated model parameters (pseudo-gradients).

While FL satisfies the data minimization principle, i.e., only what is actually needed is communicated
while the actual raw data never leaves the client, it does not protect against privacy attacks such as
membership inference (Shokri et al., 2017) or reconstruction (Fredrikson et al., 2014; Yeom et al.,
2018). Instead, training data privacy is commonly ensured by combining differential privacy (DP;
Dwork et al. 2006b), a formal privacy definition, and secure multiparty computation (MPC; Yao
1982) with FL (see, e.g., Kairouz et al. 2019).

DP is essentially a robustness guarantee for stochastic algorithms, which guarantees that small
perturbations to the inputs have small effects on the algorithms’ output probabilities. What constitutes
a small perturbation depends on the chosen protection granularity: the same basic DP definition can
be used for ensuring privacy on anything from single sample to entire data set level. In turn, MPC
protocols can be used to limit the amount of information an adversary has about computations. In
FL, secure aggregation (SecAgg) protocols, a specialised form of secure computation that requires
significantly less resources than general MPC, are commonly used for communicating model updates
from the clients to the server, which can result in provably better joint DP guarantees than is possible
to achieve by any single client in isolation.

Under the general FL setup, two main alternatives are commonly considered: cross-device FL and
cross-silo FL (Kairouz et al., 2019). In cross-device FL, each client is assumed to have a small
local data set, while the total number of clients is large, e.g., thousands or millions. In the cross-silo
case, the total number of clients is small, for example, a dozen, but each client is assumed to have a
larger local data set. In this paper, our running example is standard cross-silo differentially private
FL (DPFL) where the clients communicate all updates to the server using SecAgg.1 In this setting,

1Instead of considering any specific SecAgg implementation, in this work we mostly assume an idealised
trusted aggregator. We discuss practical implementations in Appendix A.2.
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the most useful DP protection granularity is typically something strictly more fine-grained than
client-level: when clients are, e.g., different hospitals or banks, there are typically several individuals
in a single clients’ local data set and the protection granularity needs to match the use case.

While client-level granularity in DPFL is, at least in principle, straightforward to combine with
SecAgg, more fine-grained granularities such as sample-level DP can present problems: using
existing techniques one has to choose between i) having joint DP guarantees with less noise due to
SecAgg but with all clients using only a single local optimization step per FL round, and ii) having
more noisy local DP (LDP) guarantees that do not formally benefit from SecAgg while allowing
the clients to do more local optimization steps per FL round. Both of these options have significant
drawbacks: the amount of server-client communications is typically one of the first bottlenecks that
limit model training in FL, while LDP guarantees regularly require noise levels that heavily affect the
resulting model utility. In this paper we show that this trade-off is not unavoidable but can be largely
remedied by a simple new analysis of the problem.

Our Contribution

• We present a novel and simple theoretical privacy analysis showing when we can increase
the number of local optimization steps in FL using fine-grained DP granularity, while still
benefiting from joint DP guarantees using a trusted aggregator.

• We demonstrate empirically that the proposed approach can lead to large utility benefits
without requiring any changes to the underlying algorithms under both iid and heterogeneous
client data splits.

• Our results point to a clear mismatch between the current theoretical understanding of DPFL
and practical results.

2 RELATED WORK

There is a significant amount of existing work focusing on the general problem of combining DP
with FL, although the focus has mostly been on the cross-device FL setting with user- or client-level
DP. To the best of our knowledge, while the combination of DPFL with SecAgg is certainly not
novel (see, e.g., Truex et al. 2019; Kairouz et al. 2019; Heikkilä et al. 2020; Stevens et al. 2022;
Yang et al. 2023), there is no existing work on the privacy analysis when the clients do multiple local
optimization steps with fine-grained DP and communicate the results via SecAgg.2

Considering the existing work in more detail, we can distinguish some main lines of closely-related
research. There are many papers proposing novel learning methods for FL, assuming sample-level DP
and joint noise scaling with SecAgg. While the existing work only uses a single local optimization
step (see, e.g., Heikkilä et al. 2020; Malekzadeh et al. 2021; Stevens et al. 2022; Yang et al. 2023),
our analysis can be leveraged in this setting to enable running multiple local steps generally for many
such methods without requiring any other changes to the algorithms.

Another clear line of work has focused on introducing novel discrete DP mechanisms that can be used
with additively homomorphic encryption techniques, which typically operate on the group of integers
with modulo additions. Agarwal et al. (2018) proposed a binomial mechanism that provides DP using
discrete binomial noise. Improving on the binomial mechanism, Canonne et al. (2020) proposed a
discrete Gaussian mechanism, while Agarwal et al. (2021) introduced a Skellam mechanism and
Chen et al. (2022b) a Poisson-binomial mechanism, both of which improve on the discrete Gaussian,
e.g., by being infinitely divisible distributions: the sum of Skellam/Poisson-binomial distributed
random variables is another Skellam/Poisson-binomial random variable. Our work is not focused
on introducing new DP mechanisms, but our analysis allows for using many different DP noise
mechanism. In particular, our analysis allows for joint noise scaling under SecAgg including when
using infinitely divisible DP mechanisms, such as the Skellam mechanism, with pseudo-gradients
and fine-grained DP protection level.

2Note that (Truex et al., 2019, Algorithm 4) seems to state a weaker, specialised version of our results, i.e.,
they use several local optimization steps with sample-level DP and SecAgg in FL, while scaling the noise jointly
over the clients. However, as also noted by Malekzadeh et al. (2021), the approach of Truex et al. (2019) would
require a separate proof of privacy beyond what is actually provided in the paper.
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While our main focus is on privacy accounting with SecAgg under limited communication budget,
there has also been considerable effort by the community to reduce the amount of required com-
munication further by applying quantization to the gradients (Agarwal et al., 2018; Kairouz et al.,
2021; Agarwal et al., 2021; Chen et al., 2022b; Jin et al., 2020; Chaudhuri et al., 2022; Guo et al.,
2023) or by compressing the updates sent by the clients (Triastcyn et al., 2021; Chen et al., 2022a).
In principle, any such technique for compressing the model updates compatible with SecAgg can
also be directly combined with our joint noise scaling analysis. In contrast, benefiting from gradient
quantization is not entirely straightforward as in our case the model updates are pseudo-gradients and
not gradients. We leave a detailed consideration and comparison of the possible methods for reducing
the required communication budget beyond what is possible by pushing more optimization steps to
the clients for future work.

In summary, while many of the contributions cited above, e.g., novel DP mechanisms, are not limited
to cross-device FL, all the experiments and use cases mentioned in the cited papers that are compatible
with SecAgg and use multiple local steps only consider joint noise scaling with user- or client-level
DP in cross-device FL. In contrast, we focus on more fine-grained DP granularities, namely on
sample-level DP. As we discuss in Section 3, combining sample-level DP with multiple local steps
and joint noise scaling using SecAgg with good utility requires a novel privacy analysis. The main
aim of this paper is to provide such an analysis.

While the currently existing theoretical convergence bounds for DPFL do not show any benefit from
increasing the number of local steps in DPFL (see Malekmohammadi et al. 2024, Theorem 3.2), we
empirically demonstrate the utility of our analysis in Section 5 after stating the results in Section 4.
Our results clearly highlight the need for improving the theoretical analysis of DPFL over what is
shown by Malekmohammadi et al. (2024) to understand when increasing the number of local steps is
useful (compare this disagreement of empirical results and theory to the discussion by Mishchenko
et al. 2022 on the provable usefulness of local steps in non-DP FL).

3 BACKGROUND

Federated learning (FL, McMahan et al. 2017; Kairouz et al. 2019) is a collaborative learning setting,
where the participants include a central server and clients holding some data. On each FL round, the
server chooses a group of clients for an update and sends them the current model parameters. The
chosen clients update their local model parameters by taking some amount of optimization steps using
only their own local data, and then send an update back to the server. The server then aggregates the
client-specific contributions to update the global model. We use the standard federated averaging
update rule: assuming w.l.o.g. that clients i = 1, . . . , N have been selected at FL round t, and that
client i sends an update ∆

(t)
i (pseudo-gradient), the updated global model θt is given by

θt = θt−1 +
1

N

N∑
i=1

∆
(t)
i . (1)

3.1 DIFFERENTIAL PRIVACY

We want to guarantee privacy of the trained model w.r.t. the training data, for which we use differential
privacy (DP). Writing the space of possible data sets as X ∗ := ∪n∈NXn, we have the following:
Definition 3.1. (Dwork et al., 2006b;a) Let ε > 0 and δ ∈ [0, 1]. A randomised algorithm A : X ∗ →
O is (ε, δ)-DP if for every x, x′ ∈ X ∗ : x ≃ x′, and every measurable set E ⊂ O,

P(A(x) ∈ E) ≤ eεP(A(x′) ∈ E) + δ,

where ≃ is a neighbourhood relation. A is tightly (ε, δ)-DP, if there does not exist δ′ < δ such that
A is (ε, δ′)-DP. When δ = 0, we write ε-DP and call it pure DP. The more general case (ε, δ)-DP is
called approximate DP (ADP).

Definition 3.1 can be equivalently stated as a bound on the so-called hockey-stick divergence:
Definition 3.2. Let α > 0. The hockey-stick divergence between distributions P,Q is given by

Hα(P∥Q) := Et∼Q

([
dP

dQ
(t)− α

]
+

)
= Et∼Q

([
p(t)

q(t)
− α

]
+

)
, (2)
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where [a]+ := max(a, 0), dP
dQ is the Radon-Nikodym derivative, and p, q are the densities of P,Q,

respectively. In the rest of this paper, we assume that all the relevant densities exists.

It has been shown that a randomised algorithm A is (ε, δ)-DP iff supx≃x′ Heε(A(x)∥A(x′)) ≤ δ
(Barthe et al., 2013; Barthe & Olmedo, 2013).

Our main results do not depend on the exact neighbourhood definition, but in all the experiments
we use the add/remove relation or unbounded DP, that is, x, x′ ∈ X ∗ are neighbours, if x can
be transformed into x′ by adding or removing a single protected unit from X . For the protection
granularity, although this is not a strict limitation, we focus on the common sample-level DP, i.e., a
single protected unit corresponds to a single sample of data. As noted earlier, our analysis could be
advantageous for anything more fine-grained than client-level DP, e.g., element-level DP (Asi et al.,
2019) or even for individual-level when there are more than one individual in the clients’ local data.

We also make use of dominating pairs:

Definition 3.3. (Zhu et al., 2022) A pair of distributions (P,Q) is a dominating pair for a stochastic
algorithm A, if for all α ≥ 0

sup
x,x′∈X∗:x≃x′

Hα (A(x)∥A(x′)) ≤ Hα (P∥Q) , (3)

where Hα is the hockey-stick divergence (Definition 3.2).

3.2 PROBLEM WITH LOCAL STEPS IN DPFL WITH SECAGG

While DP offers strict privacy protection, it comes at the cost of reduced model utility. This is
especially true in the local DP (LDP) setting, where each client protects its own data independently of
any other party (Kasiviswanathan et al., 2008). One well-known technique to improve model utility
in DPFL has been to utilise secure aggregation (SecAgg) to turn LDP guarantees into joint guarantees
or distributed DP guarantees that depend on multiple clients (see, e.g., Kairouz et al. 2019). However,
naively combining fine-grained DP protection with SecAgg for distributed DP runs into problems, as
we demonstrate in the rest of this section.

Starting with the unproblematic case of client-level DP, writing TA for an ideal trusted aggregator
and using the well-known Gaussian mechanism (Dwork et al., 2006a) for simplicity, one can get joint
DP guarantees for any number of local optimization steps with the following update:

θt = θt−1 +
1

N
TA

(
N∑
i=1

clipC(∆
(t)
i ) + ξ

(t)
i

)
, (4)

where the sum inside TA is done by a trusted aggregator, clipC ensures that each client-specific
update has bounded ℓ2-norm, and ξ

(t)
i is Gaussian noise s.t.

∑N
i=1 ξ

(t)
i gives the joint DP protection

level we are aiming for. As the clipping and noise are applied directly to the updated weights after
the local optimization has finished, the privacy protection is not affected by the number of local
optimization steps client i is using to arrive at ∆(t)

i before applying DP.

There is also a simple approach that works with more fine-grained granularities, when the clients
use a single local optimization step with common learning rate γ and, for example, standard DP
stochastic gradient descent (DP-SGD, Song et al. 2013) again utilising Gaussian noise: we can
take ∆

(t)
i = −γ(g

(t)
i + ξ

(t)
i ), where g

(t)
i is a sum of clipped per-unit gradients (e.g. per-sample for

sample-level DP) from client i, to have the update

θt = θt−1 −
1

N
TA

(
N∑
i=1

γ(g
(t)
i + ξ

(t)
i )

)
. (5)

Looking at the sum in Equation 5, since each per-unit gradient has a common bounded norm and
Gaussian noise is infinitely divisible, i.e., the summed-up noise is another Gaussian, we can calculate
the resulting privacy with standard techniques (see, e.g., Mironov et al. 2019; Koskela et al. 2020;
Zhu et al. 2022). Now, if one tries to use the same reasoning with sample-level DP using S > 1
local optimization steps, the problem is that the sensitivity of the per-sample clipped gradients when

4
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summed over the local steps increases with S: assuming ∥gi,s∥2 ≤ C, s = 1, . . . , S implies that
∥
∑S

s=1 gi,s∥2 ≤ SC (triangle-inequality).

In other words, trying to scale the noise over multiple local optimization steps naively ends up scaling
the query sensitivity linearly with the total number of steps, while the obvious problem in using only
a single step per FL round is that the number of communication rounds is typically one of the main
bottlenecks in FL (Kairouz et al., 2019).

3.3 TRUST MODEL

In this paper, we assume an honest-but-curious (hbc) server and that all the clients are fully honest.
The latter assumption can be easily generalised to allow for hbc clients with some weakening to
the relevant privacy bounds: with N (non-colluding) hbc clients, since any client could potentially
remove its own noise from the aggregated results, the noise from the other N − 1 clients needs to
guarantee the target DP level. In effect, to allow for all hbc clients, we would need to scale up the
noise level somewhat (see, e.g., Heikkilä et al. 2017 for a discussion on noise scaling and for formal
proofs).

In principle, the same technique can also protect against privacy threats in the case of including some
fully malicious clients in the protocol (i.e, simply scale the noise so that the hbc clients are enough to
guarantee the required DP level). However, in this case the required level of extra noise will increase
quickly with the number of malicious clients leading to heavier utility loss. With malicious clients,
there would also be no guarantee that the learning algorithm terminates properly.

4 JOINT NOISE CALIBRATION WITH MULTIPLE LOCAL STEPS USING A
TRUSTED AGGREGATOR

Consider standard FL setting with M clients and client i holding some local data xi. On FL round
t, Nt clients are selected for updating by the server, w.l.o.g. assumed to be clients i = 1, . . . , Nt.
Each selected client i receives the current model parameters θ(t−1) from the server, then runs St local
optimization steps using DP-SGD with constant learning rate γt, and finally sends an update to the
server via a trusted aggregator TA:

∆
(t)
i = θ

(t)
i − θ(t−1) = −

St∑
s=1

γt(g
(t)
i,s + ξ

(t)
i,s ), (6)

where we write g
(t)
i,s for the per-unit clipped gradients of client i at local step s, and ξ

(t)
i,s for the DP

noise. After receiving all the messages via the trusted aggregator, the server updates the global model
using FedAvg:

θ(t) = θ(t−1) +
1

Nt
TA(

Nt∑
i=1

∆
(t)
i ). (7)

In the rest of this section we state our main results: we show that under some assumptions we
can account for privacy in FL by looking at the local optimization steps while scaling the noise
level jointly over the clients, even if there is no communication between the clients during the local
optimization but only a single trusted aggregation at the end of the round to update the global model
parameters.

W.l.o.g. from now on we drop the FL round index t and simply write, e.g., N instead of Nt for
the number of updating clients. Since the global updates do not access any sensitive data, once we
can do privacy accounting for a single FL round, which is the main topic in the rest of this section,
generalising to T FL rounds can be done in a straightforward manner (see Appendix A.3).

In the following, we assume that all clients have access to an ideal trusted aggregator, and that all
sums are calculated by calling the trusted aggregator. We comment on more realistic implementations
in Appendix A.2 after stating our main results.

We make the following assumptions throughout this section:

5
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Assumption 4.1. Let xi ∈ X ∗, i = 1, . . . , N . We write x = ∪N
i=1xi, and assume that xi ∩ xj = ∅

for every i ̸= j, i.e., there are no overlapping samples in different clients’ local data sets. We are
interested in fixed-length optimization runs of S local steps (common to all clients), which leads to
(fixed-length) adaptive sequential composition for privacy accounting (see e.g. Rogers et al. 2016;
Zhu et al. 2022). We assume all clients use the same learning rate γ and norm clipping with constant
C when applicable. We also assume that all local DP mechanisms A(s)

i , s = 1, . . . , S, i = 1, . . . , N
are DP w.r.t. the first argument for any given auxiliary values (which we generally do not write out
explicitly).

Note that we consider how to loosen many of these assumptions in Appendix A.1.

Not all possible DP mechanisms might allow for joint noise scaling via simple aggregation. For
convenience, in Definition 4.2 we define a family of suitable mechanisms, which we call sum-
dominating:
Definition 4.2 (Sum-dominating mechanism). Let A,Ai : X ∗ → O, i = 1, . . . , N be randomised
algorithms. We call A a sum-dominating mechanism w.r.t. Ai, i = 1, . . . , N , if

sup
x≃x′

Hα

(
N∑
i=1

Ai(xi)∥
N∑
i=1

Ai(x
′
i)

)
≤ sup

x≃x′
Hα (A(x)∥A(x′)) , (8)

where Hα is the hockey-stick divergence, and ≃ is the DP neighbourhood relation.

Considering concrete mechanisms that satisfy Definition 4.2, one simple example is given by DP
mechanisms that use infinitely divisible noise, as formalised next in Lemma 4.3:
Lemma 4.3 (Additive mechanisms with infinitely divisible noise are sum-dominated). Assume
Ai, i = 1, . . . , N are additive DP mechanisms s.t. they add noise from an infinitely divisible noise
family Ξ:

Ai(xi) = f(xi) + ξi, (9)
where f is some (bounded sensitivity) function, and ξi ∈ Ξ ∀i. Then the mechanism

A(x) :=

N∑
i=1

(f(xi) + ξi) (10)

is a sum-dominating mechanism w.r.t. Ai, i = 1, . . . , N .

Proof. Immediately clear by definition of A.

One prominent example of the possible mechanisms covered by Lemma 4.3 is the ubiquitous
continuous Gaussian mechanism:
Example 4.4 (Gaussian mechanism). Assume Ai is a Gaussian mechanism with noise covariance
C2σ2

i · Id and f has bounded sensitivity C. Since the normal distribution is infinitely divisible, from
Lemma 4.3 it follows that the combined mechanism A =

∑N
i=1 Ai, which is another Gaussian with

sensitivity C and noise covariance C2(
∑N

i=1 σ
2
i ) · Id, is a sum-dominating mechanism. Finally,

due to well-known existing results (see e.g. Meiser & Mohammadi 2018; Koskela et al. 2020; Zhu
et al. 2022), a (tightly) dominating pair of distributions (P,Q) in the sense of Definition 3.3 for the
sum-dominating mechanism A is given by a pair of 1d Gaussians with means µP = 0, µQ = 1, and
variances σ2

P = σ2
Q =

∑N
i=1 σ

2
i .

Other mechanisms covered by Lemma 4.3 include existing discrete infinitely divisible noise mecha-
nisms compatible with practical SecAgg protocols, such as Skellam (Valovich & Aldà, 2017; Agarwal
et al., 2021), and Poisson-binomial (Chen et al., 2022b).3

Next, we consider composing a sum-dominating mechanisms over S (local) steps. This allows us to
account for the total privacy when doing more than one local optimization steps:

3Discrete Gaussian (Canonne et al., 2020) is not infinitely divisible, but is close-enough that a sum-dominating
mechanism can still be found in many practical settings, see Kairouz et al. (2021). In such cases, the inequality
in Definition 4.2 could always be strict, whereas for any infinitely divisible noise mechanism it can be written as
an equality (see Lemma 4.3). We note that even in the infinitely divisible case, however, writing Definition 4.2
with inequality is necessary to avoid nonsensical limitations, such as a having a DP mechanism that satisfies
Definition 4.2 with a given δ while not satisfying it for any δ′ > δ.

6
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Lemma 4.5. Assume A(s) is a sum-dominating mechanism w.r.t. A(s)
i , i = 1, . . . , N for every

s = 1, . . . , S. Then the composition of the sum-dominating mechanisms (A(1), . . . ,A(S)) dominates
the composition (

N∑
i=1

A(1)
i , . . . ,

N∑
i=1

A(S)
i

)
. (11)

Proof. For any s ∈ {1, . . . , S}, we immediately have

sup
x≃x′

Hα

(
N∑
i=1

A(s)
i (xi)∥

N∑
i=1

A(s)
i (x′

i)

)
≤ sup

x≃x′
Hα

(
A(s)(x)∥A(s)(x′)

)
(12)

by definition of A (Definition 4.2). The claim therefore follows immediately from (Zhu et al., 2022,
Theorem 10).

Considering Lemma 4.5, in our case it essentially says that to account for running S local optimization
steps, it is enough to find a proper sum-dominating mechanism for each step separately.

With the next result given in Lemma 4.6, we can connect the previous results with the form of output
we get from actually running local optimization in FL:

Lemma 4.6. Assume that releasing the vector(
N∑
i=1

A(1)
i (xi), . . . ,

N∑
i=1

A(S)
i (xi)

)
(13)

satisfies (ε, δ)-DP. Then releasing
N∑
i=1

S∑
s=1

A(s)
i (xi) (14)

also satisfies (ε, δ)-DP.

Proof. Due to the post-processing immunity of DP (see, e.g., Dwork & Roth 2014), the assumption
implies that releasing

S∑
s=1

N∑
i=1

A(s)
i (xi) (15)

satisfies (ε, δ)-DP, and by exchanging the order of summation the claim follows. Note that all the
mechanisms are assumed to be DP w.r.t. their first argument for any given auxiliary value, which
allows us to do the exchange without affecting privacy (in the context of FL, we effectively switch
from communicating between each local step to running all local steps and then communicating).

Taken together, Definition 4.2 or Lemma 4.3 along with Lemmas 4.5 & 4.6 allow us to compose DP
mechanisms with joint noise scaling over the clients. In our main result given as Theorem 4.7, we
show that each client can run DP-SGD with several local steps while still benefiting from joint noise
scaling when communicating the update via a trusted aggregator.

Theorem 4.7. Assume N clients use local noise mechanisms A(s)
i , i = 1, . . . , N as in Lemma 4.3 for

each local gradient optimization step s = 1, . . . , S, and that the final aggregated update
∑N

i=1 ∆i is
released via an ideal trusted aggregator. Then denoting the sum-dominating mechanism for step s by
A(s), the query release satisfies (ε(δ), δ)-DP for any δ ∈ [0, 1], when ε(δ) is given by accounting for
releasing the vector (

A(1)(x), . . . ,A(S)(x)
)
,

where x = ∪N
i=1xi.
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Proof. For privacy accounting, assuming all sums are done by trusted aggregator TA, releasing the
aggregated update TA(

∑N
i=1 ∆i) corresponds to releasing the result

−γ

N∑
i=1

S∑
s=1

A(s)
i (xi; zi,s),

where each mechanism includes a mapping that maps the local samples to the clipped per-unit
gradients as well as the DP noise, and zi,s are auxiliary values (e.g., state after the previous step).4
Since all mechanisms are assumed to be DP w.r.t. the first argument for any auxiliary value, the
auxiliary values do not affect the DP guarantees, and hence we do not write them explicitly in the
following.

From Lemma 4.6 it follows that valid DP guarantees can be established by accounting for the release
of the vector

(∑N
i=1 A

(1)
i (xi), . . . ,

∑N
i=1 A

(S)
i (xi)

)
. Furthermore, Lemma 4.3 implies that for any

step s ∈ 1, . . . , S, the sum-dominating mechanism A(s) dominates
∑N

i=1 A
(s)
i , and therefore by

Lemma 4.5 the claim follows.

We note that while Theorem 4.7 assumes infinitely divisible noise mechanism (as is commonly
used with DP-SGD in practice), the result is trivial to generalize to any sum-dominating mechanism
A, such as discrete Gaussian (Canonne et al., 2020), by relying on Definition 4.2 instead of using
Lemma 4.3.

Considering tightness of the privacy accounting done based on Theorem 4.7, it is worth noting that
since the accounting relies on Lemma 4.6, which assumes releasing each local step while the actually
released query answer is a sum over the local steps, the resulting privacy bound need not be tight but
an upper bound on the privacy budget. However, this matches the usual DP-SGD privacy accounting
analysis (see e.g. Mironov et al. 2019; Koskela et al. 2020), which typically needs to account for
each local optimization step due to technical reasons even if only the final model is released. In the
general case, it has also been shown that hiding the intermediate steps does not bring any privacy
benefits compared to the per-step accounting (Annamalai, 2024).

5 EXPERIMENTS

Setup and Motivation: Our chosen settings try to mimic a typical cross-silo FL setup: there are
a limited number of clients, each having a smallish local database. The clients have enough local
compute to run optimization on the chosen model, while the number of server-client communications
required for updating the global model are the main bottle-neck. Note that this bottleneck will
emerge even with larger actual organisations training models with broadband connections, when the
model size is large-enough, e.g., when training foundation models (Bommasani et al., 2021). This
is especially true when using SecAgg protocols, since the cost of running a real SecAgg algorithm
presents significant compute and communication overheads even with the efficient protocols discussed
in Appendix A.2. In this setting, it makes sense to try and push more optimization steps to the clients
while reducing the number of global updates (FL rounds). We also assume that the clients send their
local updates via some trusted aggregator (which we only assume and do not implement in practice in
the experiments. However, we do use only discrete DP mechanisms compatible with standard SecAgg
algorithms in all the experiments). For more details on all the experiments, see Appendix A.4.

CNN on Fashion-MNIST: We first train a small convolutional neural network (CNN) on Fashion
MNIST data (Xiao et al., 2017), that is distributed iid among 10 clients. We use the CNN architecture
introduced by Papernot et al. (2021); Tramèr & Boneh (2021). Figure 1 shows the mean with standard
error of the mean (SEM) over 5 repeats for test accuracy and loss with DP-SGD using Skellam noise
(Agarwal et al., 2021) with 32 bits gradient quantization,.i.e., without quantization. We train the
model for 20 FL rounds and varying number of local steps. Comparing the results for 1 local step as
opposed to 1 local epoch (≃ 11 steps, but with different sampling fraction compared to baseline), it

4For example, with standard DP-SGD, sample-level DP and continuous Gaussian noise,
∑N

i=1 ∆i =

−γ
∑N

i=1

∑S
s=1(gi,s + ξi,s), where gi,s are (sums of) clipped per-sample gradients and ξi,s are the per-step

Gaussian noises.
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is evident that being able to take more local optimization steps (as allowed by Theorem 4.7) brings
considerable utility benefits under fixed privacy and communication budgets.
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FL round

0.2
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Test accuracy, 10 clients, CNN on Fashion MNIST
Skellam mechanism, unbounded = 1, = 1e 5

Local steps
1 step
1 epoch

(a) Test accuracy

1 5 10 15 20
FL round

0.5

1.0

1.5

2.0
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Test loss, 10 clients, CNN on Fashion MNIST
Skellam mechanism, unbounded = 1, = 1e 5

Local steps
1 step
1 epoch

(b) Test loss

Figure 1: CNN on Fashion-MNIST, 10 clients, mean and SEM over 5 seeds. Running more local
steps is clearly beneficial.

Linear Classifier on Transformed CIFAR-10: Overall, assuming a fixed privacy budget, we
might expect the benefits from being able to run more local steps to be more accentuated with more
complex models and very limited communication budget, while for simple-enough models and more
FL rounds even a few local steps could lead to good results. To test to what extent this is true for
simple yet still useful models, we consider CIFAR-10 data (Krizhevsky, 2009). Similar to Tramèr
& Boneh (2021), we take a ResNeXt-29 model (Xie et al., 2017) pre-trained with CIFAR-100 data
(Krizhevsky, 2009), remove the final classifier, and use it as a feature extractor to transform the input
data. We distribute the transformed CIFAR-10 data iid to 10 clients, and train linear classification
layers from scratch for 10, 20, 40, 80 and 160 FL rounds using DP-SGD with Skellam noise, 32 bit
gradient quantization, and varying number of local steps (1 epoch ≃ 19 steps, but with different batch
size compared to baseline). The mean and SEM over 5 seeds of the best results for each model over
the training run are shown in Figure 2. The benefits of being able to run more than a single local
steps are again clear; even with the relatively simple linear model, using 1 local step needs roughly
an order of magnitude more FL rounds over a fairly broad range of available communication budgets
to reach a similar performance compared to using 1 local epoch.
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(a) Test accuracy
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(b) Test loss

Figure 2: Mean and SEM over 5 seeds of the best performance over training runs for Linear models
on CIFAR-10 using pre-trained ResNeXt29 as feature extractor for varying number of FL rounds, 10
clients. Running more local steps is clearly beneficial.

Logistic Model on Income: To further test the robustness of the possible benefits from being
able to run more than a single local optimization step, we train a simple Logistic Neural Network
(LNN) model (i.e., 1-layer fully connected linear classification network similar to the one used in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the previous experiment, but without any pre-trained feature extractor) on ACS Income data (Ding
et al., 2021). Unlike the synthetic iid data splits used in the previous experiments, Income data has
an inherent client split corresponding to 51 states from where the data has been collected. Since the
inherent split is heterogeneous (different states have very number of samples as well as different data
distributions), we would expect the benefits of doing more local optimization steps between global
communication rounds to dwindle, since the local models from different clients could diverge when
only trained locally. However, as shown in Figure 3, even in this setting taking more local steps can
be very beneficial (here 1 epoch ≃ 20 steps with same local sampling fraction compared to baseline).
This clearly demonstrates the utility of our analysis.
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(a) Test accuracy
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(b) Test loss

Figure 3: LNN on ACS Income, 51 clients, mean and SEM over 5 seeds. Running more local steps is
clearly beneficial.

Improved Privacy from Model Averaging: Finally, our results might sometimes be of use also
outside standard FL. For example, consider a setting where we have N copies of a model trained
on disjoint data sets (e.g., one could think of independent parties learning a classifier on top of a
common pre-trained model or fine-tuning a common pre-trained model; either scenario would usually
lead to shared model structure and possibly also hyperparameters without explicit coordination), and
the parties would like to combine the models post-hoc without running any joint training from scratch.
Since this can be seen as FL with a single FL round, if the original model training on each party
satisfies Assumption 4.1 (or the relaxed assumptions in Appendix A.1), then a simple averaging of
the weights will result in a joint model with improved privacy guarantees against adversaries without
access to the original models.

To demonstrate this effect, we account for privacy assuming the same linear model used in Figure 2
(but without actually training any models), Skellam mechanism with 32 bit gradients, Poisson
subsampling with sampling probability 0.1, and varying number of parties and local steps. The
accounting is done as it would be done in a realistic setting: we first find a noise level σLDP that
results in the target privacy level (unbounded (ε = 5, δ = 1e− 5)-LDP) for each separate model with
the chosen number of local steps. We then assume that the local training satisfies Assumption 4.1
and calculate the privacy for averaging varying number of local models. Combining even 2 models
results in clearly improved privacy for the averaged model (see Table 1 in Appendix A.5).

6 DISCUSSION

In this paper we have shown how to combine multiple local steps in DPFL using fine-grained protec-
tion granularities with SecAgg, and empirically demonstrated that this can bring considerable utility
benefits under various communication-constrained settings. Our experimental results stand in stark
contrasts with the message from the currently existing theoretical bounds for DPFL (Malekmoham-
madi et al., 2024, Theorem 3.2), which do not show any benefit from increasing the number of local
steps. This disagreement of experimental and theoretical results underlines the need for improved
theoretical analysis to understand the conditions under which increasing the number of local steps can
lead to improved utility, similar to the recent breakthroughs in analysing non-DP FL (Mishchenko
et al., 2022).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement The authors acknowledge that this research, like all research, could have potential
negative side-effects. However, given i) that the aim of the paper is strictly to improve techniques
available for guaranteeing individual privacy, ii) that we do not introduce any new general purpose
algorithms or new data sets, and iii) that we do not see any major ethical problems regarding the
objectives or the data sets used in the experiments, we judge the risk of encountering significant
negative outcomes from publishing this research to be minimal.

Reproducibility Statement To ensure that the results can be reproduced, the code used in running
all the experiments is included as a supplementary material. For the possible camera-ready version of
the paper, the full source code will also be published on GitHub with more detailed documentation to
try and ensure that replicating all the results and running comparisons should be possible for anyone
with relative ease.

REFERENCES

Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and Brendan McMahan.
cpSGD: Communication-efficient and differentially-private distributed SGD. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
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Ghazi, Phillip B Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan
Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub
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and Deniz Gündüz. Dopamine: Differentially private federated learning on medical data. ArXiv
preprint, abs/2101.11693, 2021. URL https://arxiv.org/abs/2101.11693.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
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A APPENDIX

A.1 LOOSENING ASSUMPTIONS

In the main paper, as stated in Assumption 4.1, for each FL round we have assumed constant learning
rate γ, norm clipping bound C, noise level σ, and number of local optimization steps S, all of them
shared by all the clients. Next, we consider loosening these assumptions. As before, w.l.o.g. we
consider only a single FL round, and will therefore omit the index t.

Focusing first on the learning rate, we can immediately generalize our results to allow for different
learning rate γs for each local step s = 1, . . . , S: with this notation, following the reasoning of
Theorem 4.7, the aggregated update from the clients is given by

N∑
i=1

∆i = −
N∑
i=1

S∑
s=1

γsA(s)
i (xi; zi,s), (16)

which can again be seen as post-processing the vector
(∑N

i=1 A
(1)
i (xi), . . . ,

∑N
i=1 A

(S)
i (xi)

)
, so we

can again use Lemma 4.6 for accounting without encountering problems.

When considering client-specific learning rates things can be more complicated. The main issue now
is to find proper sum-dominating mechanisms that satisfy:

sup
x≃x′

Hα

(
N∑
i=1

γi,sA(s)
i (xi)∥

N∑
i=1

γi,sA(s)
i (x′

i)

)
≤ sup

x≃x′
Hα

(
A(s)(x)∥A(s)(x′)

)
, s = 1, . . . , S. (17)

As a concrete example, assume A(s)
i is the continuous Gaussian mechanism with shared norm clipping

constants and noise levels Ci,s = Cs, σi,s = σs ∀i. Dropping the step index s for readability, let
γi =

γ1

li
for some li > 0, i = 2, . . . , N . Writing gi for a sum over the per-unit clipped gradients of
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client i, and ξi ∼ N (0, C2σ2 · Id) a single optimization step now contributes the following term for
the global update:

−
N∑
i=1

γi (gi + ξi) (18)

=− γ1

(
g1 + ξ1 +

N∑
i=2

gi + ξi
li

)
(19)

=− γ1

(
g1 +

N∑
i=2

gi
li

+ ξ

)
, (20)

where ξ ∼ N (0, C2σ2[1 +
∑N

i=2
1
l2i
] · Id), which is a sum-dominating Gaussian mechanism. When

accounting for the sum-dominating mechanism, it has sensitivity C∗ = max{C, C
l2
, . . . , C

lN
}, which

in turn gives noise variance ( C
C∗ )

2σ2[1 +
∑N

i=2
1
l2i
] for DP.

Similarly, we could relax the assumptions further to allow the clients to use different clipping
and noise levels Ci, σi. As before, a single optimization step can again be written in the form of
Equation 20, when

ξ ∼ N

(
0,

[
C2

1σ
2
1 +

N∑
i=2

C2
i σ

2
i

l2i

]
· Id

)
. (21)

For global privacy accounting with a sum-dominating Gaussian mechanism, suitable sensitivity is now
given by C∗ = max{C1,

C2

l2
, . . . , CN

lN
}, and the resulting variance for accounting is

∑N
i=1(

Ciσi

C∗ )2.

Assuming clients have differing number of local steps, we can try to fuse some local steps for the
privacy analysis until all clients have the same number of steps S, after which we can then use the
earlier results.5

As a simple example, assume we have 2 clients running DP-SGD: client 1 runs S local steps using
norm clipping constant C and Gaussian mechanism with noise variance σ2, while client 2 runs 2S
local steps with clipping C/2 and Gaussian noise variance σ2. The difference now is that while the
clipping is done on each step, from the privacy accounting perspective we can disregard some noise
and think that client 2 adds noise only on every other step. Looking at the update from client 2, we
would then have

∆2 = −γ

2S∑
s=1

(g2,s + I[s = 2l, l ∈ N] · ξ2,s) (22)

= −γ

S∑
s=1

(g′2,s + ξ′2,s), (23)

where g2,s are the clipped per-sample gradients, g′2,s := g2,2s−1 + g2,2s, ξ2,s are the noise values,
ξ′2,s := ξ2,2s, and I is the indicator function. Due to the clipping, the sensitivity of each fused step can
be easily upper bounded via triangle-inequality: ∥g2,s′∥2 = ∥g2,2s′−1 + g2,2s′∥2 ≤ ∥g2,2s′−1∥2 +
∥g2,2s′∥2 ≤ C. Since Equation 23 now has the same number of local steps as client 1 is taking, we can
readily use the previous results to enable privacy accounting for the aggregated update. Combining
the fusing of local steps with the previous notes on differing clipping norm values, learning rates
and noise variances allows us to use our main results in several settings beyond what is stated in
Assumption 4.1.

As a final note, when the clients use data subsampling for the local optimization, differing local
subsampling probabilities can lead to having varying DP guarantees between the clients on the global
level due to the different subsampling amplification effects, but can otherwise be incorporated with
the same analysis we have already presented.

5Alternatively, we could also consider breaking some local steps into several parts. We leave the detailed
consideration of this approach for future work.
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A.2 FROM IDEAL TRUSTED AGGREGATORS TO PRACTICAL SECAGG PROTOCOLS

For implementing the trusted aggregator assumed in Theorem 4.7 in practice, it should be noted that
as the sum over s is done locally by each client during local optimization, it is always trusted as
long as the individual clients are, while the sum over i would need to be implemented, e.g., using a
suitable SecAgg protocol. Several such algorithms are known, including the ones proposed by Bell
et al. (2020); Bonawitz et al. (2017); Sabater et al. (2022); So et al. (2021).

Using a SecAgg protocol will typically also place some extra requirements on the DP mechanisms
A(s)

i , since the SecAgg algorithms usually run on elements of finite rings. This precludes continuous
noise mechanisms. A viable alternative is to use some suitable discrete noise mechanism, such as
Skellam (Agarwal et al., 2021) or Poisson-binomial (Chen et al., 2022b). However, differing from
the cases considered in the cited papers, since in our case the clients send model updates instead of
single gradients, the finite ring size used in the SecAgg protocol needs to accommodate the model
update size: it does no good to use Skellam mechanism with gradient quantization to a small number
of bits, if the model weights and the resulting model update ∆i for client i still uses 32 bit floats.

A.3 PRIVACY ACCOUNTING DETAILS

For privacy accounting we utilize Rényi DP (RDP):
Definition A.1. (Mironov, 2017) Let α > 1 and ε > 0. A randomised algorithm A : X ∗ → O is
(α, ε)-RDP if for every x, x′ ∈ X ∗ : x ≃ x′

Dα(A(x)∥A(x′)) ≤ ε,

where Dα is the Rényi divergence of order α:

Dα(P∥Q) =
1

α− 1
logEt∼Q

(
p(t)

q(t)

)α

.

We do privacy accounting for all the experiments based on RDP. Generally, we account for the privacy
of each individual local optimization step with joint noise from all the clients selected for a given
FL round. When the clients use Poisson subsampling to sample minibatches (we assume each client
uses the same probability for including any individual sample in the minibatch), we use standard
RDP privacy amplification results. In practice, we use the RDP accountant implemented in Opacus
(Yousefpour et al., 2021), as well as bounds for Skellam mechanism by Agarwal et al. (2021) and
tight RDP amplification by Poisson subsampling (Steinke, 2022). We calculate the privacy cost of the
entire training run in RDP, and then convert into ADP using (Mironov, 2017, Proposition 3). Note
that, as is common in DP research, we do not include the privacy cost of hyperparameter tuning in
the reported privacy budgets (see e.g. Tramèr & Boneh 2021 for some reasoning on this practice).

A.4 EXPERIMENTAL DETAILS

All the experimental settings we use satisfy Assumption 4.1. We use DP-SGD with Skellam mecha-
nism to optimise the local model parameters, and standard federated averaging as the aggregation rule
for updating the global model in all experiments. For each centralised data set (combining original
train and test sets), we split the data randomly into equal shares, which results in having almost
the same data distribution on each client. For hyperparameter optimization with each dataset, we
first split each clients’ data internally into train and test parts with fractions (.8-.2). For tuning all
hyperparameters, we use only the training fraction, and divide it further (.7-.3) into hyperparameter
train-validation. We use Bayesian optimization-based approach implemented in Weights and Biases
(Biewald, 2020) for hyperparameter tuning, and simulate FL using Flower (Beutel et al., 2020).

In general, when tuning hyperparameters we do 50 hyperparameter tuning runs. For each tuning
run, we train the model on hyperparameter training fraction, test on the validation fraction, and
try to optimise for the final model weighted validation loss. After finishing the hyperparameter
tuning, we re-train the model from scratch 5 times with different random seeds with the best found
hyperparameters using the entire original training data and testing on the test fraction. We report the
mean and the standard error of the mean (SEM) in all the figures. In Figure 2 we plot the minimum
test loss/maximum test accuracy taken over the entire training run.
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For the experiments with Fashion-MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009) data
sets, we run hyperparameter tuning separately for each combination of number of local steps {1 step,
1 epoch}, and expected minibatch sizes on the grid {64, 128, 256, 512} using Poisson subsampling.

For Fashion-MNIST the best expected batch sizes found are 512 for 1 local epoch, and 128 for 1
local step.

With CIFAR-10, due to heavy computational cost of hyperparameter tuning, we use a single expected
batch size for each configuration of local steps {1 step, 1 epoch} and FL rounds {10, 20, 40, 160}.
Concretely, we pick the best expected batch size value from the above grid when using Bayesian
optimization to tune all hyperparameters with 20 FL rounds. This results in choosing expected batch
size 128 for 1 local step and 256 for 1 local epoch. We then use these values and optimize all other
hyperparameters separately for all other FL round settings.

With ACS Income data (Ding et al., 2021), we tune all hyperparameters for each combination of
local steps {1 step, 1 epoch} with Poisson subsampling using local sampling probability on the grid
{0.4, 0.2, 0.1, 0.05} for 10 FL rounds. We report results on the best found local sampling probabilities
(0.05 for both).

For ResNeXt-29 8x64, we used pre-trained weights available from https://github.com/
bearpaw/pytorch-classification. Our implementation of the Skellam mechanism
is based on the implementation from https://github.com/facebookresearch/dp_
compression Chaudhuri et al. (2022); Guo et al. (2023).

For American Community Survey (ACS) Income data set Ding et al. (2021) we use the data for all
the states and Puerto Rico for 2018. The goal is to predict whether an individual has income greater
than $50000. Instead of simulating data splits, we use the inherent splits, i.e., we take each original
region (state or Puerto Rico) to be a client.

For training all models, we use a small cluster with NVIDIA Titan Xp, and NVIDIA Titan V GPUs.
The total compute time of all the training runs (including debugging) over all GPUs amounts roughly
to 30-60 GPU days.

A.5 ADDITIONAL RESULTS

Table A.5 shows the results from averaging several independently trained LDP models as described
in Section 5.

Table 1: Improved privacy for averaged models, Skellam mechanism, 32 bits (no quantization),
Poisson sampling with sampling fraction 0.1, each local model is unbounded (ε = 5., δ = 1e− 5)-
LDP. Averaging more models improves on the DP guarantees against adversaries who do not have
access to the original models.

Local steps Parties σtotal avg model ε

1 step 1 0.69 5.0
1 step 2 0.98 2.78
1 step 5 1.54 1.22
1 step 10 2.18 0.64
1 epoch 1 0.90 5.0
1 epoch 2 1.28 2.61
1 epoch 5 2.02 1.19
1 epoch 10 2.85 0.72
5 epochs 1 1.18 5.0
5 epochs 2 1.67 2.85
5 epochs 5 2.64 1.55
5 epochs 10 3.73 1.03
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