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Abstract

In this paper, we aim to establish a link between model learning and the mecha-
nism of curiosity. The main hypothesis developed is that exploration bonuses, as
proposed in the reinforcement learning literature, are linked to Bayesian estimation
principles through the construction of a parametric model of the causal relation-
ships between actions and observations. At odd with the classic action-conditional
Bayesian surprise widely used in the “curiosity” literature, action is here treated
as an external variable, unknowingly of the agent’s own control policy. It is thus
called the “agnostic” Bayesian surprise (ABS), interpreted as an estimate of the
information transfer between the observed data (including observations and motor
commands) and the model parameters. We present here the general guidelines of
this approach, and show results suggesting that action selection guided by infor-
mation transfer can account for certain experimental, behavioral, and neurological
data in humans.

1 Introduction

Our environment is full of unpredictable events, and the Bayesian brain hypothesis (Knill and Pouget,
2004) suggests that our brains build models to better predict these events. This assumption relies
on the idea that the sensory environment acts as a source of random events, against which the brain
would construct probabilistic models that would enable it to better predict and anticipate these events
(Von Helmholtz, 1867). If model estimation and prediction seem to constitute the mechanism through
which sensory data is processed (Rao and Ballard, 1999; L Griffiths et al., 2008; Doya, 2007; Fiser
et al., 2010), it seems, in a more fundamental way, that this same principle could also be applied
to action selection (Friston, 2010). While early works, such as Kalman (1960), established a link
between estimation and behavior optimization, the specific issue of action selection focusing on
knowledge acquisition (i.e. without considering rewards, penalties, or explicit goals) has only recently
been explored under the broader framework of “curiosity” models (Baldassarre, 2011; Gottlieb et al.,
2013). In short, this involves designing a policy whose objective is to best predict the environment’s
responses to the agent’s actions. Within this framework, two main types of approaches can be
identified: (i) perception-centric theories, such as the Bayesian surprise maximization (Itti and Baldi,
2009) and Variational Free Energy minimization principle (Friston, 2010), focusing on observation
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prediction mismatch to orient behaviour, and (ii) action-centric theories, inspired by Gibson (1979)
and Varela et al. (1991), such as the “Empowerment” principle (Klyubin et al., 2005), rooted on
Shannon’s Information theory, and focusing on self-assessment, i.e. probing environment responses
to our own action.

From the action-centered perspective, by executing motor commands, the brain itself becomes a
source of sensory changes and, more broadly, a source of random events. Consequently, actions
are not merely responses to sensory stimuli, but integral components of the variations observed
in sensory data. There is curiously, as far as we know, little attempt to conceptually concile the
generative view on action selection view with the Bayesian estimation framework. One possible
reason could be the difficulty to formalize, in terms of of Bayesian optimization, the production
of actions with no other purpose than the generation of information itself. For instance, the many
conceptual frameworks used in neuroscience either emphasize (i) the role of surprise in modulating
learning (i.e. the post-hoc discrepancy between prediction and current observation) (Gläscher et al.,
2010; Liakoni et al., 2022), or (ii) assessing the prediction of uncertainty (Angela and Dayan, 2005;
Kobayashi and Kable, 2024), in the form, e.g., of an “expected information gain” (Oaksford and
Chater, 1994; Little and Sommer, 2013; Xu et al., 2021), without considering the production of
uncertainty itself. Revisiting the fundamental concepts of Bayesian decision and information theory,
we thus propose here a decision-making mechanism in which the consideration of action embedding
in the generative model may conduct to maintaining surprise and diversity through actions, i.e.
continually seeking for action-outcome relationships that depart from the baseline. The agent may
ultimately implement a policy that approximates Shannon’s capacity on the action/outcome channel
(Klyubin et al., 2005), providing a consistent level of curiosity throughout the learning process.

2 Formal model

The approach adopted in this article thus involves a detailed analysis of a minimal estimation problem
where the agent is motivated by providing an accurate estimate of action outcomes rather than
maximizing the expected rewards, in the presence of noise. Assume an agent having to learn the
effect of its action by interacting with the environment. During learning, the agent will do two things :
(i) build a statistical model of its environment and (ii) update its behavior (selection of actions).
The first element we need to consider is thus describing a mechanism of model estimation. The
Bayesian estimation framework allows to formalize the principles of an “ideal observer” (Geisler,
1989). Consider a series of actions and outcomes, any action being a cause of sensory change, with
a data model θ that can be refined from observing both the actions a’s and observations o’s, using
Bayes rule. In a temporal sequence, the generative model (set of) parameters θt is conditionally
dependent on at (the current action), on ot (the current observation), and on the history of past
observations ht−1 = {a1, o1, ..., at−1, ot−1} (through the chain rule), i.e. θt ∼ q(Θ|at, ot, ht−1)
(fig. 1A). Importantly, by construction, an observer does not intervene onto the data it observes. It is
a pure passive method of estimation.

Then, the objective of the controller is to provide relevant sensory data to the model, in order to
have effective model updates. Before action selection, one can thus use the generative model to
make a prediction about the effect of each action, and choose the one that contributes to minimize
the error (or the surprise). It becomes obvious however (a well known caveat) that minimizing the
prediction error alone, as an ideal observer would do, should not be the objective of the controller,
because minimizing the prediction error generally implies minimizing the action diversity (dark
room problem, see Friston et al. (2012)). A general solution consists in taking into account duality
structure of estimation and control (Todorov, 2008), that allows to formulate action selection as a
min-max problem, that is minimizing the prediction error in the “worst case” of action intervention,
which conducts to maximize the “Bayesian surprise” (Itti and Baldi, 2009), classically written as a
conditional Information Gain:

max
at;ot∼p(ot|at,ht−1)

I(Θt; ot|at, ht−1) = Eθt∼q(θ|at,ot,ht−1) log q(θt|at, ot, ht−1)− log q(θt|at, ht−1) (1)

often referred as the “Learning Progress”, pivotal in the curiosity literature (Oudeyer et al., 2007;
Schmidhuber, 2010; Barto et al., 2013; Houthooft et al., 2016; Achiam and Sastry, 2017; Pathak et al.,
2017; Mazzaglia et al., 2022). Importantly, consistently with the “Thompson sampling” approach
(Thompson, 1933), the parametric model itself is a random variable, whose distribution changes
over time. On the predictive side, the information gain can be considered as an estimator of the
mutual information I(Θt;Ot|at, ht−1), between a random variable Θt and a random variable Ot,
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conditionally on at and ht−1. Interestingly, this quantity tends to decrease over time as the model
improves.

Taking now the action-centered perspective, the action at should also be considered as a random
variable, generated from the (stochastic) controller πt. The optimization problem should then be
expressed the following way :

max
πt;at,ot∼p(at,ot|ht−1)

I(Θt; at, ot|ht−1, πt) = Eθt∼q(θ|at,ot,ht−1) log q(θt|at, ot, ht−1)− log q(θt|ht−1, πt)

(2)
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Figure 1: A. Ideal Observer (parameter estimation). Action a and outcome o are the observed
variables. A belief on the Bernoulli parameter θ is inferred from the past estimation and the current
observations. B. Ideal Participant (predictive model of action selection). At step t, the generative
model predicts the next observations from Thompson sampling, allowing to select the next action
according to an MLE objective. C. Volley Ball task (see text). D. A sequence of actions and outcomes
observed in experiment (here p(W |P ) = 0.1, p(W |nP ) = 0.7). E. Bernoulli parameter inference
using a Beta-model, after trials 1, 10, 20, 30 and 40. F. Example action-value functions Top : action
conditional Bayesian Surprise, aka “Learning Progress” (LP). Middle: Self-encoding Capacity (SEC).
Bottom: Outcome divergence, interpreted as Decoding Capacity (DEC). G. Action selection biases
in models and experiments. Left : A significant entropy bias (preference for higher entropy) is
observed in experiments (14 subjects). Right : in simulation, this positive bias is only reproduced
with the DEC action value. LP shows no significant bias while while the SEC action value provides a
negative selection bias.
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with πt a distribution over actions (a policy) and the couple (at, ot) taking the role of a new
observational data. The information gain should now be considered as an estimator of the mutual
information I(Θt;At, Ot|ht−1), quantifying the transfer of information between the data and the
model parameters, i.e. telling how much knowledge about the statistics of the data is obtained from
choosing at and reading ot.

In our setup, θt plays the role of an auxiliary variable that conveys information from at toward
ot. In information theory, the passing from at toward θt corresponds to an encoding while the
passing from θt toward ot corresponds to a decoding. This allows to decompose the Bayesian
surprise into I(Θt; ot|at, ht−1) (the learning improvement) and I(Θt; at|ht−1), that appears to be
the “self-encoding” information, i.e. the encoding of the agent own actions into the parameters of the
generative model. That means, in short, considering actions as external data, i.e. ignoring they were
internally generated, thus the term “Agnostic” Bayesian Surprise.This self-encoding estimate appears
to play a pivotal role promoting a form of self-sustained information seeking found in experiments.

Going one step further, our approach also implies using Thompson Sampling at the decision step,
which means selecting an action based on a sample of the model parameters, i.e. θ̃t ∼ q(θt|at, ht−1),
instead of computing the integral, while the outcome (inferred from the generative model) is yet to be
determined. This allows to consider, in turn, a complementary “decoding capacity” estimator, putting
the focus on the outcome distribution rather than the model parameters, i.e.:

max
at;θ̃t∼q(θ|at,ht−1)

I(Ot; θ̃t|ht−1) = Eot∼p(ot|θ̃t,ht−1)
log p(ot|θ̃t, ht−1)− log p(ot|ht−1) (3)

Both formulas (2) and (3) contain a positive term reflecting a precision objective (that is having low
prediction errors), and a negative term being an estimator of the entropy of a marginal distribution,
before action encoding.

For instance, on the decoding side, I(Ot; θt|ht−1) can be rewritten as
Eθ̃t∼q(θ|at,ht)

KL(p(Ot|θ̃t, ht−1)||p(Ot|ht−1)), that is the Kullback-Leibler divergence be-
tween the outcome distribution that is conditioned on the current action, and that of the marginal
distribution. The action providing the outcomes that are the most distant from the marginal
distribution is thus supposed to be selected more often. This “maximal decoding capacity”, which is
reminiscent of the “Information bottleneck” principle (Tishby et al., 2000), conducts in fact to an
equilibrium state in which both action-outcome distributions should remain at equal distance from
the marginal distribution, favoring alternate action selection in the long run.

3 Results

Several experiments were conducted in the lab in order to specifically assess sampling preference in
undirected tasks in which subjects are asked to improve their understanding of their action/outcome
causal relationships. We take here as an example a task called the “volleyball” task (Basanisi, 2021),
in which 14 participants act as trainers tasked with hiring players for different teams. They can
simulate the outcome of 40 matches with or without a particular player. They have to decide before
each match whether to include the player or not ("PLAY" or "NOT PLAY"). Then, they observe the
match outcome, and repeat the process until all 40 trials are completed. They are finally asked to
assess the player causal effect on the team’s success rate. Importantly here, and contrarily to the
classic “bandit” setup, they are not asked to maximize success, but instead select which condition to
sample in order to form a clear quantitative view of the player causal influence on the result. Different
settings are considered in which p1 (the Bernoulli probability to win when the player is present) is
greater than p0, and vice versa. A total of 15 different settings where considered, and for each of
them the participant had to quantify how better or worst was the selection of the player.

We are interested here in the action selection strategies developed by the subjects, and by the action
selection biases. At odd with a bandit setup, a correct strategy here would be to choose the actions
’PLAY’ and ’NOT PLAY’ in equal proportion. This is mostly what is observed in humans, which
exhibit mostly balanced but irregular action selection, resembling that of a Bernoulli draw, with some
form of periodic alternation (see fig. 1D). We estimate here three variant of “information seeking”
objective functions, i.e. the Learning Progress eq. (1), the Self encoding capacity – eq. (2)), and the
“decoding capacity” (eq. (3)). As shown in fig. 1F, despite a difference in monotony, both action
values show concurrently evolving trend, i.e. implement a dynamic equilibrium in which concurrent
action values alternately take over in inverse proportion to the choice frequency. In detail, while the
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learning progress decreases over time, the self-encoding capacity shows an increasing trend, while
the decoding capacity seems to reach a plateau, approaching the “Channel capacity”.

At a more subtle level however, beyond the apparent balance between “PLAY” and “NOT PLAY”,
significant action selection biases, depending on the task setting, can be identified in behavioral data.
Of interest here, a bias toward entropic (action, outcome) relationships was observed in experiments.
Indeed, the entropy difference ∆H = H(p1) − H(p0), where H(p) = −

∑
s∈S p(s) log(p(s)),

indicates whether p1 is more (or less) irregular than p0. Such a bias was shown significant on our
group of subjects (fig. 1G (left)). We thus assessed the presence of this entropy bias on a set of 14
information seeking agents (with different initialization and seeds) resolving the task in the same
15 different settings than the subjects.Then, regrouping the task settings in “positive” vs “negative”
entropy bias, we compared action selection biases at the group level, using a non-parametric 2-sample
test (Mann-Whitney U-test) (fig. 1G (right)). Interestingly, only the agents following the DEC
objective were found to reproduce this entropy bias, while no significance was shown under the LP
objective, and even a reverse effect was observed for the SEC agents.

4 Discussion

These results finally confirm our assumptions, suggesting that human subjects may develop
information-guided action selection strategies, by combining principles of Bayesian estimation
(Knill and Pouget, 2004) and action read-out information maximization (Klyubin et al., 2005), pro-
viding an interesting insight into the likely role of action decoding in information-seeking behavior.
Indeed, while it is still premature to draw firm conclusions, the mathematical properties, behavior,
and selection biases of the action selection driven by the action-decoding capacity of the generative
model appear to be the most likely explanation for the behavioral data. The information-seeking
action-value objectives suggested here are currently being investigated in ongoing experiments, where
they serve as regressors in a model-based analysis of electrophysiological signals. Our analysis should
also be extended to the more general case of curiosity-driven reinforcement learning, by serving as
a foundation for exploration strategies based on the entropy of the marginal (i.e. action-agnostic)
distribution of observations (Lee et al., 2019; Daucé, 2022). Finally, the use of generative models for
encoding/decoding the dynamics of the controlled system, as suggested by (Janner et al., 2022), would
allow for the combination of pursuing an external objective with efficient sampling of environmental
data.
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