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Abstract

Due to the rapid growth in the scale of circuits and the desire for knowledge
transfer from old designs to new ones, deep learning technologies have been widely
exploited in Electronic Design Automation (EDA) to assist circuit design. In chip
design cycles, we might encounter heterogeneous and diverse information sources,
including the two most informative ones: the netlist and the design layout. However,
handling each information source independently is sub-optimal. In this paper, we
propose a novel way to integrate the multiple information sources under a unified
heterogeneous graph named Circuit Graph, where topological and geometrical
information is well integrated. Then, we propose Circuit GNN to fully utilize the
features of vertices, edges as well as heterogeneous information during the message
passing process. It is the first attempt to design a versatile circuit representation
that is compatible across multiple EDA tasks and stages. Experiments on the two
most representative prediction tasks in EDA show that our solution reaches state-
of-the-art performance in both logic synthesis and global placement chip design
stages. Besides, it achieves a 10x speed-up on congestion prediction compared to
the state-of-the-art model.

1 Introduction

Integrated circuits (ICs) are extensively used in modern electronic products like computers, smart-
phones, and cars. Electronic Design Automation (EDA) includes a set of tools for circuit design
in different development stages especially logic synthesis stage and placement stage (Fig.1). As
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the scale and complexity of circuits continuously grow, the design efficiency and precision of EDA
tools have become an essential problem, which attracts researchers to adopt deep learning techniques
to assist the circuit design process [1]. Remarkable progress has been made in predicting circuits’
quality and practicability in the earlier stage of the chip design to speed up optimization and reduce
design cost [2, 3]. For example, predicting congestion for circuits in physical design stage can help
detect their flaws and avoid producing defective chips, and chip design production cycle time can be
further saved if such prediction could be done in logic synthesis stage.
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Figure 1: Chip Design Flow
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Figure 2: Convert circuit design to a grid feature matrix and a homogeneous graph.

Because of the sophisticated process of circuit design, we will encounter diverse information sources
from various design stages, among which logic synthesis and placement & routing determine the
quality, e.g. time delay, of circuit and consume the majority of design pipeline time, as shown in Fig.2.
In the logic synthesis stage, a circuit design is represented as a Netlist composed of cells and nets,
where cells refer to the electronic units and nets refer to the connectivity (i.e. hyper-edges) among
the cells. After the placement & routing stage, we will obtain the circuit layout with the position
of each electronic unit provided after they have been fully placed on the circuit board. Besides, the
downstream tasks might require learning representations on both cells and nets, tailoring for specific
downstream tasks. Thus, how to better organize and fuse the diverse and heterogeneous information
provided in the context of circuit representation is an important research question.

Although the information underlying the circuit design varies according to the input stages, we can
divide it into geometrical information and topological information. The netlists only contain
the topological information (e.g. cell type and logical relationship between cells and nets), while
some geometrical information (e.g. positions of standard cells) is available after placement stage.
According to which information they focus on, we categorize the existing prediction methods in
circuit designs into topological methods and geometrical methods. The topological methods convert
circuit designs into homogeneous graphs (Fig.2(c)(d)) and solve the problems with Graph Neural
Network (GNN) [4, 5, 6], while most recent geometrical models convert the circuit designs into grid
feature matrices (see Def.1 and Fig.2(b)) and adopt Computer Vision (CV) technologies to predict
their properties [7, 8, 9].

However, the topological methods only consider the topological information in netlists and cannot
effectively perceive geometrical structure introduced after the placement stage, so their performance
on circuits after placement is greatly stifled. Besides, the geometrical models heavily rely on
geometrical information and neglect the topology underlying the netlists, so they cannot handle
circuits in stages earlier than global placement where geometry is not available. In a word, they can
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only work well on circuits either in logic synthesis stage or placement stage but are not compatible
with both. Moreover, most of the existing prediction methods design modules with prior knowledge
to serve certain applications, so they are not flexible enough to handle diverse EDA tasks. Therefore,
it is necessary to: (1) design a data structure to represent the circuit, which is adaptive to circuits in
both logic synthesis and placement stages; (2) propose an efficient and effective circuit representation
model which is compatible with two stages and various downstream tasks.

In this paper, we first convert the circuit design to Circuit Graph (see (Fig.3)), a heterogeneous graph
which preserves most of the topological and geometrical information, with a linear time consumption
to the scale of the design (see Appendix B.2 for proof). A circuit graph contains two types of vertices
i.e. cells and nets. We use pins which connect cells and nets to represent the topology, which are also
noted as topo-edges. When handling circuits in placement stage, we additionally link the cells which
are geometrically close (named geom-edges) to represent the geometry.

Then, we design Circuit GNN to process Circuit Graphs with optimal efficiency and produce
representations for cells and nets to handle diverse tasks on circuits in both logic synthesis stage
and placement stage. To collect and enrich the topological and geometrical information, we conduct
message-passing [10] on topo-edges and geom-edges individually and later fuse the messages to
update cells and nets representations. Multiple layers of such “message-passing & fusion” inference
further exploit the deep relationships between topology and geometry and facilitate Circuit GNN to
output nutritious representations. Circuit GNN is also compatible with Circuit Graphs converted from
circuits in logic synthesis stage because geom-edges’s absence will not disable the message-passing
over topo-edges and the topological information can still be collected.

In summary, our contributions are:

• To address the challenge posed by the diverse and heterogeneous information source in the
context of circuit representation, we propose a novel way to integrate the information named
Circuit Graph, a heterogeneous graph where topological and geometrical information
are integrated jointly, which is able to handle diverse circuit tasks on cell, nets level and
on different stages. To our best knowledge, this is the first unified circuit representation
approach that can be easily compatible across EDA tasks and stages.

• We propose a novel message-passing paradigm Circuit GNN that tailors the aforementioned
graph dataset structure. We design message-passing on both topological and geometrical
edges distinctively and then fuse the messages to update cells and nets representations.
The efficiency and effectiveness of our design are demonstrated both methodologically and
experimentally.

• Experiment results validate the superior performance and efficiency of Circuit Graph across
multi-stages/tasks. For circuit congestion prediction task at logic synthesis stage, it improves
the average grid-level accuracy by 16.7% against SOTA. At placement stage, it achieves
5.6% accuracy gain with 10x speed-up in congestion prediction task and 16.9% error gain
in net wirelength prediction task.

2 Related Work

2.1 Topological Methods

The topological methods in EDA focus on the logic relationships between the cells and nets and usually
reconstruct the circuit designs into graphs with vertices and edges. CongestionNet[5] and solutions
in [6] link the cell-pairs connected via nets (Fig.2(c)) and adopt popular GNNs (e.g. GAT[11]) to
generate cell representations for congestion prediction. To handle net length identification and net
delay prediction, Net2[12] links the nets connecting to one cell (Fig.2(d)) and designs a customized
GNN to obtain net representations. All these methods perceive the circuit designs as homogeneous
graphs and neglect the underlying heterogeneity, e.g. the interaction between cells and nets like
signal input/output, so their solutions suffer from information loss and will affect the performance of
downstream GNN.
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2.2 Geometrical Methods

The geometrical methods in EDA focus on the spatial information of the circuit designs. A universal
approach is to cut a circuit into small rectangles i.e. grids and convert it into RGB channels, where
the grids are treated as pixels [8, 13]. Then, they encode the netlist structure and circuit features into
green and blue channels while red channels are left for prediction targets (e.g. congestion). Finally,
they use image translation methods (e.g. pix2pix [9]) to output new images with red channels filled
and indirectly solve the EDA tasks.

The cutting-edge LHNN [14], however, converts the circuits into lattice networks [15] instead of
images, where each grid serves as an internal node in the network and each net, as an external node, is
connected to the grids it covers geometrically. LHNN successfully enhances topological information
in geometrical method and achieves SOTA performance, but it can only handle congestion prediction
task and can only work on circuits with placement information.

3 Circuit Graph
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Figure 3: Convert circuit design to Circuit Graph. (b): Take cell-net connections i.e. pins as topo-
edges. (c)(d)(e): Link the geometrically close cell-pairs to construct geom-edges.

3.1 Circuit Featurization

A circuit design is initially represented as a netlist composed of cells V and nets U (Fig.2(a)), and we
define XV ,XU to be their feature matrices. XV mainly contains the size and degree (to net) of the
cells, and XU stores the net span [14] and the degree (to cell).

Besides the basic attributes of cells and nets, the topology and geometry also play important roles in
featurizing the circuit designs. The pins P ⊆ V × U stand for the bipartite topology between cells
V and nets U , and XP , the feature matrix of P , preserves their interaction details e.g. the signal
direction (input/output). After placement, the positions of cells px,py are obtained, which serve
as a major geometrical information. When carrying out deep learning on EDA, how to arrange the
features of circuit design varies according the downstream model.

The geometrical methods cut the circuit into smaller rectangles i.e. grids2 and generate raw features
on them by synthesizing the positions of cells px,py along with cells’ and nets’ features XV ,XU
and their connections P (Fig.2(b)) [9, 14]:

Definition 1 (Geometry-driven Circuit Featurization). FG = {Xgr}, where Xgr = RCx×Cy×Dgr is
the feature matrix of grids. Note that Cx, Cy are the column and row numbers of grids and Dgr is
the dimension of grids’ raw features.

The grid feature Xgr mainly includes pin density and net density [7]. As the structure of Xgr is
similar to RGB channels of image data, CV models (e.g. CNN[9]) can be easily adopted to handle
EDA tasks where geometrical information are provided as input.

2In this paper, we use grid size 32µm× 40µm.
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The topological methods prefer to construct the circuit design as a bipartite graph (Def.2) [12]:

Definition 2 (Topology-driven Circuit Featurization). FT = {V,U ,P,XV ,XU ,XP}, where cells
V and nets U are two types of vertices, and pins P are the edges connecting them.

However, FT is usually simplified as a homogeneous graph, and is fed to some popular GNNs, such
as GAT (see Fig.2(c)(d) and Sec.2.1) [5, 6, 12], which leads to loss of heterogeneous information.

Note that the explicit raw features of grid, cell, net and pin are listed in Appendix A.

3.2 Definition of Circuit Graph

To better benefit from both the above two commonly used featurization system for circuit, we propose
a novel way to encode both the topological and geometrical information (when available) underlying
the circuits into a unified heterogeneous graph. As shown in Fig.3, we first take pins as topo-edges
(ET = P and XET

= XP ). Then we link the geometrically-close cells with geom-edges EG and
store the cell-pair distances in feature matrix XEG

. Finally, we define Circuit Graph as follows:

Definition 3 (Circuit Graph). A Circuit Graph G = {V,U , ET , EG,XV ,XU ,XET
,XEG

}, where
V,U , ET ⊆ V×U , EG ⊆ V×V refer to the set of cells, nets, topo-edges and geom-edges, respectively,
and XV ,XU ,XET

,XEG
are their feature matrices.

To preserve the topological information, we completely inherit V,U ,P and their features from FT in
Def.2 rather than simplify them as homogeneous graphs with loss of heterogeneity. For geometrical
information, to avoid calculating all O(|V|2) cell-pairs’ distances and reduce time cost to O(|V|), we
split the cells by shifted windows[16] with size (wx, wy) and link the cells with up to c (named “link
capacity”) neighbouring cells located in the same window (see explicit steps in Appendix B.1). If
we need to handle the problem at the pre-placement phase such as the logic synthesis stage, we will
not have the geom-edges among the cells and will set EG = ∅ for the representation learning phase,
which shows that Circuit Graph is compatible with circuits in logic synthesis stage.

Note that the time consumption of converting a circuit design into a Circuit Graph is O(|V|+|U|+|P|),
which is linear to the scale of the circuit (see proof in Appendix B.2).

4 Circuit GNN

4.1 Overview
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Figure 4: Framework of Circuit GNN. The topological messages between cell and net are passed
through topo-edge, while the geometrical messages among cells are passed through geom-edge.
Circuit GNN can be set to L layers.

The framework of Circuit GNN is shown in Fig.4. We first input the Circuit Graph G and initial-
ize the feature of cells V , nets U , topo-edges ET and geom-edges EG to hidden representations
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H
(0)
V ,H

(0)
U ,HET

,HEG
with Multi-Layer Perceptrons (MLPs). Then deeper representations of cells

and nets are generated via L layers of circuit message-passing. Finally, the output cell and net
representations are used for downstream tasks after passing through task-adaptive readout layers.
Note that Circuit GNN’s model sensitivity is justified in Appendix D.

4.2 Topo-Geom Message-passing

Inside each layer out of L Topo-Geom Message-passing layers, topological and geometrical informa-
tion are collected by passing messages through two types of heterogeneous edges (ET and EG). Then,
the messages are used to update cell representations HV and net representations HU . In Topological
Message-passing, the messages between cells V and nets U are transmitted through topo-edges ET :

M
(l),topo
V = ΦU

ET−−→V
msg (U , ET ,H(l)

U ,HET
) M

(l)
U = ΦV

ET−−→U
msg (V, ET ,H(l)

V ,HET
) (1)

where l is the number of current layer and ΦU
ET−−→V

msg is the message function which collects topo-

logical messages from nets U and sends them to cells V via topo-edges ET (ΦV
ET−−→U

msg similarly). In
Geometrical Message-passing, we consider the geom-edges EG and collect geometrical messages for
cells V:

M
(l),geom
V = ΦV

EG−−→V
msg (V, EG,H(l)

V ,HEG
) (2)

Then, we fuse the topological and geometrical messages and update the representations:

M
(l)
V = MaxPooling(M

(l),geom
V ,M

(l),topo
V ) (3)

H
(l+1)
V = Φupdate(H

(l)
V ,M

(l)
V ) H

(l+1)
U = Φupdate(H

(l)
U ,M

(l)
U ) (4)

where the update function Φupdate(H,M) = H +Tanh(M).

The efficiency and the capability of perceiving heterogeneous information (e.g. the edge embeddings
in ET and EG which encode topological and geometrical information) should be considered when
designing the exact message functions Φmsg . In Topological Message-passing, inspired by [17], for
a net u, we fuse the representations of surrounding cells {v|(v, u) ∈ ET } and topo-edges connecting
them:

ΦV
ET−−→U

msg ({(hV
v ,h

ET

(v,u))|(v, u) ∈ ET }) =
∑

(v,u)∈ET

(WET→Uh
ET

(v,u))⊙ (WV→Uh
V
v ) (5)

where hV
v is the representation vector of cell v, hET

(v,u) is the representation vector of topo-edge
connecting v, u, WV→U ,WET→U are learnable weight matrices and ⊙ is the element-wise multipli-

cation. As topo-edge’s representations have already been collected in ΦV
ET−−→U

msg , we only consider
net’s representations hU

u in the messages passed back to the cells, which speeds up message-passing
(because of less computation) with minor topological information loss:

ΦU
ET−−→V

msg ({hU
u |(v, u) ∈ ET }) =

∑
(v,u)∈ET

WU→Vh
U
u (6)

In Geometrical Message-passing, to enhance the geometrical information, the geom-edge’s represen-
tations are used to compute the edge weights when convolving the cells:

ΦV
EG−−→V

msg ({(hV
v∗ ,hEG

(v,v∗))|(v, v
∗) ∈ EG}) =

∑
(v,v∗)∈EG

(a⊤hEG

(v,v∗)) ·WV→Vh
V
v∗ (7)

where a is a learnable weight vector and WV→V is a learnable weight matrix.

Discussion of Inference Time. Assume that the hidden layer dimensions of cell, net, topo-

edge, geom-edge are FV , FU , FET
, FEG

. The inference times of ΦV
ET−−→U

msg ,ΦU
ET−−→V

msg ,ΦV
EG−−→V

msg are
O(|ET |(FET

FU + FVFU + FU )), O(|ET |FUFV), O(|EG|(FEG
+ F 2

V)), respectively. The time com-
plexities of fusing (MaxPooling) and updating are O(|V|FV), O(|V|FV + |U|FU ), respectively. As
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the dimensions are constant numbers and |ET | = O(|P|), |EG| = O(|V|) (see Appendix B.2), the
total inference time in one Topo-Geom Message-passing layer is O(|V|+ |U|+ |P|), which is linear
to the scale of input Circuit Graph. Therefore, our message-passing method can handle Circuit Graph
with optimal efficiency, and it is further demonstrated to be as fast as CongestionNet[5], a deep
GAT architecture, in Tab.1.

4.3 Task-adaptive Readout

After L iterations of message-passing, we read out the cell and net representations H(L)
V ,H

(L)
U to

handle diverse downstream tasks on circuits. For tasks on Cell-level (e.g. congestion prediction for
each cell [5]), to enhance the raw features, we concatenate the cell representation and its raw features
and pass them through an MLP (similarly for Net-level tasks e.g. net length prediction [12]):

ŷcell = MLP(H
(L)
V ⊕XV) ŷnet = MLP(H

(L)
U ⊕XU ) (8)

However, Grid-level tasks (e.g. congestion prediction for each grid in chip map [9]) assign targets on
each grid, which our model is not aware of. To enable model’s training and evaluation on these tasks,
we generate an output representation on each grid by mean-pooling the representation of cells inside
the grid:

ŷgrid = MLP(M̂H
(L)
V ) (9)

where M̂ ∈ RCx×Cy×|V| is the transformation matrix with
∑

k M̂i,j,k = 1,∀i, j.

5 Experiments

5.1 Tasks and Datasets

Congestion Prediction is the task of predicting the routing congestion before the wires are routed
in the detailed routing stage. It is widely used in placement tools to provide quick feedback about
the quality of placement and avoid placement solutions with poor routability [18][19][20]. In
order to identify and solve potential congested structures earlier, multiple works have attempted
to predict cell-level congestion in logic synthesis stage, before cells are placed [6][21][22]. We
conduct the experiment on ISPD20113, which contains 12 VLSI designs in total. We use 10 de-
signs (1/2/3/5/6/7/9/11/14/16) for training, design #18 for validation, and #19 for testing. We use
DREAMPlace[18] to place cells and initialize the raw features of cells, nets and grids. NCTU-GR
2.0[23], a popular global router, is used to generate the congestion targets on the grids. The congestion
target of each cell is set as the value of the grid it is located in. For congestion prediction in logic
synthesis stage, we only use the topology of the circuits and the geometry-insensitive features. For
prediction in placement, we additionally use the cells’ positions generated by DREAMPlace.

Similar to [6], we compare the prediction and ground-truth in Pearson/Spearman/Kendall correlation
on both Cell-level and Grid-level. We also divide the congestion values to [0, 0.9] and (0.9,∞) and
use precision/recall/F1-score to further evaluate their ability of identifying congestion [14].

Net Wirelength Prediction aims to deduce the wire length of each net, which is an important
indicator of the eventual chip performance [24]. We use half-perimeter wirelength (HPWL) as the
wirelength estimator, which is the most commonly used method for wirelength calculation [2]. We
conduct the experiment on DAC20124, where we use 7 designs (3/6/7/9/11/12/14) for training, design
#16 for validation and #19 for testing. DREAMPlace[18] is used to generate the targets for every net.
The featurization of circuits in both stages is the same with Congestion Prediction mentioned above.

As the regression targets of wirelength range from 0 to about 25k, we take the log10 of them to make
the distribution of targets more smoothing. We evaluate the results in Pearson/Spearman/Kendall
correlation as well as Mean Average Error (MAE) and Root Mean Square Error (RMSE).

Transfer Task is designed to further evaluate the representativeness of extracted GNN features.
Here, we first train Circuit GNN/LHNN with Congestion Prediction task and then evaluate/fine-tune
them with Wirelength Prediction.

3http://www.ispd.cc/contests/11/ispd2011_contest.html
4http://archive.sigda.org/dac2012/contest/dac2012_contest.html
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5.2 Baselines and Settings

When conducting the two tasks above, we compare our model with the following base-
lines. Traditional machine learning methods include MLP, typical graph representation models
GCN[25]/GAT[11]/GraphSAGE[26]/MPNN[10] and pix2pix[9]/, a typical image translation model
in CV. We also carry out results on EDA-customized machine learning models: (1) CongestionNet[5],
a multi-layer graph attentive architecture designed to predict circuit congestion; (2) Net2f/Net2a[12],
pre-placement net representation models with customized GNN; (3) LHNN[14]: a geometrical
congestion prediction method supplied with topological information i.e. net span. To further validate
our model’s ability to fuse the topological and geometrical information, we test two variants of our
model: Ours (w/o. geom.) which throws all geom-edges and Ours (w/o. topo.) which throws all
topo-edges in Circuit Graph (Def.3).

For cited methods, we use their default model settings. For Circuit GNN, we set hidden layer
dimensions of cell, net, topo-edge, geom-edge (FV , FU , FET

, FEG
) = (64, 128, 8, 4) and message

passing layers L = 2. We have default settings of window size (wx, wy) = (32, 40) and link capacity
c = 5, and their parameter sensitivity is tested in Appendix C to show the robustness of our model.
When training our model with Adam Optimizer, we use learning rate γ = 0.0002, learning rate
decay ∆γ = 0.02, weight decay η = 0.0002 and training epoch e = 100.

5.3 Result of Congestion Prediction

Table 1: Congestion prediction result in logic synthesis stage

Baseline Time
(s/epoch)

Cell-level Grid-level

pearson spearman kendall pearson spearman kendall

GCN 9.43 0.777 0.265 0.199 0.221 0.366 0.260
GraphSAGE 11.79 0.776 0.252 0.188 0.208 0.375 0.268

GAT 13.90 0.777 0.267 0.200 0.215 0.399 0.280
CongestionNet 22.31 0.777 0.269 0.200 0.277 0.394 0.280

MPNN 116.24 0.780 0.289 0.217 0.292 0.458 0.319
Ours (w/o. geom.) 21.62 0.779 0.289 0.217 0.315 0.468 0.329

Table 2: Congestion prediction result in placement stage (in correlation)

Baseline Time
(s/epoch)

Cell-level Grid-level

pearson spearman kendall pearson spearman kendall

GAT (w. geom.) 16.21 0.777 0.263 0.197 0.210 0.397 0.279
pix2pix 4.46 - - - 0.562 0.554 0.392
LHNN 305.47 - - - 0.703 0.695 0.540

Ours (w/o. topo.) 21.54 0.883 0.713 0.573 0.684 0.730 0.536
Ours 27.07 0.887 0.714 0.575 0.697 0.770 0.577

(a) Input (b) pix2pix (c) LHNN (d) Ours (e) Ground-truth

Figure 5: Visualization of congestion maps of circuit ispd2011/superblue19 produced by the
baselines.
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We first evaluate the congestion prediction result on circuits in logic synthesis stage when geometric
information is not available (Tab.1). Then we perform the same task in placement stage as shown in
Tab.2 and Appendix Tab.12. Note that geometrical methods pix2pix and LHNN are not aware of
cells in circuit design, so they are not evaluated on Cell-level. GAT (w. geom.) is regular GAT with
cell positions as additional features.

The results show that: (1) In logic synthesis stage, our method with only topo-edges achieves the
best performance (16.7% over cutting-edge CongestionNet) with a similar time cost compared to
traditional GNN models (5x faster than MPNN which has a time-expensive and underused edge
function for netlist input). (2) In placement stage, our method beats the cutting-edge LHNN in most
metrics (5.6% on average) while taking only one-tenth of the run-time. The superior performance of
our model is primarily attributed to the fusion of both topological and geometrical information.

Fig.5 visualizes the predicted congestion values using different methods. Compared to vision-based
method [9] and lattice network-based method [15], our proposed method can generate finer congestion
prediction with better discriminability.

5.4 Result of Net Wirelength Prediction

Table 3: Net wirelength prediction in placement stage (↓ means “lower is better”)
Baseline Time (s/epcoh) pearson spearman kendall MAE↓ RMSE↓

MLP 2.22 0.493 0.547 0.415 0.626 0.819
Net2f 10.42 0.517 0.635 0.525 0.615 0.825
Net2a 19.83 0.632 0.656 0.553 0.614 0.821

LHNN 260.00 0.801 0.796 0.603 0.581 0.780
Ours 14.79 0.848 0.835 0.646 0.483 0.683

(a) MLP (b) Net2f (c) Net2a (d) LHNN (e) Ours

Figure 6: Scattering the models’ output (axis-y) and ground-truth (axis-x) (placement stage).

The result of net wirelength prediction is shown in Appendix Tab.11 (logic synthesis stage), Tab.3 and
Fig.6 (placement stage). We obtain LHNN’s result on this task by reading out its net representations
generated in the intermediate stage. The result shows that our model achieves SOTA performance
(16.9% error gain) with similar time cost to Net2f and Net2a.

5.5 Result of Transfer Task

Here are the experimental settings:

• For the evaluation setting, a different readout module is trained from scratch, but GNN’s
parameters are fixed.

• For the fine-tuning setting, a different readout module is trained from scratch, and GNN’s
parameters are fine-tuned at the same time.

• For evaluation & fine-tuning, LHNN and Ours are only trained for 1/5 epochs of default
setting, to show the transferability of learned features.
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Table 4: Transfer experiment from congestion prediction to wirelength prediction. Results are
evaluated in Grid-level.

Baseline Time (s/epoch) pearson spearman kendall

MLP 2.22 0.493 0.547 0.415
LHNN (evaluate) 192.45 0.689 0.715 0.563
Ours (evaluate) 9.55 0.799 0.811 0.622

LHNN (fine-tune) 248.96 0.805 0.794 0.612
Ours (fine-tune) 14.8 0.842 0.829 0.639

LHNN 260 0.801 0.796 0.603
Ours 14.79 0.848 0.835 0.646

The results show that the knowledge Circuit GNN learns from Congestion Prediction can be eas-
ily transferred to another task (no matter for direct use or fine-tuning), while LHNN is weak in
transferability.

6 Conclusion and Future Work

We present a versatile graph neural network to facilitate EDA circuit design process. To this end, we
design a heterogeneous graph, Circuit Graph, to integrate topological and geometrical information
into a unified data structure, based on which we further propose a message-passing and fusion
approach named Circuit GNN. It is the first circuit representation method applied to multiple EDA
tasks and stages. By integrating multi-source information, Circuit Graph outperforms previous
methods in prediction performance and computation time. Our work further supports the EDA
process “shift-left”, a new future direction that aims to speed-up circuit design by deeply combining
artificial intelligence in all EDA tool chains.

Limitations Although AI for EDA becomes a hot research topic recently and some deep learning-
driven techniques have been adopted in the main-stream EDA tools (Cadence, Synopsys, etc.), there
is still a gap between the novel machine learning algorithms and their application in commercial tools.
Moreover, in early EDA stages, other circuit representations like data-flow graph or And-Inverter
Graph (AIG) graph might be used. As the meaning of nodes and edges in these graphs are different
from netlist graph used in the paper, our method might not apply to these graphs in early EDA stages.

Societal Impact. Our solution explores dual-stage circuit representation to serve various EDA
downstream tasks, which have limited societal impact. Whatever, there is a minimal possibility of
misuse that violate some ethics of life science.
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