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Abstract

Large-scale machine learning (ML) models are increasingly being used in critical domains
like education, lending, recruitment, healthcare, criminal justice, etc. However, the training,
deployment, and utilization of these models demand substantial computational resources.
To decrease computation and memory costs, machine learning models with sparse weight
matrices are widely used in the literature. Among sparse models, those with special sparse
structures (e.g., models with block-wise sparse weight matrices) fit better with the hardware
accelerators and can decrease the memory and computation costs during the inference.
Unfortunately, while there are several efficient training methods, none of them are designed
to train a block-wise sparse model efficiently. As a result, the current methods for training
block-wise sparse models start with full and dense models leading to inefficient training.
In this work, we focus on training models with block-wise sparse matrices and propose an
efficient training algorithm to decrease both computation and memory costs during training
and inference. In addition, we will show that our proposed method enables us to efficiently
find the right block size for the sparsity pattern during the training process. Our extensive
empirical and theoretical analyses show that our algorithms can decrease the computation
and memory costs significantly without a performance drop compared to baselines.1

1 Introduction

Deep learning models have achieved remarkable success across various domains, but training these models
on resource-constrained devices remains challenging due to their computational and memory requirements.
To decrease memory and computational costs, sparse machine learning models have been widely used in
literature. Sparse networks are mainly categorized into two groups: fine-grained sparse networks and coarse-
grained sparse networks (see Figure 1 which provides an example of a fine-grained sparse weight matrix
and two examples of coarse-grained sparse weight matrices). In fine-grained sparse networks, the weight
matrices are sparse but they do not have any special structure. This type of sparsity generally improves the
storage cost but does not improve the inference time significantly. This is because the random distribution
in fine-grained sparse weight matrices does not fit with the hardware accelerators, and they can speed up

1A preliminary version of this work was presented at the NeurIPS Workshop on Machine Learning and Compression (Zhu
et al., 2024).
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Figure 1: Examples for fine-grained and coarse-grained sparse matrices. White entries represent zero value.

the inference time only if the sparsity ratio is higher than 95% (Wang et al., 2018; Wen et al., 2016). On
the other hand, coarse-grained sparse matrices are better alternatives to speed up inference (Parashar et al.,
2017; Han et al., 2017; 2016a).

To train coarse-grained (structured) sparse weight matrices, it is common to use iterative pruning (Tan &
Motani, 2020; Yu et al., 2023) or group lasso techniques (Behnke & Heafield, 2021; Rao et al., 2015; Ida
et al., 2019). Iterative pruning works as follows. First, a sparsity pattern is defined (e.g., 2:4 sparsity (Mishra
et al., 2021) or channel-wise sparsity (Liu et al., 2017)). Based on this pattern, the weight parameters are
divided into separate groups. A deep model is trained and then by looking at weight matrices, we prune
some of the groups that are not impacting the performance of the model. Then, we re-train (fine-tune)
the remaining weights and again prune those groups that have the smallest impact on the performance.
This procedure is repeated until we achieve the desired sparse network. Group LASSO technique adds a
regularizer to the objective function which ensures that weights in several groups go to zero during the
training. In particular, for Group LASSO, first, we divide the parameters in each weight matrix into several
groups (each block can be considered as a group) and add a regularizer for each group to the objective
function. As a result, the weights in certain groups with minimal impact on accuracy will eventually go to
zero during training. Nevertheless, iterative pruning and group lasso techniques mainly focus on reducing
memory and computation costs at the time of inference. However, they can be very costly during the training
as the training process starts with the full network (i.e., all the weights are non-zero at the beginning) and
the gradient needs to be calculated with respect to all the model parameters.

In this paper, we propose a technique that enables us to train block-wise sparse matrices that improve
both computation and memory costs during training and inference. We leverage the Kronecker product
decomposition to propose a new matrix factorization technique suitable for block-wise sparse matrices. Our
contributions in this work can be summarized as follows,

• To the best of our knowledge, this is the first work that focuses on efficient training for block-wise
sparse models. This work is also the first work that makes a connection between block-wise sparse
matrices and the Kronecker product decomposition for efficient training. While there have been
several algorithms for training block-wise sparse models (Cai et al., 2022; Liu et al., 2021a; Li et al.,
2017a; Oyedotun et al., 2020a), they are not efficient during training.

• We theoretically demonstrate every block-wise sparse matrix can be represented using our proposed
decomposition resulting in no significant performance drop.

• Through extensive theoretical analyses, we show that our proposed approach decreases the number
of flops and training parameters during the training compared to existing methods for training
block-wise sparse models.

• Through extensive empirical study, we show that in some cases, our proposed method can reduce
the number of training parameters and training FLOPs by 97% with a minimal accuracy drop.

• We also show that our proposed algorithm is able to find the optimal block size for block-wise sparse
matrices efficiently in one round of training.

The remainder of the paper is organized as follows. We review related work in Section 2. We present the
preliminaries in Section 3, followed by problem formulation in Section 4. We discuss how our algorithm can
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be used for optimal pattern selection in Section 5. We present numerical results in Section 6, and conclude
in Section 7.

2 Related Work

Pruning is an effective technique for reducing model parameters and has seen tremendous progress in recent
years (Reed, 1993; Tanaka et al., 2020b; Han et al., 2016b). Pruning generally can be divided into structured
pruning (Cai et al., 2022; Liu et al., 2021a; Li et al., 2017a) and unstructured pruning (Dong et al., 2017; Sanh
et al., 2020). Unstructured pruning finds fine-grained sparse matrices by setting the unimportant weights
to zero (See Figure 1). While unstructured pruning can decrease the number of model parameters at the
inference time, it generally does not improve the inference time (Wang et al., 2018). Structured pruning, on
the other hand, trains coarse-grained sparse matrices leading to a decrease in the memory cost and inference
time. It is important to note that pruning methods generally start with a dense full network and prune the
network in one-shot or in several iterations and retrain the network to improve the performance. As a result,
memory and computation costs during the training can be expensive. Recently, several pruning methods
have been proposed to decrease the training cost as well. These methods try to prune the network right after
initialization and train the sparse network (Lee et al., 2019a). The current Pruning After Initialization (PAI)
methods are able to perform unstructured pruning, and they need large memory at the time of initialization
which makes it impossible to do training on small devices. On the other hand, our proposed method is able
to decrease the number of parameters and flops from the beginning of the initialization and train block-wise
sparse matrices to decrease inference memory and time.

Regularization is another method for training a network with sparse weight matrices. It is common to
add l1 or l0 regularizer to the loss function (Ma et al., 2019; Louizos et al., 2017) to find unstructured
sparse weight matrices. Group LASSO, an extension of the LASSO method, is a method that imposes a
regularizer to pre-defined groups of model parameters leading to block-wise or group-wise sparsity structures
in deep neural networks (Liu et al., 2015; Scardapane et al., 2017; Behnke & Heafield, 2021). To improve
the performance of group LASSO, recently a new variation of group LASSO called elastic group LASSO
(Oyedotun et al., 2020a) has been proposed. It is worth mentioning that group LASSO is only able to
remove the computation and memory cost during inference. The training cost associated with group LASSO
is relatively high as this method starts the training with a dense network.

Matrix/tensor factorization (Yu et al., 2017; Wu & Feng, 2022) is a compression method that is able to
reduce the training and inference cost by reducing the number of training parameters from the beginning of
the training process. While matrix/tensor factorization has been widely used for model compression (Hsu
et al., 2022; Hameed et al., 2022; Edalati et al., 2021; Yin et al., 2022), these methods are not able to find
block-wise sparse matrices for deep models.

Knowledge Distillation (KD) methods train a smaller student network based on the guidance of a bigger
teacher network (Hinton et al., 2015; Li et al., 2017b). Knowledge distillation methods try to make sure
that the student network mimics the behavior of teacher network by comparing outputs (Cho & Hariharan,
2019; Furlanello et al., 2018; Mirzadeh et al., 2020; Zhang et al., 2018) or intermediate features (Heo et al.,
2019a;b; Huang & Wang, 2017; Kim et al., 2018; Park et al., 2019; Tian et al., 2019). The training process
under KD can be computationally heavy as we need to train a teacher model first and then use the teacher
model to train a student model (Yim et al., 2017).

Block-wise Sparsity is a special type of structured sparsity. Zero elements of a block-wise sparse matrix
can be stored contiguously in memory reducing irregular memory access and taking advantage of array-data-
path in modern processors. D’Alberto et al. (2024) show that block-wise sparse models can run efficiently
on specific devices. In the literature, block-wise sparsity has been implemented by using LASSO regulation
(Narang et al., 2017), group regulation (Wen et al., 2016; Vooturi et al., 2018), and filtering (Anwar et al.,
2015).

Sparse Training aims to decrease number of parameters that are being updated during gradient descent.
Sparse training methods generally are categorized into two groups: static sparse training and dynamic sparse
training. Static sparse training (Dao et al., 2022; Lee et al., 2019b; Yuan et al., 2021) identifies important
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parameters and finds the sparse mask at beginning of training based on a heuristic metric. As a result,
only a subset of parameters are updated during the gradient descent. For example, Grasp method (Wang
et al., 2020) uses gradient flow, SynFlow method (Tanaka et al., 2020a) uses synaptic strengths, and FISH
mask (Sung et al., 2021) uses Fisher information to find the sparse mask. Dynamic sparse training, on
the other hand, allows to modify the sparsity pattern during training to reduce the training footprint. For
example, Mocanu et al. (2018) use the weight magnitude to prune the connection between neurons during
the training, and RigL (Evci et al., 2020) uses both weight magnitude and gradient magnitude to identify
important weights in each epoch and update them. However, these efficient training methods are working
with unstructured sparse mask and may not lead to training acceleration. Fang et al. (2024) consider
N:M sparsity pattern for hardware acceleration and implement an efficient training for this sparsity pattern.
Jiang et al. (2024) also propose an efficient training scheme by shuffling rows or column based on the Jaccard
similarity. While these approaches can reduce the number of training parameters with structured sparsity,
they are designed to find block-wise sparse models.

In this paper, our goal is to propose a new method for training block-wise sparse model that is efficient
during both training and inference. The proposed method can decrease the number of training parameters
and flops significantly without degrading the model performance compared to the baselines.

3 Preliminary

Group LASSO: LASSO is a method for learning sparse models by adding a penalty term to the cost
function, which is proportional to the l1 norm of the model’s coefficients. This encourages the model to be
sparse and sets some of the model parameters to be zero. Group LASSO is an extension of LASSO which
divides the model parameters into several groups and imposes a regularizer on each group. This encourages
the coefficient in several groups to go to zero during the training. Group LASSO can be used to train
block-wise sparse matrices (see Figure 2) by defining each block as a group. In particular, consider a neural
network with L layers, with W being the weight matrices of the whole network and W [l] being the weight
matrix in layer l. Also, let W

[l]
g denotes the block/group g in layer l. Then, the group LASSO solves the

following optimization problem,

Ŵλ = arg min
W

J (W [1], . . . , W [L]; D) + λ

L∑
l=1

∑
g

||W [l]
g ||F , (1)

where Ŵλ is the optimized weight matrices with hyperparameter λ, J is the loss function, and D is the
training dataset, and ||.||F denotes the Frobenius norm.

Kronecker Product Decomposition: The Kronecker product, denoted by ⊗, is a mathematical opera-
tion that combines two matrices to form a larger matrix. Given two matrices A and B, if A is of size m1 ×n1
and B is of size m2 × n2 , then the Kronecker product of A and B results in a matrix of size m1m2 × n1n2.
Let W be an m by n matrix, where m = m1m2, n = n1n2 we can decompose this matrix using the Kronecker
product decomposition as follows (Van Loan, 2000),

W =
∑R

i=1 Ai ⊗ Bi =
∑R

i=1 Wi, (2)

where Ai is an m1 by n1 matrix, Bi is an m2 by n2 matrix, and R = min{m1n1, m2n2}. Given this
decomposition, Wx (where x ∈ Rn×1) also can be calculated as follows, Wx = vec(

∑R
i=1 Bix̌AT

i ), where x̌
is n2 by n1 matrix and can be obtained by re-arranging the elements of vector x (Van Loan, 2000).

It turns out that the low-rank approximation is a special case of decomposition equation 2. More precisely,
if we set m2 = 1 and n1 = 1, Equation 2 is equivalent to the low-rank approximation. Let’s assume that we
want to approximate matrix W by r terms of equation 2. In this case, W ≈ Wr =

∑r
i=1 Ai ⊗ Bi, where Wr

is expressed by r(m1n1 + m2n2) parameters.

It is worth mentioning that similar to the low-rank approximation, Kronecker product decomposition can
be used for compressing deep models (Jagtap et al., 2022; Hameed et al., 2022). However, to the best of our
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Figure 2: Illustration of why equation 3 leads to block-wise sparsity when S[l] is sparse. White entries
represent zero value.

knowledge, there is no tensor/matrix factorization for generating and training block-wise sparse matrices.
In the next section, we will explain how we can take advantage of Kronecker product decomposition to train
efficiently block-wise sparse matrices and reduce the memory footprint during the training process.

4 Problem Statement and Proposed Solution

As we discussed in Section 2, there are several methods including iterative pruning or group LASSO to train
block-wise sparse weight matrices. However, these methods have to start with a full uncompressed model
and sparsify the weight matrices gradually during the training. As a result, these methods do not decrease
computation and memory during training. However, in this part, we propose a new matrix decomposition
method leveraging the Kronecker product decomposition algorithm to train block-wise sparse matrices with
fewer training parameters and fewer flops for forward and backward propagation compared to the group
LASSO and structured pruning approaches during training. During the training period, we utilize decom-
posed matrices, which reduces the number of training parameters and flops. This allows the training process
to be deployed on resource constrained devices. During inference, our algorithm directly uses block-wise
sparse matrices without any decomposition to improve efficiency.

To demonstrate how to learn a structured sparse weight matrix efficiently, assume that W [l] is the weight
matrix associated with layer l (if we are working with a convolutional neural network, W [l] can be a tensor.)
Instead of learning W [l], we propose to estimate it by

W [l]
r =

rl∑
i=1

(S[l] ⊙ A
[l]
i ) ⊗ B

[l]
i , (3)

where rl is a hyper-parameter called rank, ⊙ is element-wise product, S[l] and A
[l]
i are m1 by n1 matrices and

B
[l]
i is an m2 by n2 matrices. Then, we can train S[l], (A[l]

i , B
[l]
i )rl

i=1 directly during the training process (we
calculate the gradient of the loss function with respect to these parameters). By imposing an l1 regularizer
on S[l], we can make sure that S[l] is sparse in the following problem,

min
[S[l],A

[l]
i

,B
[l]
i

]i≤rl,l≤L

J ([S[l], A
[l]
i , B

[l]
i ]i≤rl,l≤L, D) + λ

L∑
l=1

||S[l]||1, (4)

where λ is a constant and controls the sparsity rate. If S[l] is an unstructured sparse matrix, W
[l]
r =∑rl

i=1(S[l] ⊙ A
[l]
i ) ⊗ B

[l]
i will be a block-wise sparse matrix (see Figure 2). After training, depending our

application, we can use W
[l]
r during the inference time or we can use S[l], (A[l]

i , B
[l]
i )rl

i=1 directly during the
inference time. It is worth mentioning that the decomposition in equation 3 provides several degrees of
freedom and hyper-parameters (i.e., m1, m2, n1, n2, rl). Note that the block size in W

[l]
r is determined by

the size of matrix B
[l]
i (i.e., (m2, n2)). To choose the right hyper-parameters, it is common to choose to try

different sets of hyper-parameters and pick the one with desirable performance and efficiency. If our only
goal is to minimize the number of parameters using equation 3, then the hyper-paramters can be determined
by an optimization problem. In particular, we can set rl = 1 and solve the following integer programming,

min
m1,n1,m2,n2

2m1n1 + m2n2, s.t., m1m2 = m, n1n2 = n, (5)
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where the objective function is equal to the number of parameters in equation 3. The above optimization
problem is nonconvex. We can solve it by setting m2 = m/m1 and n2 = n/n1. The above optimization
problem reduces to minm1,n1 2m1n1 + mn

m1·n1
. By the first order condition, the minimizer of 2m1n1 + mn

m1·n1

is m1n1 =
√

0.5 · mn if
√

0.5 · mn is integer (if
√

0.5 · mn is not an integer, we can use integer programming
tools like branch and bound to solve the problem). To clarify, we provide an example.
Example 1. Let m = 23 and n = 28. In this case, for the minimum possible space complexity under
factorization equation 3, we need to have m1n1 = 32. For example, we can set m1 = 4, n1 = 8, m2 = 2, n2 =
32. In this case, the total number of parameters would be 128. The original matrix W [l], has 2048 training
parameters. Therefore, at the time of training, using equation 3, we need to train 128 variables while the
group LASSO technique needs to train 2048 variables. At the inference time, we can use directly sparse
matrix (S[l] ⊙ A

[l]
1 ) and B

[l]
1 to make an inference. We can also use block-wise sparse matrix W

[l]
1 to make

an inference.

The above example shows the proposed factorization in equation 3 can reduce the training parameters
significantly. We can also optimize rl, m1, n1, m2, n2 for maximizing accuracy and performance. We will
discuss how we can choose rl, m1, n1, m2, n2, and the right block size for better accuracy in Section 5.

In the remaining part of this section, we explain how any block-wise sparse matrix can be represented by
equation 3 and why the proposed factorization can decrease the number of flops during forward and backward
propagation compared to group LASSO/Structured Pruning.
Proposition 1. Let Ŵ [l] be a block-wise sparse matrix trained by group LASSO or iterative pruning. If the
blocks have the same size, then there exists r̂l and Ŝ[l] and (Â[l]

i , B̂
[l]
i )rl

i=1 such that Ŵ [l] =
∑r̂l

i=1(Ŝ[l] ⊙ Â
[l]
i ) ⊗

B̂
[l]
i .

Intuitively, the above proposition implies that if the hyper-parameters rl, n1, n2, m1, m2 are chosen correctly,
then training matrices S[l], (A[l]

i , B
[l]
i )rl

i=1 should have the same performance of a model trained by the group
LASSO or pruning technique.

Proof. Here, we will prove that each block-wise sparse matrix can be decomposed by the decomposition in
equation 3.

We assume the block-wise sparse matrix Ŵ [l] has a size of m by n, the number of groups is m1 × n1 and the
block size is m2 by n2 where m1 × m2 = m and n1 × n2 = n. We want to find Ŝ[l], Â

[l]
i , B̂

[l]
i such that the

following holds,

Ŵ [l] =
∑r

i=1 (Ŝ[l] ⊙ Â
[l]
i ) ⊗ B̂

[l]
i , (6)

where Ŵ [l] is given.

Assume that T groups among n1m1 groups are non-zero in matrix Ŵ [l] and the index of the groups are
t1, t2, ..., tT . We set r = T and we generate a series of Â

[l]
i and B̂

[l]
i for i = 1, ..., T to make sure equation 6

holds. In particular, we set B̂
[l]
i matrix to be equal to the block of ti in matrix Ŵ [l], and Â

[l]
i is a matrix that

only has one entry equal to 1 which is associated with block ti and the other entries are zeros. We also can
set Ŝ[l] to be a binary matrix. Each entry in Ŝ[l] corresponds to a block in Ŵ [l]. If a block in Ŵ [l] is non-zero
(resp. zero), then the entry associated with that block in Ŝ[l] would be 1 (resp. 0). By this construction,
Ŝ[l], Â

[l]
i , B̂

[l]
i satisfy equation 6.

Proposition 2. [Number of Flops for Forward and Backward Passes in A Linear Model] Consider mul-
tivariate linear regression model h(x) = Wx, where W is an m by n matrix, and x ∈ Rn is the input
feature vector. Let D = {(xj , yj)|j = 1, . . . , N} be the training dataset, and J (W ; D) =

∑N
j=1 ||Wxj − yj ||22

be the objective function. If we estimate W by
∑r

i=1(S ⊙ Ai) ⊗ Bi and write J (S, (Ai, Bi)r
i=1; D) =∑N

j=1 ||
∑r

i=1[(S ⊙ Ai) ⊗ Bi]xj − yj ||22, then,
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• Forward pass: Number of flops for calculating J (W ; D) is O(2(n + 1)mN). On the other hand,
J (S, (Ai, Bi)r

i=1; D) can be calculated by O (2Nrm1n1(m2 + n2) − Nr(m + 2m2n1) + 3Nm) flops.

• Backward pass: Number of flops for calculating gradient of J (W ; D) with respect to W is
O(mN(2n + 1)). On the other hand, ∂J (S,(Ai,Bi)r

i=1;D)
∂Ai

and ∂J (S,(Ai,Bi)r
i=1;D)

∂Bi
can be calculated by

O(2Nn1m2(n2 +m1)−Nn1m2 +m1n1) flops and O(2Nm1n2(m2 +n1)+m1n1 −Nn2m1) flops, re-
spectively. In addition, ∂J (S,(Ai,Bi)r

i=1;D)
∂S needs O (Nm + Nr(4m1m2n1 − m2n1 + 2m2n1n2)) flops.

The above proposition implies forward and backward passes for J (S, (Ai, Bi)r
i=1, D) can be more efficient

compared to calculating J (W, D) if right values for parameters m1, n1, m2, n2, r are chosen. This is be-
cause the forward and backward passes for J (W, D) needs O(mnN) while mn does not appear in the time
complexity of forward and backward passes of J (S, (Ai, Bi)r

i=1, D). In addition to flops for calculating the
gradient, in each epoch of gradient descent for J (W, D), we need to update mn parameters which needs
O(mn) flops. On the other hand, in each epoch of gradient descent for J (S, (Ai, Bi)r

i=1, D), after calculating
the gradient, we update r(m1n1 + m2n2) parameters which need O(r(m1n1 + m2n2)) flops. This is another
reason that the training process can be more efficient under decomposition equation 3.

We want to emphasize that our experimental results also show that number flops during the training can
be significantly decreased by decomposition equation 3 (e.g., Table 1 shows 87% reduction in number flops
without any accuracy drop, and Table 3 shows 97% reduction in number flops with 1 percentage point
performance drop compared to the dense model.) Next, we extend the results of Proposition 2 to a network
with two layers. We will also perform analysis for a larger network in Section 6.
Proposition 3. Consider a two-layer multivariate regression model h(x) = W [2]σ(W [1]x), where W ∈
Rm[2]×m[1] is the weight matrix of the first layer, and W [2] ∈ Rm[3]×m[1] is the weight matrix of the second
layer. x ∈ Rm[1] is the input feature vector. Let D = {(xj , yj)|j = 1, . . . , N} be the training dataset, and
J (W [1], W [2]; D) =

∑N
j=1 ||W [2]σ(W [1]xj) − yj ||2F be the objective function. Assume that we estimate W [1]

by
∑r[1]

i=1(S[1] ⊙A
[1]
i )⊗B

[1]
i and W [2] by

∑r[2]

i=1(S[2] ⊙A
[2]
i )⊗B

[2]
i . In the first layer, S[1] and A

[1]
i ∈ Rm

[2]
1 ×m

[1]
1 ,

B
[1]
i ∈ Rm

[2]
2 ×m

[1]
2 , where m

[1]
1 m

[1]
2 = m[1], m

[2]
1 m

[2]
2 = m[2]. In the second layer, S[2] and A

[2]
i ∈ Rm

[3]
1 ×m

[2]
1 ,

B
[2]
i ∈ Rm

[3]
2 ×m

[2]
2 , where m

[3]
1 m

[3]
2 = m[3]. Then,

• Forward pass: Number of flops for calculating J (W [1], W [2]; D) is
O

(
2N(m[1]m[2] + m[2]m[3] + m[3])

)
. Number of flops with the decomposition in equation 3 is

O
(
r[1]C1 + r[2]C2 + Nm[2] + 3Nm[3]), where C1 = 2Nm[1]m

[2]
2 + 2Nm[2]m

[1]
1 − Nm

[2]
2 (m[1]

1 + m
[2]
1 ),

C2 = 2Nm[2]m
[3]
2 + 2Nm[3]m

[2]
1 − Nm

[3]
2 (m[2]

1 + m
[3]
1 ).

• Backward pass: Number of flops for calculating gradients with respect to W [1] and W [2]

is O
(
N(2m[1]m[2] + 4m[2]m[3] + m[3])

)
. Number of flops with the decomposition in equation 3

is O
(
N(m[2] + m[3]) + C3 + C4

)
, where C3 = r[2]Nm

[2]
1 (4m[3] − m

[3]
2 ) + 2r[2]Nm[2]m

[3]
2 , C4 =

r[1]Nm
[3]
1 (4m[2] − m

[2]
2 ) + 2r[1]Nm[1]m

[2]
2 .

The above proposition implies that the results of Proposition 2 can be extended to non-linear models.
In particular, Proposition 3 implies that if ranks r[1] and r[2] are small enough and right dimensions for
A

[1]
i , A

[2]
i , B

[1]
i , B

[2]
i are selected, then the decomposition in equation 3 can make the forward and backward

passes more efficient in a two-layer neural network. This is because m[1] · m[2] and m[2] · m[3] do not appear
in the time complexity after the decomposition.

While we solve the proposed optimization problem 4 during training, at the inference time, we use sparse
matrix Ŵ [l] =

∑r
i=1 (Ŝ[l] ⊙ Â

[l]
i ) ⊗ B̂

[l]
i . As a result, during inference, the memory and flops reduction for

the proposed method compared to the the dense model is approximately proportional to the sparsity rate
(note that actual reduction depends on the implementation of sparse matrices in pytorch, tensorflow, or
other deep learning libraries, and sparsity rate is only a proxy for reduction in memory and flops during
inference.). During training, the memory required for model parameters is proportional to the number of
training parameters in optimization problem 4.
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5 Pattern Selection for Performance Improvement

As we discussed in the previous section, the block size for training block-wise sparse matrices is a
hyper-parameter, and selecting the right block size depends on our objective. For instance, by solv-
ing equation 5, we can find the block size that minimizes the number of training parameters. In
this section, we explain how we can find the right block size for maximizing accuracy with only
one round of training. We will argue that under factorization stated in equation 3, we can ef-
ficiently find the right block size compared to group LASSO and iterative pruning. First, we
want to emphasize the number of possible block sizes for training block-wise sparse matrices is fi-
nite. For example, if the size of matrix W [l] is 10 by 10, then there are 14 possible block sizes:
1 by 10, 1 by 5, 1 by 2, 2 by 10, 2 by 5, 2 by 2, 2 by 1, 5 by 10, 5 by 5, 5 by 2, 5 by 10, 10 by 1, 10
by 2, 10 by 5. If we want to consider a block size with an exponent of 2, then 2 by 2 will be the only option.
Let P = {P1, P2, ..., PK} be a set of finite sparsity patterns that we are interested in.2 Each Pk determines
the block size for all the layers. If we want to use iterative pruning or group LASSO technique to find the
best pattern, we have to run the training procedure for each Pk and pick the one that achieves the highest
accuracy. On the other, our method can select a pattern leading to the best accuracy in one round of training
while keeping the number of training parameters less than that of group LASSO or iterative pruning. In
particular, we estimate W [l],(k) =

∑rl

i=1[S[l],(k) ⊙ A
[l],(k)
i ] ⊗ B

[l],(k)
i , where S[l],(k), A

[l],(k)
i , B

[l],(k)
i , 1 ≤ l ≤ L

follows pattern Pk. Then, for the pattern selection, we solve the following optimization problem,

min
K∑

k=1
J([S[l],(k), A

[l],(k)
i , B

[l],(k)
i ]i≤rl,l≤L, D) + λ1

K∑
k

√√√√ L∑
l=1

||S[l],(k)||2F + λ2

K∑
i=1

L∑
l=1

||S[l],(k)||1, (7)

where [S[l],(k), A
[l],(k)
i , B

[l],(k)
i ]i≤rl,l≤L are the training parameters, and λ1 and λ2 are regularizer parameters.

The above optimization problem can be solved using gradient descent. The second term in equation 7
imposes a separate regularizer on each pattern. Since the square root is not differentiable at zero, this
type of regularizer encourages all the weight associated with a pattern to go to zero if the pattern does
not provide high performance (similar to the group LASSO technique). In the training process, we would
gradually increase λ1 until only one group of parameters remains non-zero. The third term encourages the
trained S[l](k) to be sparse. If matrix S[l],(k) is sparse, then the weight matrices in later l are block-wise
sparse.

The benefit of using optimization problem equation 7 for pattern selection is that the number of training
parameters significantly reduced compared to group LASSO or iterative pruning. Also, compared with the
iterative pruning or group LASSO, we only need one round of training to get the right pattern structure.
On the other hand, under group LASSO or iterative pruning, we need to run the training process for each
pattern separately leading to heavy computation costs. To make this clear, we provide an example.
Example 2. Consider a linear model with a weight matrix with dimension (m = 23, n = 28). Assume that
we have K = 2 options for the block-size: 4 by 4 and 8 by 8. Let fix rl = 4. In this case, for optimization
problem equation 7, we have 5 × (2 × 26 + 25) + 4 × (4 × 4 + 8 × 8) = 1120 parameters for pattern selection.
On the other hand, the group LASSO technique needs to train 2048 variables for each pattern.

6 Experiment

6.1 Linear Model on MNIST

The MNIST dataset contains 60000 training images and 10000 testing images which are gray pictures of
digits 0 to 9. The size of each image is 28 × 28 pixels. In the first experiment, we train a linear layer with
a softmax activation function that takes a flattened image as its input.

2Generally, we need to consider a handful of options for block size. For instance, it is common to use the same block size
across different layers and choose a block size that is an exponent of 2 (Gray et al., 2017). In our experiment, we consider
K ≤ 5.
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Table 1 compares our algorithm which is based on KDP with group LASSO (Scardapane et al., 2017) and
the elastic group LASSO (Oyedotun et al., 2020b), and RigL (Evci et al., 2020). We run our algorithm,
group LASSO, elastic group LASSO, and RigL for different block sizes. Note that RigL algorithm has not
been designed for training block-wise sparse models. However, we can modify this algorithm for block-wise
sparse models. In particular, instead of pruning based on the absolute value of each parameter and absolute
value of the gradient, we use the norm 1 of each block and the norm 1 of the gradients within each block
identify important blocks that needs to be updated during the training.

We keep the rank of our decomposition equal to 2.3 To report the standard deviation, we run our experiment
five times. Column FLOPs indicate the number of FLOPs needed during forward and backward paths. We
used PyTorch package ptflops to calculate the number of flops. This table shows that our method generally
can achieve better accuracy and better sparsity rate compared to group LASSO and elastic group LASSO.
The number of FLOPs and training parameters also are smaller under our algorithms. For instance, when
the block size is 16 by 2, the number of FLOPs and training parameters is significantly lower than the
baselines. However, our algorithm is able to achieve a higher accuracy and a higher sparsity rate compared
to the baselines.

As another baseline, we compare our algorithm with unstructured pruning (Han et al., 2015) (iterative
pruning in the table). Generally, unstructured pruning can achieve better accuracy compared to structured
and block-wise pruning. This table shows that when block size is 2 by 2, our algorithm can achieve better
accuracy and better sparsity rate compared to all the baselines including iterative pruning. For other block
sizes, our algorithm decreases the number of flops and training parameters significantly compared to baselines.
As a result, some of the baselines may achieve better accuracy compared to our method.

Table 1: One Linear Layer Model compression results on MNIST dataset

Block size Models Accuracy Sparsity Rate Training Params Training FLOPs
(2,2) Group LASSO 85.18 ± 0.37 49.67 ± 0.10 7.84K 7.85k
(2,2) elastic group LASSO 80.61 ± 0.44 42.11 ± 0.76 7.84K 7.85k
(2,2) Blockwise Rigl 86.66 ± 0.36 50.61 ± 0.00 7.84K 7.85k
(2,2) Ours 88.97 ± 1.50 86.43 ± 0.30 5.89K 7.84k
(4,2) Group LASSO 74.12 ± 0.98 44.38 ± 1.09 7.84K 7.85k
(4,2) elastic group LASSO 76.66 ± 1.59 44.32 ± 3.35 7.84K 7.85k
(4,2) Blockwise Rigl 87.13 ± 0.44 50.61 ± 0.00 7.84K 7.85k
(4,2) Ours 81.75 ± 0.77 38.57 ± 0.48 2.96k 3.92k
(8,2) Group LASSO 75.82 ± 0.73 40.87 ± 0.89 7.84K 7.85k
(8,2) elastic group LASSO 80.61 ± 0.44 42.11 ± 0.76 7.84K 7.85k
(8,2) Blockwise Rigl 87.32 ± 0.38 50.61 ± 0.00 7.84K 7.85k
(8,2) Ours 75.08 ± 2.05 50.85 ± 0.70 1.96k 1.50k
(16,2) Group LASSO 75.82 ± 0.73 40.87 ± 0.89 7.85k 7.84K
(16,2) elastic group LASSO 80.61 ± 0.44 42.11 ± 0.76 7.85k 7.84K
(16,2) Blockwise Rigl 86.95 ± 0.35 50.61 ± 0.00 7.84K 7.85k
(16,2) Ours 81.57 ± 2.05 50.85 ± 0.70 0.80k 0.98k

- Iterative Pruning 86.72 ± 0.24 50.06 ± 0.46 7.84K 7.85k

Pattern Selection In addition, we conduct an experiment on the effectiveness of our method in pattern
selection. We use the same patterns as those used in Table 1. Our goal is to use optimization problem
equation 7 to pick the pattern that achieves the highest accuracy among the patterns stated in Table 2. We
set λ1 = λ2 = 0.01 and increase these parameters by 0.002 every 5 epochs. We continue training for 50
epochs. We can see in Figure 3a that the parameters associated with patterns k = 2, 3, 4 go to zero after 40
epochs, and only S(1) (k = 1 is associated with block size 2 by 2) remains non-zero at epoch 40. This shows
that pattern k = 1 is the best pattern in terms of accuracy. After finding the best pattern, we can fine-tune

3We choose rank 2 to demonstrate the capability of our algorithm. Clearly, selecting a larger rank can improve the perfor-
mance of our algorithm even further.
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the parameters associated with this pattern to get the best accuracy. After fine-tuning for 5 epochs, the
accuracy of the first pattern can achieve 88.86 %.

6.2 LeNet on MNIST

In this part, we conduct an experiment with the LeNet-5 Network (Lecun et al., 1998) and the MNIST
dataset. Similar to the previous part, we compare our algorithm with group LASSO, elastic group LASSO,
and unstructured iterative pruning. The results are shown in Table 2. Since LeNet-5 has three fully connected
layers, the column block size indicated the block sizes for these layers. For example, (16,8)(8,4)(4,2) indicates
that the block size in the first layer is 16 by 8, in the second layer is 8 by 4, in the third layer is 4 by 2.
The rank of the decomposition under our algorithm is 5 for all the layers in all the experiments. We can see
our algorithm achieves better accuracy compared to the baselines. However, the number of FLOPs and the
number of training parameters of our algorithm are significantly lower compared to baselines.

Table 2: Accuracy, sparsity rate, number of training parameters, and number of FLOPs for LeNet-5 network
trained on MNIST dataset for different block sizes.

Block-size Methods Accuracy Sparsity Rate Train Param Train FLOPs
(16, 8) (8, 4) (4, 2) group LASSO 98.31 ± 0.54 49.43 ± 0.06 61k 435.85k
(16, 8) (8, 4) (4, 2) Elastic group LASSO 98.23 ± 0.60 49.47 ± 1.02 61k 435.85k
(16, 8) (8, 4) (2, 2) Blockwise Rigl 98.28 ± 0.01 50.04 ± 0.00 61k 435.85k
(16, 8) (8, 4) (4, 2) Ours 98.55 ± 0.56 50.85 ± 0.70 6.2k 270.59k
(8, 4) (4, 4) (2, 2) group LASSO 97.96 ± 0.51 72.97 ± 14.01 61k 435.85k
(8, 4) (4, 4) (2, 2) Elastic group LASSO 98.02 ± 0.51 63.28 ± 12.89 61k 435.85k
(8, 4) (4, 4) (2, 2) Blockwise Rigl 97.77 ± 0.09 50.03 ± 0.00 61k 435.85k
(8, 4) (4, 4) (2, 2) Ours 99.06 ± 0.52 52.49 ± 1.23 22.6k 287.54k
(4, 4) (4, 4) (2, 2) group LASSO 98.08 ± 0.60 52.58 ± 4.94 61k 435.85k
(4, 4) (4, 4) (2, 2) Elastic Group LASSO 98.17 ± 0.55 52.77 ± 5.93 61K 435.85k
(4, 4) (4, 4) (2, 2) Blockwise Rigl 97.70 ± 0.05 50.01 ± 0.00 61k 435.85k
(4, 4) (4, 4) (2, 2) Ours 99.08 ± 0.53 54.02 ± 1.53 13.7k 306.74k
(4, 4) (2, 2) (2, 2) group LASSO 98.08 ± 0.53 63.29 ± 9.21 61k 435.85k
(4, 4) (2, 2) (2, 2) Elastic Group LASSO 99.08 ± 0.68 54.30 ± 1.59 61k 435.85k
(4, 4) (2, 2) (2, 2) Blockwise Rigl 97.72 ± 0.12 50.01 ± 0.00 61k 435.85k
(4, 4) (2, 2) (2, 2) Ours 99.08 ± 0.68 54.30 ± 1.59 9.7k 319.34k
(2, 2) (2, 2) (2, 2) group LASSO 98.27 ± 0.73 49.38 ± 0.02 61k 435.85k
(2, 2) (2, 2) (2, 2) Elastic group LASSO 97.58 ± 0.60 84.43 ± 8.43 61k 435.85k
(2, 2) (2, 2) (2, 2) Blockwise Rigl 98.31 ± 0.17 60.03 ± 0.00 61k 435.85k
(2, 2) (2, 2) (2, 2) Ours 98.66 ± 0.59 56.27 ± 2.71 6.1k 357.74k

- iterative pruning 98.02 ± 0.82 58.56 ± 1.32 61k 425.85k
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Figure 3: a) Pattern selection for a linear model. b) Pattern selection for LeNet-5 network. c) Pattern
selection for ViT tiny network.
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Pattern Selection Similarly, we also have experimented with the pattern selection. In particular, we use
optimization problem in equation 7 to pick the pattern that achieves the highest accuracy among the patterns
stated in Table 2. We set λ1 = λ2 = 0.01 and we increase these parameters by 0.002 every 5 epochs. We
run the training for 200 epochs and we report

∑L
l=1 ||S[l],(k)||1 for different 1 ≤ k ≤ 5 in Figure 3b. In this

experiment k = 1 corresponds to pattern (16, 8)(8, 4)(4, 2), k = 2 corresponds to pattern (8, 4)(4, 4)(4, 2),
k = 3 corresponds to pattern (4, 4)(4, 4)(2, 2), k = 4 corresponds to pattern (4, 4)(2, 2)(2, 2), and k = 5
corresponds to pattern (2, 2)(2, 2)(2, 2). As we expected, the weight corresponding to the pattern k = 3
remains non-zero after 130 epochs. After finding the best pattern, we can fine-tune the selected pattern to
achieve the maximum possible accuracy.

6.3 ViT/Swin-Transformer on CIFAR-100

We conduct an experiment with our approach with the ViT-tiny, ViT-base(Dosovitskiy et al., 2021; Touvron
et al., 2021) and Swin-transformer Tiny (Liu et al., 2021b) on CIFAR-100 image classification dataset (He
et al., 2016). The dataset has 60 thousand pictures of 100 different categories. The model is trained using
this dataset for 300 epochs. We keep the rank of our algorithm equal to 4. Since most of the modules in
transformer architecture are linear layers, our method can significantly decrease the number of parameters.
It can be seen in Table 3 that our model’s number of parameters during the training is only 3% of that
of the original model for ViT-tiny. The number of training parameters also decreases by 86% for ViT-
base. In the case of the Swin Transformer, we can achieve 80% compression rate during the training. We
want to emphasize that both elastic group LASSO and our method can achieve high accuracy. However,
as we expected, the number of training parameters and training FLOPs are significantly smaller under our
proposed algorithm.

Pattern Selection. In this part, we validate the possibility of using equation 7 to find a pattern that
achieves the highest accuracy for ViT-tiny model. We consider three patterns: pattern k = 1 is associated
with a ViT-tiny model with block-size 2 by 2, k = 2 is associated with a ViT-tiny model with block-size 4
by 4, and k = 3 is associated with a ViT-tiny model with block-size 8 by 8. We solve optimization problem
7 and illustrates

∑L
l=1 ||S[l],(k)||1 in each epoch in Figure 3c. We can see the weights associated with pattern

k = 1 is the only one that remains non-zero after 180 epochs implying that pattern k = 1 can achieve the
highest accuracy compared to patterns k = 2, 3. Note that if we train ViT-tiny under these patters, we can
achieve an accuracy of 64.56, 62.99, 62.88 for k = 1, 2, 3, respectively. This implies that pattern k = 1 is the
best pattern. No

Table 3: Experiment with CIFAR-100 dataset. Our method can significantly reduce the training parameters
and training FLOPs while maintaining the accuracy close to the original model and (elastic) group LASSO
method.

Method Block-size accuracy Sparsity Rate Training Params Training FLOPs
ViT-t (Original Model) - 64.32 ± 1.92 - 5.5M 2.16G

Group LASSO 4 × 4 60.41 ± 4.24 49.99 ± 0.02 5.5M 2.16G
elastic group LASSO 4 × 4 61.92 ± 3.01 49.92 ± 0.11 5.5M 2.16G

Blockwise Rigl 4 × 4 49.56 ± 0.48 50.67 ± 0.00 5.5M 2.16G
Ours 4 × 4 62.99 ± 0.73 49.64 ± 0.72 0.16M 65.37M

ViT-b (Original Model) - 71.34 ± 0.42 - 87.34M 35.34G
Group LASSO 4 × 4 68.41 ± 1.24 48.92 ± 1.34 87.34M 35.34G

elastic group LASSO 4 × 4 66.95 ± 2.17 51.93 ± 0.37 87.34M 35.34G
Ours 4 × 4 69.82 ± 0.22 60.31 ± 3.61 11.58M 10.11M

Swin-t(Original Model) - 81.44 ± 0.05 - 27.60M 26.18G
Group LASSO 4 × 4 75.87 ± 2.17 50.24 ± 0.13 27.60M 26.18G

elastic group LASSO 4 × 4 76.34 ± 0.82 50.19 ± 0.25 27.60M 26.18G
Blockwise Rigl 4 × 4 60.30 ± 0.22 50.03 ± 0.00 27.60M 26.18G

Ours 4 × 4 77.54 ± 0.42 53.25 ± 0.36 5.3M 167.33M
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6.4 Ablation Experiments

Table 4: The impact of rank of the decomposition in equation 3 on the model’s accuracy, sparsity rate,
number of training parameters, and number of FLOPs.

Model Rank accuracy sparsity Training Params Training FLOPs
Linear 1 48.40 ± 0.40 53.57 ± 2.43 0.26k 0.56k
Linear 2 66.79 ± 0.91 53.57 ± 1.57 0.46k 1.13k
Linear 4 84.58 ± 3.55 55.36 ± 0.72 0.85k 2.24k
Linear 6 88.19 ± 0.32 51.79 ± 0.56 1.24k 3.36k
ViT-t 1 36.86 ± 2.41 52.20 ± 0.13 0.88M 0.54M
ViT-t 2 59.71 ± 2.63 50.74 ± 0.27 1.22M 1.02M
ViT-t 4 62.99 ± 0.73 49.64 ± 0.72 1.88M 1.88M
ViT-l 1 53.27 ± 1.46 57.32 ± 1.84 39.19M 34.1G
ViT-l 2 62.79 ± 0.43 61.32 ± 1.29 58.13M 92.51G
ViT-l 4 73.46 ± 0.36 66.59 ± 2.94 96.01M 329.44G
Swin-t 1 58.46 ± 0.16 51.39 ± 0.67 3.53M 55.78M
Swin-t 2 68.22 ± 0.04 54.37 ± 1.01 5.25M 108.65M
Swin-t 4 77.54 ± 0.42 53.25 ± 0.36 8.69M 167.33M

In this part, we conduct an experiment to understand the impact of the rank on the accuracy, number of
training parameters, and number of training flops during the forward path and backward path. We set the
block size equal to 4 × 4. We conduct ablation experiments on the linear model, ViT-tiny, ViT-large, and
Swin Transformer separately. As we expected, we can improve the accuracy of the model by increasing the
rank. In this experiment, we kept the regularizer parameter the same for different ranks. As a result, the
sparsity rate is not sensitive to the rank and remains almost the same for different ranks.

7 Conclusion

We introduce a novel approach for training block-wise sparse matrices using Kronecker product decomposi-
tion. This method offers an alternative to group LASSO/structured pruning, enabling training block-wise
sparse matrices with fewer parameters and FLOPs. Our theoretical results show that our proposed method
can decrease the number of training parameters and the number of FLOPs without hurting accuracy com-
pared to the group LASSO and structured pruning algorithms. Our experiments demonstrate the effective-
ness of our approach in terms of efficiency and accuracy. We further show that our algorithm enables us to
automate the pattern selection and efficiently find the right block size for the sparsity pattern to achieve the
best accuracy.

It is also known that the model compression can negatively impact the fairness (Tran et al., 2022). Therefore,
future study is needed to study the impact of the proposed method on the fairness of the model.
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A Appendix / supplemental material

A.1 Proof [Proposition 2]

Consider a one layer network without bias term. The input dimension of it is n. The output dimension of
it is m. We can knoe the shape of the weight matrix W is Rm×n. Since we have N data points, the input
matrix X ∈ RN×n.

A.1.1 Forward FLOPs with full matrix

Proof. When using full weight matrix, the first step is to compute the output O ∈ RN×m as

O = XW T . (8)

The FLOPs of this step is Nm(2n − 1). Then we calculate the loss as

J = ∥O − Y ∥2
F , (9)

where Y ∈ RN×m is the label matrix. The FLOPs for this step is 3Nm − 1. Therefore, the FLOPs of the
forward computation is

Nm(2n − 1) + (3Nm − 1) = O (2Nm(n + 1)) . (10)

A.1.2 Backward FLOPs with full matrix

Proof. In the backward process, we need to calculate the gradient of J on W . Using chain rule, the first
step is to compute

∂J
∂O

= 2(O − Y ). (11)

Since O − Y has been calculated in the forward pass, the FLOPs is Nm. The gradient of W is

∂J
∂W

=
(

∂J
∂O

)T

X. (12)

The FLOPs for this step is mn(2N − 1). Therefore, the FLOPs for the backward pass is

Nm + mn(2N − 1) = O (Nm(2n + 1)) . (13)

A.1.3 Forward FLOPs with sparse matrix

With Kronecker product decomposition, we replace W by
∑r

i=1(S ⊙ Ai) ⊗ Bi. S and Ai ∈ Rm1×n1 , Bi ∈
Rm2×n2 , where m1m2 = m, n1n2 = n.

Proof. In the forward pass, we need to firstly reshape X ∈ RN×n into reshape(X) ∈ Rn2×Nn1 . Then
we calculate Bireshape(X) ∈ Rm2×Nn1 with FLOPs Nn1m2(2n2 − 1). The result is reshape into
reshape(Bireshape(X)) ∈ RNm2×n1 .

Then we calculate S ⊙ Ai ∈ Rn1×m1 with FLOPs m1n1. After this, we get

Oi = reshape(Bireshape(X))(S ⊙ Ai)T ∈ RNm2×m1 , (14)
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with FLOPs Nm1m2(2n1 − 1). We denote O as the output of the layer, which is to say

O =
r∑

i=1
Oi =

r∑
i=1

reshape(Bireshape(X))(S ⊙ Ai)T . (15)

The total FLOPs to get O is

r(Nm1m2(2n1 − 1) + m1n1 + Nn1m2(2n2 − 1)) + (r − 1)Nm (16)

Then we reshape O in to reshape(O) ∈ RN×m. The loss is calculated as

J = ∥reshape(O) − Y ∥2
F (17)

The FLOPs for this step is 3Nm − 1. Therefore the FLOPs of the forward computation is

r(2Nm1m2n1 − Nm1m2 + m1n1 + 2Nm1n1n2 − Nm2n1) + (r − 1)Nm + 3Nm − 1
=O (2Nrm1n1(m2 + n2) − Nr(m + 2m2n1) + 3Nm) (18)

A.1.4 Backward FLOPs with sparse matrix

Proof. In the backward process, we need to calculate the gradient of J on S, Ai and Bi. Using chain rule,
the first step is to compute

∂J
∂reshape(O) = 2(reshape(O) − Y ). (19)

Since reshape(O) − Y has been calculated in the forward pass, the FLOPs is Nm. Then we reshape it into
∂J
∂O ∈ RNm2×m1 . Then we can get

∂J
∂(S ⊙ Ai)

=
(

∂J
∂O

)T

reshape(Bireshape(X)). (20)

Since reshape(Bireshape(X)) has been obtained in the forward pass, the FLOPs for this step is
m1n1(2Nm2 − 1). To get the gradient on S and Ai, we have

∂J
∂S

=
r∑

i=1

∂J
∂(S ⊙ Ai)

⊙ Ai, (21)

with FLOPs rm1n1 + (r − 1)m1n1, and

∂J
∂Ai

= ∂J
∂(S ⊙ Ai)

⊙ S, (22)

with FLOPs m1n1. The gradient on reshape(Bireshape(X)) is

∂J
∂ reshape(Bireshape(X)) = ∂J

∂O
(S ⊙ Ai). (23)

The FLOPs for this step is Nm2n1(2m1 − 1). We reshape the gradient into ∂J
∂ Bireshape(X) ∈ Rm2×Nn1 . So,

we can get the gradient on Bi as
∂J
∂Bi

= ∂J
∂ Bireshape(X)reshape(X)T , (24)

with FLOPs of m2n2(2Nn1 − 1). Therefore, we can get the total FLOPs for the backward pass as

Nm + rm1n1(2Nm2 − 1) + rm1n1 + (r − 1)m1n1 + rm1n1 + rNm2n1(2m1 − 1) + rm2n2(2Nn1 − 1)
=O (Nm + Nr(4m1m2n1 − m2n1 + 2m2n1n2)) (25)
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A.2 Proof [Proposition 3]

Consider a two-layer network without bias term. The input dimension of the first linear layer is m[1].
The output dimension of the linear layer is m[2]. So, the input dimension for the second linear layer is
m[2]. The output dimension of the linear layer is m[3]. With the network architecture, we can know that
W [1] ∈ Rm[2]×m[1] and W [2] ∈ Rm[3]×m[2] . Since we have N data points, for the input matrix of the first layer
denoted by X [1], we have, X [1] ∈ RN×m[1] . We use σ to represent the activation function for the first layer.

A.2.1 Forward FLOPs with full matrix

Proof. When using full weight matrix, the first step is to compute the pre-activated output O[1] ∈ RN×m[2]

as

O[1] = X [1]W [1]T . (26)

The FLOPs of this step is Nm[2](2m[1] − 1). Then, we compute the activation X [2] ∈ RN×m[2] as follows,

X [2] = σ(O[1]). (27)

The FLOPs for calculating the activation is Nm[2]. For the second layer, we need to compute O[2] ∈ RN×m[3]

as O[2] = X [2]W [2]T . The FLOPs are Nm[3](2m[2] − 1). The last step is calculating the loss as

J =
∥∥∥O[2] − Y

∥∥∥2

F
, (28)

where Y ∈ RN×m[3] is the label matrix. The FLOPs for this step is 3Nm[3] − 1. Therefore, the FLOPs of
the forward computation is

Nm[2](2m[1] − 1) + Nm[2] + Nm[3](2m[2] − 1) + 3Nm[3] − 1 = 2Nm[1]m[2] + 2Nm[2]m[3] + 2Nm[3] − 1

= O
(

2N(m[1]m[2] + m[2]m[3] + m[3])
)

. (29)

A.2.2 Backward FLOPs with full matrix

Proof. In the backward process, we need to calculate the gradient of J on W [1] and W [2]. Using chain rule,
the first step is to compute

∂J
∂O[2] = 2(O[2] − Y ). (30)

Since O[2] − Y has been calculated in the forward pass, the FLOPs is Nm[3]. The gradient of W [2] is

∂J
∂W [2] =

(
∂J

∂O[2]

)T

X [2]. (31)

The FLOPs for this step is m[2]m[3](2N − 1). To compute the gradient on W [1], we need to first compute

∂J
∂X [2] =

(
∂J

∂O[2]

)
W [2], (32)

with the FLOPs Nm[2](2m[3] − 1). Then compute

∂J
∂O[1] =

(
∂J

∂X [2]

)
⊙ (σ(O[1])), (33)

20



Published in Transactions on Machine Learning Research (03/2025)

with the FLOPs Nm[2]. The final step is

∂J
∂W [1] =

(
∂J

∂O[1]

)T

X [1] (34)

The FLOPs is m[1]m[2](2N − 1). Therefore, the FLOPs for the backward pass is

Nm[3] + m[2]m[3](2N − 1) + Nm[2](2m[3] − 1) + Nm[2] + m[1]m[2](2N − 1)
=2Nm[1]m[2] + 4Nm[2]m[3] + Nm[3] − m[1]m[2] − m[2]m[3]

=O
(

N(2m[1]m[2] + 4m[2]m[3] + m[3])
)

. (35)

A.2.3 Forward FLOPs with sparse matrix

With the Kronecker product decomposition, we replace W [1] by
∑r[1]

i=1(S[1] ⊙ A
[1]
i ) ⊗ B

[1]
i and W [2] by∑r[2]

i=1(S[2]⊙A
[2]
i )⊗B

[2]
i . In the first layer, S[1] and A

[1]
i ∈ Rm

[2]
1 ×m

[1]
1 , B

[1]
i ∈ Rm

[2]
2 ×m

[1]
2 , where m

[1]
1 m

[1]
2 = m[1],

m
[2]
1 m

[2]
2 = m[2]. In the second layer, S[2] and A

[2]
i ∈ Rm

[3]
1 ×m

[2]
1 , B

[2]
i ∈ Rm

[3]
2 ×m

[2]
2 , where m

[3]
1 m

[3]
2 = m[3].

Proof. In the forward pass, we need to firstly reshape X [1] ∈ RN×m[1] into reshape(X [1]) ∈ Rm
[1]
2 ×Nm

[1]
1 .

Then we calculate B
[1]
i reshape(X [1]) ∈ Rm

[2]
2 ×Nm

[1]
1 with the FLOPs Nm

[1]
1 m

[2]
2 (2m

[1]
2 − 1). The result is

reshaped into reshape(B[1]
i reshape(X [1])) ∈ RNm

[2]
2 ×m

[1]
1 .

Then we calculate S[1] ⊙ A
[1]
i ∈ Rm

[2]
1 ×m

[1]
1 with the FLOPs m

[1]
1 m

[2]
1 . After this, we get

O
[1]
i = reshape(B[1]

i reshape(X [1]))(S[1] ⊙ A
[1]
i )T ∈ RNm

[2]
2 ×m

[2]
1 , (36)

with FLOPs Nm
[2]
2 m

[2]
1 (2m

[1]
1 − 1). We denote O[1] as the pre-activated result of the first layer, which is to

say

O[1] =
r[1]∑
i=1

O
[1]
i =

r[1]∑
i=1

reshape(B[1]
i reshape(X [1]))(S[1] ⊙ A

[1]
i )T . (37)

The total FLOPs to get O[1] is

r[1]
(

Nm
[1]
1 m

[2]
2 (2m

[1]
2 − 1) + m

[1]
1 m

[2]
1 + Nm

[2]
2 m

[2]
1 (2m

[1]
1 − 1)

)
+ (r[1] − 1)m[2]N

=r[1]
(

2Nm[1]m
[2]
2 + 2Nm[2]m

[1]
1 − Nm

[2]
2 (m[1]

1 + m
[2]
1 ) + m

[1]
1 m

[2]
1 )

)
+ (r[1] − 1)m[2]N. (38)

The input for the second layer X [2] ∈ RNm
[2]
2 ×m

[2]
1 is obtained by

X [2] = σ(O[1]), (39)

with FLOPs Nm
[2]
2 m

[2]
1 = Nm[2]. Then we reshape it into reshape(X [2]) ∈ Rm

[2]
2 ×Nm

[2]
1 . We calcu-

late B
[2]
i reshape(X [2]) ∈ Rm

[3]
2 ×Nm

[2]
1 with the FLOPs Nm

[2]
1 m

[3]
2 (2m

[2]
2 − 1). The result is reshaped into

reshape(B[2]
i reshape(X [2]) ∈ RNm

[3]
2 ×m

[2]
1 .

Similar to the first layer, we calculate S[2] ⊙ A
[2]
i ∈ Rm

[3]
1 ×m

[2]
1 with the FLOPs m

[2]
1 m

[3]
1 . After this, we get

O
[2]
i = reshape(B[2]

i reshape(X [2]))(S[2] ⊙ A
[2]
i )T ∈ RNm

[3]
2 ×m

[3]
1 , (40)
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with FLOPs Nm
[3]
2 m

[3]
1 (2m

[2]
1 − 1). We denote O[2] as the output of the second layer, which is to say

O[2] =
r[2]∑
i=1

O
[2]
i =

r[2]∑
i=1

reshape(B[2]
i reshape(X [2]))(S[2] ⊙ A

[2]
i )T . (41)

The total FLOPs to get O[2] is

r[2]
(

Nm
[2]
1 m

[3]
2 (2m

[2]
2 − 1) + m

[2]
1 m

[3]
1 + Nm

[3]
2 m

[3]
1 (2m

[2]
1 − 1)

)
+ (r[2] − 1)m[3]N

=r[2]
(

2Nm[2]m
[3]
2 + 2Nm[3]m

[2]
1 − Nm

[3]
2 (m[2]

1 + m
[3]
1 ) + m

[2]
1 m

[3]
1

)
+ (r[2] − 1)m[3]N. (42)

Then we shape O[2] into reshape(O[2]) ∈ RN×m[3] . The loss is calculated as

J =
∥∥∥reshape(O[2]) − Y

∥∥∥2

F
. (43)

The FLOPs for this step is 3Nm[3] − 1. Therefore, the FOLPs of the forward computation is

r[1]
(

2Nm[1]m
[2]
2 + 2Nm[2]m

[1]
1 − Nm

[2]
2 (m[1]

1 + m
[2]
1 ) + m

[1]
1 m

[2]
1 )

)
+ (r[1] − 1)m[2]N + Nm[2]+

r[2]
(

2Nm[2]m
[3]
2 + 2Nm[3]m

[2]
1 − Nm

[3]
2 (m[2]

1 + m
[3]
1 ) + m

[2]
1 m

[3]
1

)
+ (r[2] − 1)m[3]N + 3Nm[3] − 1

=O
(

r[1]
(

2Nm[1]m
[2]
2 + 2Nm[2]m

[1]
1 − Nm

[2]
2 (m[1]

1 + m
[2]
1 )

)
+ r[2]

(
2Nm[2]m

[3]
2 + 2Nm[3]m

[2]
1 − Nm

[3]
2 (m[2]

1 + m
[3]
1 )

)
+ Nm[2] + 3Nm[3]

)
(44)

Let C1 = 2Nm[1]m
[2]
2 + 2Nm[2]m

[1]
1 − Nm

[2]
2 (m[1]

1 + m
[2]
1 ), C2 = 2Nm[2]m

[3]
2 + 2Nm[3]m

[2]
1 − Nm

[3]
2 (m[2]

1 + m
[3]
1 ), we

have the FLOPs as O
(
r[1]C1 + r[2]C2 + Nm[2] + 3Nm[3]).

A.2.4 Backward FLOPs with sparse matrix

Proof. In the backward process, we need to calculate the gradient of J on S[1], A
[1]
i , B

[1]
i , S[2], A

[2]
i and B

[2]
i .

Using chain rule, the first step is to compute

∂J
∂ reshape(O)[2] = 2(reshape(O[2]) − Y ). (45)

Since reshape(O[2]) − Y has been calculated in the forward pass, the FLOPs is Nm[3]. Then we reshape it
into ∂J

∂O[2] ∈ RNm
[3]
2 ×m

[3]
1 . Then we can get

∂J
∂(S[2] ⊙ A

[2]
i )

= ( ∂J
∂O[2] )

T reshape(B[2]
i reshape(X [2])). (46)

Since reshape(B[2]
i reshape(X [2])) has been obtained in the forward pass, the FLOPs for this step is

m
[2]
1 m

[3]
1 (2Nm

[3]
2 − 1). To get the gradient on S[2] and A

[2]
i , we have

∂J
∂S[2] =

r[2]∑
i=1

∂J
∂(S[2] ⊙ A

[2]
i )

⊙ A
[2]
i , (47)

with FLOPs r[2]m
[2]
1 m

[3]
1 + r[2] − 1, and

∂J
∂A[2] = ∂J

∂(S[2] ⊙ A
[2]
i )

⊙ S[2], (48)
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with FLOPs m
[2]
1 m

[3]
1 . The gradient on reshape(B[2]

i reshape(X [2])) is

∂J
∂ reshape(B[2]

i reshape(X [2]))
= ∂J

∂O[2] (S
[2] ⊙ A

[2]
i ). (49)

The FLOPs for this step is Nm
[2]
1 m

[3]
2 (2m

[3]
1 − 1). We reshape the gradient into ∂J

∂B
[2]
i

reshape(X[2])
∈

Rm
[3]
2 ×Nm

[2]
1 . So, we can get the gradient on B

[2]
i as

∂J
∂B

[2]
i

= ∂J
∂B

[2]
i reshape(X [2])

reshape(X [2])T , (50)

with the FLOPs of m
[2]
2 m

[3]
2 (2Nm

[2]
1 − 1). The gradient on reshape(X [2]) is

∂J
∂ reshape(X [2])

=
r[2]∑
i=1

B
[2]T
i

∂J
∂B

[2]
i reshape(X [2])

, (51)

with the FLOPs r[2](m[2]
1 Nm

[2]
2 (2m

[3]
2 − 1) + (r[2] − 1)Nm[2]. Then we reshape it to get ∂J

∂X[2] ∈ RNm
[2]
2 ×m

[2]
1 .

Then we calculate the gradient on O[1] as

∂J
∂O[1] =

(
∂J

∂X [2]

)
⊙ (σ(O[1])), (52)

with FLOPs Nm[2]. Then we can get

∂J
∂(S[1] ⊙ A

[1]
i )

= ( ∂J
∂O[1] )

T reshape(B[1]
i reshape(X [1])). (53)

The FLOPs for this step is m
[1]
1 m

[2]
1 (2Nm

[2]
2 − 1). So, the gradients on S[1] and A

[1]
i are

∂J
∂S[1] =

r[1]∑
i=1

∂J
∂(S[1] ⊙ A

[1]
i )

⊙ A
[1]
i , (54)

with FLOPs r[1]m
[1]
1 m

[2]
1 + (r[1] − 1)m[1]

1 m
[2]
1 , and

∂J
∂S[1] = ∂J

∂(S[1] ⊙ A
[1]
i )

⊙ S[1], (55)

with FLOPs m
[1]
1 m

[2]
1 . The gradient on reshape(B[1]

i reshape(X [1]) is

∂J
∂ reshape(B[1]

i reshape(X [1]))
= ∂J

∂O[1] (S
[1] ⊙ A

[1]
i ). (56)

The FLOPs for this step is Nm
[1]
1 m

[2]
2 (2m

[2]
1 − 1). Then we reshape it to get ∂J

∂B
[1]
i

reshape(X[1])
∈ Rm

[2]
2 ×Nm

[1]
1 .

So, we can get the gradient on B
[1]
i as

∂J
∂B

[1]
i

= ∂J
∂B

[1]
i reshape(X [1])

reshape(X [1])T , (57)

with FLOPs m
[1]
2 m

[2]
2 (2Nm

[1]
1 − 1).

23



Published in Transactions on Machine Learning Research (03/2025)

Therefore, we can get the total FLOPs for the backward pass as

Nm[3] + r[2](m[2]
1 m

[3]
1 )(2Nm

[3]
2 − 1) + r[2]m

[2]
1 m

[3]
1 + (r[2] − 1)Nm[2] + r[2]m

[2]
1 m

[3]
1 + r[2]Nm

[2]
1 m

[3]
2 (2m

[3]
1 − 1)+

r[2]m
[2]
2 m

[3]
2 (2Nm

[2]
1 − 1) + r[2](m[2]

1 m
[2]
2 (2m

[3]
2 − 1) + (r[2] − 1)Nm[2] + Nm[2] + r[1](Nm

[1]
1 m

[2]
1 (2Nm

[2]
2 ) − 1)+

r[1]m
[1]
1 m

[2]
1 + (r[1] − 1)m[1]

1 m
[2]
1 + r1m

[1]
1 m

[2]
1 + r[1]Nm

[1]
1 m

[2]
2 (2m

[2]
1 − 1) + r[1]m

[1]
2 m

[2]
2 (2Nm

[1]
1 − 1)

=O
(

N(m[2] + m[3]) + r[2]Nm
[2]
1 (4m[3] − m

[3]
2 ) + 2r[2]Nm[2]m

[3]
2 + r[1]Nm

[3]
1 (4m[2] − m

[2]
2 ) + 2r[1]Nm[1]m

[2]
2

)
.

(58)

B Computation resource

we used a server with 64 CPUs of AMD EPYC 7313 16-Core Processor. The server has 8 RTX A5000 GPUs,
with 24GB memory for each one. For the experiment with linear model and LeNet, we used only one single
GPU. And for the ViT-tiny experiment, we use 2 GPUs at the same time.
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