
Concept Reachability in Diffusion Models: Beyond Dataset Constraints

Marta Aparicio Rodriguez 1 Xenia Miscouridou 1 2 Anastasia Borovykh 1

Abstract
Despite significant advances in quality and com-
plexity of the generations in text-to-image mod-
els, prompting does not always lead to the de-
sired outputs. Controlling model behaviour by
directly steering intermediate model activations
has emerged as a viable alternative allowing to
reach concepts in latent space that may other-
wise remain inaccessible by prompt. In this work,
we introduce a set of experiments to deepen our
understanding of concept reachability. We de-
sign a training data setup with three key obstacles:
scarcity of concepts, underspecification of con-
cepts in the captions, and data biases with tied
concepts. Our results show: (i) concept reach-
ability in latent space exhibits a distinct phase
transition, with only a small number of samples
being sufficient to enable reachability, (ii) where
in the latent space the intervention is performed
critically impacts reachability, showing that cer-
tain concepts are reachable only at certain stages
of transformation, and (iii) while prompting abil-
ity rapidly diminishes with a decrease in quality of
the dataset, concepts often remain reliably reach-
able through steering. Model providers can lever-
age this to bypass costly retraining and dataset
curation and instead innovate with user-facing
control mechanisms.

1. Introduction
The scaling of diffusion models (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021) has
significantly expanded their capacity to store and generate
vast amounts of complex concepts. While prompts have be-
come the de-facto manner to control the model output, there
are numerous examples when simply prompting falls short
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(see Figure 1). In addition to learning the visual and spatial
components of concepts in images, text-to-image models
must correctly associate the concept in an image with its
corresponding semantic description in the caption (Huang
et al., 2023; Ghosh et al., 2023; Chang et al., 2025). When
this alignment fails, even overspecifying and re-prompting
may fail to generate the target image.

Prior work has shown that, as an alternative to prompt-based
sampling, one can operate directly on a model’s represen-
tation level (Kwon et al., 2023; Ilharco et al., 2023; Wang
et al., 2024; Wu et al., 2024). In particular, by editing spe-
cific activations, the sampling trajectory of diffusion models
can be adjusted towards a particular target (Epstein et al.,
2023; Samuel et al., 2024; Li et al., 2024a). While these
works show that it is possible to steer towards certain output
concepts, we lack a concrete framework to understand the
complexity of guidance, or in other words the reachabil-
ity of concepts. When can a concept be reliably accessed
through prompting? If prompting fails, under what con-
ditions can steering reliably reach the concept? And ulti-
mately, what factors render a concept entirely unreachable
despite it being in some way present in the training data?

an image of a beaker an image of a person 
walking left

an image of a rainbow 
in black and white

Figure 1: Images generated by Stable Diffusion (Rombach
et al., 2022) that fail to produce the desired outcome due
to hypothesised dataset limits: (L) a scarce concept, (C)
underspecification in a caption, (R) biases. See Appendix
F.2 for details.

Existing work has shown that the dataset structure plays a
key role in reachability. For GANs and VAEs, Zhao et al.
(2018) conclude that biases in the train set will influence the
generation ability of models, regardless of the architecture
or training algorithm implemented. In diffusion models,
Chang et al. (2025) show that certain characteristics such
as balanced datasets help mitigate the failure of a generated
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image to match the target prompt. However, the complexity
of the real world complicates the construction of a balanced
training dataset that fully captures the true data-generating
process. Figure 1 highlights scenarios in which prompt-
ing fails to produce the correct output. Underlying these
scenarios are three core dataset limitations:

1. Scarcity of concepts: real-world datasets often exhibit
an uneven distribution of concepts, with some being un-
derrepresented or appearing infrequently. Such scarcity
can hinder a model’s ability to effectively learn these
concepts.

2. Underspecification of captions: real-world datasets
often include captions that do not describe all the con-
cepts present in an image. This lack of detailed an-
notation can constrain a model’s ability to accurately
associate unmentioned concepts with their correspond-
ing semantic representations.

3. Biases: real-world datasets frequently exhibit biases,
where certain concepts consistently co-occur. This
inherent correlation can make it challenging for models
to disentangle these concepts, limiting their ability to
independently generate or represent them.

Real-world images are often highly complex, with many in-
tertwined factors that can make it challenging to isolate the
exact conditions under which a model successfully reaches a
concept. To address this, we work within a synthetic frame-
work that allows us to systematically vary the structure of
the dataset (for details, see Figure 2 and Section 3.3). This
enables us to understand in detail how the mechanics of
concept reachability are influenced by the above-mentioned
three scenarios. To verify the generality of our main con-
clusions, we analyse the impact of the same scenarios on
real-world data, including Stable Diffusion (Rombach et al.,
2022) and CelebA (Liu et al., 2015). We list our contribu-
tions as:

• We show that even minor dataset limitations severely
decrease the effectiveness of prompts, highlighting an
inherent weakness in relying solely on this method of
model control.

• We demonstrate that concepts remain accessible within
the latent space, even under highly corrupted dataset
conditions.

• We demonstrate a phase shift in reachability: a rapid
increase in reachability can be observed as the number
of images containing a concept is increased beyond a
concept-agnostic, low threshold.

• We identify when concepts cannot be reached: when a
concept is not specified in the captions of the train set,

models are unable to disentangle, and hence reach, the
concepts effectively.

Our work demonstrates both the limits of prompting and
the resilience of latent space interventions under three com-
monly present dataset limitations. Our work suggests that
instead of curating new datasets or retraining models from
scratch, model providers can enable users to reach concepts
through novel control mechanisms. By shifting focus from
data curation to user-driven model steering, providers can
enhance model usability, robustness, and accessibility in
ways that go beyond the limitations of prompting.1

2. Prior Work
Control in LLMs Large language models (LLMs), hav-
ing been trained on vast amounts of data, can be concep-
tualised as powerful information compressors, raising the
challenge of how to effectively extract task-specific infor-
mation. Various methods have been proposed to address
this challenge without requiring fine-tuning of all model pa-
rameters. Some approaches focus on fine-tuning a smaller
subset of weights (Hu et al., 2021; Zaken et al., 2022; Il-
harco et al., 2023; Wu et al., 2024), while others enhance
performance by optimising the input for specific tasks (Liu
et al., 2022). Existing work additionally explores modify-
ing a model’s activations by introducing steering vectors
at specific layers (Meng et al., 2022; Todd et al., 2024;
Panickssery et al., 2024; Marks & Tegmark, 2024; Turner
et al., 2024; Li et al., 2024b). In particular, recent advance-
ments in Sparse Autoencoders demonstrate their potential in
capturing interpretable latent representations, enabling fine-
grained control and enhanced interpretability in language
models (Cunningham et al., 2023; Templeton et al., 2024).

Steering text-to-image models Similar to LLMs, previ-
ous works have successfully steered diffusion models to
generate rare concepts, compose concepts and manipulate
specific attributes in an image. Samuel et al. (2024) optimise
the initial random seed to address generation failures and
produce desired outputs. Other methods focus on modifying
the U-net output (Wang et al., 2024; Gandikota et al., 2025)
or adjusting activations of particular layers. Research has
shown that editing the generation process can be achieved
by adding vectors or fine-tuning the cross-attention layers
that inject semantic information into the model (Hertz et al.,
2022; Epstein et al., 2023; Kumari et al., 2023; Gandikota
et al., 2024). Furthermore, semantically meaningful direc-
tions in the bottleneck layer of the U-net have been identified
as a means to steer the generation effectively (Kwon et al.,
2023; Li et al., 2024a; Haas et al., 2024).

1Code is available at https://github.com/
martaaparod/concept_reachability.
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Data attribution methods The study of how training data
influences a model’s output (Koh & Liang, 2017; Pruthi
et al., 2020; Park et al., 2023; Hammoudeh & Lowd, 2024),
particularly in real data, is closely intertwined with the
broader question of how dataset constraints govern reach-
ability. Data attribution techniques have been extended
to image generation in diffusion models by analysing the
sampling dynamics (Georgiev et al., 2023; Zheng et al.,
2024), or by examining intermediate checkpoints (Xie et al.,
2024) or hidden representations obtained during the training
process (Brokman et al., 2025). While these approaches
provide valuable insights, a significant practical challenge
persists: rigorously evaluating the accuracy of influence
estimation methods. To address this, Wang et al. (2023)
introduces a methodology for constructing datasets explic-
itly influenced by known datapoints, thereby establishing a
framework for empirical evaluation. In our work, we adopt
a synthetic dataset, where the influence relationships are
known by design.

Analysis of reachability in generative models Underly-
ing the question of whether we can reach a certain concept
lies the ability of the model to properly compose concepts
seen during training. Research assessing this compositional-
ity through prompting concludes that models can compose
latent factors in novel ways if trained on sufficiently di-
verse data or for extended periods (Deschenaux et al., 2024;
Okawa et al., 2023). Studies have also explored the learn-
ing dynamics that shape a model’s generalisation ability.
Mészáros et al. (2024) observe a simplicity bias in LLMs,
where the learning process prioritises simpler tasks earlier
in training. Additionally, Park et al. (2024) identify sudden
transitions where diffusion models rapidly acquire the abil-
ity to generate specific concepts. In practice, failure cases do
remain, with the work of Chang et al. (2025) analysing the
impact of the underlying data distribution and lack of cov-
erage of unique phenomena. Furthermore, steering vectors
in LLMs have been found to sometimes produce unreli-
able or even counterproductive results (Tan et al., 2024).
Building on these insights, our work investigates the factors
contributing to the unreliability of reachability methods.

3. Background
3.1. Diffusion Models

Denoising diffusion probabilistic models (Ho et al., 2020)
approximate the distribution pdata(x) that gives rise to
a collection of data points X . During training, noise is
added to images x0 from a train set X to give latents
xt =

√
ᾱtx0 +

√
1− ᾱtϵt, for t ∈ [0, T ] and appropri-

ate constants ᾱt dependent on a noise schedule. A U-net
(Ronneberger et al., 2015) ϵθ is trained to match the added

noise by minimising the loss function

L = Et∼[1,T ],x0,ϵt∥ϵt − ϵθ(xt, t)∥2.

We implement text-to-image diffusion models ϵθ(xt, t, y),
that additionally condition generation on a text prompt y ∈
Y , passed through a text encoder E and inputted into the
U-net through cross-attention layers (Vaswani et al., 2017;
Rombach et al., 2022; Ramesh et al., 2022; Nichol et al.,
2022; Epstein et al., 2023). The train set is comprised of
image-caption pairs (x, y) ∈ X ×Y . The sampling process
involves the denoising of a latent xT ∼ N (0, I) conditioned
on an input prompt y′. See Appendix A for details on our
choice of architecture and hyperparameters.

3.2. Concepts

We introduce assumptions on the underlying structure of
our data, following a similar approach to Zhao et al. (2018);
Llera Montero et al. (2021); Okawa et al. (2023); Park et al.
(2024); Wang et al. (2024). We assume that the images in the
dataset are generated by a set of factors, such as object iden-
tity, colour, position or texture. Each factor can take certain
values, which we denote as concepts. Formally, we say there
exists a set of n concept variables F = {F1, F2, . . . , Fn},
that define the image x ∼ pdata(x). Each of the variables
Fi are sampled from their respective distributions p(Fi). We
denote the set of possible values the variables Fi can take
as Fi, which can be discrete or continuous. The space of
concepts is then defined as the set F = F1×F2×· · ·×Fn

containing all possible combinations the factors can take.

Each combination of values (f1, f2, . . . , fn) ∈ F uniquely
determines an image x, where this relation is defined by
an injective function g : F → RW×H×C that transforms
the tuple (f1, f2, . . . , fn) into an image x with the target
concepts f1, f2, . . . , fn. This function determines the distri-
bution of x when conditioned on a combination of factors.

Throughout our work, we focus on a subset of factors
assumed to be identifiable for all images sampled from
pdata(x). Without loss of generality, we assume these are
the first m < n factors F1,F2, . . . ,Fm. We refer to the
corresponding values of these factors, (f1, f2, . . . , fm), as
concepts of interest. We use the notation [fi1 , fi2 , . . . , fil ]X ,
where ik ∈ {1, 2, . . . ,m} for k = 1, 2, . . . , l, to refer to sub-
sets of the dataset that share the concepts fi1 , fi2 , . . . , fil
for the factors Fi1 ,Fi2 , . . . ,Fil , and have no restrictions
along other factors.

We further assume that captions capture the expressiveness
of the concepts of interest in an image. For an image x
containing concepts of interest (f1, f2, . . . , fm), we assume
there is an injective function h : F1×F2×· · ·×Fm → Rl

such that h(f1, f2, . . . , fm) is a string containing the se-
mantic information relevant to the concepts f1, f2, . . . , fm.
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Therefore, image-caption pairs (x, y) ∈ X × Y satisfy that
the concepts of interest of x and the tuple h−1(y) are equal.

3.3. Problem Setting

Our study examines how the presence and relationships
within training data influence the ability of diffusion models
to reach concepts (Figure 2). To achieve this, we systemati-
cally vary the dataset used to train a model, and observe the
evolution of reachability for specific concept combinations.
We vary the following:

1. Scarcity of concepts: starting with a balanced dataset,
the presence of individual concepts is progressively
reduced. We evaluate how the reachability of com-
binations containing the underrepresented concept is
affected.

2. Underspecification of captions: beginning with a fully
annotated dataset, semantic information relevant to
certain factors is removed. The impact of this specifica-
tion reduction on the model’s ability to reach complete
concept combinations is assessed.

3. Biases: from a dataset where two concepts are con-
sistently paired, we incrementally introduce data con-
taining only one of the concepts. We analyse how the
model’s ability to independently reach each concept
evolves.

Figure 2: Visualisation of the structure of the dataset ac-
cording to concepts of interest (in the diagram, three). Each
block in the cube represents the collections of images in
[f

(i)
1 , f

(j)
2 , f

(k)
3 ]X . A darker shade represents a higher num-

ber of images in the block. Data modifications are as de-
scribed in Section 3.3.

3.4. Reachability

In this section, we introduce the notion of reachability and
key definitions used in subsequent sections.

Definition 3.1 (Concept Reachability). Given a target com-
bination of concepts (f1, f2, . . . , fm) and method M to
access these, we define the reachability of (f1, f2, . . . , fm)
as the accuracy or proportion of images produced by M
that contain the concept combination (f1, f2, . . . , fm).

We also identify cases during generation in which outputs
are out-of-distribution.

Definition 3.2 (Out-of-distribution). Given a model trained
on a dataset X × Y with concept function g as defined
in Section 3.2, a generated image x∗ with concepts of
interest (f∗

1 , f
∗
2 , . . . , f

∗
m) is out-of-distribution (OOD) if

[f∗
1 , f

∗
2 , . . . , f

∗
m]X = ∅.

We additionally distinguish between two mechanisms that
result in unseen combinations. This distinction provides a
valuable framework for understanding differences in reacha-
bility levels in OOD generalisation scenarios, as in Sections
5.2 and 5.4. In particular, we consider a model’s ability
to combine known factors into a new configuration and
model’s ability to transfer knowledge of attributes from one
positional context to another.

Definition 3.3 (Compositionally out-of-distribution). Given
an out-of-distribution combination of concepts Fo =
(f1, f2, . . . , fm) ∈ F1 ×F2 × · · · × Fm, we say it is com-
positionally out-of-distribution if for every concept fj in the
combination, there exists a concept combination in the train
set whose jth component is fj .

Definition 3.4 (Positionally out-of-distribution). Given
an out-of-distribution combination of concepts Fo =
(f1, f2, . . . , fm) ∈ F1 × F2 × · · · × Fm, we say it is
positionally out-of-distribution if it is not composition-
ally out-of-distribution, and there exists a permutation
ρ : {1, 2, . . . ,m} → {1, 2, . . . ,m} such that F ′

o =
(fρ(1), fρ(2), . . . , fρ(m)) is seen during training.

4. Methodology
4.1. Dataset

We design a synthetic experimental setup that pursues con-
trollability over the tasks outlined in Section 3.3. Our setup
is similar to the work of Zhao et al. (2018); Llera Montero
et al. (2021); Scimeca et al. (2022); Wiedemer et al. (2023);
Okawa et al. (2023); Deschenaux et al. (2024); Park et al.
(2024); Chang et al. (2025). We use a dataset that contains
images of coloured shapes on a black background, where
one shape is partially covered by the other (Figure 10). See
Appendix B for further details.

Let S = {circle, triangle, square} and C = {red, green
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blue}. The images in our dataset are labelled using the
captions, “a {c1} {s1} behind a {c2} {s2}”, where s1, s2 ∈
S, and (c1, c2) ∈ (C × C) \ {(c, c) : c ∈ C}. That is, all
combinations of any two shapes and any two colours in
S and C are admitted, excluding images containing two
shapes of the same colour. We refer to the concepts of
interest of images as (c1, s1, c2, s2) (Figure 3). We create
the dataset such that each of the combinations of concepts
(c1, s1, c2, s2) is originally seen an equal number of times.

Figure 3: Concepts of interest in the dataset. The concepts of
an image are summarised as the tuple (c1, s1, c2, s2), where
each of these positions refers to back colour, back shape,
front colour and front shape respectively. In the diagram,
this is (blue, circle, red, triangle).

Our original dataset is comprised of 54 combinations of
shapes and colours (c1, s1, c2, s2), each containing 1000
images. During experiments where the number of images
containing certain concept combinations is varied, we pre-
serve the total size of the dataset by adjusting the size of the
remaining combinations.

4.2. Steering

We employ implementations that add a constant vector to a
specific layer of the U-net during sampling. These methods
consist of two stages: the optimisation of a concept vector
using images that contain the target concept combinations,
and the addition of the optimised concept vector during
sampling. Motivating our choices from existing work on
steering (Kwon et al., 2023; Kumari et al., 2023; Li et al.,
2024a), we consider two spaces in which to implement
steering: the text encoding of the prompt and the bottleneck
layer of the U-net.

Let ϵθ denote a conditional U-net trained on the dataset X ×
Y . For a given combination of concepts (f1, f2, . . . , fm),
the model can generate an image containing this combina-
tion by using the prompt ye = h(f1, f2, . . . , fm). Alter-
natively, we sample from a starting prompt ys and steer
the generation process towards the desired combination of
concepts (f1, f2, . . . , fm). Note that ys may not satisfy
ys = ye, or that the image produced by the model may not
accurately represent the target concepts of interest. Thus,
we use steering to enable the model to reach the desired
output more accurately. Let Z be a collection of images

containing the concept combination of interest. Using the
starting prompt ys, we create the image-label pairs (x0, ys)
for every x0 ∈ Z .

Prompt space Let E(ys) be the text embedding outputted
by the text encoder for the prompt ys. We modify the sam-
pling trajectory of ys by replacing E(ys) by E(ys) + vp,
where vp is a vector of the same dimensionality as E(ys).
We refer to the output of the U-net after this modification
as ϵθ(xt, t, y,vp) (Figure 9A). To obtain the vector vp, the
following loss is minimised:

Lp = Et∼[1,T ],(x0,ys),ϵt∥ϵt − ϵθ(xt, t, ys,vp)∥2.

Note that the weights of ϵθ are frozen. The vector vp there-
fore accounts for the mismatch between the semantic in-
formation contained in ys and the visual information in the
noisy latents obtained from images in Z .

h-space We also consider steering of the starting prompt
ys on the h-space, following the implementation of Li et al.
(2024a). Let ϵθ(xt, t, ys,vh) denote the output of the U-net
when inputted the noisy image xt, the prompt ys and the
vector vh, which is added to the bottleneck layer output
(Figure 9B). The vector vh is optimised to minimise the
loss:

Lh = Et∼[1,T ],(x0,ys),ϵt∥ϵt − ϵθ(xt, t, ys,vh)∥2.

Similarly to steering on the prompt space, the vector vh is
optimised to reconcile the mismatch between the semantic
information in ys and the visual concepts in the images.

4.3. Evaluation Method

Reachability, as defined in Section 5, necessitates the identi-
fication of the concepts of interest within sampled images.
Identifying concepts in images on a large scale can prove
a challenging task, with most real-data methods relying
on vision-text models such as CLIP (Radford et al., 2021;
Huang et al., 2023; Ghosh et al., 2023). To evaluate the con-
cepts within the generated images, we train three classifiers
for identifying the back shape, front shape and back-front
colour pairs of the two shapes in each image. The result-
ing labels are then compared against the target concepts.
Images producing incomplete outcomes (such as a black
background with no shapes or an image only showing one
shape) are accounted for as incorrect images (see Appendix
C). Throughout our experiments, we train four models ini-
tialised with different random seeds and report the mean
results obtained.
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5. Empirical Results
5.1. Baseline: Balanced Dataset

Before introducing additional complexities to the data, we
establish a clear understanding of the different reachability
methods under balanced conditions. Specifically, we train
diffusion models and use steering to generate various tar-
get combinations, varying the level of complexity between
these and the starting prompt. Reachability when directly
prompting the target combination is also accounted for, as
illustrated in Figure 4.

Figure 4: Reachability to different concept combinations
when prompting, as well as steering from the starting prompt
ys =“a green triangle behind a red triangle”. Target colour-
shape combinations (note that the relative position is repre-
sentative) are shown at the top of each bar, and are organised
according to the number of concepts that differ from the
concepts of ys.

Prompt-space steering matches prompting reachability
Prompting and steering on the prompt space yield an accu-
racy above 0.9, demonstrating their effectiveness in reaching
concepts under balanced conditions. This highlights steer-
ing as a reliable method for accessing desired concepts. In
contrast, steering within the h-space exhibits a pronounced
dependency on the targeted concepts (for fixed ys). No-
tably, accuracy on the h-space diminishes as the number of
modified concepts increases, suggesting a limitation in its
capacity to handle heavily complex modifications.

Reachability bias when steering on the h-space We ob-
serve a tendency for reachability to be higher, relative to
other concept combinations with the same number of modi-
fied concepts, when the target front shape and back shape
are identical (second column from the right of Figure 4). We
identify this as a property of the dataset, as it is consistently
observed across different models, and find it aligns with

the steerability bias reported by Tan et al. (2024). This sup-
ports the role of dataset properties in shaping reachability
behaviour. We provide further analysis of reachability on
the h-space in Appendix E.1.

Overall, we observe that prompting and steering perform
effectively in a perfectly balanced dataset. In the following
sections, we present results regarding their performance un-
der adverse data conditions. Based on the results observed
under balanced conditions, we choose the starting prompt
that maximises performance when steering on the h-space.
Unless stated otherwise, throughout the remaining experi-
ments we choose to implement steering from the starting
prompts ys which describe the target concepts (0 concepts
changed).

5.2. Scarcity of Concepts

We fix (red, triangle, green, square) as a target concept
combination and gradually reduce the number of data points
in the subset [c1 = red]X . This process is repeated for
the subsets [s1 = triangle]X , [c2 = green]X , and [s2 =
square]X . We present two of these tests in this section and
relay the remaining cases to Appendix E.3.

Reachability drops sharply past a critical threshold We
implement steering to our chosen target concept combina-
tion and observe that, although reachability decreases as the
presence of concepts is reduced, this decline remains grad-
ual until reaching a threshold at pX (f) ≈ 0.01, f = c1, s2.
Below this, reachability decreases rapidly (Figure 5). This
decline is less pronounced for steering, most noticeably for
s2 = square, highlighting that steering can be more effec-
tive at maintaining concept reachability under conditions
of scarcity. This behaviour suggests a phase transition-like
effect: when concept presence falls below 1%, the system
shifts abruptly from a state of high reachability to one of
significantly diminished reachability. This phase transition
implies that the model requires few data points, relative
to the train set size, in order to learn a concept effectively.
Increasing the number of data points containing a concept
beyond this critical threshold has limited impact on improv-
ing reachability.

Positionally OOD combinations can be reachable
through steering When the presence of a concept f
is such that pX (f) = 0, generating the combination
(red, triangle, green, square) results in a positionally
OOD target. For instance, eliminating the data points in
[c1 = red]X , limits the model’s exposure to red shapes in
the back position, even if red shapes remain present in the
front position c2. Our findings reveal that models are unable
to reach the target concept combination through prompt-
ing (Figure 5), aligning with observations by Chang et al.
(2025). In contrast, steering methods can achieve moder-
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Figure 5: Accuracy of prompting and steering on the prompt
space and h-space to (red, triangle, green, square) for
starting prompt ys = “a red triangle behind a green square”
and varying proportion pX of images in the dataset contain-
ing the concepts c1 = red (top) and s2 = square (bottom)
across the dataset. The dashed red line marks the approxi-
mate threshold 0.01 of the shift in reachability.

ate reachability. Notably, when reducing [s2 = square]X ,
steering on the prompt space achieves more than 50% ac-
curacy, even when no training images contain the reduced
concept. This indicates that when prompting fails, alterna-
tive mechanisms may enable models to generalise concepts
to unseen positions.

5.3. Underspecification of Captions

We reduce the factors of interest of the dataset, initially
(c1, s1, c2, s2). For instance, removing the specification of
c1 results in captions y containing information only with
respect to (s1, c2, s2). See Appendix D for details. We then
evaluate the reachability of (c1, s1, c2, s2) via prompting
and steering.

We present the results of prompting when describing the
full set of target concepts. For example, “a red triangle
behind a green square”. Steering is performed on top of
starting prompts ys that reflect only the concepts seen dur-
ing training. For example, when removing back colour
(c1), steering is implemented from ys = “a triangle behind
a green square” to images with the concept combination
(red, triangle, green, square).

Steering outperforms prompting under low specifica-
tion In all cases of specification reduction, we observe
an improvement in reachability with respect to prompting
when using either steering method (Figure 6a). Among
these, steering on the prompt space achieves the highest
reachability, demonstrating it is a more effective approach

for accessing target concepts under reduced specification
conditions.

A decrease in specification hinders reachability Despite
the improvement in reachability achieved through steering,
reducing the specification of captions during training re-
sults in a rapid decrease in reachability. Figure 6a shows
average accuracy falls below 0.30 for models trained with
fewer than two concepts specified. Classifying the outputs
after prompting and steering reveals that models tend to
generate concepts accurately for the factors specified during
training, but fail to correctly generate the missing concepts.
An example for one random seed is presented in Figure 6b.
When prompting is used, the model’s accuracy on specified
labels is high and on unspecified labels is nearly equivalent
to chance-level performance. In contrast, steering yields
higher accuracy on the full target concept combination, al-
though remaining close to the prompting baseline. These
findings show captions hold a pivotal role in organising and
structuring a model’s latent space, providing a semantic
framework that enhances its ability to access concepts. Our
results demonstrate that more detailed labeling of training
images can improve the success rate of generating target con-
cept combinations. On the contrary, given a trained model,
overly detailed prompts may not lead to an improvement of
reachability.

We further analyse reachability when using ys containing
the full semantic information of the target combination
(c1, s1, c2, s2) in Appendix E.4.

5.4. Biases

We measure reachability to individual concepts that are con-
sistently paired during training. Specifically, we construct a
dataset where an image in the training set satisfies c1 = blue
if and only if s1 = circle. To evaluate the model’s ability
to disentangle these concepts, we measure reachability to
concept combinations of the form (blue, s′1, c2, s2), where
s′1 ̸= circle, and (c′1, circle, c2, s2), where c′1 ̸= blue.
Prompt space steering exhibited minimal variation across
different starting prompts ys, whereas on the h-space, start-
ing with a prompt describing the target concepts of interest
yielded the highest accuracy. We present this in Figure 7.

Biases in compositional OOD generalisation can be by-
passed through steering When no train images contain
only blue in the back, attempting to reach combinations
where either concept appears separately places the model
in a compositionally OOD setting. Figure 7 shows steering,
particularly on the prompt space, achieves a moderately
high reachability to both concepts (accuracy of black X’s),
suggesting that models are capable, to some extent, of disen-
tangling heavily biased concepts. Prompting fails to achieve
this level of disentanglement, revealing its inability to accu-
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Figure 6: a) Average reachability across 10 randomly chosen concept combinations (c1, s1, c2, s2) for different levels of
label specification. b) Outputs produced by a model when steering towards (red, circle, green, square) when the factors
c1 (left) and s2 (right) are removed from the captions of the train set. Each diagram shows the target concept in the top
axis, and the alternative concepts the removed factor can take in the remaining directions. The label X represents any other
output, including those that do not produce the target concept for the seen factors. Each diagram displays the proportion of
images of the output belonging to each label. A reachability method that correctly generates the target concept combination
will produce a high proportion of images on the top axis. If a model only fails to generate the removed concept value, the
proportion of images at X will be low.

rately reflect a model’s full capabilities.

Increasing the presence of an individual concept im-
proves the separate reachability of both tied concepts
As the number of images containing non-circular blue
shapes increases, the reachability to combinations only con-
taining c1 = blue rises rapidly, evidenced by the large
increase in accuracy along the horizontal axis in Figure 7.
This shows a similar threshold pattern to that observed in
Section 5.2. Interestingly, the lighter X’s on the vertical axis
tend to achieve the highest accuracy, suggesting that the
reachability of non-blue circles in the back also increases,
albeit with minor variability. This pattern implies that the
model learns to identify the contrasting concept, likely by
inferring its definition through what it is not.

See Appendix E.5 for additional results.

5.5. Reachability in Real Settings

We additionally implement steering on the prompt space
of Stable Diffusion in order to explore how reachability is
impacted in a real-world setting. Figure 8 presents samples
from the same initial random seed xT as in Figure 1, with
additional steering implemented. The resulting images show
a clear improvement, more accurately representing the tar-
get concepts. Further examples and analysis of reachability
through steering are provided in Appendix F.3. Overall, we
observe that steering can extend beyond the reachability of
prompting. However, dataset limitations such as underspec-
ification continue to hinder reachability, exhibiting patterns
consistent with those observed in our synthetic analysis.

Furthermore, we conduct a similar analysis to that in Sec-
tion 5 using a subset of the CelebA dataset. Results are
presented in Appendix G. Specifically, we use the labelled
attributes for Gender (male/female) and Hat (wearing/not
wearing a hat) as the concepts to be analysed. Overall, we
again find that the structure of the training data strongly
influences concept reachability. In particular, reachability
declines sharply when the number of training examples con-
taining a given concept falls below a certain threshold, and
underspecified labels substantially hinder access to those
concepts. Additionally, we observe that reducing biases in
the co-occurrence of concepts improves a model’s ability
to represent and generate individual concepts in isolation.
These findings are consistent with those observed in the syn-
thetic setting, supporting the generality of these conclusions
and highlighting their relevance in real settings.

6. Discussion and Conclusion
This paper explores the limits of reachability in diffusion
models, examining the challenges in accessing target con-
cepts. While prompting is the default approach, our findings
reveal that it often fails to fully capture a model’s poten-
tial for generating specific concepts. We demonstrate that
steering can enhance the reachability of scarce concepts and
disentangle biases inherent in datasets. We also identify key
patterns in reachability such as shifts in a model’s ability
to access concepts and the critical role of proper concept
specification in captions. This work provides a valuable
framework for evaluating when concepts are reachable, and
offers insights into how we can design train sets to improve
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Figure 7: Reachability to concept combinations containing
non-blue circles in the back (vertical axis) and blue non-
circular shapes in the back (horizontal axis). Results are av-
eraged over 6 randomly chosen target concept combinations,
with starting prompt ys describing those concepts. The X’s
mark the accuracy of reaching either type of concept when
prompting, steering on the prompt space and steering on the
h-space. A lighter colour represents a stronger presence of
images containing only blue in the back in the dataset.

the generative performance of diffusion models.

The improvement observed in reachability through steering
suggests a misalignment between the model’s semantic and
visual understanding of concepts. That is, a model may be
able to reach a concept, but the prompt fails to access the
correct spatial information required to generate it. Moreover,
we observe differences in the accuracy of steering on the
prompt space and steering on the h-space, which highlight
the importance of the stage of the transformation at which
steering is performed. In particular, the nature of the space
in which steering is implemented will impact reachability.
For example, while the text encoding is independent of
the timestep t, the bottleneck output (h-space) depends on
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Figure 8: Images sampled from the same random seeds used
in Figure 1 with steering vectors added to the prompt space
during sampling. Using steering, we observe: (L) a more
accurate representation of a beaker, (C) a successful change
in orientation of the person towards the left, (R) the rainbow
arc generated in greyscale tones.

it. The two spaces also differ in dimensionality, and the
degree of disentanglement of either space may also influence
steering effectiveness. We note that, while steering on the
h-space does not perform optimally for every choice of ys,
our results show it is an effective method when ys aligns
with the target concept combination.

An intriguing aspect of our experiments concerns a model’s
ability to employ different mechanisms (compositional or
positional) to achieve OOD generalisation. As presented
in Section 5.2, models face significant challenges in OOD
positional generalisation, with instances where reachability
across all methods approaches zero. While biased composi-
tional OOD generalisation remains a demanding task, we
observe moderate levels of reachability using at least one of
the methods studied (Section 5.4). Generalising shape posi-
tionally from back to front is particularly interesting, as it
requires the model to synthesise information from multiple
images to reconstruct a complete, unobstructed shape. We
detect no substantial variance in reachability when position-
ally generalising in either direction, suggesting that models
find both tasks equally demanding.

Despite improvements in reachability, the steering meth-
ods explored in this study rely on an auxiliary collection
of images Z containing the target concept combinations,
which in real data may be hard to acquire. Investigating
alternative steering methods that mitigate this dependency
and enhance reachability remains an important direction
for future research. Additionally, there may exist simple or
more efficient alternative methods to steering that outper-
form existing approaches and warrant further exploration.
Moreover, while our work isolates the impact of each ob-
stacle studied, in real data it is likely that problems occur
simultaneously and with varying degrees of complexity. Ex-
panding our dataset to incorporate additional factors and
more intricate relationships can provide a more comprehen-
sive analysis of model behaviour.
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Bau, D. Unified concept editing in diffusion models, 2024.
URL https://arxiv.org/abs/2308.14761.
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A. Hyperparameters
A.1. Architecture

For our experiments, we used the Diffusers package (von Platen et al., 2022) to implement the U-net architecture. Our
model comprises 3.7 million parameters and features a symmetric architecture with four downsampling and upsampling
blocks. The channels in each block are set to (16, 32, 64, 128), respectively. Each block contains two ResNet blocks.

Additionally, we incorporate cross-attention layers in the midblock, enabling the model to integrate information from a
text-encoding input. For processing the text prompt, we use a pre-trained T5Small text encoder (Raffel et al., 2020). The
encoder’s weights are frozen throughout training of the U-net and during the optimisation of concepts vectors.

A.2. Training

Training of the U-net is performed for 70 epochs using Adam with learning rate 0.001 and default parameter values.
Additionally, we use an exponential learning rate scheduler with parameter gamma = 0.98. All models are trained using
T = 1000 and sampled with a DDPMScheduler at inference time.

A.3. Concept Vector Optimisation

Concept vectors are initialised at the zero-vector, and optimised for 5000 steps using Adam, with learning rate 0.02 and
default parameter values. This choice is observed to be sufficient for the optimised losses Lp and Lc to converge. A diagram
of the different spaces in which the optimisation is implemented is shown in Figure 9.

For steering on the prompt-space, vp is of the same dimensionality as the input prompt ys. In the original dataset with
captions “a {c1} {s1} behind a {c2} {s2}, this accounts for vp ∈ R1×10×512, and is adjusted for the experiments in Section
5.3.

The dimension of the vectors vh optimised in the bottleneck of the U-net is vh ∈ R128×8×8 for all experiments.

Figure 9: Diagram of spaces in the architecture where steering is implemented. A: prompt space, the concept vector is added
to the encoding for the text prompt before passing through the cross-attention layers of the U-net. B: h-space, the concept
vector is added to the bottleneck layer of the U-net, after the mid-block.
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B. Dataset Creation
Images are of dimension 64× 64 pixels, comprised of two coloured shapes. To create the complete dataset, we generate
1000 images with each of the combinations of the concepts of interest (c1, s1, c2, s2). Each image is created using the Pillow
package in Python (Clark, 2015). First, the location of the centre of the back shape is determined, and then the position
of the front shape is sampled uniformly from a neighbourhood of this centre. This neighbourhood ensured a reasonable
portion of the back shape was always visible for every pair of shapes (thus, facilitating the classification task). The minimum
percentage of each back shape visible in the balanced train set for the diffusion models is the following: circle 52.46%,
triangle 48.97%, square 59.38%. Examples of train images are presented in Figure 10.

Figure 10: Examples of image-caption pairs from our synthetic dataset. Each image shows two shapes of different colours,
one partially covered by the other, on a black background.

When reducing the size of some of the combinations of the dataset, the size of the remaining combinations is proportionally
increased to ensure that the total dataset size is as close as possible to 54,000 while maintaining uniformity (equal number of
images) among the unaffected concept combinations.

C. Classifier and Evaluation Details
We train three different classifiers for identifying the back shape, front shape and back-front colour pairs. The architecture
consists of two convolutional layers that increase channel size to 16 and 32 respectively. Both consist of 3× 3 kernels with
ReLU activation and 2× 2 max-pooling. The flattened output is passed to a fully connected layer of 128 units and ReLU.
The output vector is three-dimensional in the case of both shape classifiers, and consists of six dimensions for the classifier
of back-front colour pairs.

Each classifier is trained using Adam with learning rate 0.001 on a dataset comprised of the original 54,000 balanced dataset
and an equal number of sampled images from trained diffusion models. Training is implemented for 7 epochs. When
evaluating on 5400 human-labelled images that were generated by prompting from two additional diffusion models trained
on balanced data, the classifier obtains an accuracy of 96.63%.

During evaluation of reachability, 100 images are sampled using a reachability method. Each of these is labelled according to
the outputs of the trained classifiers. Images are accounted for as correct if the labels match the target concept combination.
In cases where classifier results were uncertain or ambiguous, additional human evaluations were conducted. Furthermore,
we identify the number of (non-black) colours in an image, and if this number if distinct from 2, we account for the images
as incorrect. After this, the proportion of correct images is used as the reachability value.

D. Reduction of Label Specification on Captions
Our dataset is originally comprised of captions of the form “a {c1} {s1} behind a {c2} {s2}”. In order to reduce the
semantic information of the prompt, we implement the following:

1. Remove c1: replace the caption with “a {s1} behind a {c2} {s2}”

2. Remove s1: replace the caption with “a {c1} shape behind a {c2} {s2}”

3. Remove c2: replace the caption with “a {c1} {s2} behind a {s2}”
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4. Remove s2: replace the caption with “a {c1} {s2} behind a {c2} shape”

5. Remove c1 and s1: replace the caption with “a {c2} {s2}”

6. Remove c1, s1 and c2: replace the caption with “a {s2}”

7. Remove c1, s1, c2 and s2: replace the caption with the empty string, “”

E. Additional Experiments
E.1. Additional Analysis on a Balanced Data

Final norm of optimised concept vector is indicative of reachability when steering on the h-space The differences
in the accuracies achieved through steering on the h-space suggest that, from a given starting prompt ys, certain concept
combinations are inherently more reachable than others. While the final loss at the end of the optimisation of the steering
vector might be considered a natural indicator of reachability via steering (lower loss associated with higher reachability), we
observe cases where high final loss values correspond to high steering accuracies (Figure 11, teal x’s). Our findings indicate
that the final vector norm provides a more reliable indicator, with a larger norm being associated with lower reachability
(Figure 11, bottom right). Interestingly, when sampling, adding a larger concept vector norm indicates a greater deviation
from the latents that would be obtained from solely prompting ys. Hence, we conclude that reachable concepts remain close
in the h-space. Steering on the prompt space does not exhibit such patterns (Figure 11, left).
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Figure 11: Relation between accuracy of steering on the prompt space and h-space and final loss (top row) and final vector
norm (bottom row) after the optimisation of the concept vector. The different colours show the results for four different
models trained on different random seeds.

E.2. Reachability When Removing One Concept Combination from the Dataset

We test the ability of a model to generalise compositionally OOD in the simplest scenario, where only the target concept
combination is removed from the dataset. Three examples of this are presented in Figure 12. Our results highlight the
variability of accuracy of steering on the h-space, also observed in Section 5.1. Moreover, we observe that reachability is
generally high and unaffected from the removal of the target combination. Prompting achieves the highest reachability, with
steering on the prompt space also providing similar accuracy values. Thus, models are capable of generalising OOD for
simple compositional concept combinations based on their ability to recombine learned individual concepts. We note that
this is not necessarily extensible to any compositional OOD generalisation, as our experiments in Section 5.4 provide a

16



Concept Reachability in Diffusion Models: Beyond Dataset Constraints

more complex compositional OOD generalisation task, where models are affected by the biases of combinations seen during
training.
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Figure 12: Steering accuracies for different starting prompts ys to (green, triangle, blue, square),
(red, circle, blue, triangle) and (red, square, green, circle) respectively. For each graph, the target concept
combination is the only concept combination not present in the training dataset.

E.3. Additional Results for Scarcity of Concepts

In this section we present additional results for Section 5.2. Figure 13 shows reachability results for different starting
prompts ys when reducing [c1 = red]X and [s2 = square]X . As observed in the baseline analysis, steering on the prompt
space presents a more stable outcome, while steering on the h-space shows greater variability. The highest reachability
values on the h-space are achieved on the starting prompt ys = “a red triangle behind a green square”, that mentions the
same concepts as those in the target combination. Note that despite the prompt ys = “a red triangle behind a green circle”
achieving comparable reachability in the case of reduction of c1, this is not consistent in the reduction of the presence of
other concepts.

We also present the effect of decreasing the size of the subsets of the dataset X : [s1 = triangle]X , [c2 = green]X . Figure
14 shows a similar sudden decrease in reachability, as observed Figure 5. Moreover, we highlight the improvement of
reachability by steering on the prompt space over prompting below the threshold, most noticeably when reducing the concept
s1 = triangle.

E.4. Additional Results for Underspecification

In this section we present additional results for analysing the effect of varying the number of label specification on
reachability (Section 5.3). We implement steering from the same 10 randomly chosen target concept combinations and
trained models as in Figure 6a, but with a starting prompt containing the full semantic information “a {c1} {s1} behind a
{c2} {s2}”. This approach ensures that the size of the vector vp used for steering on the prompt space remains constant
for all the models, regardless of the specification level used during training. Figure 15 demonstrates that the reachability
results show almost no difference to those in Figure 6a, indicating that models are robust to variations of the size of vp when
steering on the prompt space.
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Figure 13: Accuracy of prompting and steering on the prompt space and h-space for different starting prompts ys and
varying level of the proportion pX of images in the train set containing the concepts c1 = red (top) and s2 = square
(bottom) across the dataset. The target concept combination for all ys is (red, triangle, green, square).
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Figure 14: Accuracy of prompting and steering on the prompt space and h-space to (red, triangle, green, square) for
starting prompt ys = “a red triangle behind a green square” and varying the proportion pX of images in the training
set containing the concepts s1 = triangle (left) and c2 = green (right) respectively. The vertical red line marks the
approximate threshold 0.01 that determines the approximate shift in reachability.
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Figure 15: Average reachability across 10 randomly chosen concept combinations (c1, s1, c2, s2) and varying levels of
specification in the captions. Starting prompts ys used to steer to each of the 10 concept combinations are chosen to fully
describe the target concept combinations.

E.5. Additional Results for Biases

Figure 16 provides an additional example of the scenario studied in Section 5.4. In particular, we tie the concepts c2 = red
and s2 = triangle, and gradually increase the images in the train set containing non-triangular red shapes. Similar to Figure
7, we observe a sharp increase in reachability for red shapes as their representation in the dataset grows.

Additionally, although with more variability than Figure 7, we note a general improvement across all reachability methods on
the remaining tied concept (non-red triangles). This suggests that the model learns to disentangle the concept s2 = triangle
as the presence of c2 = red increases. Moreover, steering consistently outperforms prompting in disentangling the concept
s2 = triangle, demonstrating it is a more effective reachability method in such biased scenarios.

F. Stable Diffusion Implementations
F.1. Hyperparameters

All experiments on real data are conducted on Stable Diffusion v1.5. We use a DDPM scheduler with T = 1000 inference
steps to generate images.

Steering is implemented on the prompt space, with ys describing the target (e.g., “an image of a beaker”, “an image of
a person walking left”), and a collection Z of 200 images containing the correct target concepts. The concept vector is
initialised at the zero vector and is optimised using Adam for 13 steps. The images required for steering are obtained from
openly available datasets such as ImageNet (Deng et al., 2009) and images sampled from Stable Diffusion and DALLE
(Ramesh et al., 2022).

F.2. Train Dataset

Stable Diffusion is primarily trained on subsets of the LAION5B and LAION2B-en datasets (Schuhmann et al., 2022). To
estimate the presence of concepts within the dataset, we use unigram and bigram frequencies of images labeled with English
captions (LAION2B-en), as provided by Samuel et al. (2024).

The approximate number of captions containing the word beaker is 52,000. Despite beakers being easily recognisable and
composed of simple visual features, the model struggles to generate them, as shown in Figure 1. We hypothesise that this is
due to the relatively low number of images containing beakers compared to the overall dataset size.
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Figure 16: Reachability to concept combinations containing only non-red triangles in the front (vertical axis) and only red
non-triangular shapes in the front (horizontal axis), by prompting, steering on the prompt space and steering on the h-space.
Results are averaged over multiple 6 randomly chosen target concept combinations. When steering, the starting prompt ys
describing those same concepts is used.

The bigrams walking left and walking right appear in only 431 and 585 captions, respectively, whereas the unigram walking
appears in over 3,450,000 captions—a significantly higher occurrence. Despite this imbalance, the model can occasionally
generate images of people facing either left or right, suggesting an inherent understanding of orientation. However, we
hypothesise that the lack of explicit directional specification in most captions limits the model’s ability to reliably generate
images of people walking in a specific direction.

Finally, the model struggles to generate black-and-white images of rainbows, despite successfully handling black-and-white
colour representation in other contexts. We hypothesise that this stems from the scarcity of black-and-white rainbow images
in the dataset, making it difficult for the model to disentangle colour information from the broader concept of a rainbow,
ultimately revealing a bias in the model’s latent space.

F.3. Steering on the Prompt Space

We compare the images generated through sampling using prompting and steering on the prompt space, ensuring both
methods use the same initial random seed. This evaluation is conducted on 50 images per studied concept. Below, we
present seven examples illustrating the impact of steering on the final output.

F.3.1. SCARCITY OF CONCEPTS

Figure 17 illustrates the effect of steering on image generation towards the target concept: a beaker. We observe that some
random seeds initially generate images unrelated to the beaker concept but are successfully guided towards it. In contrast,
cases where the model already produces a beaker show minimal modification. Overall, the steered images exhibit attributes
commonly associated with beakers, such as transparency, a cylindrical shape, measurement markings, and the presence of
liquid.

F.3.2. UNDERSPECIFICATION OF CAPTIONS

Figure 18 illustrates the effect of steering towards generating images of a person walking leftward. Our results indicate
that steering in this scenario is limited. In many cases, applying steering on the prompt space does not significantly alter
the individual’s position compared to images generated without steering. While we occasionally observe improvements in
the walking direction towards the left, we also find instances where the position shifts towards the right—despite no such
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Figure 17: Comparison between sampling on Stable Diffusion with no steering (top row) and with additional steering on the
prompt space (bottom row) by using the same random seed. Images are sampled from the prompt “an image of a beaker”.
The steering vector is optimised between the same starting prompt ys = “an image of a beaker” and 200 images of beakers.

occurrences in the images used to optimise the steering vector. These findings suggest that reachability is highly constrained
when attempting to steer towards concepts that are not explicitly mentioned in the captions. This observation aligns with our
discussion in Section 5.3.

St
ee

rin
g

N
o 

st
ee

rin
g

Figure 18: Comparison between sampling on Stable Diffusion with no steering (top row) and with additional steering on
the prompt space (bottom row) using the same random seed. Images are sampled from the prompt “an image of a person
walking left”. The steering vector is optimised between the starting prompt ys = “an image of a person walking left” and
200 images containing an individual walking towards the left side of the image frame.

F.3.3. BIASES

Figure 19 illustrates the behaviour of images when steered towards disentangling rainbows from colour. We observe cases
where the model reduces the presence of the rainbow, fading the colours from the image, and at times completely removing
it. Other images result in an arc-like black-and-white pattern. Interestingly, some steered images resemble black-and-white
woodgrain patterns, suggesting a potential bias in the latent space. This may arise because both rainbows and woodgrain
share a structure of contrasting light and dark lines, which the model’s latent representations might conflate. Finally, in other
instances steering proves ineffective, and the model continues to generate images featuring a coloured arc.

21



Concept Reachability in Diffusion Models: Beyond Dataset Constraints

St
ee

rin
g

N
o 

st
ee

rin
g

Figure 19: Comparison between sampling on Stable Diffusion with no steering (top row) and with additional steering on the
prompt space (bottom row) using the same random seed. Images are sampled from the prompt “an image of a rainbow in
black and white”. The steering vector is optimised between the same starting prompt ys = “an image of a rainbow in black
and white” and 200 greyscale images containing scenes of rainbows.

G. CelebA
We conduct a similar analysis to that presented in Section 5 using synthetic data, this time using a subset of 16,000 images
of faces from the CelebA dataset (Liu et al., 2015). Leveraging the dataset’s existing attribute labels, we assume that the
images are generated by underlying factors that take on specific values (concepts), following the structure outlined in Section
3.2. We note that certain factors and biases present in the dataset may remain unaccounted for, as attributes such as posture
or lighting are not labelled in the dataset. Furthermore, the positional relations investigated in our earlier experiments
that support positional generalisation are not applicable in this context, which may cause deviations from the behaviours
observed in synthetic data. Further challenges may also arise from the use of more entangled and context-dependent words
in comparison to the simpler captions in the controlled synthetic setup. Nevertheless, this analysis remains insightful for
understanding the model’s behaviour in more realistic settings.

G.1. Hyperparameters

We study the attributes gender (g ∈ {man,woman}) and hat (ĥ ∈ {wearing a hat,without a hat}). Captions are composed
in the form “a {g} {ĥ}”. For example, “a woman wearing a hat”, or “a man without a hat”. The balanced dataset is
comprised of 4,000 images of each of the four possible concept combinations. The images are transformed using a random
horizontal flip (p = 0.5) and colour jitter with brightness 0.1, contrast 0.1 and saturation 0.1. As in our previous experiments,
when varying the concepts in the train set we approximately preserve the total dataset size. The model architecture is the
same as described in Appendix A. We train our models for 400 epochs using the same optimiser and learning rate as before.

The concept vector for steering on the prompt space and h-space is obtained using Adam with learning rate 0.02 for 11
steps, and 100 images containing the target concept combinations. To evaluate reachability, we train 4 diffusion models with
different random seeds, use them to generate 100 images of the target concept combinations and report the mean results. To
help in the evaluations of the generated images, we train two CNNs consisting of three convolutional layers and two linear
layers to classify (i) the gender of the person in the image and (ii) if they are wearing a hat or not. Our classifiers obtain an
accuracy of 94.6% (gender) and 97.2% (hat) on a held-out validation set consisting of 2,400 images.

G.2. Baseline

Fixing a starting prompt ys, we apply steering towards the different target concept combinations. For comparison, we also
evaluate the reachability achieved through direct prompting of the target combinations. The results are presented in Figure
20a. Additionally, Figure 20b illustrates a comparison of images generated by the model under no steering (prompting
ys =“a woman wearing a hat”) and with additional steering towards the concept combination (man,without a hat).
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Figure 20: a) Reachability to different concept combinations when prompting and when steering from the starting prompt
ys =“a woman wearing a hat”. Target combinations are shown at the top of each bar, and are organised according to the
number of concepts that differ from the concepts of ys. The notation M /W refers to the gender (man/woman) and H/H ′ to
wearing a hat/without a hat. b) Example of images generated from the prompt “a woman wearing a hat” (no steering) and
the images obtained by additionally steering on the prompt space to the concept combination (man,without a hat).

Concepts remain reachable when steering from diverse starting prompts Figure 20a demonstrates that the behaviour
observed under balanced conditions aligns with the patterns identified in the synthetic setting. Specifically, while concepts
generally remain reachable through prompt-space steering, reachability in the h-space declines as the number of altered
concepts increases. Overall, steering enables effective access to target concepts, achieving a level of reachability comparable
to that of directly prompting the desired concepts. Notably, we observe a systematic decrease in reachability for the concept
combination (woman,wearing a hat) relative to the other combinations, which may reflect latent biases in the training data
distribution.

G.3. Scarcity of Concepts

We decrease the presence of the concept ĥ = wearing a hat, and consider reachability to the concept combination
(man,wearing a hat). Results are presented in Figure 21.
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Figure 21: Accuracy of prompting and steering from the starting prompt ys = “a man wearing a hat” for a varying
proportion pX of images across the dataset containing the concept ĥ = wearing a hat. The steering curve shows the results
for max (prompt space, h-space). The dotted red line marks the approximate threshold 0.01 of the shift in reachability.

Reachability drops sharply past a critical threshold Figure 21 reveals a threshold pattern consistent with that observed
in Figure 5. Specifically, we observe a sharp decline in reachability once the proportion of training images containing a
given concept falls below a certain threshold. As in the synthetic setting, the model appears able to learn and generalize a
concept even from a small number of examples, provided this minimal threshold is met. This highlights the importance of
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ensuring minimal representation of key concepts in training data to ensure reachability.

G.4. Underspecification of Concepts

We vary the level of specification of captions of the training dataset, and in particular reduce the captions of the form “a {g}
{ĥ}” to the following:

1. Remove g: replace the caption with “a person {ĥ}”

2. Remove ĥ: replace the caption with “a {g}”

3. Remove g and ĥ: replace the caption with the empty string, “”

We steer from the starting prompt describing only seen concepts. For example, when removing ĥ from the captions, to
steer to (woman,wearing a hat) we use ys = “a woman”. Additionally, we compare the accuracy of prompting using the
complete description of the target concepts. Results are presented in Figure 22a.
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Figure 22: a) Average accuracy of prompting and steering to the different concept combinations for different levels
of concept specification. b) Accuracy of prompting and steering to the concept combinations (man,without a hat)
and (woman,wearing a hat) under biased conditions. Starting prompts ys describe the target concept combinations,
while varying the presence of the concept combination (man,without a hat). The steering curve shows the results for
max (prompt space, h-space).

Underspecification hinders reachability Similar to Section 5.3, we observe a rapid decrease in the reachability of
concepts. The reachability is observed to be close to the value of sampling the unspecified concepts randomly: when one
factor is unspecified, reachability is approximately 50%, and when both are unspecified, reachability is approximately 25%.

G.5. Biases

We tie the concepts “man” and “wearing a hat” (which also causes the concepts “woman” and “without a hat” to be tied),
and gradually increase the presence of images containing the concept combination (man,without a hat), thus reducing the
bias. We evaluate reachability to (man,without a hat) and (woman,wearing a hat). Results are presented in Figure 22b.

Increasing the presence of an individual concept increases separate reachability to both concepts Figure 22b shows
a clear increase in reachability to either concept combination as the bias in the dataset is decreased. Most noticeably, we
observe a sudden increase in reachability to (man,without a hat), similar to the threshold patterns previously observed.
Moreover, the reachability to (woman,wearing a hat) also gradually increases, suggesting that the models become more
capable of disentangling concepts. We further note that this concept combination is consistently more reachable through
steering.
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