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ABSTRACT

Depth estimation involves acquiring three-dimensional information from images,
which has numerous applications in downstream tasks. Although several effec-
tive monocular depth estimation algorithms have been developed, directly apply-
ing frame-by-frame depth estimation can result in flickering, which hinders many
video-related applications. Previous video-based approaches have primarily been
post-processing methods that utilize spatial information about camera poses to re-
duce flicker, but they come with a considerable computational cost. In this paper,
we introduce the concept of depth map noise to better understand flicker in depth
maps and propose a depth noise smoothing network to eliminate visual flicker in
depth maps. Our approach can be applied to different depth estimation models
and run in real-time for screen-based applications, such as video bokeh.

1 INTRODUCTION

In recent years, there has been a rapid advancement in single-frame image depth estimation algo-
rithms [Li & Snavely| (2018)); |Li et al.| (2019); |[Ranftl et al.| (2020); |Walia et al.| (2022); [Watson et al.
(2021)). Obtaining continuous depth from video is a challenging task, and many hybrid methods |Luo
et al.[ (2020); |Kopf et al.| (2021); Zhang et al.| (2021); [Teed & Deng| (2020) have been proposed to
address this issue by leveraging both geometric cues and learning-based priors. While this approach
ensures geometric consistency, it requires high accuracy in camera poses and has a high computa-
tional overhead, making it challenging to apply in real-world applications.

Therefore, we propose a novel approach that can produce stable depth maps while minimizing com-
putational overhead. Inspired by image denoising methods [Pang et al.| (2021); Moran et al.| (2020),
we use a post-processing approach to interpret depth map noise as inconsistencies in depth values
across multiple frames. We develop a depth map denoising network that eliminates these inconsis-
tencies by averaging the differences between multiple frames of depth maps.

The network consists of two substreams, one for predicting a scale map and the other for predicting
a shift map. It is designed to learn the spatio-temporal patterns of depth map noise and generate
corresponding corrections. Finally, the depth differences are averaged by multiplying and adding
them with the original depth map to obtain a final, noise-free depth map. Our approach can be
applied to multiple single-frame depth estimation models.

Overall, our proposed method provides a simple yet effective solution for obtaining continuous depth
from video without sacrificing computational efficiency. This approach has the potential to improve
downstream applications that rely on video depth maps, such as augmented reality (AR) [Liu et al.
(2021)and bokeh rendering |Peng et al.| (2022).

2 METHOD

We design a recurrent structure based on the property that depth values can be decomposed into two
components: scale and shift. To achieve this, we use two consecutive frames of the depth map as
input to our network and split the output into two sub-streams: a scale map and a shift map. These
matrices are then multiplied and added element-wise with the latter frame of the input. This process
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Method AbsRel | | SqRell | RMSE] | LogRMSE| | & >1.251 | 6 >1.25%1 | 05> 1.25% | Tuup |
LeReS[Yin et al.[(2021] 0.451 2.407 5413 0.641 0.367 0.605 0.736 0.144
DPT|Ranftl et al.|(2021) 0.492 3.973 5.144 0.524 0.452 0.659 0.781 0.131
MiDaS|Ranfil et al.[(2020] | 0.343 2.302 4.872 0.467 0.485 0.718 0.826 0.135
Ours-LeReS 0.450 2.402 5.421 0.612 0.372 0.616 0.740 0.069
Ours-DPT 0.401 2.301 4.923 0.501 0.464 0.672 0.801 0.057
Ours-MiDa$ 0.334 2.071 4.870 0.464 0.496 0.721 0.828 0.052

Table 1: Quantitative comparison of depth on Sintel dataset Butler et al.[(2012). Bold figures indi-
cate the best and underlined figures indicate the second best.

can be defined by:
D', = Scale x Dy + Shift, (Scale, Shift) = Net ({D;_1, D;}) (1)

We use a depth domain loss [Ranftl et al.| (2020) as a constraint in the depth domain. Additionally,
to further reduce the depth variability between adjacent frames, we employ a temporal loss, as
illustrated below:

N
M2, | D= Dia| @
t=1 i=1

where M is exp(—al|R; — Ry||3), we set « = 50. D;_; represents the warped frame D; ;. R;
is the warped RGB frame by the backward optical flow F. During training, we compute a dense
optical flow F' using FlowNet2 [llg et al.| (2017).

Our network comprises two convolutional layers, five residual blocks, and a transposed convolu-
tional layer that is split into two sub-streams, each of which outputs a different map: the scale map
and the shift map. The sub-stream for predicting the scale map is augmented with a skip connection
from the encoder to the decoder. The training dataset consists of disparity maps and RGB images
obtained from 3D movie processing, which are transformed into the depth domain while excluding
invalid depth regions. We use a batch size of 4 and input a sequence containing 7 frames. Video
frames are cropped to 384 x 384. The initial learning rate is 1e-4 and reduced by half every 10,000
iterations.

3 EXPERIMENTS

We assess the feasibility of our approach on the Sintel dataset Butler et al.| (2012) using standard
metrics for evaluating depth estimation, the table[I| presents the corresponding quantitative results.
Our method improves depth accuracy of three depth estimation models. Additionally, we select
a few real-world scene sequences for testing, as depicted in Appdenix. Our approach effectively
eliminates depth noise between frames and reduces visual flicker.

In order to assess the temporal stability of the depth maps, we employ the calculation of flow warping
error between two frames. The warping error is calculated as:

T-1

1 i i
T = 77 2 (zz 0 ZM< 1Dy D£+1||2> Q)

where ﬁtH represents the warped frame D, 1, and M, is a binary mask that indicates non-occluded
regions. The warping error is evaluated by computing the average warping error across the entire
sequence.

4 CONCLUSION

Our approach is motivated by practical applications, as we prioritize the application of screen editing
over scene reconstruction and localization. The proposed method is based on the concept of depth
maps denoising and represents the first post-processing method capable of effectively alleviating
depth flickering in videos in real-time. This method facilitates video editing tasks that require the
use of depth maps straightforwardly and efficiently, which can lead to more accurate and visually
appealing results.
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A APPENDIX

We present optimization results for some real-world depth maps in fig. [T}
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Figure 1: Comparisons of real results. (a) and (d) depict the initial depth maps, while (b) and (e)
depict the optimized depth maps. The line plot in (c) represents the average depth within the green
box in the video, where smoother lines indicate greater consistency between the depth maps.
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