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ABSTRACT

Machine unlearning, which involves erasing knowledge about a forget set from a
trained model, can prove to be costly and infeasible using existing techniques. We
propose a low compute unlearning technique based on a discrete representational
bottleneck. We show that the proposed technique efficiently unlearns the forget
set and incurs negligible damage to the model’s performance on the rest of the
data set. We evaluate the proposed technique on the problem of class unlearning
using four datasets: CIFAR-10, CIFAR-100, LACUNA-100 and ImageNet-1k. We
compare the proposed technique to SCRUB, a state-of-the-art approach which
uses knowledge distillation for unlearning. Across all four datasets, the proposed
technique performs as well as, if not better than SCRUB while incurring almost
no computational cost.

1 INTRODUCTION

Machine Unlearning (Cao & Yang, 2015; Nguyen et al., 2022; Zhang et al., 2023; Xu et al., 2023;
Kurmanji et al., 2023; Warnecke et al., 2021) may be defined as the problem of removing the influence
of a subset of the data on which a model has been trained. Unlearning can be an essential component
in addressing several problems encountered in deploying deep-learning approaches in practical
scenarios. Neural networks such as Large Language Models (LLMs), trained on massive amounts of
commonly available data, can exhibit harmful behaviors in the form of generating misinformation,
demonstrating harmful biases, or other undesirable characteristics. A major culprit behind these
behaviors is the presence of biased or corrupted instances in the training data of these models. To
ensure safe model deployment, it is necessary to remove these instances. Another reason to remove
instances and make a model behave as if it had not been trained on certain data is concerns about data
privacy and the right of end users to expunge their data (Mantelero, 2013; Dang, 2021). For example,
an individual might want their data removed from a face recognition system that was trained on their
faces such that it is no longer able to identify them. Several regulations are being put in place in order
to safeguard the “right to be forgotten” (Pardau, 2018; Magdziarczyk, 2019). All the above problems
can be addressed by unlearning the specific subset of the training data which gives rise to the harmful
behavior of the model in the former cases and an individual’s private data in the latter cases. Apart
from these concerns, unlearning can also serve other purposes such as removing outdated data from a
model to free up network capacity for more recent or relevant data. With increasing concerns about
AI safety and the increasing ubiquity of deep learning models in real-world applications, the problem
of unlearning is of critical importance.

The main challenge in unlearning is maintaining the performance of the model on the data that needs
to be retained, called the retain set, while unlearning the forget set. The naive way to ensure that a
model has no information about the forget set is to train from scratch on the retain set. Unlearning
techniques aim to achieve the same goal but at a much lower computational cost compared to full
retraining. Unlearning in a pretrained network is difficult, especially in densely connected neural
networks, since the value of one parameter may affect the output for all the input examples given to
the neural network. A possible solution is to fine tune the model we wish to unlearn only on the retain
set. While this would ensure that the performance of the model on the retain set is maintained, it can
be computationally infeasible in practice. Other more effective solutions include retraining the model
on the training data with a negative gradient for the forget set (Golatkar et al., 2020a; Kurmanji et al.,
2023), or using knowledge-distillation-based training objectives to capture information about the
retain set while filtering out information about the forget set (Kurmanji et al., 2023; Chundawat et al.,
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Figure 1: A summary of the proposed unlearning approach. Left: The structure of a key-value
bottleneck. The encoder is frozen and pre-trained and R1 is a random projection matrix. The
values corresponding to the selected keys are retrieved to be used by the decoder. The gradient is
backpropagated through the decoder into the values during training. The figure depicts the case with
1 codebook in the DKVB. However, in practice we use multiple codebooks. Center: Examples
from the forget set are passed through the trained model and the key-value pairs selected during the
forward pass are recorded. Right: The recorded key-value pairs are then masked from the bottleneck.
As a result, the key selection is redirected to other keys, with non-informative corresponding values
leading to other prediction.

2023). Nevertheless, all of these approaches require some form of substantial additional compute in
order to facilitate unlearning. Moreover, some of the existing approaches additionally require access
to the original training data to facilitate unlearning, which may not be possible in many practical
applications, e.g., for a model in production which is being trained online on an incoming data stream.
The use of large models is becoming more popular and prevalent with the advent of general purpose
transformer models. The requirement for additional compute can quickly become impractical in
the context of these large models, especially in cases where a model is deployed and needs to be
redeployed as quickly as possible after making the necessary changes.

In this article, we argue that specific kinds of discrete neural information bottlenecks are highly suited
for very efficient and specific unlearning. Neural information bottlenecks have emerged as useful
components in neural network architectures, providing numerous benefits such as improving out-of-
distribution (OOD) generalization capabilities and robustness to noisy data (Goyal et al., 2021; Jaegle
et al., 2021; Liu et al., 2021; 2023), facilitating large scale unsupervised pre-training and generative
modeling (Esser et al., 2021; Oord et al., 2017), and more recently, helping in continual learning
(Träuble et al., 2023). In particular, we build upon Discrete Key-Value Bottleneck (DKVB) proposed
in Träuble et al. (2023). DKVB induces sparse representations in the form of key-value pairs which
are trained in a localized and context-dependent manner. Since these representations are sparse, we hy-
pothesize that it is possible to remove the information about a subset of the training data without dam-
aging the information about the rest of the data—the primary desiderata for a useful unlearning method.
Moreover, since the representations are discrete, this may be achieved without requiring any additional
compute in the form of retraining or fine tuning, by directly intervening on individual representations.
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We investigate the above-mentioned idea of low compute unlearning in the Discrete Key-Value
Bottleneck. Specifically, we focus on the problem of class unlearning in multi-class classification
tasks, where the aim is to remove information about a specific class, called the forget class, from a
trained model. We use the term retain classes to refer to the classes other than the forget class that are
present in the training data. More specifically, we wish to remove the influence of the forget class on
the model. We measure this influence using the performance of the model on held-out test datasets
corresponding to the forget class and the retain classes.

We propose two approaches for compute efficient unlearning in DKVB - Unlearning via Examples
and Unlearning via Activations. We show that the proposed methods achieve unlearning of the
forget class while incurring negligible damage to the model’s performance on the retain classes. We
compare the proposed methods to SCRUB (Kurmanji et al., 2023), a recent state-of-the-art approach
that requires additional compute to unlearn, on four datasets: CIFAR-10, CIFAR-100, LACUNA-100
and ImageNet-1k. The novelty of our work lies in the largely under-explored idea of using a model
architecture with inherent sparse representations for unlearning.

To summarize, our main contributions are:

• We propose two new approaches for compute-efficient unlearning - Unlearning via Acti-
vations and Unlearning via Examples which are based on having a Discrete Key-Value
Bottleneck Träuble et al. (2023) in the models.

• We experimentally show that the proposed approaches are competitive with the existing
state-of-the-art approaches for unlearning, in terms of unlearning performance.

• We also show that the proposed approaches are significantly more compute efficient than
state-of-the-art baselines.

2 RELATED WORK

The problem of unlearning has been studied in different forms for over two decades. Early works
such as Tsai et al. (2014), Cauwenberghs & Poggio (2000) and Duan et al. (2007) study the problem
of decremental learning in linear models, where a small number of samples need to be removed from
a model. Ginart et al. (2019) considers unlearning as a problem of deleting individual data points
from a model. They give a probabilistic definition, formalize the notion of efficient data deletion, and
propose two deletion efficient learning algorithms. Guo et al. (2019) introduces certified removal -
a theoretical guarantee of indistinguishability between a model from which data was removed and
a model that never saw the data. Izzo et al. (2021) distinguishes between exact unlearning and
approximate unlearning and proposes a compute-efficient approximate data deletion method, and a
new metric for evaluating data deletion from these models. Golatkar et al. (2020a) and Kurmanji et al.
(2023) cast unlearning into an information theoretic framework. Golatkar et al. (2020b) proposes
Neural Tangent Kernel (NTK) (Jacot et al., 2018) theory-based approximation of the weights of the
unlearned network. Multiple works also delve into the more philosophical, ethical, and legal aspects
of unlearning and the “right to be forgotten” (Kwak et al., 2017; Villaronga et al., 2018). Chundawat
et al. (2023) and Tarun et al. (2023) learn error minimization and error maximization-based noise
matrices which are used to finetune the trained model in order to do unlearning. Chundawat et al.
(2023) further uses a generator that generates pseudo data points for unlearning in order to operate in
a data-free regime.

Most relevant to our work, Kurmanji et al. (2023) introduces SCRUB, a knowledge distillation-based
unlearning method. SCRUB considers the original model as a teacher model and trains a student
model to obey the teacher model on the retain set and disobey it on the forget set. This is done by
computing the KL Divergence between the output distributions of the two models and training the
student model to maximize it on the forget set (called a max-step) and minimize it on the retain set
(called a min-step). The student model is simultaneously also optimized for minimizing the task loss
on the retain set. The training consists of mstep max-steps. The max-steps and min-steps are executed
alternatively. Chen et al. (2023), similarly to us, focuses on class unlearning rather than unlearning
specific instances in the data. Unlearning is done by destroying the decision boundary of the forget
class. The authors propose two boundary shift methods termed as Boundary Shrink and Boundary
Expanding.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Jia et al. (2023) and Mehta et al. (2022) investigate unlearning in context of model sparsity. Jia et al.
(2023) leverages the Lottery Ticket Hypothesis, Frankle & Carbin (2018) leverages using parameter
pruning on a trained dense model to identify the token subnetwork. They observe that applying
standard unlearning approaches to a sparsified networks is better as compared to doing unlearning
directly on the dense network. Mehta et al. (2022) identifies the Markovian Blanket of parameters
corresponding to the examples to be unlearnt and updates those parameters. Their approach can be
seen as applying sparse unlearning updates to the network.

While most of the approaches discussed above improve upon the naive and intractable baseline of
retraining on the retain set, all of them require a substantial amount of additional computation in the
form of optimizing an objective function for unlearning. This additional compute requirement can
quickly become infeasible whenever large models are involved. The proposed approach in this work,
on the other hand, requires negligible computation for unlearning. Any computation that may be
required is in the form of running inference on the forget set. We point out that sparsity is a critical
dimension that determines the effectiveness of unlearning: extremely sparse representations make
unlearning trivial, whereas fully distributed representations intertwine knowledge in a way that makes
compute-efficient unlearning a serious challenge. Previous methods studying sparsity in the context
of unlearning such as Jia et al. (2023) and Mehta et al. (2022) propose the use of pruning techniques
to first sparsify the network. These approaches start with dense trained models and leverage sparsity
for unlearning. In contrast, we propose using sparsity as an in-built inductive bias in the model
during the initial training which makes the model suitable for unlearning involving minimal compute
requirements. On the other hand, Jia et al. (2023) sparsify the model after it has been trained. Mehta
et al. (2022) involves sparse updates to the model parameters as discussed previously. However, these
sparse updates are utilized during unlearning as opposed to during training of the original model in
the proposed approach. We identify a sweet spot on the continuum between local and distributed
learning that allows for both, compute-efficient unlearning and simultaneously obtaining the same
generalization performance.

Xu et al. (2023) have introduced a taxonomy that categorizes existing research on unlearning based
on different approaches and aims. In this classification, our methods fall within the Model Pruning
category by means of disabling specific (key, value) pairs within the bottleneck. Although one could
argue that our methods lean towards a weak unlearning strategy–given the pre-trained backbone
might retain some information about the forget set–our approach deviate from the strict definition of
weak unlearning as outlined by Xu et al. (2023). As an example, when considering a non-parametric
decoder, our methods affect intermediate rather than final model activations.

3 BACKGROUND AND NOTATIONS

Unlearning: Let Dtrain = {xi, yi}Ni=1 be a training dataset and Dtest be the corresponding test
dataset. In our experiments, we consider the setting of class unlearning, wherein we aim to unlearn
a class c from a model trained with a multiclass classification objective on Dtrain. c is called the
forget class or the forget set. Given c, we obtain Dforget

train ⊂ Dtrain such that Dforget
train = {(x, y) ∈

Dtrain|y = c}. The complement of Dforget
train is Dretain

train , i.e., subset of Dtrain that we wish to retain.
ThusDretain

train ∪D
forget
train = Dtrain. Similarly, fromDtest, we haveDforget

test = {(x, y) ∈ Dtest|y = c}
and its complement Dretain

test . We refer to Dretain
train and Dretain

test as the retain set training and test data;
and Dforget

train and Dforget
test as the forget set training and test data, respectively.

Discrete Key-Value Bottleneck: A discrete key-value bottleneck (DKVB) (Träuble et al., 2023)
consists of a discrete set of coupled key-value codes. The bottleneck contains C codebooks with each
codebook containing M key-value pairs. Models with DKVB use a pre-trained and frozen encoder to
encode the input into a continuous representation. This input representation is then projected into C
lower dimension heads and each head is quantized to the top− k nearest keys in the corresponding
codebook. The values corresponding to the selected keys are averaged, and used for the downstream
task. The keys in the codebooks are frozen and initialized to cover the input data manifold whereas
the values are learnable. The mapping between the keys and values is non-parametric and frozen.
Thus, the gradient is not propagated between the values and keys during training of the model.
Since the values are retrieved and updated sparsely, and all the components except the value codes
and the decoder are frozen, DKVB stores information in the form of input-dependent, sparse and
localized representations (i.e., the value codes). These inductive biases allow the framework to exhibit
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improved generalization under distribution shifts during training, as shown empirically as well as
theoretically in Träuble et al. (2023). Figure 1 (Left) shows an overview of a model with a DKVB
where C = 1, M = 5 and top-k = 1.

4 UNLEARNING VIA SPARSE REPRESENTATIONS

Learning a Discrete Key Value Bottleneck. A Discrete Key Value Bottleneck (DKVB) model is first
trained on the given dataset using the standard negative log-likelihood (cross-entropy loss) training
objective for multi-class classification. We use a non-parametric average pooling decoder and test
the proposed approaches on two pretrained backbones: 1.) a CLIP (Radford et al., 2021) pre-trained
ViT-B/32 (Dosovitskiy et al., 2020) and 2.) a ResNet-50 pretrained on ImageNet in a supervised
fashion. Then we proceed to unlearn a specific subset of data from these models. Before training
with the classification objective, we do a key initialization for the DKVB models on the same dataset.

Key Initialization in DKVB models. After being forward propagated through the pre-trained encoder,
the representations of the input are mapped to the top-k closest keys in the information bottleneck.
The mapping between keys and values in the discrete key-value bottleneck is non-parametric and
frozen. As a result, there is no gradient (back)propagation from the values to the keys, and hence the
keys are not modified during training. Thus, it becomes essential for the keys to be initialized before
learning the values and decoder, such that they broadly cover the feature space of the encoder. This
initialization helps the model represent different concepts effectively. As in Träuble et al. (2023), we
use exponential moving average (EMA) updates (Oord et al., 2017; Razavi et al., 2019) to initialize
the keys of the DKVB models. The key-initialization is done on the same train dataset Dtrain which
we want to train the model on. The key initializations depend solely on the input encodings of the
backbone and hence do not require access to any labeled data.

Inference for Unlearning. We propose to achieve unlearning in DKVB models by excluding
key-value pairs from the bottleneck such that they cannot be selected again. Numerically, this
masking is done by setting the quantization distance of the selected keys to ‘infinity’. Figure 1 (center
and right column) shows an overview of the proposed methods. More specifically, we experiment
with two methods, Unlearning via Activations and Unlearning via Examples, described as follows.

Unlearning via Examples. In this method, we analyze the effect of unlearning a subset of Ne

examples belonging to the forget set. Ne examples are randomly sampled from the forget set training
data (Dretain

train ) and are input into the model having a DKVB. All key-value pairs that are selected
during forward propagation across the Ne examples are flagged. These key-value pairs are then
masked out from the bottleneck. Technically, this approach requires access to the original training
data corresponding to the forget class. However, it is also possible to carry out this procedure with a
proxy dataset that has been sampled from a distribution close enough to that of the forget set. The
main condition for unlearning the forget class in the bottleneck is that the keys which are closest to
the encoder representations of the forget set examples in the forget class are being removed. One way
to do this as described above, is by recording which keys get selected for the forget class examples
and subsequently removing them from the bottleneck. However, in the absence of the forget class
training data, the same could also be done by passing examples not directly belonging to the forget set
but drawn from a distribution that is close enough to the forget set. This will result in approximately
the same set of keys being selected as would have been if the examples belonged to the forget set.

Unlearning via Activations. In this second method, we analyze the effect on the quality of unlearning
by deactivating different numbers of key-value pairs corresponding to the forget set. We refer to the
key-value pairs that have been selected as inputs to the decoder as activations. The entire forget set is
forward-propagated through the DKVB model and all the key-value pairs selected across all examples
of the forget class are recorded. Next, we mask the top-Na most frequently selected key-value pairs
from the bottleneck. The requirement of accessing the original training data for this method can be
avoided by caching all the activations corresponding to the forget set during the last epoch of training.
Further, similar to the previous case, unlearning via activations may also be performed given access
to data that has been sampled from a distribution close enough to the distribution of the forget set.

Both approaches are two different ways of achieving a common objective: to exclude a subset of
activations corresponding to the forget set. However, using one approach over the other may be
more practical or even necessary, depending on the task at hand. In both the above approaches, we
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do not do any form of retraining or fine-tuning. The only computation which may be necessary is
incurred during the inference stage for recording the key-value pairs which have been utilized for the
forget set. Hence both approaches require negligible additional compute. Moreover, the requirement
of access to original training data of the forget class can also be circumvented under appropriate
assumptions, making the proposed approaches zero-shot unlearning methods.

5 EXPERIMENTS AND RESULTS

The goal of our experiments is two-fold. First, we validate that proposed methods of the Unlearning
via Activations and Unlearning via Examples in models with a DKVB (Section 5.2), and show that
the proposed methods are competitive with the baselines (Section 5.2.1) in unlearning the forget
class while incurring minimal damage to the performance of the models on the retain class. Second,
we compare the compute efficiency of the proposed methods against that of the baselines. More
specifically, we report the number of floating point operations (FLOPs) required during the procedure
of unlearning. Before presenting these results, we describe our experimental setup.

5.1 EXPERIMENTAL SETUP

Benchmark datasets We validate the proposed methods using experiments across four base datasets:
CIFAR-10 with 10 distinct classes, CIFAR-100 (Krizhevsky et al., 2009) with 100 distinct classes,
LACUNA-100 (Golatkar et al., 2020a) with 100 distinct classes and ImageNet-1k (Russakovsky
et al., 2015) with 1000 distinct classes. LACUNA-100 is derived from VGG-Faces (Cao et al., 2018)
by sampling 100 different celebrities and sampling 500 images per celebrity, out of which 400 are
used as training data and the rest are used as test images.

Models On the aforementioned three datasets we study the following types of model architectures:

(a) Backbone + Discrete Key-Value Bottleneck (Ours): Overall, this architecture consists of
three components: 1) the frozen pre-trained backbone 2) the Discrete Key-Value Bottleneck
(DKVB) and 3) a decoder, as shown in Figure 1. For the DKVB, we use 256 codebooks, with
4096 key-value pairs per codebook (approximately 1M pairs overall) as in Träuble et al. (2023).

(b) Backbone + Linear Layer (Baseline): As a baseline, we replace the Discrete Key Value
bottleneck and the decoder in the above model architecture with a linear layer. Thus, the two
components of this model are 1) a frozen pre-trained backbone and 2) a linear layer. This model
will be used for all the baseline methods.

In each model, we use a pre-trained frozen CLIP (Radford et al., 2021) ViT-B/32 and ImageNet
supervised pre-trained ResNet-50 as our encoder backbones. We refer the reader to the appendix for
additional implementation details.

Training the Base Models We then train both model architectures on the full training sets of each
dataset. Since the backbone is frozen, for the baseline models, only the weights of the linear layer are
tuned during initial training (and later unlearning). Since we use only one linear layer, we do not do
any pre-training (beyond the backbone), unlike in previous works (Kurmanji et al., 2023; Golatkar
et al., 2020a;b). Table 3 shows the performance of these trained models on the train and test splits of
the complete datasets. Starting from these base models trained on the full datasets, we will validate
the ability to unlearn previously learned knowledge.

Unlearning We aim to make the problem of unlearning as challenging as possible in order to fairly
evaluate the proposed methods. Therefore, on each dataset we select the class that is best learned
by the respective models with the Discrete Key Value Bottleneck trained previously, to be the forget
class (see Appendix A.2 for further details).

Objective & Metrics We report our results on the test data of retain classes and forget class, i.e.
Dretain

test andDforget
test . Further, in our experiments, we aim to achieve complete unlearning - achieving

minimal accuracy on the forget set while incurring minimal damage to the performance on the
retain set. While achieving complete unlearning may not always be desirable, such as in the case
of Membership Inference Attacks (MIAs) the proposed methods can be easily extended to defend
against MIAs (We refer to Appendix A.7 for further discussion on MIAs and the proposed methods).
We report mean values across 5 random seeds in all cases.
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Figure 2: Unlearning via Activations. Performance on the retain set test data vs. Performance
on the forget set test data across various datasets for (a) CLIP pretrained ViT/B-32 in the top row
(b) ImageNet pretrained ResNet-50 backbones in the bottom row as the value of Na is increased
which is indicated by the color of the markers. The relative performance on the retain set test data as
compared to the original models increases after unlearning in the case of CIFAR-10 and ImageNet-1k
and drops for CIFAR-100 and LACUNA-100 in the case of ViT/B-32 and increases for all four
datasets in the case of ResNet-50 (see Table 1).

For comparing the compute efficiency of different approaches, we report the approximate FLOPs
(Floating Point Operations) required for the procedure of unlearning. The total number of FLOPs are
calculated as number of FLOPs required during the forward passes + number of FLOPs required
during the backward passes. We use the fvcore1 library for computing the number FLOPs required
during the forward passes. FLOPs required using backward passes are approximated as number of
operations used for gradient computations + number of operations used for weight updates2. Since
only the linear head weights are trainable, the number of computations required for calculating the
gradients would be the same as the number of parameters in the linear layer. Further, since we use
Adam optimizer, the number of operations required for the weight updates would be equal to 18 times
the number of parameters.

To calculate the final number of FLOPs, we first calculate the FLOPs required for one example (one
forward + backward pass) and then multiply them with the total number of examples and the total
number of epochs. For SCRUB, the forward and backwards FLOPs are multiplied with different
scalars depending on the msteps parameter.

5.2 UNLEARNING VIA THE DISCRETE KEY-VALUE BOTTLENECK

We will now discuss the results of unlearning via activations and examples, i.e. the two approaches
proposed in Section 4 on all four benchmark datasets.

Unlearning via Activations. Unlearning via activations requires us to set the hyperparameter Na,
reflecting the top-Na most frequently activated key-value pairs which will be masked out after
inference on the forget set. We therefore start by analyzing its role over a wide range of values to
probe its choice and effect with Na = 0 being the limit without any unlearning. Figure 2 summarizes
the unlearning and effect of Na on the retain vs forget test set. In the case of CIFAR-10 and a
ViT/B-32 backbone, the initial accuracies on the retain and forget test set are 92.61% and 96.50%
respectively. As Na increases, the forget class test accuracy decreases, slowly for small Na and
rapidly for larger Na. The model reaches random accuracy (i.e. 10% for CIFAR-10) on the forget
class test data at Na = 150000. At this point the retain set test accuracy is 92.97%. The model
unlearns the forget class completely between Na = 170, 000 (0.4%) and Na = 180, 000 (0%). At
this point, the retain set test accuracy is 92.94%, which is almost identical to the initial accuracy.

1https://github.com/facebookresearch/fvcore/
2https://epochai.org/blog/backward-forward-FLOP-ratio
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Figure 3: Unlearning via Examples. Performance on the retain set test data vs. Performance on
the forget set test data across different datasets for (a) CLIP pretrained ViT/B-32 in the top row and
(b) ImageNet pretrained ResNet-50 backbones in the bottom row as the value of Ne is increased
which is indicated by the color of the markers. The relative performance on the retain set test data
as compared to the base model increases for CIFAR-10 and drops for all other datasets in the case
of ViT/B-32, whereas it drops for CIFAR-10 and CIFAR-100 and increases for LACUNA-100 and
ImageNet-1k in the case of ResNet-50 (see Table 1)

Further increasing Na up to Na = 200, 000, i.e. about 20% of all key-value pairs, leads to an
additional increase in retain set test accuracy to 93%. On the contrary, in the case of CIFAR-10
and a ResNet-50 backbone, the decrease in the forget set test accuracy is rapid for small Na and
it slow for higher values of Na. Complete unlearning in this case happens between Na = 160000
(0.1%) and Na = 190000 (0%). These differences in trends can be attributed to how the information
is factorized among the representations. For eg. there is a steep decline in the forget set test accuracy
between Na = 50000 (41%) and Na = 55000 (13%) in the case of LACUNA-100 and ResNet-50
backbone (Figure 2). This behavior may be attributed to the presence of high information but less
frequently selected key-value pairs between the two values of Na. Nevertheless, as can be seen from
the equivalent analysis on the CIFAR-100, LACUNA-100 and ImageNet-1k models in Figure 2, the
same trend of maintaining the initial retain accuracy while minimizing the forget accuracy up to a
minimum holds across all four datasets and both backbones validating its meaningful unlearning
capability.

Unlearning via Examples. For the second method—unlearning via examples—Ne examples are
sampled randomly from the training data of the forget class, and subsequently used for unlearning by
the mechanism described in Section 4. Similar to before, we aim to assess the effect on the choice
of Ne over a wide range for each dataset, including Ne = 0 being the limit without any unlearning.
Figure 3 summarizes the unlearning and effect of Ne on the retain vs. forget test set. We again begin
by focusing on the results with CIFAR-10 and ViT/B-32 backbone. Here, the forget set Dforget

train
contains 5000 examples. We start off with retain set and forget set test accuracies of 92.61% and
96.50% respectively. Similar to the previous approach – unlearning via activations – the test accuracy
on the forget set decreases with increasing Ne. The accuracy on the retain test set, on the other hand,
increases monotonically, although only slightly overall. The model achieves random accuracy on
the forget class around Ne = 2500. The accuracy on retain set test data is at just under 93% at this
transition. Finally, the accuracy on the forget set drops to 0% (i.e. complete unlearning) between
Ne = 3000 and Ne = 3400 with a retain set test accuracy of just above 93% at Ne = 3400. Further
increasing Ne does not affect the retain set test accuracy notably. Similarly to the case of unlearning
via activations, the forget set test performance decreases rapidly at first and then slowly with Ne in the
case of CIFAR-10 with a ResNet-50 backbone. The retain set test accuracy increases at first and then
decreases, albeit marginally. An equivalent analysis on the CIFAR-100, Lacuna-100 and ImageNet-1k
models in Figure 3 exhibits a similar behavior of successful minimization of the forget accuracy up to
a minimum while roughly maintaining the retain set test accuracy, validating unlearning via examples
as another option for unlearning using discrete key-value bottlenecks.
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Table 1: Comparison between the proposed methods and the baseline across CIFAR-10, CIFAR-100,
LACUNA-100 and ImageNet-1k datasets and CLIP pretrained ViT/B-32 and ImageNet pretrained
ResNet-50 backbones. We compare the relative change in performance on the retain and forget
set test data relative to the originally trained models. The proposed methods are able to unlearn the
forget sets completely in all cases while causing minimal changes in the performance of the models
on the retain set test data.

CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

Backbone Method Dretain
test Dforget

test Dretain
test Dforget

test Dretain
test Dforget

test Dretain
test Dforget

test

ViT/B-32
DKVB via Activations (sec 5.2) 0.36% -100% -0.20% -100% -0.17% -100% 0.15% -100%
DKVB via Examples (sec 5.2) 0.45% -100% -0.36% -100% -0.09% -100% -0.03% -100%

Linear Layer + SCRUB 1.62% -100% -0.91% -100% -1.10% -100% 7.31% -100%
Linear Layer + Finetuning 1.94% -100% -1.91% -98.33% -2.21% -100% 0.88% -100%
Linear Layer + Retraining 1.82% -100% -0.39% -100% -2.03% -100% 5.16% -100%
Linear Layer + NegGrad+ 0.49% -100% -0.63% -100% -1.34% -100% 2.45% -100%

ResNet-50
DKVB via Activations (sec 5.2) 0.04% -100% 0.26% -100% 0.21% -100% 0.04% -100%
DKVB via Examples (sec 5.2) -0.07% -100% -0.34% -100% 0.17% -100% 0.04% -100%

Linear Layer + SCRUB -0.07% -99.67% -0.94% -98.79% -0.26% -99.67% 0.74% -100%
Linear Layer + Finetuning 0.48% -100% -0.46% -99.99% -2.96% -100% -2.25% -100%
Linear Layer + Retraining 3.06% -100% 1.76% -100% 1.15% -100% -1.14% -100%
Linear Layer + NegGrad+ 2.13% -100% -0.85% -100% 6.73% -100% -0.85% -100%

Summary. Both methods, Unlearning via Activations and Unlearning via Examples, successfully
demonstrate unlearning of the forget class while having a negligible effect on the models’ performance
on the retain set. Importantly, this is achieved without any form of training, retraining, or fine-tuning
as is usually required by other methods. The retain set test accuracy remains more or less constant
for all four datasets except for a few minor fluctuations. This is a result of the fact that due to
localized and context-dependent sparse updates during the initial training of the model, discrete
key-representations corresponding to different classes in the dataset are well separated from each
other, an important prerequisite discussed in Träuble et al. (2023). Hence, all the information about
a class can be unlearned by forgetting only a subset of the forget class training data in the case of
Unlearning via Examples, making it very data-efficient. While the aforementioned experiments are
conducted in the context of unlearning a single class, Appendix A.4 further discusses the performance
of the proposed approaches in multi-class unlearning scenarios.

5.2.1 COMPARISON WITH BASELINES

We now compare the results of both the proposed methods, which require Backbone + DKVB
models against several baseline methods, which are optimized for models without such a bottleneck.
For this, we will use the Backbone + Linear Layer models described in 5.1. On these models, we
run SCRUB (Kurmanji et al., 2023), finetuning - finetuning the model to be unlearnt on the retain
set, retraining - training the model from scratch on the retain set only and NegGrad+ (Kurmanji
et al., 2023) and compare the performance changes on the forget and retain classes against the
performance changes after unlearning with the two proposed methods.Table 1 shows the comparison
between the two previously reported methods and the baselines. We can see that one of the two
proposed approaches always results in the least change in the performance of the base model on
the retain classes, while at the same time achieving complete unlearning of the forget class. The
baselines on the other hand, occasionally fail to achieve complete unlearning. Finally, it is important
to re-emphasize that the proposed methods achieve the shown performance without requiring any
additional gradient-based training for unlearning. In the case of baselines, we stop the unlearning
procedure when the forget set is completely unlearned or the forget set test accuracy has converged
with minimal damage to the performance on the retain set. Moreover, while we report results for
the case of complete unlearning, the proposed methods can be easily used for achieving unlearning
of the forget class to different extents by tuning the Na and Ne hyperparameters. We refer to
Appendix A.9.3 and A.9.2 for further training and implementation details.

5.3 PROPOSED METHODS ACHIEVE UNLEARNING IN A COMPUTE EFFICIENT MANNER

In this section, we compare the proposed approaches against the baselines in terms of the amount of
compute required in order to achieve complete unlearning. To facilitate this comparison, we report
the number of FLOPs required for the unlearning procedure for each case. The FLOPs are calculated
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Table 2: Comparison of FLOPs for various methods across CIFAR-10, CIFAR-100, LACUNA-100,
and ImageNet-1k datasets using ViT/B-32 and ResNet-50 backbones. We report both forward and
backward FLOPs for each method.

CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

Backbone Method Forward Backward Forward Backward Forward Backward Forward Backward
(TFLOPs) (GFLOPs) (TFLOPs) (GFLOPs) (TFLOPs) (GFLOPs) (TFLOPs) (GFLOPs)

ViT/B-32

DKVB via Activations (sec 5.2) 21.93 0 2.19 0 1.75 0 5.63 0
DKVB via Examples (sec 5.2) 14.91 0 0.75 0 1.40 0 2.90 0

Linear Layer + SCRUB 655.13 14.59 1316.83 293.30 527.60 117.51 39168.28 87230.98
Linear Layer + Finetuning 196.54 4.38 6485.87 1444.61 5188.69 1155.69 11179.75 24898.21
Linear Layer + Retraining 196.54 4.38 1080.98 240.77 864.78 192.61 5589.87 12449.11
Linear Layer + NegGrad+ 393.08 8.76 1729.56 385.23 1383.65 308.18 11179.75 24898.21

ResNet-50

DKVB via Activations (sec 5.2) 16.66 0 1.67 0 1.33 0 5.31 0
DKVB via Examples (sec 5.2) 7.33 0 0.93 0 1.33 0 3.74 0

Linear Layer + SCRUB 1498.74 87.55 1488.79 869.68 3697.00 2159.62 31873.28 299227.17
Linear Layer + Finetuning 1049.12 61.29 1648.66 963.07 131.89 77.05 5304.25 49796.43
Linear Layer + Retraining 659.47 385.23 1648.66 963.07 2242.18 1309.78 5304.25 49796.43
Linear Layer + NegGrad+ 329.73 192.61 10608.49 99592.85 263.79 154.09 5304.25 49796.43

following the rules described in Section 5.1. Table 2 compared the FLOPs required for unlearning in
each case.

We report the forward and backward FLOPs separately to highlight that the proposed approaches do
not require any gradient based updates. Additionally, while the scale of backward FLOPs may seem
insignificant against the forward FLOPs, it can easily blow up in cases where complex parametric
decoders are used on top of the DKVB. In our experiments, the decoder is simply an average pooling
layer. Nevertheless, we can see that the proposed approaches require significantly less forward FLOPs
as compared to the baselines. This can be explained by the fact that the proposed approaches require
only one forward pass through the models per example of the forget class training data, in order to
cache the activations. The baseline methods on the other hand, require multiple forward passes, each
corresponding to a single training epoch.

6 LIMITATIONS AND FUTURE WORK

The proposed methods inherit the limitations of the DKVB (Träuble et al., 2023) such as the reliance
of DKVB on pre-trained encoders which can extract meaningful shared representations and trade-offs
in downstream performance due to the use of an information bottleneck. Extensions to the model
may involve training sparse representations inducing discrete bottleneck end-to-end. Further, in our
experiments, we consider the setting of multi-class classification in a supervised learning setting
where the forget set can be easily identified and isolated. However, this may not always be sufficient
for a given task and more complicated approaches might be needed to identify the data that needs
to be removed from the model. Scaling the proposed framework and evaluating its effectiveness in
more complex scenarios such as generative modeling remains to be explored. While the methods
introduced in this work are currently not designed for selective unlearning as outlined in Appendix
A.7, there are various directions for future adaptations. These directions include enhancing the forget
set isolation, and addressing limitations related to information retention, for instance by further
fine-tuning on the encoder backbone. Advancing towards even stronger unlearning forms involving
discrete key value bottlenecks, represents a key direction for future work.

7 CONCLUSION

In this work, we proposed a new approach to unlearning that requires minimal computation in order
to unlearn a subset of data. This approach is based on the use of a discrete architectural bottleneck
which induces sparse representations. These sparse representations facilitate unlearning a subset of
data from the model with minimal to no performance drop on the rest of the data. We focused on the
setting of class unlearning and our experiments show that the proposed approach, while being at least
20× compute efficient, performs competitively with or in some cases better than a state-of-the-art
approach which requires additional compute to perform unlearning. Consequently, excising the
activated key-value pairs from the model is a highly effective means of unlearning the forget set
without disrupting the retain set.
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A APPENDIX

A.1 INITIAL PERFORMANCES OF THE MODELS

We train both: the models with a DKVB and the baseline models (i.e. backbone + linear layer) to
achieve similar performances on the test datasets in order to ensure a fair comparison. Note that, due
to these the models are not necessarily trained to achieve the maximum possible performance on the
datasets. Table 3 shows the initial performances of the originally trained models on different splits of
the datasets.

A.2 DECIDING THE FORGET CLASS

We assume that this class should be the most difficult one for the model to forget. Figures 4(a) -
4(c) show the number of mis-classifications per class on the test data, for CIFAR-10, CIFAR-100
and LACUNA-100 for the ViT-B/32 backbone. For CIFAR-10, class #1 is the best-learned class
with the lowest number of mis-classifications. Thus, we select class #1 as the forget class for the
dataset. For CIFAR-100 class 58 is the best-learned class and for LACUNA-100, class 48 is one of
the best-learned classes with zero mis-classifications. Hence, we select classes #58 and #48 as the
forget classes for CIFAR-100 and LACUNA 100 respectively. We determine the forget class in all
other cases using the same method. We use the same forget classes for experiments on the models
with a linear layer in place of the DKVB (i.e., the baseline) as well. Table 4 shows the forget class for
all the cases discussed in our experiments.
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Table 3: Performance of the models on different sets of data after the initial training on the four
datasets. We use two kinds of models: (a) models having a Discrete KV Bottleneck which are used
for the proposed methods and (b) models where the DKVB and the decoder are replaced by a Linear
Layer. These are used for the baseline. We wish to reduce the accuracy of these models on Dforget

test
to 0% while maintaining the accuracy on Dretain

test .

(a) Backbone + DKVB
ViT-B/32 ResNet-50

Dataset Dtrain Dretain
train Dforget

train Dtest Dretain
test Dforget

test Dtrain Dretain
train Dforget

train Dtest Dretain
test Dforget

test

CIFAR-10 100% 100% 100% 93.01% 92.61% 96.50% 100% 100% 100% 82.94% 82.04% 91.00%
CIFAR-100 99.98% 99.98% 100% 78.43% 78.24% 96.00% 99.98% 99.98% 100% 62.11% 61.81% 92.00%

LACUNA-100 98.09% 98.07% 100% 90.38% 90.28% 100% 98.35% 98.34% 100% 65.53% 65.24% 94.00%
ImageNet-1k 99.53% 99.53% 100% 68.24% 68.22% 92.00% 99.37% 99.36% 100% 76.44% 76.41% 100%

(b) Backbone + Linear Layer
ViT-B/32 ResNet-50

Dataset Dtrain Dretain
train Dforget

train Dtest Dretain
test Dforget

test Dtrain Dretain
train Dforget

train Dtest Dretain
test Dforget

test

CIFAR-10 93.27% 92.82% 97.32% 93.02% 92.59% 96.90% 83.80% 83.42% 87.20% 82.04% 81.74% 84.70%
CIFAR-100 86.73% 86.61% 99.00% 78.53% 78.35% 96.00% 78.02% 77.82% 98.20% 62.69% 62.41% 90.00%

LACUNA-100 95.58% 95.53% 100% 90.68% 90.59% 100% 86.48% 84.53% 99.25% 65.40% 65.10% 95.00%
ImageNet-1k 73.13% 73.11% 96.15% 68.29% 68.26% 92.00% 97.44% 97.43% 100% 76.77% 76.75% 100%
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Figure 4: Number of mis-classifications per class for the test data. The red bars correspond to the
class with the least number of mis-classifications (a) CIFAR-10: Class 1 has the least number of
mis-classifications (b) CIFAR-100: Class 58 has the least number of mis-classifications (c) LACUNA-
100: Classes 34, 48, 65, 76, 82 and 85 have 0 mis-classifications and hence, do not have a bar

A.3 UNLEARNING IN SCRUB

Figure 5 plots the retain class test accuracy vs forget class test accuracy for running SCRUB on a
(CLIP pretrained and then finetuned on CIFAR-100) ViT-B/32 backbone in the case of CIFAR-100

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Forget classes for the different scenarios presented in the paper

Forget Classes CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT-B/32 1 58 48 1
ResNet-50 1 94 34 9

(similar to Figures 2 and 3). The forget set accuracy drops to 0% after the first epochs. We run the
unlearning procedure for 10 epochs, each epoch consisting of either one or two optimization steps,
depending on the msteps parameter. As explained in Section 5.2.1, we run SCRUB until the damage
on the retain set test accuracy is minimal.
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Figure 5: Retain Class Test Accuracy vs Forget Class Test Accuracy. The markers are color coded to
represent the number of epochs.

A.4 MULTI CLASS UNLEARNING

We attempt to investigate the effects of unlearning multiple classes at once by performing experiments
on CIFAR-100 for both ViT/B-32 and ResNet-50 models. We unlearn upto 10 classes using both
- Unlearning via Activations as well as Unlearning via Examples as well as one of the baselines -
SCRUB (Kurmanji et al., 2023) and run each experiment for 5 seeds. The classes to be forgotten
are chosen randomly for each seed. Figure 6 plts relative change in performance of the unlearnt
model on the retain class (with respect to the original model) vs the number of classes unlearnt at
approximately the point of complete unlearning.
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Figure 6: Multi Class Unlearning for CIFAR-100

We can see that Unlearning via Activations performs relatively better as compared to Unlearning via
Examples. Further, SCRUB outperforms both the proposed methods significantly in the case of a ViT
backbone, keeping the percentage change in the retain class test accuracy less than 1% in all cases.
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Table 5: Selecting the forget class randomly for CIFAR-100

CIFAR-100

Backbone Method Dretain
test Dforget

test

ViT/B-32
DKVB via Activations (sec 5.2) -0.27 ± 0.07 % -100% ± 0 %
DKVB via Examples (sec 5.2) -0.47 ± 0.03 % -100 ± 0 %

ResNet-50
DKVB via Activations (sec 5.2) 0.58 ± 0.12 % -100 ± 0 %
DKVB via Examples (sec 5.2) 0.28 ± 0.11 % -100 ± 0 %

However, in the case of a ResNet-50 backbone, SCRUB surprisingly performs the worst for low
number of unlearnt classes and competitively for higher number of unlearnt classes. The proposed
methods perform comparatively better on the ResNet-50 backbone as compared to the ViT backbone.
We can also clearly see that the relative error as compared to the original model on the retain set
performance is higher than single class unlearning, as expected. Noticeably, the performance starts to
significantly deteriorate when forgetting > 6 classes in the case of Unlearning via Examples, and > 8
examples in the case of Unlearning via Activations for both the backbones.

A.5 CHOOSING THE FORGET CLASS RANDOMLY

To ensure that the effectiveness of the approach is not class specific, we perform experiments for
CIFAR-100, where the class to be forgotten is randomly chosen, and compare the performance of the
proposed approaches against SCRUB [2]. We run each experiment for 5 random seeds, wherein the
forget class is randomly chosen for each seed. Rest of the experimental setup remains the same as
described in Section 5 of the paper. We report the results in Table 5

Clearly, even with the forget class chosen randomly, the proposed approaches perform equally well
as in the scenario where the forget class is fixed. This proves that the effectiveness of the proposed
approaches is not class dependent.

A.6 UNLEARNING BEYOND THE COMPUTE FREE SETTING

We investigate the effect of using additional compute to the proposed methods. As shown previously,
the proposed methods perform competitively to SCRUB. To the best of our knowledge, SCRUB
is the most competitive and relevant unlearning approach. However, it has the inherent drawback
of requiring compute for unlearning. Nevertheless, for a fair comparison, we additionally explore
the implications of this additional compute for the proposed two methods for a ViT/B-32 backbone
on CIFAR-10, CIFAR-100 and LACUNA-100. Specifically, we retrain the DKVB models after the
(compute efficient) unlearning, on the training data of the retain set (i.e., Dretain

train ) for 10 epochs. For
the baseline, we use the same experimental setting as in Section 5.2.1, except - we run it for 10 epochs
instead of stopping when either the forget set has been completely unlearned or the performance has
converged. Figure 7 and figure 8 highlight the effect of retraining of the proposed methods compared
to SCRUB across multiple epochs, for all three datasets.

Retraining the unlearned models on the retain set does not affect their performance significantly. The
performance of the baseline on the other hand increases after an initial drop in case of CIFAR-100
and LACUNA-100. The initial drop may be attributed to the damage to the retain set performance
caused by the initial max-steps. The subsequent increase can be attributed to the fact that the SCRUB
training objective also optimizes the task loss on the retain set. Thus, once the model unlearns the
forget set, SCRUB shifts the model capacity towards better learning the retain set. For CIFAR-10
this results in the model performing better than the DKVB models on the retain set as the retain set
test accuracy after unlearning is higher than the original model. However, the baseline is unable to
recover its original performance for CIFAR-100 and LACUNA-100.

For the forget set, in all three cases, the baseline completely unlearns the forget set quickly within the
first few epochs, as shown in Figure 8.
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Figure 7: Comparison between the performance of proposed methods with added compute and the
baseline on the retain set test data. For the proposed methods, the plots start from after the initial
zero shot unlearning. For the baseline, the plots start from the original models. Retraining the models
unlearned using the proposed models does not lead to any significant improvements in performance.
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Figure 8: Comparison between the performance of proposed methods with added compute and the
baseline on the and forget set test data. Note that for the proposed methods, the plots start from after
the initial zero shot unlearning. For the baseline, the plots start from the original models. The green
line occludes the red line since both of them stay at 0% throughout the training.

A.7 USING THE PROPOSED METHODS AGAINST MEMBERSHIP INFERENCE ATTACKS

Depending on the application, complete unlearning of the forget set may not always be the final goal
of unlearning. For several use cases such as removing information about corrupted data from the
model or removing harmful biases exhibited by the model, maximal error on the forget set is desirable.
However, for applications such as Differential Privacy, it is more desirable to achieve a forget set
error which is similar to that of a model trained from scratch only on the retain set. Otherwise, it
makes the unlearned model susceptible to Membership Inference Attacks (MIA) (Shokri et al., 2017).
Although we do not explore this setting in detail in this work, the proposed method can also be
used for applications where complete unlearning is not desirable. This can be done by following a
procedure similar to SCRUB+R (Kurmanji et al., 2023), wherein instead of selecting a particular
model checkpoint, one can select the model corresponding to particular values of Na or Ne such
that the error on the forget set test data is similar to the reference point as defined in Kurmanji et al.
(2023).

First,it is important to clarify that the proposed approaches are not a-priori suited for selective
unlearning, i.e. the setting where we want the model to forget specific examples or a small subset of
examples instead of removing the information about an entire class. The KV bottleneck essentially
induces induces clusters of representation, where the members of a particular cluster correspond to
the representations belonging to the same class (see Figure 2 in Träuble et al. (2023)). When we try
to unlearn the representations corresponding to one particular example belonging to a particular class,
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the KV bottleneck routes the selection to other (key-)representations within the same cluster since
those keys would be the next closest to the representation of the encoder. Since these representations
also contain information about the same class as the examples we intend to unlearn, the model would
still predict the class to be unlearnt.

Due to the same reason the proposed approaches are also not designed for working against traditional
Membership Inference attacks. According to the basic attacks setup as explained in Kurmanji et al.
(2023), the objective is to obtain a model that has unlearnt a small subset of specific examples (i.e.
selective unlearning) such that the loss of the model on the unlearnt subset of examples should be
indistinguishable from loss on examples that the model never saw during training.

Nevertheless, since the proposed approaches are designed for class unlearning specifically, we attempt
to evaluate them on a modified version of the above. We call this ”Class Membership Inference
Attacks (CMIA)”. In CMIA, the aim is to defend against an attacker whose aim is to determine
whether a model that has undergone unlearning ever saw a particular class as a part of its training
data. Thus, we want the model to unlearn a particular class such that the losses/performance of the
model on the unlearnt class as a whole, is indistinguishable from those on a held-out class that the
model never saw during its training. We describe the experimental setup and results below.

Experimental Setup We perform the experiment for CIFAR10 with a ViT/B-32 backbone. We divide
the dataset into training data (DTrain), validation data (DV al) and test data (DTest). Training Data
consists of 4000 examples per class; validation and test data consist of 1000 examples per class. We
first trained a model on the first 9 classes of CIFAR10. Thus, class number 10 is the held-out class.
Next, we unlearn class 1 from the model using the Unlearning via Activations approach introduced
in the paper. We unlearn the model until the loss of the model on the validation sets of the forget
class and the held-out class are similar. In our experiments, we find that we reach this point at
approximately Na = 240000. The loss l(x, y) in our case is be the cross-entropy loss.

Next, we label the losses corresponding to the validation and test set of the forget class as 1 and
those corresponding to the validation and test set of the held-out class as 0. We train a binary
classifier on the validation losses of the forget and held-out sets and evaluate it on the test losses.
We follow a similar setting for the baseline model, where we obtain the model suitable for MIA
defense by using SCRUB+R (Kurmanji et al., 2023). For a successful defense, we would want
the accuracy of the classifier to be close to 50% on the test losses, indicating that it is unable to
distinguish between the unlearned class and the held-out class. Same as Kurmanji et al. (2023),
we use sklearn.logistic regression as our attacker (the binary classifier). We call the
approach described above Partial UvA (Partial Unlearning via Activations). We run experiments for
3 random seeds, and the mean of the attacker performance is reported. Note that a similar procedure
can also be followed using Unlearning via Examples.

Observations and Results: We report the results of the experiment described above in the table
given below. We observe that although the baseline performs slightly better, the proposed approaches
perform competitively, even though we have not intended to develop the method for this scenario.

Table 6: Comparison on Class Membership Inference Attacks between the proposed approach and
the baseline. A binary classifier is trained on the validation losses of the forget and held-out sets and
is evaluated on the test losses. The proposed approach performs competitively to SCRUB + R

Approach Attacker Accuracy

Partial UvA 53.50%
Linear Layer + SCRUB + R 51.50%

A.8 MATHEMATICAL AND ALGORITHMIC FORMULATIONS

In this section, we provide mathematical formulations for the proposed approaches of Unlearning
via Activations and Unlearning via Examples as well as the empirical moving averages used for
initializing the keys of the Discrete Key-Value bottleneck.

A.8.1 EXPONENTIAL MOVING AVERAGES FOR KEY-INITIALIZATION
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Similar to Träuble et al. (2023) we build upon exponential moving averages as introduced in Oord
et al. (2017); Razavi et al. (2019). Below, we reiterate much of what is described in Träuble et al.
(2023) (Appendix C). The set of equations given below describes the key initialization procedure.
For each codebook c:

N
(t)
i := γN

(t−1)
i + n

(t)
i (1− γ) (1)

m
(t)
i := γm

(t−1)
i +

n
(t)
i∑
j

E
c(x)
i,j (1− γ) (2)

k
(t)
i :=

m
(t)
i

N
(t)
i

(3)

where t is the index of the current mini-batch, ki and Ni represent the position and counts of the ith
key, Ec(x)

(t)

i,j=1...n
(t)
i

are the n(t)
i head embeddings of the examples in the mini-batch which attach to

the i-th key. We refer the reader to Appendix C of Träuble et al. (2023) for more details

A.8.2 UNLEARNING VIA ACTIVATIONS AND EXAMPLES

In this section, we provide algorithmic implementations of the the proposed approaches of Unlearning
via Activations (Algorithm 1) and Unlearning via Examples (Algorithm 2). Both algorithms are
applied on model with a DKVB that was trained on the given task.

A.9 TRAINING DETAILS AND HYPERPARAMETERS

We perform all of our experiments on a 48GB RTX8000 GPU. We do not use any data augmentation
in any experiment. The transforms used for training the model with a ViT/B-32 backbone are the
same as CLIP (Radford et al., 2021) pretrained ViT/B-32 transforms. For ResNet-50, both pre-trained
weights and transforms are loaded from torchvision.models.ResNet50 Weights

A.9.1 TRAINING DETAILS AND HYPERPARAMETERS FOR TRAINING THE ORIGINAL DKVB
MODELS

In the case of ImageNet pretrained ResNet-50, the representations of the backbone are extract from
the 3rd last layer for CIFAR-10, CIFAR-100 and LACUNA-100 and from the 4th last layer for
ImageNet-1k. Table 7 shows all the hyperparameters used for training the base DKVB models.

A.9.2 TRAINING DETAILS AND HYPERPARAMETERS FOR TRAINING THE ORIGINAL BASELINE
MODELS

For the baseline models, we deliberately train them to similar test (Dtest) accuracies as the models
with a Discrete Key Value Bottleneck to ensure a fair comparison for unlearning. Table 8 shows the
hyperparameters used for training the baseline models.

A.9.3 TRAINING DETAILS AND HYPERPARAMETERS FOR SCRUB

For the baseline, we run SCRUB on the model with linear layer. One epoch consists of one min step
and may or may not contain a max step. Hence the values of min steps and epochs are always same.
One max step is included in every epoch for the first msteps epochs. We tune the hyperparameter
msteps in our experiments and pick the case where the model is able to best recover its performance
on the retain set test data and consider this model as the final unlearned model. We mention the
hyperparameters used for running SCRUB corresponding to the results presented in Section 5.2.1 in
Table 9. In this case, training of SCRUB is stopped when the forget set accuracy has either dropped to
0% or converged at a close to 0% value without damaging the retain set accuracy. Results presented
in Appendix A.6 also use the same set of hyperparameters except min-step which is always 10 since
we train all the methods for 10 epochs.
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Algorithm 1: Unlearning via Activations

Input: Training dataset Dtrain, Forget class training data Dforget
train ⊂ Dtrain, a function argsort

which takes in a one-dimensional matrix as its argument and outputs the indices of the values
arranged in ascending order, a distance function d(e, k) that calculated the euclidean distance
between two vectors e and k, number of activations to be deactivated Na, top-k parameter
used for the DKVB

Components of the DKVB:
• Pre-trained and frozen embedding model E
• (DKVB) Random projection matrix R

• (DKVB) Set of keys initialized using EMA {kj}N−1
j=0

• (DKVB) Distance matrix D ∈ R|Dforget
train |×N , initialized to −∞:

D[i, j]← −∞ ∀ i ∈ [0, |Dforget
train | − 1], j ∈ [0, N − 1].

• (DKVB) Selection mask M ∈ R|Dforget
train |×N , initialized to 1:

M [i, j]← 1 ∀ i ∈ [0, |Dforget
train | − 1], j ∈ [0, N − 1].

Initialize: Frequency matrix f ∈ ZN
≥0, initialized to 0:

f [j]← 0 ∀ j ∈ [0, N − 1].

Step 1: Forward propagate the forget class training data through the model
for i← 0 to |Dforget

train | − 1 do

x← Dforget
train [i]

ex = R · E(x)

for j ← 0 to N − 1 do
D[i, j]← d(ex, kj)×M [i, j]

end
Ie ← argsort(D[ex, :])1:top-k
for j ∈ Ie do

f [j]← f [j] + 1
end

end

Step 2: Deactivate the most frequently activated keys
J ← argsort(f)N−Na+1:N

for j ∈ J do

M [:, j]←∞
end

A.9.4 TRAINING DETAILS AND HYPERPARAMETERS FOR RETRAINING EXPERIMENTS

Once the DKVB models are unlearned using Unlearning via Activations and Unlearning via Examples,
we retraining them in order to make a fair comparison with the baseline. Thus, during retraining, the
initial performance of these models on the retain set is same as the final performance of the unlearned
models. Table 10 show the hyperparameters used for retraining the unlearned DKVB models.
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Algorithm 2: Unlearning via Examples

Input: Training dataset Dtrain, Forget class training data Dforget
train ⊂ Dtrain, a function argsort

which takes in a one-dimensional matrix as its argument and outputs the indices of the values
arranged in ascending order, a distance function d(e, k), number of examples to be used for
unlearning Ne, top-k parameter used for the DKVB

Components of the model:
• Pre-trained and frozen embedding model E
• (DKVB) Random projection matrix R

• (DKVB) Set of keys initialized using EMA {kj}N−1
j=0

• (DKVB) Distance matrix D ∈ R|Dforget
train |×N , initialized to −∞:

D[i, j]← −∞ ∀ i ∈ [0, |Dforget
train | − 1], j ∈ [0, N − 1].

• (DKVB) Selection mask M ∈ R|Dforget
train |×N , initialized to 1:

M [i, j]← 1 ∀ i ∈ [0, |Dforget
train | − 1], j ∈ [0, N − 1].

Initialize: Set of activated indices I ← ∅

Step 1: Randomly sample a subset Sf from Dforget
train of size Ne

Sf ∼ Dforget
train , |Sf | = Ne

Step 2: Input the examples in the subset into the model to record the activated keys
for i← 0 to |Sf | − 1 do

x← Sf [i]
ex = R · E(x)

for j ← 0 to N − 1 do
D[i, j]← d(ex, kj)×M [i, j]

end
I ← I ∪ argsort(D[i, :])1:top-k

end

Step 3: Deactivate the activated keys
for i ∈ I do

M [:, j]←∞
end
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Table 7: Hyperparameters used for training the base DKVB models

Backbone Hyperparameter CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT/B-32

top-k 1 10 10 1
Key Dimension 8 8 8 14

# of Key Init Epochs 10 10 10 10
Type of Value Init Gaussian Random Zeros Uniform Random Zeros
# of Codebooks 256 256 256 256

# of Key-Value Pairs per Codebook 4096 4096 4096 4096
Optimizer Adam Adam Adam Adam

LR 0.1 0.3 0.3 0.3
Batch Size 256 256 256 256

Epochs 74 71 7 3

ResNet-50

top-k 1 2 1 1
Key Dimension 14 14 8 14

# of Key Init Epochs 10 10 10 10
Type of Value Init Zeros Random Gaussian Random Gaussian Random
# of Codebooks 256 256 256 256

# of Key-Value Pairs per Codebook 4096 4096 4096 4096
Optimizer Adam Adam Adam Adam

LR 0.3 0.3 0.1 0.3
Batch Size 256 256 256 256

Epochs 70 4 1 5

Table 8: Hyperparameters used for training the baseline models

Backbone Hyperparameter CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT/B-32
LR 0.001 0.01 0.01 0.01

Batch Size 256 256 256 512
Epochs 1 7 13 1

ResNet-50
LR 0.01 0.001 0.01 0.001

Batch Size 256 256 512 512
Epochs 2 72 73 11

Table 9: Hyperparameters for SCRUB + Linear Layer Experiments shown in Section 5.2.1

Backbone Hyperparameter CIFAR-10 CIFAR-100 LACUNA-100 ImageNet-1k

ViT/B-32

Forget Set Batch Size 256 256 256 512
Retain Set Batch Size 256 256 256 512

# of max-steps (msteps) 3 9 5 3
# of min-steps / # of epochs 3 10 7 3

LR 0.001 0.01 0.01 0.001
Optimizer Adam Adam Adam Adam

ResNet-50

Forget Set Batch Size 256 256 256 512
Retain Set Batch Size 256 256 256 512

# of max-steps (msteps) 9 3 3 3
# of min-steps / # of epochs 10 30 30 10

LR 0.01 0.001 0.01 0.001
Optimizer Adam Adam Adam Adam
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Table 10: Hyperparameters used for re-training experiments. UvA stands for Unlearning via
Activations and UvE stands for Unlearning via Examples

CIFAR-10 CIFAR-100 LACUNA-100

UvA UvE UvA UvE UvA UvE

LR 0.3 0.3 0.1 0.1 0.1 0.3
Optimizer Adam Adam Adam Adam Adam Adam
Batch Size 256 256 256 256 256 256

Gradient Clipping 0.1 0.1 0.1 0.1 0.1 0.1
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