
In Search of a Data Transformation that
Accelerates Neural Field Training

Junwon Seo1 Sangyoon Lee1 Jaeho Lee1
1POSTECH

{junwon.seo,lyunm1206,jaeho.lee}@postech.ac.kr

Abstract

We investigate accelerating the training of neural fields, specialized networks
representing individual data points, by fitting transformed data versions; one can
recover the original signal by inverting back the signal represented by the trained
neural field. We empirically find that very simple data transformations, such as
color inversion or random pixel shuffling, can substantially speed up or slow down
the training. In particular, to our surprise, we observe that an image with randomly
shuffled pixels can be fit much faster, despite having a very large frequency.

1 Introduction

Neural field is a form of data representation that parameterizes each signal as a neural network that
maps spatiotemporal coordinates to the signal value [1], useful for high-detail representation of
various modalities like images [2], videos [3], 3D scenes [4], and spherical data [5]. Neural fields’
widespread use is limited by high training costs, requiring numerous SGD iterations for each data
representation. For instance, NeRF requires at least 12 hours of training time on GPUs to represent a
single 3D scene [4]. Such computation time for data representation hinder their practical application.

The prevailing approach to reduce training time by incorporating useful prior (or inductive bias).
Many prior works view the implicit bias of SGD as a core cause of the long training time of neural
fields. In particular, the spectral bias of standard neural network training is known to impede the
fitting of high-frequency signal details. [6]. Such works propose various algorithms to mitigate
this SGD bias by including network components like Fourier features [4], sinusoidal activations [7],
spatial encoding [8, 9], or using initial parameters meta-learned from a large dataset [10, 11].

In this paper, we approach the problem from a different angle, by asking the following question:
“Can we exploit the implicit bias of SGD, instead of fighting it?”

Precisely, we explore if transforming the signal can make SGD bias favorable for fitting the trans-
formed signal. Should an efficiently invertible transformation exist, it may enable reduced training
costs by fitting the transformed signal instead. As a first step to answer this question, we compare the
training costs (in terms of SGD steps) for fitting both original and transformed signals to a specific
fidelity, using an optimal learning rate. Here, we focus on a relatively simple case of image regression,
using a recently proposed neural field architecture with multi-resolution hash encoding [9].

Our experiments reveal that simple transformations dramatically affect neural fields’ training speed:

• Random permutation: We find that random pixel permutations in images lead to fit faster. This
challenges the simple notion of ‘low-frequency images being easier to fit’ of spectral bias and
indicates a need for deeper insights into how frequency interacts with architecture and batch size.

• Color inversion: Color-inverted images require ∼ 7× more SGD steps on average to be trained; we
attribute this phenomenon to the neural networks’ tendency to fit low-magnitude signals better.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Neural Field

Transformation

Inverse TransformationInference

Training

214 steps
Learning Rate: 2!"

Original

1749 steps (0.12 ×)
Learning Rate: 2!"

Inversion

286 steps (0.75 ×)
Learning Rate: 2!#

Ordered

123 steps (1.73 ×)
Learning Rate: 2!"

Random

Figure 1: Overall pipeline. fits a neural field to a data transformed via an invertible mapping,
enabling recovery of the original data from the neural field output (left). Careful selection of this
transformation can greatly reduce the SGD steps needed for a desired approximation quality (right).

2 Framework

The general framework of finding data transformations that accelerate neural field training can be
formalized as an optimization problem as follows.

Suppose that we are given some signal 𝐱 ∈ 𝒳 that we want to fit with a neural field. Here, the signal
space 𝒳 may be the space of all signals that has some data type (e.g. 256×256 RGB images could be
described as a subset of ℝ256×256×3). We consider transforming this signal using some transformation
𝑇 ∶ 𝒳 → 𝒳, 𝑇 ∈ 𝒯, where the transformation space 𝒯 is the set of all invertible transformations.
We aim to find a nice transformation 𝑇 that reduces the training cost for the transformed signal 𝑇(𝐱).

To formalize this goal, we define the training cost function 𝖼𝗈𝗌𝗍 ∶ 𝒳 × 𝒯 → ℝ. The training cost
𝖼𝗈𝗌𝗍(𝐱, 𝑇) measures the training cost required to train a neural field for 𝑇(𝐱), whenever its outcome is
inverted back via 𝑇−1, approximates the original signal 𝐱 with some desired level of precision. Note
that this cost need not be identical to the training cost of fitting 𝑇(𝐱) with the same precision, as the
transformation may involve scaling of the signal. The Cost depends on architectures, hardware, and
batch size—using a larger batch size can decrease convergence steps [12] but requires more memory.

Given these, we want to solve the optimization problem

minimize 𝖼𝗈𝗌𝗍(𝐱, 𝑇), subject to 𝑇 ∈ 𝒯∗, (1)

where 𝒯∗ ⊆ 𝒯 is a subset of the transformation space that satisfies some desired properties, such as

• Efficiently invertible: The inverse transformation 𝑇−1 needs to be efficiently computable (e.g. a
linear operation). Ideally, it should be achievable by directly modifying the trained parameters.

• Retains interpolatability: For neural field applications like super-resolution [2], we need 𝑇 to allow
principled sampling of interpolated coordinates from the approximated transformed signal.

Problem 1 can be solved either for a datum 𝐱 or a distribution of data 𝑃 ∈ 𝒫(𝒳). In the latter case,
the goal is to learn a transformation that minimizes the expected training cost over the distribution.

3 Methodology

In this paper, as a preliminary step to solve the problem 1, we focus on the proof-of-concept that there
exists some transformation such that the training cost reduces over the vanilla neural field training.
More specifically, we show that there exists some choice of 𝑇 such that

𝖼𝗈𝗌𝗍(𝐱, 𝑇) < 𝖼𝗈𝗌𝗍(𝐱, Id) (2)

under a specific choice of the neural field architecture, signal and the cost function. More specifically,
we focus on the task of 2D image regression, and measure the number of SGD steps required to reach
training PSNR 50, given the optimal learning rate (tuned from {2−4,… , 2−13}); the number of SGD
steps is an informative indicator of the total FLOPs and runtime for any fixed choice of hardware,
model architecture, and data. Other experimental configurations are as follows.

2



Table 1: Average speedup on Instant-NGP. We measure how each image transformation affects
the number of SGD steps until convergence on Kodak images, and report the average speedup ratio
against the original image. The speedups are colored in green, and the slowdowns are colored in red.

Color Inversion Random Permutation Ordered Permutation

Average Speedup 0.123× 1.360× 0.765×

Figure 2: Per-image speedup from random permutation (left). We measure the speedup ratio
from random pixel permutation in images, observing over +50% speedup in nearly half of the cases.
The effect of batch size on permutation (mid). Randomly pixel-permuted images show improved
efficiency with larger batch sizes, while ordered pixel-permuted images fit better with smaller batches.
Intensity vs. Loss (right). We report the average squared losses of the pixels that have similar
intensities. Lower index correspond to lower intensities.

Data. 512 × 512 grayscale images, center-cropped from Kodak dataset [13] with intensities in [0, 1] .

Model. We mainly use Instant-NGP architecture with multi-resolution hash encoding [9]. We include
SIREN [7] and ReLU networks with sinusoidal positional encodings [4] in certain experiments.

Training. We train the neural field using the mini-batch gradient descent. We use full-batch as a
default (i.e., 218), as this typically minimizes the number of required iterations. We also consider
batch sizes of {212, 215} to study the impact of data transformations on acceleration. Data batches
are sampled directly from coordinate points, not from an interpolated target image (used, e.g., in
Instant-NGP [9]).

Data Transformations. We consider total three transformations.

• Color inversion: We invert the target image, i.e., perform 𝑧 ↦ 1 − 𝑧 on the pixel-wise intensity
values. The inverse transformation is identical to the transformation itself.

• Random permutation: We shuffle pixel positions, keeping their intensity values, and use the
permutation matrix’s transpose for inverse transformation, resulting in a high-frequency image.

• Ordered permutation: We arrange pixels in ascending intensity order, starting at the top-left
corner with a 1 × 1 square. Expanding to a 2 × 2 square, we fill the ⅃-shaped region clockwise with
the next three pixels, then counterclockwise for subsequent ⅃-shaped areas in larger squares. This
process continues until the full image is filled, creating a low-frequency image.

4 Observations

Table 1 shows that data transformations notably impact SGD efficiency, causing an ∼ 88% slowdown
to a 36% speedup. We identify two key observations for further experiments and propose initial
hypotheses for each.

4.1 Randomly pixel-permuted images can be fit faster

We found that random pixel permutations often accelerate image training, as shown in Figure 2’s left
side. Out of 24 images, 21 show speedups, with up to +93.7% (image#16), though some experience
significant slowdowns, like −32.7% on image#19 and −73.8% on image#20. Conversely, ordered
permutation generally slows training by −23.5%. This challenges assumptions about frequency in

3



Table 2: Random permutation on various architectures. We measure the average speedup from
random permutation on various architectures, including the models that use sinusoidal encodings.

Instant-NGP SIREN ReLU+P.E. (𝑚=10) ReLU+P.E. (𝑚=15)

Average Speedup 1.360× 1.265× 0.825× 1.099×

Table 3: Fitting darker/brighter images. We measure how each image darkening or brightening
transformations affect the training time. Note that, unlike prior tables and figures, we measure the
number of SGD steps until achieving PSNR 50 on the transformed signal, not on the original signal.

Halving Gamma Correction
1/4 1/2 3/2 2

Average Speedup 1.125× 2.178× 1.438× 0.766× 0.489×

training: randomly permuted images (DCT1 intensity 35.67) train faster than low-frequency ones
(intensity 3.58). Ordered permutations result in low-frequency images with an intensity of just 0.03.
This defies the assumption that low-frequency images train quicker. Additional experiments were
performed to elucidate the reasons for this unexpected outcome.

• Batch size: We found that the speed of fitting pixel-permuted images is largely dependent on batch
size (mid of Figure 2). Larger batch sizes favor random permutations, while smaller ones favor
ordered permutations, which are on average 11× faster. We hypothesize that the high SGD noise in
small batch size hinders the model’s ability to fit high-frequency signals.

• Architecture. We discovered that the acceleration from random permutations is largely architecture-
dependent (Table 2). Models with greater expressive capacity perform better with random pixels,
especially evident in ReLU networks with positional encodings [4]. Model with more sinusoidal
bases (𝑚 = 10, 15) gain from random pixels, while other model with fewer bases are hindered.

From these observations, We hypothesize that random permutations speed up training by enabling
better utilization of the model’s capacity for high-frequency components, typically underutilized.
With small batch sizes, the SGD noise becomes too large so that it reduces the capacity of the models
to fit high-frequency signals; the ability to fit low-frequency signals (for some reason) tends to be
more robust to such noise.

4.2 Inverted images fit much slower

Our findings show that original images fit significantly faster than inverted ones, requiring only about
12.3% of the SGD steps. The exception is Kodak image#20, which requires a similar number of steps
for both. We suggest this could be due to a magnitude bias where pixels with higher intensity are
harder to fit. To back-up this point, we conduct follow-up analyses.

Table 3 shows that darkening/brightening transformations, via intensity halving (i.e., 𝑧 ↦ 𝑧∕2) or
gamma correction (i.e., 𝑧 ↦ 𝑧1∕𝛾), impact SGD fitting; darker images fit more easily than brighter
ones. Right of Figure 2 shows our analysis of the intensity-to-loss relationship, revealing higher
losses for higher intensity pixels, suggesting neural fields’ increased struggle with larger-magnitude
functions.

5 Discussion, Limitations and Future Direction

In our study, we show that certain data transformations, like pixel permutations and color inversion,
significantly affect neural field training costs. These effects are linked to a refined understanding of
spectral and magnitude biases in neural network training. However, the practicality of our findings is
currently limited; for example, random permutation hampers interpolation. And our work’s scope is
mostly confined to image regression using a specific architecture. As a future work, we aim to distill
the core principles, namely the spectral and magnitude bias, from our empirical observations and use
them as a main toolbox to construct a nice family of data transformation which presumably contains
many useful options for solving the problem 1.

1We measure this as follows: we divide each image into 8 × 8 patches and compute the DCT coefficients. We
compute the sum of squared coefficients, except for the low-frequency region (i.e., the upper-left quarter).

4



Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No.RS-2023-00213710, Neural Network Optimization with Minimal
Optimization Costs) and by the Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00713, Meta-learning
applicable to real-world problems).

References
[1] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico

Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual
computing and beyond. Computer Graphics Forum, 2022.

[2] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with
local implicit image function. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021.

[3] Subin Kim, Sihyun Yu, Jaeho Lee, and Jinwoo Shin. Scalable neural video representations with
learnable positional features. In Advances in Neural Information Processing Systems, 2022.

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In
European Conference on Computer Vision, 2020.

[5] Daniele Grattarola and Pierre Vandergheynst. Generalised implicit neural representations.
Advances in Neural Information Processing Systems, 2022.

[6] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In Proceedings
of the International Conference on Machine Learning, 2019.

[7] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In Advances in
Neural Information Processing Systems, 2020.

[8] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and
Gordon Wetzstein. ACORN: Adaptive coordinate networks for neural scene representation.
ACM Transactions on Graphics, 40(4), 2021.

[9] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):102:1–
102:15, 2022.

[10] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. MetaSDF:
Meta-learning signed distance functions. In Advances in Neural Information Processing Systems,
2020.

[11] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T.
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representa-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021.

[12] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal
of Machine Learning Research, 20(112):1–49, 2019.

[13] E. Kodak. Kodak dataset, 1999.

5


	Introduction
	Framework
	Methodology
	Observations
	Randomly pixel-permuted images can be fit faster
	Inverted images fit much slower

	Discussion, Limitations and Future Direction

