
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARAMETER-EFFICIENT FINE-TUNING WITH CIRCU-
LANT AND DIAGONAL VECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models have achieved tremendous success in different domains. How-
ever, their huge computation and storage complexity make these models difficult
to fine-tune and also less applicable in practice. Recent study shows training in
Fourier domain can be an effective fine-tuning method in terms of both model
performance and number of training parameters. In this work, we propose to fur-
ther reduce the complexity by the factorization through the product of interleaved
circulant and diagonal matrices. Our method avoids the construction of weight
change matrix and utilizes 1D fast Fourier transform (FFT) instead of 2D FFT.
Experimental results show that our method achieves similar or better performance
across various tasks with much less floating-point operations (FLOPs) and the
number of trainable parameters. Compared with other Fourier domain based fine-
tuning methods, the FLOPs of the RoBERTa base model achieves 33.1× reduc-
tion, while the ViT base model achieves 7.76× reduction. For number of trainable
parameters of the RoBERTa base model, our method is 5.33× smaller than LoRA,
and for ViT base model ours can be 10.7× smaller.

1 INTRODUCTION

Large foundation models (LFMs) are widely utilized in various fields, including natural language
processing (Paaß & Giesselbach (2023)), image recognition and generation (Li et al. (2024a)), med-
ical diagnosis (Li et al. (2024b)), and autonomous driving (Chen et al. (2024)). Devlin (2018) have
proposed the bidirectional transformer architecture that understands input data from left to right
and right to left. It is trained to predict missing words given input context, and it has served as
a foundation model that can be fine-tuned for many downstream tasks. Following the transformer
architecture, generative pre-trained transformer (GPT) model by Radford & Narasimhan (2018) han-
dles input data from left to right following a sequential prediction order. This mechanism turns out
successful in many generation tasks such as text summary, question answering, etc.

Although LFMs learn extensive general knowledge during the pre-training phase, they still require
extra adjustments in downstream applications to effectively fullfill the task. Fine-tuning is a typ-
ical approach to continue learning on given downstream data and update from pre-trained model
parameters. While fine-tuning significantly reduces computational costs compared to training from
scratch, existing fine-tuning methods still suffer from the huge complexity of LFMs. As the original
model parameters are still kept and maintained during fine-tuning stage, this leaves limited space for
the development of fine-tuning methods.

To address the challenge of fine-tuning LFMs, Hu et al. (2021) have proposed low-rank adaptation
(LoRA). This method is an efficient fine-tuning approach designed for LFMs, reducing the number
of parameters required during fine-tuning by introducing low-rank matrices. The essential idea is
assuming the weight change matrix with low rank structure, expressing it as the product of two
low rank matrices and only training these two smaller matrices while keeping the original weights
frozen. FourierFT proposed by Gao et al. (2024) assumes a sparse structure in fourier domain of the
weight matrix updates ∆W. Although FourierFT reduces the number of training parameters, the
computational and storage requirements of the model remain very high, particularly when dealing
with LFMs. The two-dimensional Fourier transform used to restore ∆W contributes to most of
its computation and storage complexity. As a result, the fine-tuning model continues to necessitate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

high-performance hardware support, including substantial GPU resources and memory, which may
be challenging to achieve in practical applications.

Huhtanen & Perämäki (2015) has demonstrated that a general complex matrix X ∈ Cn×n can be
factorized into the product of multiple circulant matrices and diagonal matrices, with total number
of factors not exceeding 2n− 1. This decomposition method offers several advantages, particularly
in terms of computational efficiency and storage optimization. The computation and storage of diag-
onal matrices can be efficiently managed using vector representations. Moreover, circulant matrices
possess a unique structure that allows them to be diagonalized using the fast Fourier transform (FFT),
significantly reducing the complexity of matrix operations and accelerating computation speed.

Inspired by previous works, we propose circulant and diagonal vector based fine-tuning (CDVFT),
which is also a Fourier domain based method. Our method represents the weight change matrix
∆W with the product of interleaved circulant and diagonal matrices. This factorization simpli-
fies the matrix calculation process and reduces storage requirements. Due to the unique properties
of matrix product for circulant and diagonal matrices, the quadratic computation complexity now
becomes loglinear. Different from FourierFT based on 2D FFT, our fine-tuning process avoids the
restoration of the weight change ∆W and only takes 1D FFT operations. As a result, CDVFT can
achieve efficient storage and computation at the same time. We summarize our main contributions
as following:

• We introduce CDVFT method that represents ∆W using the product of interleaved circu-
lant and diagonal matrices. These matrices have linear storage complexity as each of them
can be determined by a single weight vector. In practice, we find only using a few circulant
and diagonal matrix is sufficient to perform fine-tuning.

• CDVFT avoids the restoration of weight change matrix and has loglinear computation com-
plexity. The circulant matrix vector product can be transformed into 1D FFT, and diagonal
matrix vector product is linear in nature. Thus, the overall computation complexity be-
comes loglinear.

• We evaluate our method on natural language understanding, instruction adjustment, and im-
age classification. Experimental results show that our method achieves similar or even bet-
ter results in terms of moder performance, number of training parameters and FLOPs. For
example, for the ViT base model, our method results in 7.76× FLOPs reduction compared
to FourierFT and 10.7× trainable parameters saving compared to LoRA, while resulting in
similar or even better accuracy.

2 RELATED WORKS

Fine-tuning LFMs is a challenging problem due to the large model size and computation require-
ment. Although training LFMs from scratch is performed on cloud platforms like LLaMA model
by Touvron et al. (2023), fine-tuning is often limited to a specific task and a low-cost computing
environment. Besides, fine-tuning runs on a much smaller dataset than the pre-training dataset for
LFMs. Thus, fine-tuning process is expected to be cost-effective. The overall complexity should be
small and affordable in practice.

Full fine-tuning is a classical approach training and updating all model parameters at the same time.
However, it is difficult to perform full fine-tuning on LFMs given the huge computation and stor-
age requirement. Brown et al. (2020) find LFMs are able to generalize to new tasks with few-shot
demonstrations as prompt, thereby saving the effort of training on parameters. Li & Liang (2021) ar-
gue that adding few-shot demonstrations is bounded by the input length constraint of current LFMs.
Instead, they propose the prefix tuning method to train a parameter vector and prepend to input,
which is expected to work as prompt in unlimited length.

Updating all model parameters is not desirable in practice, since each task needs to maintain a model.
Houlsby et al. (2019) propose the adapter method, where task dependent parameters are inserted to
LFMs. Fine-tuning process only updates those new parameters, thereby each task effectively sharing
pre-trained LFM parameters. Mahabadi et al. (2021) further reduce the task dependent parameters
amount by grouping adapters into a hyper network model such that the network can produce task
specific parameters on the fly. Sung et al. (2022) discover backpropagation process through LFMs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

FourierFT

𝑑

𝒙

The change
in weight

∆𝑾 ∈ 𝑹𝒅×𝒅

Pre-trained
Weights

𝑾 ∈ 𝑹d×𝒅

𝑑

∆𝒉

Dense
Spectral
Matrix
𝑭 ∈ 𝑹𝒅×𝒅

𝑹𝟐×𝒏

Random entries
(shared across layers)

Coefficients

𝑛

IDFT

𝑑

𝒉

Pre-trained
Weights

𝑾 ∈ 𝑹𝒅×𝒅

𝑑

𝒙

𝑑

𝒂𝟏

𝑑

𝒄𝟐

𝑑

∆𝒉

𝑭𝒄𝟐

𝑭𝒚𝟏 𝑭𝒚𝒄𝟐

𝑑

𝒉

Element-wise
multiplication

Element-wise
multiplication

DFT

DFT

Loop (m-1) times

𝑑

𝒂𝒎

IDFT

Element-wise
multiplication

CDVFT

Trainable Parameters

Fine-tuning Process

Pre-training Process

𝒚𝟐
𝒚𝟏

Figure 1: Overview of FourierFT (left) and our CDVFT (right). In FourierFT, one coefficient
vector c ∈ Rn is trained, and it is used to construct the weight change ∆W through 2D FFT
operation. In contrast, our CDVFT avoids the construction of ∆W, where matrix vector products
are transformed into vector operations, i.e., element-wise product and 1D FFT, significantly reducing
computation complexity and memory requirement. In practice, we find m = 1 (no loops required)
can effectively fine-tune the model, where there are two diagonal matrices and one circulant matrix.

takes a lot of memory and propose a ladder style adapter design that significantly saves memory
consumption. Given that adapters bring in extra inference latency due to their new parameters, Lei
et al. (2023) believe different tasks have different needs for the shared LFM architecture. They
decide to learn to skip computations in LFM for different adapters, resulting in a faster inference
speed.

It can be noticed that adapter adds task dependent parameters and incurs inference delay. There are
also studies working on mergeable adapters so that after fine-tuning they can be merged into LFM
architecture without adding inference latency. The essential idea is setting adapter parameters in the
same shape as LFM pre-trained parameters, and fine-tuning learns the change of weight parameters,
i.e., ∆W. Hu et al. (2021) develop LoRA technique that enforces low rank structure into the weight
change matrix. Given that LoRA rank can be different for different tasks, Zhang et al. (2023) decide
to learn the rank setting by modifying singular values based on importance score function. Instead of
directly learning on ∆W, Gao et al. (2024) propose FourierFT to learn sparse parameters in fourier
domain and reconstruct the weight difference using 2D FFT operation. It turns out this method
requires much less number of parameters, but its reconstruction needs more memory.

Following the parameter efficient fine-tuning (PEFT) discovery in fourier domain, it is important to
look for a method involving matrix and efficient FFT operation. Circulant matrix is related to 1D
FFT since circulant matrix vector product can be executed using 1D FFT to accelerate. There are
some studies applying circulant matrix to compress neural networks, such as circulant convolution
neural network by Cheng et al. (2015) and circulant long short-memory by Wang et al. (2018). How-
ever, these works are lack of flexibility on increasing parameter amount and theoretical guarantee on
dense matrix approximation. Huhtanen & Perämäki (2015) has demonstrated that a general complex
matrix X ∈ Cn×n can be expressed as the product of interleaved circulant and diagonal matrices,
with the number of factors not exceeding 2n− 1:

X = A2n−1 ×C2n−2 × . . .×C2j ×A2j−1 × . . .×A3 ×C2 ×A1 × x (1)

where for j ∈ {1, . . . , n}, A2j−1 and C2j are diagonal and circulant matrices, respectively. Thus,
this decomposition theoretically can approximate any dense matrix, and it also enables control on
parameter amount by setting number of factors.

3 METHOD

In this section, we introduce circulant and diagonal vector based fine-tuning (CDVFT) method,
which is a mergeable adapter design similar to FourierFT. After fine-tuning, our trained circulant and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

diagonal vectors can be used to build circulant and diagonal matrices, which are further combined
to reconstruct ∆W and merged into LFMs. However, most importantly, CDVFT does not need to
recover ∆W during real fine-tuning process, since the reconstruction results in high computation
and storage complexity. Instead, our method takes advantage of the fast matrix multiplication algo-
rithm from circulant and diagonal matrices involving 1D FFT and element-wise product to achieve
the goal.

The overall computation flow is illustrated in Fig.1. It can be seen that CDVFT only takes vec-
tor operations at each step, thereby significantly reducing the computation and storage complexity.
Specifically, according to the findings by Huhtanen & Perämäki (2015) and the unique properties of
circulant and diagonal matrix operations, CDVFT first initializes corresponding vectors to represent
these matrices. It then directly performs multiple element-wise multiplication and 1D FFT on input
x. Finally, it yields the output ∆h, which can be added to the output h from the original weight
matrix W.

3.1 FORWARD STEP

Let x ∈ Rd×1 be an input column vector. Assume weight change matrix ∆W ∈ Rd×d that can be
decomposed into 2m−1 factors with m ≤ d. Thus, there are m diagonal matrices and m−1 circulant
matrices. For j ∈ {1, 2, . . . ,m}, each diagonal matrix is defined by a vector a2j−1 ∈ Rd×1, and
each circulant matrix is defined by a vector c2j ∈ Rd×1. More specifically, they can be expressed
as following:

diag(a2j−1) =


a12j−1 0 . . . 0

0
.

...
...

. 0
0 . . . 0 ad2j−1

 , circ(a2j) =


a12j ad2j . . . a22j

a22j
.

...
...

. ad2j
ad2j . . . a22j a12j

 , (2)

where diag(·) and circ(·) construct a diagonal matrix and circulant matrix, respectively. Therefore,
the weight change matrix can be written as:

∆W = A2m−1 ×C2m−2 ×A2m−3 × · · · ×A1

= diag(a2m−1)× circ(a2m−2)× diag(a2m−3) · · · × diag(a1),
(3)

where × is the inner product operation. The end-to-end computation flow then becomes:
h′ = h+∆h = W × x+ α×∆W × x, (4)

where α is a hyper-parameter scalar as in LoRA (Hu et al., 2021), W ∈ Rd×d is the pre-trained
weight matrix in given LFM and h′ is the new output after adding our CDVFT adapters. This can
also be seen in Fig. 1.

We perform the computation from rightmost to leftmost, thereby avoiding the reconstruction of
∆W during fine-tuning process. Let y ∈ Rd×1 represent the intermediate calculation result from
matrix vector multiplications. Thus, y2j−1 is the result from diagonal matrix vector multiplication,
and y2j is the result from circulant matrix vector multiplication. Note that diagonal matrix vector
product is equivalent to element wise product of a2j−1 and input vector:

∆W × x = A2m−1 × . . .×

y2j︷ ︸︸ ︷
C2j ×A2j−1 × . . .×A3 ×C2 ×A1 × x︸ ︷︷ ︸

y2j−1

, (5)

y2j = C2j × y2j−1, y0 = x, (6)
y2j−1 = A2j−1 × y2j−2 = a2j−1 ⊙ y2j−2, (7)

where ⊙ means the element-wise product. The circulant matrix vector product can be transformed
into 1D FFT operations:

Fyp
2j−1 =

d−1∑
q=0

yq
2j−1e

−i2π p
d q, Fcp2j =

d−1∑
q=0

cq2je
−i2π p

d q,

Fyc2j = Fy2j−1 ⊙ Fc2j , yp
2j =

1

d

d−1∑
q=0

Fycq2je
i2π p

d q,

(8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Trainable parameters amount and storage cost of different fine-tuning methods. For all
methods and foundation models, only the query and value weight matrices in model attention archi-
tecture are fine-tuned. r is the rank setting for LoRA, n is number of parameters in Fourier domain
set in FourierFT, and m is number of factors of our CDVFT. Improvements with respect to LoRA
is also reported. For example, in terms of ViT-Base, the parameter amount improvement of Fouri-
erFT over LoRA is around 8.19, and ours is 10.7, which means our CDVFT uses less number of
parameters than FourierFT.

Base Models RoBERTa-Base ViT-Base
LoRA r 8 16

Trainable Parameters 295K(1.00×) 590K(1.00×)
Required Bytes 1.13MB 2.25MB

FourierFT n 1000 3000
Trainable Parameters 24.0K(12.3×) 72.0K(8.19×)
Required Bytes 94KB 281KB

Ours m 2 2
Trainable Parameters 55.3K(5.33×) 55.3K(10.7×)
Required Bytes 217KB 217KB

where ei2π
p
d q is the constant term in the Fourier transform, i indicates the imaginary unit, and p is

the frequency index of the transform. We use letter F to indicate vectors in fourier domain. Fy2j−1
and Fc2j represent the Fourier transform results of y2j−1 and the circulant matrix vector c2j , re-
spectively. Fyc2j is the result of element wise multiplication of Fy2j−1 and Fc2j . In consequence,
y2j is the result of inverse fast Fourier transform (IFFT) of Fyc2j .

3.2 BACKWARD STEP

Following current deep learning design, we provide the gradient calculation with respect to a2j−1

and c2j for all j. Denote the objective function (i.e., loss function) as L(·). The backpropagation
follows the chain rule, and we can get:

∂L
∂a2j−1

=
∂L

∂y2j−1

∂y2j−1

∂a2j−1
=

∂L
∂y2j−1

⊙ y2j−2. (9)

The backpropagation through the circulant matrix consists of derivatives of one-dimensional Fourier
transform, which is easier to derive with explicit expression of FFT as shown in Eq. (8):

∂L
∂Fycq2j

=
∂L
∂y2j

∂y2j

∂Fycq2j
=

1

d

d−1∑
p=0

∂L
∂yp

2j

ei2π
p
d q, (10)

∂L
∂Fc2j

=
∂L

∂Fyc2j
⊙ Fy2j−1,

∂L
∂Fy2j−1

=
∂L

∂Fyc2j
⊙ Fc2j , (11)

∂L
∂cq2j

=
∂L

∂Fc2j

∂Fc2j
∂cq2j

=

d−1∑
p=0

∂L
∂Fc2j

e−i2π p
n q, (12)

∂L
∂yq

2j−1

=
∂L

∂Fy2j−1

∂Fy2j−1

∂yq
2j−1

=

d−1∑
p=0

∂L
∂Fyq

2j−1

e−i2π p
n q, (13)

where it can be noticed that the backpropagation also consists of element-wise product and 1D FFT
operation on vectors.

3.3 COMPLEXITY ANALYSIS

Table 1 summarizes number of trainable parameters for LoRA, FourierFT, and CDVFT. Assume
that the number of layers to be fine-tuned is Lt and ∆W ∈ Rd×d. The number of parameters Θ to
be trained for LoRA is given by |Θ|LoRA = 2 × d × Lt × r, where | · | means the cardinality. For
FourierFT, let number of spectral coefficients be n, and the total number of trainable parameters is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: FLOPs of forward computation for different fine-tuning methods and foundation models.
n is parameter amount in Fourier domain, r is rank setting, and m is number of factors. Given the
huge difference in FLOPs, FourierFT is chosen as baseline, and corresponding improvement is listed
for each method.

Base Models FourierFT LoRA Ours
n FLOPs r FLOPs m FLOPs

RoBERTa-Base 1000 1.625G(1.00×) 8 10.62M(153.0×) 2 49.03M(33.14×)
ViT-Base 3000 4.159G(1.00×) 16 0.232G(17.93×) 2 0.536G(7.759×)

|Θ|FourierFT = n×Lt. For CDVFT, assuming that the total number of circulant matrices and diagonal
matrices is 2m− 1, the total number of trainable parameters is |Θ|CDVFT = (2m− 1)× d× Lt. In
the case of ViT base model, d = 768. There are Lt = 24 attention layers to be fine-tuned, and it
should be noted that fine-tuning only runs on the query and value weight matrices. Corresponding
parameter counts are as follows: for LoRA, when r = 8, |Θ|LoRA = 294912; for FourierFT, when
n = 3000, |Θ|FourierFT = 72000; and for CDVFT, when m = 2, |Θ|CDVFT = 55296. Table 1 shows
that Fourier domain based method, i.e., FourierFT and ours, require much less number of parameters
than LoRA. It can be noted that our CDVFT uses same number of parameters for RoBERTa and ViT
models because both d and number of fine-tuned layers are the same. The improvements with respect
to LoRA method is also reported for all methods. Compared with FourierFT, our method achieves
comparable parameter reduction over LoRA.

C
o

m
p

u
ta

ti
o

n
al

 c
o

m
p

le
xi

ty

FourierFT

CDVFT

128 256 512 1024 2048 4096
100

101

102

103

104

105

106

107

108

109

𝑑

Figure 2: The computational complexity compar-
ison of Fourier domain based method. The hor-
izontal axis represents the size of d. Note that
the computational complexity of FourierFT is in-
dependent of its parameter amount n. For our CD-
VFT, m = 2, so there are 3 matrix factors.

Further analysis of the computational complex-
ity of FourierFT and CDVFT is shown in Fig.2.
It is important to note that computation com-
plexity of FourierFT is independent of its pa-
rameter amount n since it always use 2D FFT
to reconstruct ∆W. The complexity of our
CDVFT is related to total number of circulant
matrices and diagonal matrices, i.e., 2m − 1.
In this paper, we find m = 2 is sufficient to
perform effective fine-tuning in practice. The
computational complexity of CDVFT is smaller
than FourierFT. The main reason for the com-
plexity difference is that in FourierFT, the com-
putational complexity of the 2D FFT for com-
puting ∆W is O(d2log(d2))). In CDVFT,
the complexity brought by element-wise prod-
uct and 1D FFT is O(mdlog(d)), which sig-
nificantly reduces the computational complex-
ity while keeping similar number of training
parameters. To compare different fine-tuning
methods, we present the corresponding FLOPs
comparison in Table 2. The improvement with
respect to FourierFT is reported besides FLOPs amount. It can be noted that our method results in
different FLOPs while using the same number of trainable parameters as shown in Table 1. This is
caused by different sequence length of attention architecture in RoBERTa and ViT. Overall, Fouri-
erFT needs much larger FLOPs than both LoRA and our CDVFT.

4 EXPERIMENTS

In this section, we evaluate our CDVFT method across different domains, i.e., natural language
understanding (NLU) and computer vision (CV): (1) fine-tune the RoBERTa model (Liu et al., 2019)
on the General Language Understanding Evaluation (GLUE) dataset (Wang et al., 2019); (2) fine-
tune the vision transformer model (Dosovitskiy et al., 2021) for various image classification tasks
across different domains. Our proposed CDVFT is also compared with LoRA (Hu et al., 2021) and
FourierFT (Gao et al., 2024). LoRA is a widely adopted LFM fine-tuning method due to its ease of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameter setup of CDVFT for the GLUE benchmark.
Hyperparameter CoLA SST-2 MRPC STS-B QNLI RTE

Optimizer AdamW
LR Schedule Linear

Warmup Ratio 0.06
m 2

Epochs 100 40 30 80 40 90
Learning Rate(QV) 1.2E-1 5E-2 4E-2 8E-2 1E-1 9E-2

Learning Rate(Head) 8E-3 6E-3 4E-2 9E-3 1E-3 1.1E-2
Max Seq. Len 512 512 512 512 512 512
Scaling value 5E-5 5E-4 5E-4 5E-5 1E-4 1E-4

Batch Size 32 32 32 32 32 32

Table 4: The performance of LoRA, FourierFT and our CDVFT methods is reported by fine-
tuning the RoBERTa base model on 6 datasets of the GLUE benchmark. The experiments report
Matthew correlation coefficient (MCC) for CoLA, Pearson correlation coefficient (PCC) for STS-B,
and accuracy (Acc.) for all remaining tasks. Following (Gao et al., 2024), we also report the median
result out of 5 runs, each with a different random seed. The best result for each dataset is highlighted
in bold. Higher metric value means better model performance for all datasets.

Model & Method RoBbase(LoRA) RoBbase(FourierFT) RoBbase(Ours)
CoLA (MCC) 63.4±1.2 63.8±1.6 64.5±1.2

SST-2 (Acc.) 95.1±0.2 94.2±0.3 94.4±0.5

MRPC (Acc.) 89.7±0.7 90.0±0.8 90.2±0.3

STS-B (PCC) 91.5±0.2 90.8±0.2 90.5±0.2

QNLI (Acc.) 93.3±0.3 92.2±0.1 92.2±0.2

RTE (Acc.) 78.4±0.8 79.1±0.5 78.7±1.2

Avg. 85.2 85.0 85.1

implementation and effective adaptation. FourierFT serves as a baseline for FFT based fine-tuning
method that requires much less number of parameters than LoRA.

4.1 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. We evaluate CDVFT on the GLUE benchmark dataset, which consists of
a diverse range of NLP tasks, each representing a specific type of language understanding task.
These tasks include question answering, sentiment analysis, textual entailment, etc. Following the
experiment setting as in (Gao et al., 2024), fine-tuning process runs on following tasks: CoLA, Cor-
pus of Linguistic Acceptability (Warstadt et al., 2019), which determines whether sentences adhere
to grammatical rules; SST-2, Stanford Sentiment Treebank (Socher et al., 2013), which classifies
the sentiment of sentences as positive or negative; MRPC, Microsoft Research Paraphrase Corpus
(Dolan & Brockett, 2005), which assesses whether two sentences convey the same meaning; STS-B,
Semantic Textual Similarity Benchmark (Cer et al., 2017), which measures the semantic similar-
ity score between sentence pairs; QNLI, Question Natural Language Inference (Rajpurkar, 2016),
which evaluates whether the second sentence correctly answers the question posed by the first; and
RTE, Recognizing Textual Entailment (Dagan et al., 2005), which identifies whether there is an en-
tailment relationship between sentence pairs, functioning as a binary classification task. RoBERTa
base model (Liu et al., 2019) is a transformer based foundation model, which is widely used in natu-
ral language processing. It improves over existing under-trained BERT model (Devlin, 2018) while
preserving the powerful attention mechanism. Thus, it is selected to serve as the foundation model
for GLUE dataset.

Implementation Details. Our CDVFT uses a total of 3 factor matrices, i.e., m = 2. The detailed
hyperparameters are shown in Table 3. It should be noted that only query and value weights in each
transformer block are finetuned, which is also applied to FourierFT and LoRA as in (Gao et al.,
2024). All implementations are in PyTorch (Paszke et al., 2019). It can be seen that the optimizer
is AdamW (Loshchilov, 2017). For each dataset, there are different learning rates for foundation

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameter setup for image classification of CDVFT.
Hyperparameter OxfordPets StanfordCars CIFAR10 CIFAR100 DTD EuroSAT FGVC RESISC45

Optimizer AdamW
LR Schedule Linear

Warmup Ratio 0.06
m 2

Epochs 10
Learning Rate (QV) 3E-1 3E-1 3E-2 2E-1 3E-1 2E-1 3E-1 3E-1

Learning Rate (Head) 1E-3 1E-3 1E-3 7E-4 1E-3 8E-4 1E-3 1E-3
Weight Decay 8E-4 4E-5 9E-5 1E-4 7E-5 3E-4 7E-5 3E-4
Scaling value 1E-2 5E-3 1E-2 1.5E-3 5E-3 5E-2 1E-2 5E-3

Batch Size 50 50 50 50 50 50 50 50

Table 6: Fine-tuning results of the ViT Base model on different image classification datasets. The
experiments report the accuracy (%) after 10 epochs.

Model & Method ViTbase(LoRA) ViTbase(FourierFT) ViTbase(Ours)
OxfordPets 93.19±0.36 93.21±0.26 92.62±0.37

StanfordCars 57.40±0.66 57.14±0.31 57.40±0.55

CIFAR10 98.78±0.05 98.58±0.07 98.61±0.09

CIFAR100 92.02±0.12 91.20±0.14 91.11±0.12

DTD 88.16±0.91 86.19±1.05 88.75±0.78

EuroSAT 98.44±0.15 98.71±0.08 98.56±0.14

FGVC 36.74±1.31 36.38±2.33 36.60±0.73

RESISC45 92.70±0.18 93.22±0.18 92.04±0.12

Avg. 82.18 81.83 81.96

model language heads, query and value weight matrices. The scaling value is the α as in Eq. (4).
The batch size and maximum input sequence length is set the same for all datasets.

Results. Table 4 summarizes fine-tuning results of all methods. The median metric value with
standard deviation is reported out of 5 runs of experiments for each fine-tuning method, where each
run takes a different random seed. The best performance for each dataset is highlighted in bold.
Overall, compared with LoRA and FourierFT, our CDVFT method achieves comparable or even
better performance. Besides, according to Table 1 and Table 2, our CDVFT results in 5.33× less
number of trainable parameters than LoRA and 33.14× less FLOPs than FourierFT while fine-tuning
RoBERTa base model on GLUE dataset.

4.2 IMAGE CLASSIFICATION

Models and Datasets. The experiment evaluates the performance of our CDVFT method in image
classification tasks, utilizing the Vision Transformer (ViT) by Dosovitskiy et al. (2021) as the foun-
dation model. Following the setting in (Gao et al., 2024), we fine-tune on several challenging image
classification datasets: OxfordPets (Parkhi et al., 2012) contains cats and dogs images in multiple
breeds but with subtle difference; StanfordCars (Krause et al., 2013) has fine-grained categories of
cars; Describable textures dataset (DTD) by Cimpoi et al. (2014) studies object textures categories;
EuroSAT (Helber et al., 2019) collects geo-referenced satellite images for various land uses; RE-
SISC45 Cheng et al. (2017) provides a diverse range of remote sensing images; FGVC-Aircraft
(Maji et al., 2013) contains rigid and less deformable aircrafts images; CIFAR-10 and CIFAR-100
Krizhevsky et al. (2009) are classical datasets of tiny images in 10 and 100 categories, respectively.

Implementation details. We set m = 2 for fine-tuning ViT base model across all these datasets.
Detailed hyperparameters are shown in Table 5. For all method, fine-tuning only runs the query and
value weight matrices of ViT, which is the same as in (Gao et al., 2024). The learning rate is set
differently for fine-tuning ViT heads and query and value weight matrices.

Results. Table 6 summarizes the results on eight image classification datasets by fine-tuning the ViT
base model. It can be noticed that the StanfordCars, DTD and FGVC dataset metrics are about 10%
higher than the numbers reported in (Gao et al., 2024), because their related dataset split random
seed is unclear. For the purpose of fair comparison, we re-run these experiemnts for FourierFT and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

LoRA and are able to observe similar performance increase. Along with results in Table 1 and Table
2, our CDVFT takes 10.7× less number of parameters than LoRA and 7.76× less number of FLOPs
than FourierFT while achieving similar and sometimes better classification accuracy.

5 CONCLUSION

Motivated by the recent success in Fourier domain based fine-tuning method, this paper proposes the
CDVFT method that also learns parameters in Fourier domain. In particular, our method results in
both trainable parameters savings and FLOPs reduction when compared with existing methods. The
downstream task performance of our fine-tuned model achieves similar performance and sometime
even better results across both natural language understanding and computer vision applications.
These results effectively demonstrate the promising potential of our method and also the Fourier
domain based fine-tuning methods.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-
to-end autonomous driving: Challenges and frontiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An
exploration of parameter redundancy in deep networks with circulant projections. In Proceedings
of the IEEE international conference on computer vision, pp. 2857–2865, 2015.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pp. 177–190. Springer, 2005.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform, 2024.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Marko Huhtanen and Allan Perämäki. Factoring matrices into the product of circulant and diagonal
matrices. Journal of Fourier Analysis and Applications, 21:1018 – 1033, 2015.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent
Zhao, Yuexin Wu, Bo Li, et al. Conditional adapters: Parameter-efficient transfer learning with
fast inference. Advances in Neural Information Processing Systems, 36:8152–8172, 2023.

Shikai Li, Jianglin Fu, Kaiyuan Liu, Wentao Wang, Kwan-Yee Lin, and Wayne Wu. Cosmicman:
A text-to-image foundation model for humans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6955–6965, 2024a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Xingyu Li, Lu Peng, Yuping Wang, and Weihua Zhang. Open challenges and opportunities in
federated foundation models towards biomedical healthcare. arXiv preprint arXiv:2405.06784,
2024b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 565–576, 2021.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Gerhard Paaß and Sven Giesselbach. Knowledge acquired by foundation models. In Foundation
Models for Natural Language Processing: Pre-trained Language Models Integrating Media, pp.
161–185. Springer, 2023.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018.

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Information Processing Systems, 35:12991–13005,
2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.

Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang, and Yun Liang. C-lstm:
Enabling efficient lstm using structured compression techniques on fpgas. In Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 11–20,
2018.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments,
2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

We show the forward process of CDVFT in algorithm 1. First, m is used to determine the number of
diagonal and circulant matrices, and then the size of the diagonal and circulant vectors is determined
by dimension d. Then, ∆h = A2m−1× . . .×C2j×A2j−1× . . .×A3×C2×A1×x is completed
through element wise multiplication and one-dimensional Fourier transform, and finally the final
output change is obtained, which is combined with the original output to obtain the final output of
the fine-tuning layer.

Algorithm 1 PyTorch-style pseudocode for CDVFT

class CDVFT(nn.Module):
def __init__(

self,
m: int = 2,
alpha: float = 1e-4, # scaling
d: int = 4096,
base_layer: nn.Module # pre-trained layer

):
definitions
self.m = m
self.d = d
self.scale = alpha
self.base_layer = base_layer
diagonal matrices and circulant matrix initialization
self.diags = nn.ParameterList([nn.Parameter(torch.randn(1, self.n

)) for _ in range(i)])
self.circs = nn.ParameterList([nn.Parameter(torch.randn(1, self.n

)) for _ in range(i-1)])

def forward(self, x: torch.Tensor):
for i in range(len(self.diags)):

compute diagonal matrix multiplication (Eq.2)
x = x * self.diags[i].unsqueeze(0)
compute circulant matrix multiplication (Eq.3)
if i < len(circs):

fd = torch.fft.fft(x,dim=2)
fc = torch.fft.fft(self.circs[i],dim=1)
fdc = fd * fc.unsqueeze(0)
x = torch.fft.ifft(fdc,dim=2)

#compute delta output and merge (Eq.4, 5)
x = x.real * self.scale
result = self.base_layer(x)
result += x
return result

12

	Introduction
	Related Works
	Method
	Forward Step
	Backward Step
	Complexity Analysis

	Experiments
	Natural Language Understanding
	Image Classification

	Conclusion
	Appendix

