© ® N O g A~ W N =

N = o

Constant-Potential Machine Learning Force Field for
Electrochemical Interface

Anonymous Author(s)
Affiliation
Address

email

Abstract

Better understanding and prediction of electrochemical interface requires large-
scale atomistic simulations. Machine learning force field (MLFF) has proven
to be an effective approach. However, current MLFFs typically do not account
for the effect of electrode potential, which requires treating interface electrons
with grand canonical ensemble. Here we develop a constant potential MLFF (CP-
MLFF) based on equivariant graph neural network and implement it into MACE.
Specifically, we design an architecture which can take the number of electrons as
input and accurately predict the Fermi level. The CP-MLFF allows us to examine
the convergency of electrochemical barrier with respect to sampling, which we
demonstrate through the example of CO2 reduction on Ni-N-C catalyst. Our
work provides a useful method and tool enabling accurate and efficient large-scale
simulation of electrochemical interface.

1 Introduction

Electrochemical interface is at the center of many technologies to address energy and environmental
challenges, such as water splitting, CO conversion, nitrate reduction, and oxygen reduction [1H5]].
Having an accurate atomic level understanding of the interface is critical to further developing these
technologies. Density functional theory (DFT) has been widely used to simulate the interface at
atomic level [6H]12]. However, its high computational cost has limited the simulations to a small
number of atoms and configurations, which are often insufficient to realistically represent the system
and adequately sample its vast phase space. Particularly, the liquid electrolyte near the interface
requires extensive sampling to capture different atomic configurations and their interactions with
reaction species [10, [13| [14]. Therefore, it is important to develop methods for large-scale (both
spatially and temporarily) simulations without sacrificing accuracy.

Machine learning force field (MLFF) emerges as a promising approach for large-scale simulation [15-
20]]. By learning from DFT results, MLFF can efficiently predict the forces for new atomic structures
with accuracy comparable to DFT, thereby accelerating the simulations. However, the existing MLFFs
are not able to describe the behavior of electrons at electrochemical interface. As depicted in Fig. [Th,
the interface system is connected to an electrode with certain potential controlled externally (Ugxt ).
The electrons in the system can exchange with those in the electrode, adjusting its Fermi level (Er)
according to Uey. During elementary reaction steps, Uext often remains constant. Therefore, the
electrons in the interface system should be treated by grand canonical ensemble (GCE) [10, 21H29].
An important consequence is that the number of electrons in the interface system (V) is no longer a
constant, instead, it fluctuates at a finite temperature and evolves along reaction path (Fig.[Tp). This
feature is very different from most thermal reactions/processes, which in contrast have a constant
N,. To emphasize that Uy is fixed rather than Ne, this GCE treatment is often also called constant
(electrode) potential (CP) approach.
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Figure 1: (a) Schematic illustration of an electrochemical interface connected to an electrode. (b)
evolutions of electron number and Fermi level under constant electrode potential at finite temperature.

In CP simulations, the N, within the interface system is adjusted according to the Er, following
equations such as [23]:

. P,
Ne= 3 (1
P, = Ep — |e|Uexe — _A]ZPn, )
. P
= ﬁi 3)
P = J\JZ — kgTE¢, )

where M,, and P, are the fictitious mass and momentum for the N, degree of freedom; £ represents the
coupling between the system and the electrode, and P, M, and T are its associated momentum, mass,
and temperature, respectively. Out of these quantities, (M,,, M, T¢) are independent parameters.
These equations of motion are derived from an extended Lagrangian and analogous to Nosé—Hoover
thermostat except the degree of freedom is [V, instead of atomic positions and the “force” is given by
the difference between the instantaneous Fermi level and its target value (plus the contribution from
the coupling with the electrode). There exist various schemes for CP simulation, and they all require
determining both the forces (') and Er for a given atomic structure (R) and N,. The F' and Er are
then used to update both R and N, for subsequent simulation step. Note that even if R remains fixed,
the F’ still varies with N,. Therefore, we need to establish a mapping from (R, N,) to (F, Er), as
illustrated in Fig.[Zh. Such mapping is straightforward in DFT, and the CP-DFT/CP-AIMD [30-34]
has been widely used to improve the understandings and predictions of various electrochemical
interface systems. However, this mapping is not available in typical MLFFs, as they focus on the
relation between R and F' with the assumption that N, is a constant. Therefore, to enable the CP
simulations with MLFFs, a new type of MLFF is needed, namely CP-MLFF that can predict (¥, Ex)
from (R, N,). Very recently, several efforts have been made to incorporate the electrode potential into
the MLFFs [35H38]], however, its incorporation into the state-of-the-art MLFF model — equivariant
graph neural network (EGNN) [39-43] — is still missing. Moreover, some prior works do not
have N, as input/output [36], or constrain the Fermi level to a fixed value and do not allow it to
fluctuate [35,136]] as required by the GCE.

To fill this gap, in this work, we develop a CP-MLFF based on EGNN and implement it into
MACE [43], a widely used software for generating MLFFs. Applying this CP-MLFF, we investigate
a critical question for electrochemical interface simulations: what simulation duration is necessary to
sufficiently sample the phase space and reliably converge the calculation of activation energies? This
question was challenging to answer with CP-DFT as the high computational cost limits the simulation
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to short durations that are not enough to see convergence. However, our CP-MLFF substantially
reduces computational cost, permitting much longer simulations and thereby enabling us to answer
this question. This is exemplified by CO; reduction on a single nickel atom embedded in nitrogen
doped graphene (Ni-N-C), which has attracted wide interest due to its promising performance and
the importance of CO5 reduction in advanced energy and manufacturing technologies [44H47]]. Our
work provides a useful method and tool enabling accurate and efficient large-scale simulation of
electrochemical interface.

2 Methods

As mentioned earlier, to enable the CP simulation, the MLFF model needs to take both R and N,
as input, and output both F' and Fr. Here we use the EGNN as implemented in MACE as our base
model to demonstrate two approaches, which can be also extended to other models though. EGNN
represents the state-of-the-art MLFF model. It represents the atomic system as graph with nodes
and edges. Through successive iterations of message passing, the updated node features effectively
capture complex many-body atomic interactions, allowing for accurate predictions of the properties.

(a) Constant Potential Machine Learning Force Field (CP-MLFF)
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Figure 2: (a) CP-MLFF enables the additional input of electron number and output of Fermi level.
(b-c) Two implementations of CP-MLFF model. The red highlights the modifications introduced to
MACE.

Node Augmentation: In the first approach (Fig.[2b), we append the N, as an additional feature to
each atomic node in the graph. After several layers of message passing, we extract the Er from the
updated node features. Specifically, the state of each node 7 at layer ¢ (0 < ¢ < T)) is represented as:

ot = (rin") )
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where r; is the coordinate of atom 7, and hgt) are the learnable features of node 7. The initial node

feature is constructed by the element type (z;) and the normalized electron number Ne as:

hikon = D Wik e, + WA, ©)

where W,j;e and Wév ¢ are the weights. The node features are then updated by taking information
from its neighbors:

nhim = U o @ My (o, 0) | @
JEN (i)

where k, [ and m are the indices for the individual feature component, M; represents a learnable
message passing function, U is a learnable update function, and B FEN() denotes a learnable
permutation-invariant pooling operation over all neighbors of atom i. After several message-passing
iterations, a mean pooling operation is applied to each layer to generate a graph-level representation
that reflects the entire system’s property. A final multi-layer perceptron (MLP) uses these graph-level
features to predict the Fermi level:

B = MLP (A0 -1 hibo ) - ®)

Here, only the invariant features hz(tiioo is used, which ensures the invariance of the predicted Er.

Global Feature: Alternatively, the second approach treats the N, and Fr as a distinct global
attribute of the graph. As shown in Figure , the model initializes the global features g(®) with the

electron number: )
g% = 0(Ne), ©)

where 6 is an invariant encode function which maps the N.toa higher-dimensional latent space.
These global features are used to update the node features:

Ao = MLP (|08 ) (10)

where the node features are concatenated with the global features before MLP. It is then used in
Eq. (5) and (7) to get A1), The h(*+1) are aggregated to update the global features in turn:

g<t+1>:MLP<[{h§t,§)Q} _ ;g“)D, (11)
? pooling

where average pooling compresses the node features into a graph-level vector. The global features of
the last layer serve as input to a readout function that outputs the Fr:

Ep = MLP (g<T>) . (12)

This global-feature method keeps the system-level information in a separate channel that interacts
with the atomic nodes.

To test these methods, we consider a representative electrochemical interface system — CO4 reduction
on single nickel atom embedded in nitrogen doped graphene. As shown in Fig. [3j, the system consists
of a single Ni atom coordinated with 1 N atom and 3 C atoms embedded in graphene, 44 water
molecules, and *COOH on Ni. This site structure has been shown to have the best performance
for CO2R compared with other possible site structures [44]. We focus on a key step in COsR:
*COOH +e~ — *CO + OH(_aq) and use C—O bond length as the reaction coordinate to describe

the reaction.

3 Training set

To generate the initial training set, CP-AIMD simulation are performed with DFT as implemented in
CP-VASP [30L 31]]. The electrode potential is set to be -0.827 V vs RHE (i.e -3.36 V vs electrolyte),
with temperature of 300 K and time step of 1 fs. Further details of the CP-AIMD can be found in
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the appendices. The system is first roughly equilibrated through 2 ps free MD simulation (without
any constraint/bias), followed by 2 ps slow-growth constrained MD (which gradually increases
the reaction coordinate: C-O bond length) at a rate of 1 A/ps to quickly sample the reaction path.
Figure Bb depicts the evolutions of N, (relative to the N, at charge-neutral state) and Er during the
simulations. As expected, the Er fluctuates around —|eUcxt |, while N, gradually increases during
the slow growth, indicating the gain of electrons which is driven by the formation of OH- species.
Note that due to the high computational expense associated with calculating Fr (which requires
implicit solution to set up a potential reference; see Appendix A), we evaluate the Er and update the
N, only every 5 steps. Therefore, in total, 4000 structures are generated, out of which 800 have Er
calculated. Half of these structures (i.e. 400) are used to construct the initial training dataset.
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Figure 3: (a) Test system: electrochemical dissociation of *COOH to *CO and OH-, catalyzed by
single Ni atom embedded in N-doped graphene in contact of water. (b) Time evolution of electron
number (relative to that at charge-neutral state) and Fermi level during 2 ps free MD equilibration
followed by 2 ps slow-growth MD simulation at an electrode potential marked by the horizontal line.

Using the initial dataset, 4 CP-FFs were trained independently with different random seeds and their
average predictions were compared with the DFT results for the training set. Figure ] presents the
comparison for the CP-FFs generated by approach 1. The root mean square errors (RMSE) are 11.0
meV/A for atomic forces and 22.1 meV for Ep, indicating that our model can accurately predict
both types of quantities simultaneously. Fig. S2 shows the results for approach 2. We find that both
approaches yield similar accuracy for Er prediction, but approach 1 gives better force prediction for
the present system. Therefore, in the following, we focus on approach 1, while it is worth noting that
the relative performance between the two approaches may vary depending on the system.

To improve the robustness of CP-FFs, we adopted an active learning scheme based on a 4-model
ensemble. During CP-FFMD, structures were labeled as “uncertain” if either (i) the standard deviation
of force predictions exceeded 150 meV/A for any atom, or (ii) the standard deviation of the predicted
Fermi levels exceeded 40 meV. To avoid redundancy, 10% of the uncertain structures were selected
for DFT labeling and added to the training set. This process was repeated until the ratio of uncertain
structures fell below 1%. The final dataset comprised 1093 structures, with overall RMSEs of 8.4
meV/A for forces and 10.8 meV for Fermi levels. More details of the active learning procedure are
provided in the appendices.

4 Convergency of activation energy with respect to sampling

With the CP-FFs available, we can afford much longer simulation that DFT cannot afford, enabling
us to examine how the calculated properties converge with increased sampling. Here we focus on the
activation energy, which is critical to the reaction kinetics. The slow growth can calculate the free
energy profile vs reaction coordinate, from which the activation energy can be extracted. In general, a
slower rate will give a more accurate free energy profile and activation energy as it samples a larger
phase space. Fig. [ shows the slow growth free energy curves calculated with the same ensemble of
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Figure 4: Predicted force (a) and Fermi level (b) compared against DFT reference values for the
initial dataset.

CP-FFs (after the active learning) and Uyt (-0.827 V vs RHE), and from the same initial state (the
last state of free MD in the active learning), but with different growth rates (1, 0.5, 0.1, 0.05, 0.01,
and 0.005 ps). Note that the 1 A/ps rate was used in AIMD to create part of the initial training set.
The free energy curves calculated at this rate using AIMD and FFMD agree well (see Fig. S4), further
validating the accuracy of the created FFs. As the rate decreases, the free energy curve generally
decreases, and it is nearly identical for the 0.01 A/ps and 0.005 A/ps cases. The activation energy
also generally decreases with lower rate, and converges after 0.01 A/ps. Remarkably, the activation
energy calculated at 1 A/ps (a typical rate used for AIMD simulation in literature) is significantly
higher than the converged value (0.894 eV vs 0.460 eV), underscoring the importance of sufficient
sampling. At the converging rate (0.01 A /ps), the slow growth samples 200,000 structures, which is
very expensive for DFT calculations. This highlights the necessity of using our CP-MLFF model. It
is worth noting that the proportion of highly uncertain structures remains to be low across different
rates (2.35%, 1.90%, 0.92%, 1.38%, 2.17% and 1.14% from 1 A/ps to 0.005 A/ps respectively),
further validating the effectiveness of active learning.
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Figure 5: (a) Free energy profiles calculated using the CP-MLFF ensemble at different slow-growth
rates. (b) Activation energy extracted from the free energy profile vs the slow-growth rate.

The activation energies may be different if starting from different initial states. To evaluate its effect,
we run 9 independent slow-growth simulations with the same rate (0.01 A/ps), but different initial
states. Those states are selected from the last 2 ps of the 10 ps free MD trajectory, with a spacing
of 0.25 ps. Fig.[6]shows the free energy profile for each run, and the distributions of the activation
energies vs the number of runs. The statistics of the activation energies have converged within 9 runs,
showing an average of 0.487 eV and standard deviation of 0.041 eV.
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Figure 6: (a) Free energy profiles computed from different initial structures. The inset indicates the
time point when the initial structure is extracted from the free MD trajectory. (b) Activation energy
distribution along with the average value and standard deviation. The x-axis indicates the number of
simulations included: x = 1 corresponds to the slow-growth simulation starting from the structure at
10 ps in the free MD; x = 2 includes both the simulation at x = 1 and an additional one starting from
9.75 ps, and so on.

Now we will discuss several additional capabilities of our CP-MLFF model. (1) Our CP-MLFF is
able to extrapolate to new systems with different sizes and electrode potentials. To demonstrate this,
the performance of the trained CP-MLFF is tested on a larger system that has a /43 x /43 graphene
supercell (i.e. 6a + b lattice vectors, where a and b are the basis vectors of graphene primitive cell),
72 water molecules, and a different potential of —|eUqyt| = —3.46 eV. As detailed in Appendix F,
the original CP-MLFF has a reasonable accuracy for this system and can be further improved by
active learning with a small number of structures added to the training set. (2) There are different
schemes for CP calculations. For example, instead of rigorously following the grand canonical
ensemble, one may use simpler dynamic equations for N, [23]]. Our CP-MLFF is compatible with
these alternative schemes as they need the same input and give the same output as Eq. 1-4. Particularly,
some schemes do not allow the Er to fluctuate, instead, it is set to be a constant for each structure
during MD/relaxation. This can be simply realized by adjusting the N, and thus EF to match the
target value. Alternatively, one can also flip N, and Er in the training (i.e. using Er as input and N,
as output) so that the created CP-FF can directly predict the force under the given Er. (3) Although
in this work each structure in the training set has its Fermi level available, the dataset can be expanded
to include additional structures that contain only force or Er information. Such expanded datasets
can improve the accuracy of force/ Er prediction. Particularly, as mentioned earlier, when running
CP-AIMD for building the initial training set, not every structure has its Er calculated because of the
high computational cost, leaving some structures with only forces available. As a test, we include
those structures into the training set, and re-train the FFs. This effectively reduces the RMSE in force
predictions (from 11 meV/A to 7 meV/A), without compromising the accuracy of E'r prediction (see
Fig. S3). It is expected that the error in Ew can also be further reduced with more Fr-containing
structures in the training set. This flexibility of our model to take various types of data is a useful
feature for studying complex systems where different kinds of data may be present.

In addition to CP method, there exist other methods to simulate electrochemical interface, such as
finite-field DFT-MD [48]]. It would be useful to develop a MLFF for those methods as well.

5 Conclusion

In this work, we have developed a machine learning model that can create constant potential force
field, which not only yields the forces for a given atomic structure but also predicts Fermi level as
well as how the forces change with electron number. This force field enables large-scale simulation of
electrochemical interface under constant electrode potential. As a demonstration, it is applied to study
the *COOH dissociation — a critical step of CO5 reduction — on single nickel atom embedded in
nitrogen doped graphene in contact with water. We find that to converge the activation energy, the
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slow-growth rate needs to be as slow as 0.01 A/ps, which is challenging for DFT and highlights the
need of our method. Our work paves a step towards improved atomistic understanding of electrified
interface at scale.

Limitation. Our model remains constrained to the systems included in training, and the accessible
simulation timescales are still limited to the nanosecond regime. In addition,the ensemble method
may not always be optimal in identifying the most informative configurations, which may limit the
efficiency of active learning and the overall improvement of the model.

6 [Experimental setting

For each iteration, we train the model with a learning rate of le-2 on 1 A100 GPU for 100 epochs.
The batch size is 2 per GPU.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly explain how we develop a constant
potential machine learning force field method based on the equivariant graph neural network.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss this issue in Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our method does not make strong theoretical contributions.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Detailed implementation information is provided in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: At this stage, we do not release the code but provide the implementation details.
We will open-source related code after publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental implementation information is provided in Sections 3
and 4.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, please refer to the figures.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The details are thoroughly discussed in Section 6.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have complied with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No direct societal impact is performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We do not identify such a risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we have added explanations in the relevant sections.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our method does not rely on large language models (LLMs) at its core.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Details of DFT, CP-AIMD and CP-FFMD calculations

In this work, density functional theory (DFT) calculations are performed using the Vienna Ab
Initio Simulation Package (VASP) [49]. The projector augmented wave (PAW) method is em-
ployed to describe the interaction between ions and electrons [S0]. A plane-wave energy cutoff
of 400 eV is used during MD simulations. Exchange—correlation interactions are treated with the
Perdew—Burke—Ernzerhof (PBE) functional [51]], combined with the D3 dispersion correction to ac-
count for van der Waals interactions [52]]. The simulation supercell consists of a 6 x 6 graphene sheet,
where six carbon atoms are replaced by an Ni-N complex, and 44 explicit water (H2O) molecules are
added. All calculations are carried out using a I'-centered 3 x 3 x 1 k-point mesh.

For the CP-AIMD simulations, we employ the CP-VASP with VASPsol++ implicit solvation environ-
ment [53]. The electrolyte concentration is set to 1 mol/L, and the effective ionic radius is specified
as 4 A. Grand canonical sampling is performed using NESCHEME=5, with M,, = 660.74 eV -fs?,
T: = 300 K, and M¢ = kT, x 81.27, which is selected based on the vibrational frequency of the
O-H bond.

For CP-FFMD simulations, the settings are mostly kept consistent with those used in CP-AIMD,
except for the T, which is reduced to 60 K. This adjustment is made to reduce the amplitude of elec-
tron number fluctuations, and consequently to reduce Fermi level fluctuations—from approximately
1 eV in CP-AIMD to around 0.5 eV in CP-FFMD.

B Training details for the CP-MLFF ensemble

(a) 160 Validation error for Force (b) Validation error for RMSE
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Figure 7: RMSE of predicted (a) forces and (b) Fermi level as a function of training epochs for four
CP-MLFF models independently trained over the initial training set.

For the hyperparameters, the CP-MLFF models were trained using a validation fraction of 5% to
monitor performance and prevent overfitting. The hidden layer of the network was constructed
using irreducible representations consisting of 128 scalar features (Oe) and 128 vector features (10)
(hidden_irreps=‘128x0e+128x10’). A cutoff radius of 5.0 A was employed to define the atomic
neighborhood for message passing. During training, the batch size was set to 2. The loss function
combined contributions from atomic forces, energies, and Fermi levels, with weighting factors set to
100.0 for atomic forces, 1.0 for energy, and 10.0 for the Fermi level predictions. These settings were
chosen to balance the accuracy across the predicted physical properties.

The validation RMSE values for initial training as shown in Fig.[7]demonstrate consistent convergence
and high accuracy for both atomic forces (~17 meV/A) and Fermi levels (~0.03 eV) after 100 training
epochs, highlighting the robustness and reliability of the trained ensemble.
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B.1 Active learning

When MLFFs are used to run MD, new structures that significantly differ from those in the training
set may be encountered, potentially leading to inaccurate predictions. To address this issue, we
adopt an active learning strategy is adopted, utilizing an ensemble of FFs, as shown in Fig.[8p. As
mentioned earlier, we independently train 4 CP-FFs and take the average of their predictions as the
final prediction. These CP-FFs are then used to perform a 10 ps free MD simulation under the same
Uecxt as in the initial training dataset. For each structure in the CP-FFMD, we measure the prediction
uncertainty by the standard deviation among the 4 CP-FFs, and mark a structure as “uncertain” if it
satisfies either of the following criteria:

1. For any atom in the structure, the standard deviation of the force predictions across the ensemble
exceeds 150 meV/A.

2.The standard deviation of the predicted Fermi levels across the ensemble exceeds 40 meV.

Not all the uncertain structures are calculated by DFT, because many of them are similar to each
other. To reduce the redundancy, we uniformly select 10% of the uncertain structures, which are
ordered by their time of appearance in the MD trajectory. However, these structures can still be too
many for DFT calculations, especially in the early iterations. Therefore, we set an upper limit and
select at most 100 structures in each iteration. Those structures along with their N, (as determined
during the CP-FFMD) are calculated by DFT to obtain the accurate forces and Er. These new data
are incorporated into the training dataset to update the CP-FFs. Then the updated CP-FFs are used
for the next iteration. We repeat this process and record the ratio of uncertain structures. As shown in
Fig.[8b, it steadily decreases and reaches below 1% after 4 iterations.

Following the free MD simulations, an additional active learning cycle is carried out using a 20
ps slow-growth simulation at a rate of 0.1 A/ps and under the same U.y. The iterative procedure
continues until the ratio of uncertain structures again dropped below the 1% threshold. This second
active learning procedure requires 6 iterations to reach convergence.

To assess the effectiveness of active learning, CP-FF predictions are compared against DFT results
for the new structures added to the training set at each iteration. Note that the predictions are made
before updating the CP-FFs. As shown in Fig. [8k, the RMSEs generally decrease with the iteration,
reaching 17 meV/A for force and 56 meV for Ef for the new structures at the last iteration of slow
growth. The final training dataset comprised 1093 structures, and the overall RMSEs across the entire
dataset are only 8.4 meV/ A for atomic forces and 10.8 meV for Ey.

C Comparison between two approaches

Fig. E] compares the RMSEs of (a) Fermi level and (b) atomic forces between the node augmentation
method and the global feature method for the final training set. The averaged final RMSE values
are 16.51 meV/A (node augmentation) and 19.55 meV/A (global feature) for atomic forces, and
40.05 meV (node augmentation) and 39.68 meV (global state feature) for Fr. These results indicate
that both approaches yield comparable prediction accuracy for the Ey, while the node augmentation
method provides better performance in predicting atomic forces for the studied system.

D Impact of including additional force-only data

The averaged final validation RMSE values for atomic forces are significantly reduced from 16.92
meV/A (Fermi-level-containing structures only) to 8.67 meV/A (all data), while RMSEs for Er
remain similar (31.90 vs. 33.28 meV). These results highlight the advantage of incorporating addi-
tional force-only data to substantially improve force predictions without compromising Fermi-level
accuracy, demonstrating the flexibility and effectiveness of the CP-MLFF model for heterogeneous
datasets.
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Figure 8: (a) Schematic of the active learning workflow used to iteratively improve the CP-MLFF.
(a) Percentage of newly identified uncertain structures during each iteration of active learning. (b)
RMSE of atomic forces and Fermi level for the downselected uncertain structures.
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Figure 10: Comparison of validation RMSEs for two different training sets. “Only data with Fermi
level” is the final training set used in the main text, where every structure has its Fermi level available.
“All data” includes all the structures during CP-AIMD for building the initial training set, but some
structures do not have Fermi level available.

E Comparison between CP-AIMD and CP-FFMD for slow-growth simulation

Despite the difference in the initial state and T, the two curves exhibit good agreement especially for
the barrier. The activation barriers are 0.894 eV (CP-AIMD) and 0.884 eV (CP-FFMD), confirming
the reliability of our model in reproducing DFT energetics under fast rates.

F Extrapolation to large system

We first use the CP-MLFFs trained from the original (small) system to run free-MD for the large
system for 10 ps and uniformly pick 100 structures from the trajectory to perform DFT calculations.
By comparing the DFT results with ML predictions, we obtain RMSEs of 19.3 meV/A for the atomic
forces and 125.9 meV for the Fermi level.

To further improve the accuracy, we performed active learning for the large system in the same
way as we did for the small system. Specifically, we first conducted a 10 ps free MD simulation,
followed by a 20 ps slow-growth simulation. As shown in Figure[I2b, throughout the active learning
process, the percentage of newly added uncertainty structures in each iteration remains very low. This
indicates that only a small number of DFT calculations are needed, allowing the CP-MLFF to reach
convergence efficiently. At the final iteration, the force and Fermi level RMSEs for the new structures
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Figure 11: Comparison of free energy profiles from CP-AIMD and CP-FFMD simulations at 1 A/ps
slow growth rate.
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Figure 12: (a) Structure for the large system. (b) Percentage of newly identified uncertain structures
during each iteration of active learning. (c) RMSE of atomic forces and Fermi level for the downse-
lected uncertain structures.
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Figure 13: Free energy profiles comparison between large system and small system.

are 22.2 meV/A and 59.8 meV, respectively, which are comparable to the accuracy achieved on the
small system. Figure [[3]compares the free energy profile obtained from slow-growth simulation for
the large system and the original (small) system.

G Electron number and Fermi level during CP-MLFF slow-growth
simulation
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Figure 14: (a) Instantaneous relative electron number and Fermi level along the reaction coordinate
for the slow-growth simulation with 0.01 A/ps. (b) Fermi level versus relative electron number.

As shown in Figure [T4p, both quantities fluctuate over time, with the electron number gradually
increasing as OH™ species form. Figure further demonstrates a clear positive correlation between
the electron number and Fermi level, reflecting the expected physical trend that gaining electrons
raises the system‘s Fermi level. Note that the structural change during the MD simulation also
influences the Fermi level.
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