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Abstract

Better understanding and prediction of electrochemical interface requires large-1

scale atomistic simulations. Machine learning force field (MLFF) has proven2

to be an effective approach. However, current MLFFs typically do not account3

for the effect of electrode potential, which requires treating interface electrons4

with grand canonical ensemble. Here we develop a constant potential MLFF (CP-5

MLFF) based on equivariant graph neural network and implement it into MACE.6

Specifically, we design an architecture which can take the number of electrons as7

input and accurately predict the Fermi level. The CP-MLFF allows us to examine8

the convergency of electrochemical barrier with respect to sampling, which we9

demonstrate through the example of CO2 reduction on Ni-N-C catalyst. Our10

work provides a useful method and tool enabling accurate and efficient large-scale11

simulation of electrochemical interface.12

1 Introduction13

Electrochemical interface is at the center of many technologies to address energy and environmental14

challenges, such as water splitting, CO2 conversion, nitrate reduction, and oxygen reduction [1–5].15

Having an accurate atomic level understanding of the interface is critical to further developing these16

technologies. Density functional theory (DFT) has been widely used to simulate the interface at17

atomic level [6–12]. However, its high computational cost has limited the simulations to a small18

number of atoms and configurations, which are often insufficient to realistically represent the system19

and adequately sample its vast phase space. Particularly, the liquid electrolyte near the interface20

requires extensive sampling to capture different atomic configurations and their interactions with21

reaction species [10, 13, 14]. Therefore, it is important to develop methods for large-scale (both22

spatially and temporarily) simulations without sacrificing accuracy.23

Machine learning force field (MLFF) emerges as a promising approach for large-scale simulation [15–24

20]. By learning from DFT results, MLFF can efficiently predict the forces for new atomic structures25

with accuracy comparable to DFT, thereby accelerating the simulations. However, the existing MLFFs26

are not able to describe the behavior of electrons at electrochemical interface. As depicted in Fig. 1a,27

the interface system is connected to an electrode with certain potential controlled externally (Uext).28

The electrons in the system can exchange with those in the electrode, adjusting its Fermi level (EF)29

according to Uext. During elementary reaction steps, Uext often remains constant. Therefore, the30

electrons in the interface system should be treated by grand canonical ensemble (GCE) [10, 21–29].31

An important consequence is that the number of electrons in the interface system (Ne) is no longer a32

constant, instead, it fluctuates at a finite temperature and evolves along reaction path (Fig. 1b). This33

feature is very different from most thermal reactions/processes, which in contrast have a constant34

Ne. To emphasize that Uext is fixed rather than Ne, this GCE treatment is often also called constant35

(electrode) potential (CP) approach.36
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Figure 1: (a) Schematic illustration of an electrochemical interface connected to an electrode. (b)
evolutions of electron number and Fermi level under constant electrode potential at finite temperature.

In CP simulations, the Ne within the interface system is adjusted according to the EF, following37

equations such as [23]:38

Ṅe =
Pn

Mn
, (1)

Ṗn = EF − |e|Uext −
Pξ

Mξ
Pn, (2)

ξ̇ =
Pξ

Mξ
, (3)

Ṗξ =
P 2
n

Mn
− kBTξ, (4)

where Mn and Pn are the fictitious mass and momentum for the Ne degree of freedom; ξ represents the39

coupling between the system and the electrode, and Pξ , Mξ and Tξ are its associated momentum, mass,40

and temperature, respectively. Out of these quantities, (Mn, Mξ, Tξ) are independent parameters.41

These equations of motion are derived from an extended Lagrangian and analogous to Nosé–Hoover42

thermostat except the degree of freedom is Ne instead of atomic positions and the “force” is given by43

the difference between the instantaneous Fermi level and its target value (plus the contribution from44

the coupling with the electrode). There exist various schemes for CP simulation, and they all require45

determining both the forces (F ) and EF for a given atomic structure (R) and Ne. The F and EF are46

then used to update both R and Ne for subsequent simulation step. Note that even if R remains fixed,47

the F still varies with Ne. Therefore, we need to establish a mapping from (R, Ne) to (F , EF), as48

illustrated in Fig. 2a. Such mapping is straightforward in DFT, and the CP-DFT/CP-AIMD [30–34]49

has been widely used to improve the understandings and predictions of various electrochemical50

interface systems. However, this mapping is not available in typical MLFFs, as they focus on the51

relation between R and F with the assumption that Ne is a constant. Therefore, to enable the CP52

simulations with MLFFs, a new type of MLFF is needed, namely CP-MLFF that can predict (F , EF)53

from (R, Ne). Very recently, several efforts have been made to incorporate the electrode potential into54

the MLFFs [35–38], however, its incorporation into the state-of-the-art MLFF model — equivariant55

graph neural network (EGNN) [39–43] — is still missing. Moreover, some prior works do not56

have Ne as input/output [36], or constrain the Fermi level to a fixed value and do not allow it to57

fluctuate [35, 36] as required by the GCE.58

To fill this gap, in this work, we develop a CP-MLFF based on EGNN and implement it into59

MACE [43], a widely used software for generating MLFFs. Applying this CP-MLFF, we investigate60

a critical question for electrochemical interface simulations: what simulation duration is necessary to61

sufficiently sample the phase space and reliably converge the calculation of activation energies? This62

question was challenging to answer with CP-DFT as the high computational cost limits the simulation63
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to short durations that are not enough to see convergence. However, our CP-MLFF substantially64

reduces computational cost, permitting much longer simulations and thereby enabling us to answer65

this question. This is exemplified by CO2 reduction on a single nickel atom embedded in nitrogen66

doped graphene (Ni-N-C), which has attracted wide interest due to its promising performance and67

the importance of CO2 reduction in advanced energy and manufacturing technologies [44–47]. Our68

work provides a useful method and tool enabling accurate and efficient large-scale simulation of69

electrochemical interface.70

2 Methods71

As mentioned earlier, to enable the CP simulation, the MLFF model needs to take both R and Ne72

as input, and output both F and EF. Here we use the EGNN as implemented in MACE as our base73

model to demonstrate two approaches, which can be also extended to other models though. EGNN74

represents the state-of-the-art MLFF model. It represents the atomic system as graph with nodes75

and edges. Through successive iterations of message passing, the updated node features effectively76

capture complex many-body atomic interactions, allowing for accurate predictions of the properties.77

(a)

(b) (c)

Constant Potential Machine Learning Force Field (CP-MLFF)

Node augmentation Global feature

Figure 2: (a) CP-MLFF enables the additional input of electron number and output of Fermi level.
(b-c) Two implementations of CP-MLFF model. The red highlights the modifications introduced to
MACE.

Node Augmentation: In the first approach (Fig. 2b), we append the Ne as an additional feature to78

each atomic node in the graph. After several layers of message passing, we extract the EF from the79

updated node features. Specifically, the state of each node i at layer t (0 ≤ t ≤ T ) is represented as:80

σ
(t)
i =

(
ri,h

(t)
i

)
, (5)
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where ri is the coordinate of atom i, and h
(t)
i are the learnable features of node i. The initial node81

feature is constructed by the element type (zi) and the normalized electron number N̂e as:82

h
(0)
i,k00 =

∑
z

W ele
kz δzzi +WNe

k N̂e, (6)

where W ele
kz and WNe

k are the weights. The node features are then updated by taking information83

from its neighbors:84

h
(t+1)
i,klm = Ukl

t

σ
(t)
i ,

⊕
j∈N (i)

Mt

(
σ
(t)
i , σ

(t)
j

) , (7)

where k, l and m are the indices for the individual feature component, Mt represents a learnable85

message passing function, Ukl
t is a learnable update function, and

⊕
j∈N (i) denotes a learnable86

permutation-invariant pooling operation over all neighbors of atom i. After several message-passing87

iterations, a mean pooling operation is applied to each layer to generate a graph-level representation88

that reflects the entire system’s property. A final multi-layer perceptron (MLP) uses these graph-level89

features to predict the Fermi level:90

EF = MLP
([

h
(1)
i,k00; . . . ;h

(T )
i,k00

])
. (8)

Here, only the invariant features h(t)
i,k00 is used, which ensures the invariance of the predicted EF.91

Global Feature: Alternatively, the second approach treats the Ne and EF as a distinct global92

attribute of the graph. As shown in Figure 2c, the model initializes the global features g(0) with the93

electron number:94

g(0) = θ(N̂e), (9)

where θ is an invariant encode function which maps the N̂e to a higher-dimensional latent space.95

These global features are used to update the node features:96

h̃
(t)
i,k00 = MLP

([
h
(t)
i,k00;g

(t)
])

, (10)

where the node features are concatenated with the global features before MLP. It is then used in97

Eq. (5) and (7) to get h(t+1). The h(t+1) are aggregated to update the global features in turn:98

g(t+1) = MLP

([{
h
(t+1)
i,k00

}
pooling

;g(t)

])
, (11)

where average pooling compresses the node features into a graph-level vector. The global features of99

the last layer serve as input to a readout function that outputs the EF:100

EF = MLP
(
g(T )

)
. (12)

This global-feature method keeps the system-level information in a separate channel that interacts101

with the atomic nodes.102

To test these methods, we consider a representative electrochemical interface system — CO2 reduction103

on single nickel atom embedded in nitrogen doped graphene. As shown in Fig. 3a, the system consists104

of a single Ni atom coordinated with 1 N atom and 3 C atoms embedded in graphene, 44 water105

molecules, and ∗COOH on Ni. This site structure has been shown to have the best performance106

for CO2R compared with other possible site structures [44]. We focus on a key step in CO2R:107
∗COOH+ e− → ∗CO+OH−

(aq) and use C–O bond length as the reaction coordinate to describe108

the reaction.109

3 Training set110

To generate the initial training set, CP-AIMD simulation are performed with DFT as implemented in111

CP-VASP [30, 31]. The electrode potential is set to be -0.827 V vs RHE (i.e -3.36 V vs electrolyte),112

with temperature of 300 K and time step of 1 fs. Further details of the CP-AIMD can be found in113
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the appendices. The system is first roughly equilibrated through 2 ps free MD simulation (without114

any constraint/bias), followed by 2 ps slow-growth constrained MD (which gradually increases115

the reaction coordinate: C-O bond length) at a rate of 1 Å/ps to quickly sample the reaction path.116

Figure 3b depicts the evolutions of Ne (relative to the Ne at charge-neutral state) and EF during the117

simulations. As expected, the EF fluctuates around −|eUext|, while Ne gradually increases during118

the slow growth, indicating the gain of electrons which is driven by the formation of OH- species.119

Note that due to the high computational expense associated with calculating EF (which requires120

implicit solution to set up a potential reference; see Appendix A), we evaluate the EF and update the121

Ne only every 5 steps. Therefore, in total, 4000 structures are generated, out of which 800 have EF122

calculated. Half of these structures (i.e. 400) are used to construct the initial training dataset.123

Free MD Slow growth

Electron number

Fermi level

(a) (b)

*COOH + e- → *CO + OH-

Figure 3: (a) Test system: electrochemical dissociation of *COOH to *CO and OH-, catalyzed by
single Ni atom embedded in N-doped graphene in contact of water. (b) Time evolution of electron
number (relative to that at charge-neutral state) and Fermi level during 2 ps free MD equilibration
followed by 2 ps slow-growth MD simulation at an electrode potential marked by the horizontal line.

Using the initial dataset, 4 CP-FFs were trained independently with different random seeds and their124

average predictions were compared with the DFT results for the training set. Figure 4 presents the125

comparison for the CP-FFs generated by approach 1. The root mean square errors (RMSE) are 11.0126

meV/Å for atomic forces and 22.1 meV for EF, indicating that our model can accurately predict127

both types of quantities simultaneously. Fig. S2 shows the results for approach 2. We find that both128

approaches yield similar accuracy for EF prediction, but approach 1 gives better force prediction for129

the present system. Therefore, in the following, we focus on approach 1, while it is worth noting that130

the relative performance between the two approaches may vary depending on the system.131

To improve the robustness of CP-FFs, we adopted an active learning scheme based on a 4-model132

ensemble. During CP-FFMD, structures were labeled as “uncertain” if either (i) the standard deviation133

of force predictions exceeded 150 meV/Å for any atom, or (ii) the standard deviation of the predicted134

Fermi levels exceeded 40 meV. To avoid redundancy, 10% of the uncertain structures were selected135

for DFT labeling and added to the training set. This process was repeated until the ratio of uncertain136

structures fell below 1%. The final dataset comprised 1093 structures, with overall RMSEs of 8.4137

meV/Å for forces and 10.8 meV for Fermi levels. More details of the active learning procedure are138

provided in the appendices.139

4 Convergency of activation energy with respect to sampling140

With the CP-FFs available, we can afford much longer simulation that DFT cannot afford, enabling141

us to examine how the calculated properties converge with increased sampling. Here we focus on the142

activation energy, which is critical to the reaction kinetics. The slow growth can calculate the free143

energy profile vs reaction coordinate, from which the activation energy can be extracted. In general, a144

slower rate will give a more accurate free energy profile and activation energy as it samples a larger145

phase space. Fig. 5 shows the slow growth free energy curves calculated with the same ensemble of146
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Figure 4: Predicted force (a) and Fermi level (b) compared against DFT reference values for the
initial dataset.

CP-FFs (after the active learning) and Uext (-0.827 V vs RHE), and from the same initial state (the147

last state of free MD in the active learning), but with different growth rates (1, 0.5, 0.1, 0.05, 0.01,148

and 0.005 ps). Note that the 1 Å/ps rate was used in AIMD to create part of the initial training set.149

The free energy curves calculated at this rate using AIMD and FFMD agree well (see Fig. S4), further150

validating the accuracy of the created FFs. As the rate decreases, the free energy curve generally151

decreases, and it is nearly identical for the 0.01 Å/ps and 0.005 Å/ps cases. The activation energy152

also generally decreases with lower rate, and converges after 0.01 Å/ps. Remarkably, the activation153

energy calculated at 1 Å/ps (a typical rate used for AIMD simulation in literature) is significantly154

higher than the converged value (0.894 eV vs 0.460 eV), underscoring the importance of sufficient155

sampling. At the converging rate (0.01 Å /ps), the slow growth samples 200,000 structures, which is156

very expensive for DFT calculations. This highlights the necessity of using our CP-MLFF model. It157

is worth noting that the proportion of highly uncertain structures remains to be low across different158

rates (2.35%, 1.90%, 0.92%, 1.38%, 2.17% and 1.14% from 1 Å/ps to 0.005 Å/ps respectively),159

further validating the effectiveness of active learning.160

0.894

0.688

0.555
0.589

0.460 0.470

1 A/ps

0.5 A/ps

0.1 A/ps

0.05 A/ps

0.01 A/ps

0.005 A/ps

1 0.5 0.1 0.05 0.01 0.005

(a) (b)

Figure 5: (a) Free energy profiles calculated using the CP-MLFF ensemble at different slow-growth
rates. (b) Activation energy extracted from the free energy profile vs the slow-growth rate.

The activation energies may be different if starting from different initial states. To evaluate its effect,161

we run 9 independent slow-growth simulations with the same rate (0.01 Å/ps), but different initial162

states. Those states are selected from the last 2 ps of the 10 ps free MD trajectory, with a spacing163

of 0.25 ps. Fig. 6 shows the free energy profile for each run, and the distributions of the activation164

energies vs the number of runs. The statistics of the activation energies have converged within 9 runs,165

showing an average of 0.487 eV and standard deviation of 0.041 eV.166
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(a) (b)

Figure 6: (a) Free energy profiles computed from different initial structures. The inset indicates the
time point when the initial structure is extracted from the free MD trajectory. (b) Activation energy
distribution along with the average value and standard deviation. The x-axis indicates the number of
simulations included: x = 1 corresponds to the slow-growth simulation starting from the structure at
10 ps in the free MD; x = 2 includes both the simulation at x = 1 and an additional one starting from
9.75 ps, and so on.

Now we will discuss several additional capabilities of our CP-MLFF model. (1) Our CP-MLFF is167

able to extrapolate to new systems with different sizes and electrode potentials. To demonstrate this,168

the performance of the trained CP-MLFF is tested on a larger system that has a
√
43×

√
43 graphene169

supercell (i.e. 6a+ b lattice vectors, where a and b are the basis vectors of graphene primitive cell),170

72 water molecules, and a different potential of −|eUext| = −3.46 eV. As detailed in Appendix F,171

the original CP-MLFF has a reasonable accuracy for this system and can be further improved by172

active learning with a small number of structures added to the training set. (2) There are different173

schemes for CP calculations. For example, instead of rigorously following the grand canonical174

ensemble, one may use simpler dynamic equations for Ne [23]. Our CP-MLFF is compatible with175

these alternative schemes as they need the same input and give the same output as Eq. 1-4. Particularly,176

some schemes do not allow the EF to fluctuate, instead, it is set to be a constant for each structure177

during MD/relaxation. This can be simply realized by adjusting the Ne and thus EF to match the178

target value. Alternatively, one can also flip Ne and EF in the training (i.e. using EF as input and Ne179

as output) so that the created CP-FF can directly predict the force under the given EF. (3) Although180

in this work each structure in the training set has its Fermi level available, the dataset can be expanded181

to include additional structures that contain only force or EF information. Such expanded datasets182

can improve the accuracy of force/EF prediction. Particularly, as mentioned earlier, when running183

CP-AIMD for building the initial training set, not every structure has its EF calculated because of the184

high computational cost, leaving some structures with only forces available. As a test, we include185

those structures into the training set, and re-train the FFs. This effectively reduces the RMSE in force186

predictions (from 11 meV/Å to 7 meV/Å), without compromising the accuracy of EF prediction (see187

Fig. S3). It is expected that the error in EF can also be further reduced with more EF-containing188

structures in the training set. This flexibility of our model to take various types of data is a useful189

feature for studying complex systems where different kinds of data may be present.190

In addition to CP method, there exist other methods to simulate electrochemical interface, such as191

finite-field DFT-MD [48]. It would be useful to develop a MLFF for those methods as well.192

5 Conclusion193

In this work, we have developed a machine learning model that can create constant potential force194

field, which not only yields the forces for a given atomic structure but also predicts Fermi level as195

well as how the forces change with electron number. This force field enables large-scale simulation of196

electrochemical interface under constant electrode potential. As a demonstration, it is applied to study197

the ∗COOH dissociation — a critical step of CO2 reduction — on single nickel atom embedded in198

nitrogen doped graphene in contact with water. We find that to converge the activation energy, the199
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slow-growth rate needs to be as slow as 0.01 Å/ps, which is challenging for DFT and highlights the200

need of our method. Our work paves a step towards improved atomistic understanding of electrified201

interface at scale.202

Limitation. Our model remains constrained to the systems included in training, and the accessible203

simulation timescales are still limited to the nanosecond regime. In addition,the ensemble method204

may not always be optimal in identifying the most informative configurations, which may limit the205

efficiency of active learning and the overall improvement of the model.206

6 Experimental setting207

For each iteration, we train the model with a learning rate of 1e-2 on 1 A100 GPU for 100 epochs.208

The batch size is 2 per GPU.209
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1. Claims359
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paper’s contributions and scope?361
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Justification: Our abstract and introduction clearly explain how we develop a constant363

potential machine learning force field method based on the equivariant graph neural network.364
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• The answer NA means that the abstract and introduction do not include the claims366

made in the paper.367

• The abstract and/or introduction should clearly state the claims made, including the368

contributions made in the paper and important assumptions and limitations. A No or369

NA answer to this question will not be perceived well by the reviewers.370

• The claims made should match theoretical and experimental results, and reflect how371

much the results can be expected to generalize to other settings.372

• It is fine to include aspirational goals as motivation as long as it is clear that these goals373

are not attained by the paper.374

2. Limitations375

Question: Does the paper discuss the limitations of the work performed by the authors?376

Answer: [Yes]377

Justification: We discuss this issue in Section 5.378

Guidelines:379

• The answer NA means that the paper has no limitation while the answer No means that380

the paper has limitations, but those are not discussed in the paper.381

• The authors are encouraged to create a separate "Limitations" section in their paper.382

• The paper should point out any strong assumptions and how robust the results are to383

violations of these assumptions (e.g., independence assumptions, noiseless settings,384

model well-specification, asymptotic approximations only holding locally). The authors385

should reflect on how these assumptions might be violated in practice and what the386

implications would be.387

• The authors should reflect on the scope of the claims made, e.g., if the approach was388

only tested on a few datasets or with a few runs. In general, empirical results often389

depend on implicit assumptions, which should be articulated.390

• The authors should reflect on the factors that influence the performance of the approach.391

For example, a facial recognition algorithm may perform poorly when image resolution392

is low or images are taken in low lighting. Or a speech-to-text system might not be393

used reliably to provide closed captions for online lectures because it fails to handle394
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• The authors should discuss the computational efficiency of the proposed algorithms396

and how they scale with dataset size.397

• If applicable, the authors should discuss possible limitations of their approach to398

address problems of privacy and fairness.399

• While the authors might fear that complete honesty about limitations might be used by400

reviewers as grounds for rejection, a worse outcome might be that reviewers discover401

limitations that aren’t acknowledged in the paper. The authors should use their best402

judgment and recognize that individual actions in favor of transparency play an impor-403

tant role in developing norms that preserve the integrity of the community. Reviewers404

will be specifically instructed to not penalize honesty concerning limitations.405

3. Theory assumptions and proofs406

Question: For each theoretical result, does the paper provide the full set of assumptions and407

a complete (and correct) proof?408

Answer: [NA]409
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Justification: Our method does not make strong theoretical contributions.410

Guidelines:411

• The answer NA means that the paper does not include theoretical results.412

• All the theorems, formulas, and proofs in the paper should be numbered and cross-413

referenced.414

• All assumptions should be clearly stated or referenced in the statement of any theorems.415

• The proofs can either appear in the main paper or the supplemental material, but if416

they appear in the supplemental material, the authors are encouraged to provide a short417

proof sketch to provide intuition.418

• Inversely, any informal proof provided in the core of the paper should be complemented419

by formal proofs provided in appendix or supplemental material.420

• Theorems and Lemmas that the proof relies upon should be properly referenced.421

4. Experimental result reproducibility422

Question: Does the paper fully disclose all the information needed to reproduce the main ex-423

perimental results of the paper to the extent that it affects the main claims and/or conclusions424

of the paper (regardless of whether the code and data are provided or not)?425

Answer: [Yes]426

Justification: Detailed implementation information is provided in Section 4.427

Guidelines:428

• The answer NA means that the paper does not include experiments.429

• If the paper includes experiments, a No answer to this question will not be perceived430

well by the reviewers: Making the paper reproducible is important, regardless of431

whether the code and data are provided or not.432

• If the contribution is a dataset and/or model, the authors should describe the steps taken433

to make their results reproducible or verifiable.434

• Depending on the contribution, reproducibility can be accomplished in various ways.435

For example, if the contribution is a novel architecture, describing the architecture fully436

might suffice, or if the contribution is a specific model and empirical evaluation, it may437

be necessary to either make it possible for others to replicate the model with the same438

dataset, or provide access to the model. In general. releasing code and data is often439

one good way to accomplish this, but reproducibility can also be provided via detailed440

instructions for how to replicate the results, access to a hosted model (e.g., in the case441

of a large language model), releasing of a model checkpoint, or other means that are442

appropriate to the research performed.443

• While NeurIPS does not require releasing code, the conference does require all submis-444

sions to provide some reasonable avenue for reproducibility, which may depend on the445

nature of the contribution. For example446

(a) If the contribution is primarily a new algorithm, the paper should make it clear how447

to reproduce that algorithm.448

(b) If the contribution is primarily a new model architecture, the paper should describe449

the architecture clearly and fully.450

(c) If the contribution is a new model (e.g., a large language model), then there should451

either be a way to access this model for reproducing the results or a way to reproduce452

the model (e.g., with an open-source dataset or instructions for how to construct453

the dataset).454

(d) We recognize that reproducibility may be tricky in some cases, in which case455

authors are welcome to describe the particular way they provide for reproducibility.456

In the case of closed-source models, it may be that access to the model is limited in457

some way (e.g., to registered users), but it should be possible for other researchers458

to have some path to reproducing or verifying the results.459

5. Open access to data and code460

Question: Does the paper provide open access to the data and code, with sufficient instruc-461

tions to faithfully reproduce the main experimental results, as described in supplemental462

material?463
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Answer: [NA]464

Justification: At this stage, we do not release the code but provide the implementation details.465

We will open-source related code after publication.466

Guidelines:467

• The answer NA means that paper does not include experiments requiring code.468

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/469

public/guides/CodeSubmissionPolicy) for more details.470

• While we encourage the release of code and data, we understand that this might not be471

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not472

including code, unless this is central to the contribution (e.g., for a new open-source473

benchmark).474

• The instructions should contain the exact command and environment needed to run to475

reproduce the results. See the NeurIPS code and data submission guidelines (https:476

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.477

• The authors should provide instructions on data access and preparation, including how478

to access the raw data, preprocessed data, intermediate data, and generated data, etc.479

• The authors should provide scripts to reproduce all experimental results for the new480

proposed method and baselines. If only a subset of experiments are reproducible, they481

should state which ones are omitted from the script and why.482

• At submission time, to preserve anonymity, the authors should release anonymized483

versions (if applicable).484

• Providing as much information as possible in supplemental material (appended to the485

paper) is recommended, but including URLs to data and code is permitted.486

6. Experimental setting/details487

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-488

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the489

results?490

Answer: [Yes]491

Justification: Detailed experimental implementation information is provided in Sections 3492

and 4.493

Guidelines:494

• The answer NA means that the paper does not include experiments.495

• The experimental setting should be presented in the core of the paper to a level of detail496

that is necessary to appreciate the results and make sense of them.497

• The full details can be provided either with the code, in appendix, or as supplemental498

material.499

7. Experiment statistical significance500

Question: Does the paper report error bars suitably and correctly defined or other appropriate501

information about the statistical significance of the experiments?502

Answer: [Yes]503

Justification: Yes, please refer to the figures.504

Guidelines:505

• The answer NA means that the paper does not include experiments.506

• The authors should answer "Yes" if the results are accompanied by error bars, confi-507

dence intervals, or statistical significance tests, at least for the experiments that support508

the main claims of the paper.509

• The factors of variability that the error bars are capturing should be clearly stated (for510

example, train/test split, initialization, random drawing of some parameter, or overall511

run with given experimental conditions).512

• The method for calculating the error bars should be explained (closed form formula,513

call to a library function, bootstrap, etc.)514

• The assumptions made should be given (e.g., Normally distributed errors).515

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error516

of the mean.517

• It is OK to report 1-sigma error bars, but one should state it. The authors should518

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis519

of Normality of errors is not verified.520

• For asymmetric distributions, the authors should be careful not to show in tables or521

figures symmetric error bars that would yield results that are out of range (e.g. negative522

error rates).523

• If error bars are reported in tables or plots, The authors should explain in the text how524

they were calculated and reference the corresponding figures or tables in the text.525

8. Experiments compute resources526

Question: For each experiment, does the paper provide sufficient information on the com-527

puter resources (type of compute workers, memory, time of execution) needed to reproduce528

the experiments?529

Answer: [Yes]530

Justification: The details are thoroughly discussed in Section 6.531

Guidelines:532

• The answer NA means that the paper does not include experiments.533

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,534

or cloud provider, including relevant memory and storage.535

• The paper should provide the amount of compute required for each of the individual536

experimental runs as well as estimate the total compute.537

• The paper should disclose whether the full research project required more compute538

than the experiments reported in the paper (e.g., preliminary or failed experiments that539

didn’t make it into the paper).540

9. Code of ethics541

Question: Does the research conducted in the paper conform, in every respect, with the542

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?543

Answer: [Yes]544

Justification: We have complied with the Code of Ethics.545

Guidelines:546

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.547

• If the authors answer No, they should explain the special circumstances that require a548

deviation from the Code of Ethics.549

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-550

eration due to laws or regulations in their jurisdiction).551

10. Broader impacts552

Question: Does the paper discuss both potential positive societal impacts and negative553

societal impacts of the work performed?554

Answer: [NA]555

Justification: No direct societal impact is performed.556

Guidelines:557

• The answer NA means that there is no societal impact of the work performed.558

• If the authors answer NA or No, they should explain why their work has no societal559

impact or why the paper does not address societal impact.560

• Examples of negative societal impacts include potential malicious or unintended uses561

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations562

(e.g., deployment of technologies that could make decisions that unfairly impact specific563

groups), privacy considerations, and security considerations.564
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• The conference expects that many papers will be foundational research and not tied565

to particular applications, let alone deployments. However, if there is a direct path to566

any negative applications, the authors should point it out. For example, it is legitimate567

to point out that an improvement in the quality of generative models could be used to568

generate deepfakes for disinformation. On the other hand, it is not needed to point out569

that a generic algorithm for optimizing neural networks could enable people to train570

models that generate Deepfakes faster.571

• The authors should consider possible harms that could arise when the technology is572

being used as intended and functioning correctly, harms that could arise when the573

technology is being used as intended but gives incorrect results, and harms following574

from (intentional or unintentional) misuse of the technology.575

• If there are negative societal impacts, the authors could also discuss possible mitigation576

strategies (e.g., gated release of models, providing defenses in addition to attacks,577

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from578

feedback over time, improving the efficiency and accessibility of ML).579

11. Safeguards580

Question: Does the paper describe safeguards that have been put in place for responsible581

release of data or models that have a high risk for misuse (e.g., pretrained language models,582

image generators, or scraped datasets)?583

Answer: [Yes]584

Justification: We do not identify such a risk.585

Guidelines:586

• The answer NA means that the paper poses no such risks.587

• Released models that have a high risk for misuse or dual-use should be released with588

necessary safeguards to allow for controlled use of the model, for example by requiring589

that users adhere to usage guidelines or restrictions to access the model or implementing590

safety filters.591

• Datasets that have been scraped from the Internet could pose safety risks. The authors592

should describe how they avoided releasing unsafe images.593

• We recognize that providing effective safeguards is challenging, and many papers do594

not require this, but we encourage authors to take this into account and make a best595

faith effort.596

12. Licenses for existing assets597

Question: Are the creators or original owners of assets (e.g., code, data, models), used in598

the paper, properly credited and are the license and terms of use explicitly mentioned and599

properly respected?600

Answer: [Yes]601

Justification: Yes, we have added explanations in the relevant sections.602

Guidelines:603

• The answer NA means that the paper does not use existing assets.604

• The authors should cite the original paper that produced the code package or dataset.605

• The authors should state which version of the asset is used and, if possible, include a606

URL.607

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.608

• For scraped data from a particular source (e.g., website), the copyright and terms of609

service of that source should be provided.610

• If assets are released, the license, copyright information, and terms of use in the611

package should be provided. For popular datasets, paperswithcode.com/datasets612

has curated licenses for some datasets. Their licensing guide can help determine the613

license of a dataset.614

• For existing datasets that are re-packaged, both the original license and the license of615

the derived asset (if it has changed) should be provided.616
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• If this information is not available online, the authors are encouraged to reach out to617

the asset’s creators.618

13. New assets619

Question: Are new assets introduced in the paper well documented and is the documentation620

provided alongside the assets?621

Answer: [NA]622

Justification: We do not release any new assets.623

Guidelines:624

• The answer NA means that the paper does not release new assets.625

• Researchers should communicate the details of the dataset/code/model as part of their626

submissions via structured templates. This includes details about training, license,627

limitations, etc.628

• The paper should discuss whether and how consent was obtained from people whose629

asset is used.630

• At submission time, remember to anonymize your assets (if applicable). You can either631

create an anonymized URL or include an anonymized zip file.632

14. Crowdsourcing and research with human subjects633

Question: For crowdsourcing experiments and research with human subjects, does the paper634

include the full text of instructions given to participants and screenshots, if applicable, as635

well as details about compensation (if any)?636

Answer: [NA]637

Justification: The paper does not involve crowdsourcing nor research with human subjects.638

Guidelines:639

• The answer NA means that the paper does not involve crowdsourcing nor research with640

human subjects.641

• Including this information in the supplemental material is fine, but if the main contribu-642

tion of the paper involves human subjects, then as much detail as possible should be643

included in the main paper.644

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,645

or other labor should be paid at least the minimum wage in the country of the data646

collector.647

15. Institutional review board (IRB) approvals or equivalent for research with human648

subjects649

Question: Does the paper describe potential risks incurred by study participants, whether650

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)651

approvals (or an equivalent approval/review based on the requirements of your country or652

institution) were obtained?653

Answer: [NA]654

Justification: The paper does not involve crowdsourcing nor research with human subjects.655

Guidelines:656

• The answer NA means that the paper does not involve crowdsourcing nor research with657

human subjects.658

• Depending on the country in which research is conducted, IRB approval (or equivalent)659

may be required for any human subjects research. If you obtained IRB approval, you660

should clearly state this in the paper.661

• We recognize that the procedures for this may vary significantly between institutions662

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the663

guidelines for their institution.664

• For initial submissions, do not include any information that would break anonymity (if665

applicable), such as the institution conducting the review.666

16. Declaration of LLM usage667
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Question: Does the paper describe the usage of LLMs if it is an important, original, or668

non-standard component of the core methods in this research? Note that if the LLM is used669

only for writing, editing, or formatting purposes and does not impact the core methodology,670

scientific rigorousness, or originality of the research, declaration is not required.671

Answer: [NA]672

Justification: Our method does not rely on large language models (LLMs) at its core.673

Guidelines:674

• The answer NA means that the core method development in this research does not675

involve LLMs as any important, original, or non-standard components.676

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)677

for what should or should not be described.678
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Appendix679

A Details of DFT, CP-AIMD and CP-FFMD calculations680

In this work, density functional theory (DFT) calculations are performed using the Vienna Ab681

Initio Simulation Package (VASP) [49]. The projector augmented wave (PAW) method is em-682

ployed to describe the interaction between ions and electrons [50]. A plane-wave energy cutoff683

of 400 eV is used during MD simulations. Exchange–correlation interactions are treated with the684

Perdew–Burke–Ernzerhof (PBE) functional [51], combined with the D3 dispersion correction to ac-685

count for van der Waals interactions [52]. The simulation supercell consists of a 6× 6 graphene sheet,686

where six carbon atoms are replaced by an Ni–N complex, and 44 explicit water (H2O) molecules are687

added. All calculations are carried out using a Γ-centered 3× 3× 1 k-point mesh.688

For the CP-AIMD simulations, we employ the CP-VASP with VASPsol++ implicit solvation environ-689

ment [53]. The electrolyte concentration is set to 1 mol/L, and the effective ionic radius is specified690

as 4 Å. Grand canonical sampling is performed using NESCHEME=5, with Mn = 660.74 eV·fs2,691

Tξ = 300 K, and Mξ = kBTξ × 81.27, which is selected based on the vibrational frequency of the692

O–H bond.693

For CP-FFMD simulations, the settings are mostly kept consistent with those used in CP-AIMD,694

except for the Tξ , which is reduced to 60 K. This adjustment is made to reduce the amplitude of elec-695

tron number fluctuations, and consequently to reduce Fermi level fluctuations—from approximately696

1 eV in CP-AIMD to around 0.5 eV in CP-FFMD.697

B Training details for the CP-MLFF ensemble698

0.0319 eV
0.0290 eV
0.0316 eV
0.0351 eV

16.344 meV/A
17.220 meV/A
16.877 meV/A
17.229 meV/A

(a) (b)Validation error for Force Validation error for RMSE

Figure 7: RMSE of predicted (a) forces and (b) Fermi level as a function of training epochs for four
CP-MLFF models independently trained over the initial training set.

For the hyperparameters, the CP-MLFF models were trained using a validation fraction of 5% to699

monitor performance and prevent overfitting. The hidden layer of the network was constructed700

using irreducible representations consisting of 128 scalar features (0e) and 128 vector features (1o)701

(hidden_irreps=‘128x0e+128x1o’). A cutoff radius of 5.0 Å was employed to define the atomic702

neighborhood for message passing. During training, the batch size was set to 2. The loss function703

combined contributions from atomic forces, energies, and Fermi levels, with weighting factors set to704

100.0 for atomic forces, 1.0 for energy, and 10.0 for the Fermi level predictions. These settings were705

chosen to balance the accuracy across the predicted physical properties.706

The validation RMSE values for initial training as shown in Fig. 7 demonstrate consistent convergence707

and high accuracy for both atomic forces (∼17 meV/Å) and Fermi levels (∼0.03 eV) after 100 training708

epochs, highlighting the robustness and reliability of the trained ensemble.709
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B.1 Active learning710

When MLFFs are used to run MD, new structures that significantly differ from those in the training711

set may be encountered, potentially leading to inaccurate predictions. To address this issue, we712

adopt an active learning strategy is adopted, utilizing an ensemble of FFs, as shown in Fig. 8a. As713

mentioned earlier, we independently train 4 CP-FFs and take the average of their predictions as the714

final prediction. These CP-FFs are then used to perform a 10 ps free MD simulation under the same715

Uext as in the initial training dataset. For each structure in the CP-FFMD, we measure the prediction716

uncertainty by the standard deviation among the 4 CP-FFs, and mark a structure as “uncertain” if it717

satisfies either of the following criteria:718

1. For any atom in the structure, the standard deviation of the force predictions across the ensemble719

exceeds 150 meV/Å.720

2.The standard deviation of the predicted Fermi levels across the ensemble exceeds 40 meV.721

Not all the uncertain structures are calculated by DFT, because many of them are similar to each722

other. To reduce the redundancy, we uniformly select 10% of the uncertain structures, which are723

ordered by their time of appearance in the MD trajectory. However, these structures can still be too724

many for DFT calculations, especially in the early iterations. Therefore, we set an upper limit and725

select at most 100 structures in each iteration. Those structures along with their Ne (as determined726

during the CP-FFMD) are calculated by DFT to obtain the accurate forces and EF. These new data727

are incorporated into the training dataset to update the CP-FFs. Then the updated CP-FFs are used728

for the next iteration. We repeat this process and record the ratio of uncertain structures. As shown in729

Fig. 8b, it steadily decreases and reaches below 1% after 4 iterations.730

Following the free MD simulations, an additional active learning cycle is carried out using a 20731

ps slow-growth simulation at a rate of 0.1 Å/ps and under the same Uext. The iterative procedure732

continues until the ratio of uncertain structures again dropped below the 1% threshold. This second733

active learning procedure requires 6 iterations to reach convergence.734

To assess the effectiveness of active learning, CP-FF predictions are compared against DFT results735

for the new structures added to the training set at each iteration. Note that the predictions are made736

before updating the CP-FFs. As shown in Fig. 8c, the RMSEs generally decrease with the iteration,737

reaching 17 meV/Å for force and 56 meV for EF for the new structures at the last iteration of slow738

growth. The final training dataset comprised 1093 structures, and the overall RMSEs across the entire739

dataset are only 8.4 meV/ Å for atomic forces and 10.8 meV for EF.740

C Comparison between two approaches741

Fig. 9 compares the RMSEs of (a) Fermi level and (b) atomic forces between the node augmentation742

method and the global feature method for the final training set. The averaged final RMSE values743

are 16.51 meV/Å (node augmentation) and 19.55 meV/Å (global feature) for atomic forces, and744

40.05 meV (node augmentation) and 39.68 meV (global state feature) for EF. These results indicate745

that both approaches yield comparable prediction accuracy for the EF, while the node augmentation746

method provides better performance in predicting atomic forces for the studied system.747

D Impact of including additional force-only data748

The averaged final validation RMSE values for atomic forces are significantly reduced from 16.92749

meV/Å (Fermi-level-containing structures only) to 8.67 meV/Å (all data), while RMSEs for EF750

remain similar (31.90 vs. 33.28 meV). These results highlight the advantage of incorporating addi-751

tional force-only data to substantially improve force predictions without compromising Fermi-level752

accuracy, demonstrating the flexibility and effectiveness of the CP-MLFF model for heterogeneous753

datasets.754
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Figure 8: (a) Schematic of the active learning workflow used to iteratively improve the CP-MLFF.
(a) Percentage of newly identified uncertain structures during each iteration of active learning. (b)
RMSE of atomic forces and Fermi level for the downselected uncertain structures.
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(a) (b)Validation error for Force Validation error for RMSE

Figure 9: Validation errors of the two CP-MLFF approaches on the final training dataset.

(a) (b)Validation error for Force Validation error for RMSE

Figure 10: Comparison of validation RMSEs for two different training sets. “Only data with Fermi
level” is the final training set used in the main text, where every structure has its Fermi level available.
“All data” includes all the structures during CP-AIMD for building the initial training set, but some
structures do not have Fermi level available.

E Comparison between CP-AIMD and CP-FFMD for slow-growth simulation755

Despite the difference in the initial state and Tξ , the two curves exhibit good agreement especially for756

the barrier. The activation barriers are 0.894 eV (CP-AIMD) and 0.884 eV (CP-FFMD), confirming757

the reliability of our model in reproducing DFT energetics under fast rates.758

F Extrapolation to large system759

We first use the CP-MLFFs trained from the original (small) system to run free-MD for the large760

system for 10 ps and uniformly pick 100 structures from the trajectory to perform DFT calculations.761

By comparing the DFT results with ML predictions, we obtain RMSEs of 19.3 meV/Å for the atomic762

forces and 125.9 meV for the Fermi level.763

To further improve the accuracy, we performed active learning for the large system in the same764

way as we did for the small system. Specifically, we first conducted a 10 ps free MD simulation,765

followed by a 20 ps slow-growth simulation. As shown in Figure 12b, throughout the active learning766

process, the percentage of newly added uncertainty structures in each iteration remains very low. This767

indicates that only a small number of DFT calculations are needed, allowing the CP-MLFF to reach768

convergence efficiently. At the final iteration, the force and Fermi level RMSEs for the new structures769
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Figure 11: Comparison of free energy profiles from CP-AIMD and CP-FFMD simulations at 1 Å/ps
slow growth rate.

(a) (b)

(c)

Figure 12: (a) Structure for the large system. (b) Percentage of newly identified uncertain structures
during each iteration of active learning. (c) RMSE of atomic forces and Fermi level for the downse-
lected uncertain structures.
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Figure 13: Free energy profiles comparison between large system and small system.

are 22.2 meV/Å and 59.8 meV, respectively, which are comparable to the accuracy achieved on the770

small system. Figure 13 compares the free energy profile obtained from slow-growth simulation for771

the large system and the original (small) system.772

G Electron number and Fermi level during CP-MLFF slow-growth773

simulation774

(a) (b)

Figure 14: (a) Instantaneous relative electron number and Fermi level along the reaction coordinate
for the slow-growth simulation with 0.01 Å/ps. (b) Fermi level versus relative electron number.

As shown in Figure 14a, both quantities fluctuate over time, with the electron number gradually775

increasing as OH− species form. Figure 14b further demonstrates a clear positive correlation between776

the electron number and Fermi level, reflecting the expected physical trend that gaining electrons777

raises the system‘s Fermi level. Note that the structural change during the MD simulation also778

influences the Fermi level.779
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