
Learning Curves for
Deep Structured Gaussian Feature Models

Jacob A. Zavatone-Veth1,2 and Cengiz Pehlevan3,2,4

1Department of Physics, 2Center for Brain Science,
3John A. Paulson School of Engineering and Applied Sciences,

4Kempner Institute for the Study of Natural and Artificial Intelligence,
Harvard University

Cambridge, MA 02138, USA
jzavatoneveth@g.harvard.edu, cpehlevan@seas.harvard.edu

Abstract

In recent years, significant attention in deep learning theory has been devoted
to analyzing when models that interpolate their training data can still generalize
well to unseen examples. Many insights have been gained from studying models
with multiple layers of Gaussian random features, for which one can compute
precise generalization asymptotics. However, few works have considered the
effect of weight anisotropy; most assume that the random features are generated
using independent and identically distributed Gaussian weights, and allow only for
structure in the input data. Here, we use the replica trick from statistical physics to
derive learning curves for models with many layers of structured Gaussian features.
We show that allowing correlations between the rows of the first layer of features
can aid generalization, while structure in later layers is generally detrimental. Our
results shed light on how weight structure affects generalization in a simple class
of solvable models.

1 Introduction

Characterizing how data structure and model architecture affect generalization performance is among
the foremost goals of deep learning theory [1, 2]. A fruitful line of inquiry has focused on the
properties of a class of simplified models that are asymptotically solvable: neural networks in which
only the readout layer is trained and other weights are random, which are known as random feature
models (RFMs) [3–21]. Though RFMs cannot capture the effects of representation learning on
generalization in richly-trained neural networks [13, 22, 23], they have substantially advanced our
understanding of how data structure and model architecture interact to give rise to a wide array of
generalization phenomena observed in deep learning [1–5, 7–19, 24, 25].

Of particular interest is the question of when models overfit benignly, that is, when they generalize well
despite having been trained to perfectly interpolate their training data. Here, much intuition has been
gained by studying minimum-norm kernel interpolation—that is, the ridgeless limit of kernel ridge
regression—with RFM kernels, for which precise generalization asymptotics can be computed using
tools from random matrix theory. These asymptotics lead to a precise picture of how the spectrum of
the random feature kernel and the structure of the task interact to determine generalization. These
analyses are facilitated by universality results, often termed Gaussian equivalence theorems, that state
that the generalization error of a nonlinear RFM is asymptotically equal to that of a linear Gaussian
model with an effective noise term resulting from nonlinearity [3, 7, 10, 25, 26]. In the past few years,
Gaussian equivalence theorems for ever more general classes of RFMs have been established: within
this year Schröder et al. [20] and Bosch et al. [21] have established Gaussian equivalence theorems
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for deep nonlinear RFMs with unstructured feature weights, while Cui et al. [27] have extended
some of these results to the setting of deep Bayesian neural networks when the target is of the same
architecture.

However, these analyses consider the effect only of correlations in the data, and do not address the
possibility of correlations between the random weights. It is standard to assume that the elements
of the weight matrices at each layer are independent and identically distributed Gaussian random
variables, and to our knowledge all existing Gaussian equivalence theorems make use of this assump-
tion [3–15, 19–21]. As a result, how weight anisotropy affects generalization in deep RFMs—in
particular, if it can affect the asymptotic scaling of generalization error with dataset size and network
width [16, 19, 28]—remains unclear.

In this note, we take the first step towards filling that gap in our theoretical understanding of RFMs by
computing the asymptotic generalization error of the simplest class of deep RFMs with anisotropic
weight correlations: models with linear activations. Our primary contributions are as follows:

• Using the replica method from statistical mechanics [29], we compute the asymptotic generalization
error of deep linear random feature models with weights drawn from general matrix Gaussian
distributions. This computation is closely related to prior replica approches to product random
matrix problems [13, 30].

• We show that, in the ridgeless limit, structure in the weights beyond the first layer is detrimental for
generalization.

• We next consider the special case of power-law spectra in the weights and in the data, which was
classically studied in kernel interpolation in the form of source-capacity conditions [31], and has
recently attracted substantial interest in deep learning due to approximate power-law spectra present
in real data [16, 19, 28, 32]. Using approximations for required spectral statistics derived in past
works [19], we show that altering the power laws of the weight covariance spectra do not affect the
scaling laws of generalization.

• We finally show how our results can be extended from the ridge regression estimator to the Bayesian
Gibbs estimator, an object of classic study in the statistical physics of learning [13, 33, 34]. For
sufficiently large prior variance, structure can be beneficial for generalization with this estimator.

Taken together, these results are consistent with the intuition that representation learning at only the
first layer of a deep linear model is sufficient to recover a single teacher weight vector [13, 35–37].

2 Preliminaries

We consider depth-L linear RFMs with input x ∈ Rn0 and scalar output given by

g(x;v,F) =
1
√
n0

(Fv)⊤x, (1)

where the feature matrix F ∈ Rn0×nL is fixed and the vector v ∈ RnL is trainable. If L = 0,
corresponding to standard linear regression, the feature matrix is simply the identity: F = In0 . If
L > 0, we take the feature matrix to be defined by a product of L factors Uℓ ∈ Rnℓ−1×nℓ :

F =
1

√
n1 · · ·nL

U1 · · ·UL. (2)

We draw the random feature matrices independently from matrix Gaussian distributions

Uℓ ∼MNnℓ−1×nℓ
(0,Γℓ,Σℓ) (3)

for input covariance matrices Γℓ ∈ Rnℓ−1×nℓ−1 and output covariance matrices Σℓ ∈ Rnℓ×nℓ , such
that E[(Uℓ)ij(Uℓ′)i′j′ ] = δℓℓ′(Γℓ)ii′(Σℓ)jj′ . Subject to the constraints of layer-wise independence
and separability—which are required for the factors to be matrix-Gaussian distributed—this is the
most general covariance structure one could consider. One might wish to relax this to include
non-separable covariance tensors E[(Uℓ)ij(Uℓ′)i′j′ ] = δℓℓ′(χℓ)ii′,jj′ , but this would spoil the matrix-
Gaussianity of the factors, and to our knowledge does not appear to be addressable using standard
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methods [30, 38]. We generate training datasets according to a structured Gaussian covariate model,
with p i.i.d. training examples (xµ, yµ) generated as

xµ ∼i.i.d. N (0,Σ0), yµ =
1
√
n0

w⊤
∗ xµ + ξµ, (4)

where the teacher weight vector w∗ is fixed and the label noise follows

ξµ ∼i.i.d. N (0, η2). (5)

We collect the covariates into a matrix X ∈ Rp×n0 , and the targets into a vector y ∈ Rp.

As in most works on RFMs [3–5, 8–21, 25], our focus is on the ridge regression estimator

v = argmin
v

L for L =
1

2

∥∥∥∥ 1
√
n0

XFv − y

∥∥∥∥2 + λ

2
∥Γ−1/2

L+1 v∥22, (6)

where the positive-definite matrix ΓL+1 ∈ RnL×nL controls the anisotropy of the norm and the ridge
parameter λ > 0 sets the regularization strength. This minimization problem has the well-known
closed form solution

v̂ =
1
√
n0

(
λΓ−1

L+1 +
1

n0
F⊤X⊤XF

)−1

F⊤X⊤y. (7)

As motivated in the Introduction, we are chiefly interested in the ridgeless limit λ ↓ 0, in which the
ridge regression solution gives the minimum ℓ2 norm interpolant of the training data. We measure
performance of this estimator by the generalization error

ϵp,n0,...,nL
= Ex (g(x; v̂,F)− Eξ[y(x)])2 =

1

n0
∥Σ1/2

0 (Fv̂ −w∗)∥2, (8)

which is a random variable with distribution induced by the training data and feature weights.

This leads us to a simple, but important observation: including structured input-input covariances is
equivalent to transforming the feature-feature covariances. We state this formally as:

Lemma 2.1. Fix sets of matrices {Γℓ}L+1
ℓ=1 and {Σℓ}Lℓ=0, and a target vector w∗. Let ϵp,n0,...,nL

be
the resulting generalization error as defined in (8). Let

Γ̃ℓ = Inℓ−1
for ℓ = 1, . . . , L+ 1, (9)

Σ̃ℓ = Γ
1/2
ℓ+1ΣℓΓ

1/2
ℓ+1 for ℓ = 0, . . . , L, and (10)

w̃∗ = Γ
−1/2
1 w∗. (11)

Let ϵ̃p,n0,...,nL
be the generalization error for these transformed covariance matrices and target.

Then, for any λ > 0, we have the equality in distribution ϵp,n0,...,nL

d
= ϵ̃p,n0,...,nL

.

Proof of Lemma 2.1. As the features and data are Gaussian, we can write X
d
= Σ

1/2
0 Z0 and

Uℓ
d
= Γ

1/2
ℓ ZℓΣ

1/2
ℓ for unstructured Gaussian matrices (Zℓ)ij ∼i.i.d. N (0, 1). Substituting these

representations into the ridge regression solution (7) and the generalization error (8), the claim
follows.

Therefore, we may take Γℓ = Inℓ−1
without loss of generality. Moreover, thanks to the rotation-

invariance of the isotropic Gaussian factors Zℓ, we may in fact take the remaining covariance matrices
Σℓ to be diagonal without loss of generality, so long as we then express w̃∗ in the basis of eigenvectors
of Σ0. An important qualitative takeaway of this result is that changing the covariance matrix of
the inputs of the first layer Γ1 is equivalent to modifying the data covariance matrix, which was in a
simpler form observed in the shallow setting (L = 1) by Pandey et al. [39].

3 Asymptotic learning curves

Having defined the setting of our problem, we can define our concrete objective and state our main
results, deferring their interpretation to the following section. We consider the standard proportional
asymptotic limit

p, n0, . . . , nL →∞, with nℓ/p→ αℓ ∈ (0,∞), (12)
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which we will refer to as the thermodynamic limit. Our goal is to compute the limiting generalization
error:

ϵ = lim
p,n0,...,nL→∞

ED
1

n0
∥Σ1/2

0 (Fv −w∗)∥2, (13)

where ED denotes expectation over all sources of quenched disorder in the problem, i.e., the training
data and the random feature weights. In the thermodynamic limit, we expect the generalization error
to concentrate, which is why we compute its average in (13) [3–5, 8–21].

To have a well-defined thermodynamic limit, the covariances Σ̃ℓ and the teacher w̃ℓ must be in some
sense sufficiently well-behaved. We consider the following conditions, which are the generalization
to our setting of those assumed in previous work [4–7, 16–18, 40]:
Assumption 3.1. We assume that we are given deterministic sequences of positive-definite matrices
Σ̃ℓ(nℓ) and vectors w̃∗(n0) indexed by the system size, such that the limiting (weighted) spectral
moment generating functions

MΣ̃ℓ
(z) = lim

nℓ→∞

1

nℓ
tr[Σ̃ℓ(zInℓ

− Σ̃ℓ)
−1] and ψ(z) = lim

n0→∞

1

n0
w̃⊤

∗ Σ̃0(zIn0 + Σ̃0)
−1w̃∗

(14)
are well-defined, for all ℓ = 0, . . . , L.

We can now state our results. As a preliminary step, we first give an expression for the generalization
error for a fixed teacher w̃∗ at finite ridge λ. Then, we pass to the ridgeless limit, on which we focus
for the remainder of the paper. At finite ridge, we have the following:
Proposition 3.1. Assume Assumption 3.1 holds. For λ > 0, let ζ solve the self-consistent equation

λ =
1− ζ
ζ

L∏
ℓ=0

−ζ
αℓ
M−1

Σ̃ℓ

(
− ζ

αℓ

)
. (15)

In terms of ζ, let κℓ(ζ) solve

Eσ̃ℓ

[
σ̃ℓ

κℓ(ζ) + σ̃ℓ

]
= −MΣ̃ℓ

(−κℓ(ζ)) =
ζ

αℓ
(16)

for ℓ = 0, . . . , L, where Eσ̃ℓ
[h(σ̃ℓ)] = limnℓ→∞ n−1

ℓ

∑nℓ

j=1 h(σ̃ℓ,j) denotes expectation of a function
h with respect to the limiting spectral distribution of Σ̃ℓ, for σ̃ℓ,j its eigenvalues at finite size, and let

µℓ(ζ) = −
αℓ
ζ
κℓ(ζ)M

′
Σ̃ℓ

(−κℓ(ζ)) = 1− αℓ
ζ
Eσ̃ℓ

[(
σ̃ℓ

κℓ(ζ) + σ̃ℓ

)2
]
. (17)

Then, the learning curve (13) at finite ridge for a fixed target is given by[
1 +

(∑L
ℓ=0

1−µℓ

µℓ

)
(1− ζ)

]
ϵ =

(∑L
ℓ=1

1−µℓ

µℓ

)
κ0ψ(κ0)− κ2

0

µ0
ψ′(κ0) +

(∑L
ℓ=0

1−µℓ

µℓ

)
ζη2. (18)

Proof of Proposition 3.1. We defer the derivation of (18) to Appendix A. To compute the disorder
average in (13), we express the minimization problem in (6) as the zero-temperature limit β →∞ of
an auxiliary Gibbs distribution p(v) ∝ e−βL, and evaluate the average over the random data random
feature weights using the non-rigorous replica method from the statistical mechanics of disordered
systems [29, 33]. This computation is lengthy but standard, and is closely related to the approach
used in our previous works on deep linear models [13, 30]. All of our results are obtained under a
replica-symmetric Ansatz; as the ridge regression problem (6) is convex, we expect replica symmetry
to be unbroken [29, 41, 42].

From the self-consistent equation (15), we recognize that ζ is is up to a sign the spectral moment
generating function of the feature Gram matrix K = XFF⊤X⊤/n0, which is a product-Wishart
random matrix [30]:

ζ(λ) = −MK(−λ). (19)

This dependence falls out of the replica computation of the generalization error using an auxiliary
Gibbs distribution; we emphasize that one could take an alternative approach in which the general-
ization error is first expressed in terms of MK—as, for instance, in Gerace et al. [25] or Hastie et al.
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[5]—and then use results on the spectra of product-Wishart matrices to conclude the claimed result
[30]. This approach would potentially have the advantage of giving a fully rigorous proof, rather than
one that depends on the replica trick. However, one would still then be faced with the task of solving
the self-consistent equation for the spectral moment generating function, and therefore would end up
in the same place insofar as quantitative predictions are concerned.

In principle, we could now directly proceed to study how weight structure affects (18) for some fixed
ridge λ. However, as long as there is structure in the weights and/or the data, the self-consistent
equation (15) must generally be solved numerically [14, 30]. To allow us to make analytical progress,
we therefore focus on the ridgeless limit λ ↓ 0 for the remainder of the present paper, and leave
careful analysis of the λ > 0 case to future work. This follows the path of most recent studies
of models with linear random features, and also the fundamental interest in interpolating models
[3–17, 19–21]. We therefore emphasize that we state Proposition 3.1 merely as a preliminary result.

Before giving our result for the generalization error in the ridgeless limit, we warn the reader of an
impending, somewhat severe abuse of notation: in Proposition 3.2 and for the remainder of the paper,
we will re-define κℓ to be given by its value for the solution for ζ appropriate in the regime of interest.
Moreover, we will simply write ϵ for limλ↓0 ϵ.

Proposition 3.2. Assume Assumption 3.1 holds, and let αmin = min{α1, · · · , αL}. For ℓ = 0, . . . , L,
in the regime αℓ > 1, let κℓ be given by the unique non-negative solution to the implicit equation

1

αℓ
= −MΣ̃ℓ

(−κℓ) = Eσ̃ℓ

[
σ̃ℓ

κℓ + σ̃ℓ

]
. (20)

In terms of κℓ, let

µℓ = −αℓκℓM ′
Σ̃ℓ

(−κℓ) = 1− αℓEσ̃ℓ

[(
σ̃ℓ

κℓ + σ̃ℓ

)2
]
. (21)

In the regime αmin < α0, let κmin be the unique non-negative solution to the implicit equation

αmin

α0
= −MΣ̃0

(−κmin) = Eσ̃0

[
σ̃0

κmin + σ̃0

]
. (22)

Then, the learning curve (13) for a fixed target in the ridgeless limit λ ↓ 0 is given by

ϵ =


(∑L

ℓ=1
1−µℓ

µℓ

)
κ0ψ(κ0)− κ2

0

µ0
ψ′(κ0) +

(∑L
ℓ=0

1−µℓ

µℓ

)
η2, α0, αmin > 1

κminψ(κmin)
1−αmin

+ αmin

1−αmin
η2, αmin < 1, αmin < α0

α0

1−α0
η2, α0 < 1, α0 < αmin.

(23)

Proof of Proposition 3.2. We derive (23) as the zero-ridge limit of Proposition 3.1 in Appendix
A.

Before we analyze the effect of weight anisotropy in detail in Section 4, we note several simplifying
special cases of Proposition 3.2 which recover the results of prior works. To facilitate this comparison,
we provide a notational dictionary in Appendix D. The first important special case is

Corollary 3.1. If L = 0, we have

ϵ =

{
−κ

2
0

µ0
ψ′(κ0) +

1−µ0

µ0
η2, α0 > 1

α0

1−α0
η2, α0 < 1.

(24)

This recovers the known, rigorously proved result for linear ridgeless regression [4–7, 16–18]. For
larger depths, an important simplifying case of Proposition 3.2 is that in which the data and features
are unstructured, in which case the generalization error is given by

Corollary 3.2. If Σ̃ℓ = Inℓ
for ℓ = 0, . . . , L, we have, for any target satisfying ∥w̃∗∥2 = n0,

ϵ =


(
1 +

∑L
ℓ=1

1
αℓ−1

)(
1− 1

α0

)
+
(∑L

ℓ=0
1

αℓ−1

)
η2, α0, αmin > 1

1−αmin/α0

1−αmin
+ αmin

1−αmin
η2, αmin < 1, αmin < α0

α0

1−α0
η2, α0 < 1, α0 < αmin.

(25)
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Figure 1: Phase diagram of generalization in deep linear RFMs. For simplicity, we consider a model
with a single hidden layer (L = 1); the picture for deeper models is identical if one considers the
narrowest hidden layer [13]. (a). Generalization error ϵ for unstructured data and features from (25)
as a function of training data density 1/α0 and hidden layer width α1/α0 in the absence of label
noise (η = 0; left) and in the presence of label noise (η = 0.5; right). (b). As in (a), but for power law
structured data and weights, with ω0 = ω1 = 1, and ϵ̄ given by (31). See Appendix F for numerical
methods.

Proof of Corollary 3.2. We have MInℓ
(z) = 1/(z − 1), hence κℓ = αℓ − 1, µℓ = 1 − 1/αℓ, and

κmin = α0/αmin − 1. Finally, for any fixed teacher vector satisfying ∥w̃∗∥2 = n0, we have
ψ(z) = 1/(z + 1) if Σ̃0 = In0 . Substituting these results into (23), we obtain (25).

This recovers the result obtained in our previous work [13], and in the single-layer case L = 1
recovers results obtained by Rocks and Mehta [14, 15], and by Hastie et al. [5] (see Appendix D). In
the slightly more general case of unstructured weights but structured features, we have

Corollary 3.3. If Σ̃ℓ = Inℓ
for ℓ = 1, . . . , L, but Σ̃0 ̸= In0

, we have, for any target satisfying
∥w̃∗∥2 = n0,

ϵ =


(∑L

ℓ=1
1

αℓ−1

)
κ0ψ(κ0)− κ2

0

µ0
ψ′(κ0) +

(
1−µ0

µ0
+
∑L
ℓ=1

1
αℓ−1

)
η2, α0, αmin > 1

κminψ(κmin)
1−αmin

+ αmin

1−αmin
η2, αmin < 1, αmin < α0

α0

1−α0
η2, α0 < 1, α0 < αmin.

(26)

Proof of Corollary 3.3. (26) follows from substituting the results of Corollary 3.2 into (23).

In the special caseL = 1, this recovers the result obtained using rigorous methods in contemporaneous
work by Bach [40], posted to the arXiv one day after the first version of our work [43]. Here, as the
data spectrum and target vector enter the generalization error in nearly the same way as in the case of
linear regression, all of the intuitions developed in that case can be carried over [4–7, 16–18].

Another useful simplification can be obtained by further averaging over isotropically-distributed
teachers w̃∗ ∼ N (0, In0

), which gives

Corollary 3.4. Let ϵ̄ = Ew̃∗∼N (0,In0
)[ϵ]. Then, we have

ϵ̄ =


(
1 +

∑L
ℓ=1

1−µℓ

µℓ

)
κ0

α0
+
(∑L

ℓ=0
1−µℓ

µℓ

)
η2, α0, αmin > 1

αminκmin/α0

1−αmin
+ αmin

1−αmin
η2, αmin < 1, αmin < α0

α0

1−α0
η2, α0 < 1, α0 < αmin.

(27)

Proof of Corollary 3.4. Observing that Ew̃∗ψ(z) = −MΣ̃0
(−z), the claim follows from (23).

In the special case of a single layer of unstructured feature weights (L = 1, Σ̃1 = In1
), this

recovers the result of recent work by Maloney et al. [19], who used a planar diagram method to the
generalization error of single-hidden-layer linear RFMs with unstructured weights (see Appendix D).

Another important simplifying case of Proposition 3.2 is the limit in which the hidden layer widths
are large, in which the generalization error of the deep RFM reduces to that of a shallow model, as
given by Corollary 3.1. More precisely, we have a large-width expansion given by:
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Corollary 3.5. In the large-width regime α1, . . . , αL ≫ 1, assuming that the weight spectra have
finite moments, the generalization error (23) expands as

ϵ = −κ
2
0

µ0
ψ′(κ0) +

1−µ0

µ0
η2 +

(∑L
ℓ=1

Eσ̃ℓ
[σ̃2

ℓ ]

Eσ̃ℓ
[σ̃ℓ]2

1
αℓ

)
(κ0ψ(κ0) + η2) +O(α−2

1 , . . . , α−2
L ) (28)

in the regime α0 > 1; if α0 < 1 the generalization error does not depend on the hidden layer widths
so long as they are greater than 1.

Proof of Corollary 3.5. See Appendix E.

4 How does weight structure affect generalization?

The first salient feature of the learning curves given by Proposition 3.2 is that the addition of weight
structure does not alter the phase diagram of generalization, which is illustrated in Figure 1. There are
three qualitatively distinct phases present, depending on the data density and minimum layer width:
the overparameterized regime α0, αmin > 1, the bottlenecked regime αmin < 1, αmin < α0, and the
overdetermined regime α0 < 1, α0 < αmin. This dependence on the narrowest hidden layer matches
our previous work on models with unstructured weights [13]1, and can be observed in the solutions
to the ridge regression problem for fixed data (Appendix C). As αℓ ↓ 1, κℓ ↓ 0 and µℓ ↓ 0, and the
generalization error diverges. Similarly, the generalization error diverges as αmin ↑ 1, or α0 ↑ 1 in
the presence of label noise. However, there are not multiple descents in these deep linear models,
consistent with the qualitative picture of the effect of nonlinearity given by previous works [9, 10].

The second salient feature of Proposition 3.2 is that the matrices Σ̃ℓ enter the generalization error
independently; there are no ‘interaction’ terms involving products of the correlation matrices for
different layers. This decoupling is expected given that the features are Gaussian and independent
across layers [30]. Moreover, under the rescaling Σ̃′

ℓ = τℓΣ̃ℓ for τℓ > 0, we have κ′ℓ = τℓκℓ and
µ′
ℓ = µℓ (we show this explicitly in Appendix B). Therefore, (23) is sensitive only to the overall

scale of Σ̃0, not to the scales of Σ̃1, . . . , Σ̃L. This scale-invariance can be observed directly from the
ridgeless limit of the ridge regression estimator (7).

We can gain intuition for the effect of having Σ̃ℓ ̸∝ Inℓ
for ℓ ≥ 1 through the following argument:

Lemma 4.1. Under the conditions of Proposition 3.2, in the regime α0, αmin > 1, we have

ϵ ≥
(∑L

ℓ=1
1

αℓ−1

)
κ0ψ(κ0)− κ2

0

µ0
ψ′(κ0) +

(
1−µ0

µ0
+
∑L
ℓ=1

1
αℓ−1

)
η2. (29)

That is, the generalization error for a given Σ̃1, · · · , Σ̃L is bounded from below by the generalization
error for Σ̃ℓ = Inℓ

for ℓ = 1, . . . , L.

Proof of Lemma 4.1. In Appendix B, we show that µℓ ≤ 1− 1/αℓ for any weight spectrum, which
implies that (1− µℓ)/µℓ ≥ 1/(αℓ − 1). Substituting these bounds in to the general expression for
the generalization error in this regime from (23), the claim follows.

Therefore, having Σ̃ℓ ̸= Inℓ
for ℓ = 1, . . . , L cannot improve generalization in the α0, αmin > 1

regime. This is consistent with the large-width expansion in Corollary 3.5, where we can apply
Jensen’s inequality to bound the weight-dependence of the correction as Eσ̃ℓ

[σ̃2
ℓ ]/Eσ̃ℓ

[σ̃ℓ]
2 ≥ 1, with

equality only when the weights are unstructured. In other regimes, Σ̃1, · · · , Σ̃L do not affect the
generalization error. In contrast, a similar argument shows that anisotropy in Σ̃0 can be beneficial in
the target-averaged case, at least in the absence of label noise. We formalize this as:
Lemma 4.2. Under the conditions of Corollary 3.4, in the absence of label noise (η = 0), we have

ϵ̄ ≤


(
1 +

∑L
ℓ=1

1−µℓ

µℓ

)(
1− 1

α0

)
E[σ̃0], α0, αmin > 1

(1−αmin/α0)
1−αmin

E[σ̃0], αmin < 1, αmin < α0

0, α0 < 1, α0 < αmin.

(30)

That is, ϵ̄ for a given Σ̃0 is bounded from above by the generalization error for a flat spectrum
Σ̃0 = E[σ̃0]In0

.
1Previous works on deep RFMs have used several different parameterizations of the thermodynamic limit

[3–17, 19–21]. We detail the conversion between these conventions in Appendix D.
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Proof of Lemma 4.2. In Appendix B, we show that κ0 ≤ (α0 − 1)E[σ̃0]. As its defining equation
(22) is of the same form as (20), the corresponding bound for κmin follows immediately: κmin ≤
(α0/αmin − 1)E[σ̃0]. Substituting these bounds into (27) with η = 0, the claim follows.

If E[σ̃0] is not finite, then this bound is entirely vacuous: ϵ̄ ≤ ∞. If we do not average over
isotropically-distributed targets, then the effect of anisotropy in Σ̃0 is harder to analyze. Previous
works have, however, analyzed the interaction of data structure with a fixed target in great detail for
models with L = 0 or L = 1, showing that targets that align with the top eigenvectors of Σ̃0 are
easier to learn [5, 16, 17, 42, 44].

5 Power law spectra

We can gain further intuition for the effect of weight structure by considering an approximately
solvable model for anisotropic spectra: power laws [16, 19, 28]. Power law data spectra have recently
attracted considerable attention as a possible model for explaining the scaling laws of generalization
observed in large language models [16, 19, 28, 32]. Maloney et al. [19] proposed a single-hidden-
layer (L = 1) linear RFM with power-law-structured data and unstructured weights as a model for
neural scaling laws. Does introducing power law structure into the weights affect the scaling laws
predicted by deep linear RFMs? We have the following result:

Corollary 5.1. At finite size, define each covariance matrix Σ̃ℓ such that its j-th eigenvalue is
σ̃ℓ,j = ς̃ℓ(nℓ/j)

1+ωℓ for some fixed scale factor ς̃ℓ > 0 and exponent ωℓ > 0. Then, the limiting
target-averaged generalization error is approximately

ϵ̄ ≃


(
1 + ΩL +

∑L
ℓ=1

1
αℓ−1

)
χ(α0) +

(
ω0 +ΩL +

∑L
ℓ=0

1
αℓ−1

)
η2, α0, αmin > 1

χ(α0/αmin)
1−αmin

+ αmin

1−αmin
η2, αmin < 1, αmin < α0

α0

1−α0
η2, α0 < 1, α0 < αmin,

(31)
where ΩL =

∑L
ℓ=1 ωℓ and for z > 1 we have χ(z) ≃ −M−1

Σ̃0
(z)/z given by χ(z) =

ς̃0 {k(zω0 − 1) + [2 + ω0(1− k)] (1− 1/z)} for k = sinc[π/(1 + ω0)]
−(1+ω0).

Proof of Corollary 5.1. Using the dictionary of notation in Appendix D, we can plug the approximate
solutions for κℓ and µℓ derived by Maloney et al. [19] into (27) to obtain (31).

Therefore, the power law exponents ω1, · · · , ωL of the weight covariances beyond the first layer,
which enter only through their sum ΩL, do not affect the scaling laws of the generalization error
with the dataset size and network widths. In particular, in the absence of label noise (η = 0) we can
approximate the scaling of (31) in the regimes of large or small hidden layer width by

ϵ̄ ∼
{
αω0
0 , αmin > 1, α0 ≫ 1,

(α0/αmin)
ω0 , αmin < 1, α0/αmin ≫ 1,

(32)

which recovers the results found by Maloney et al. [19] for L = 1 with unstructured weights. This
behavior, and the agreement of (31) with numerical experiments, is illustrated in Figure 2. Consistent
with Lemma 4.1, generalization with power-law weight structure is never better than with unstructured
weights, as can be seen by comparing (31) with (25).

6 Bayesian inference and the Gibbs estimator at large prior variance

Thus far, we have focused on ridge regression (6). Though this is the most commonly-considered
estimator in studies of random feature models [3–17, 19–21], one might ask whether our qualitative
findings—in particular, that feature weight structure beyond the first layer is generally harmful for
generalization—carry over to other estimators. Our approach to Proposition 3.2 is easily extensible
to the setting of zero-temperature Bayesian inference, which has recently attracted substantial interest
[13, 27, 34, 37, 45–47], sparked by work from Li and Sompolinsky [34]. In this case, we take
seriously the Gibbs distribution p(v) ∝ e−βL, which in the ridge regression case was simply a
convenient tool, and interpret it as the Bayes posterior for a Gaussian likelihood of variance 1/β and
a Gaussian prior with covariance ΓL+1/(βλ). It is in this context conventional to fix λ = 1/β, such
that the prior variance does not scale with β. We can then study the average of the generalization error
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Figure 2: Generalization for power-law spectra. (a). Target-averaged generalization error ϵ̄ as a
function of training data density 1/α0 for shallow models (L = 1) of varying hidden layer width
α1/α0 in the absence of label noise (η = 0). Here, the data and weight spectra have identical power
law decay ω0 = ω1 = 1. (b). As in (a), but in the presence of label noise (η = 1/2). (c). As in
(b), but for fixed hidden layer width α1/α0 = 4, fixed data exponent ω0 = 1, and varying weight
exponents ω1. In all cases, solid lines show the predictions of (31), while dots with error bars show
the mean and standard error over 100 realizations of numerical experiments with n0 = 1000. See
Appendix F for details of our numerical methods.

(13) under this posterior in the zero-temperature limit β →∞, which we refer to as the generalization
error of the Gibbs estimator. We emphasize that this is not identical to the Bayesian minimum
mean squared error (MMSE) estimator given by the posterior mean, which would coincide with the
ridgeless estimator in the zero-temperature limit (see Appendix A).

For a deep RFM, this simply has the effect of adding a “thermal” variance term to the generalization
error of the ridgeless estimator, which we describe in detail in Appendices A and C. We have:
Proposition 6.1. With the same setup as in Proposition 3.2, the generalization error of the Gibbs
estimator for a RFM is

ϵBRF = ϵridgeless +

{∏L
ℓ=0

κℓ

αℓ
, α0, αmin > 1

0, otherwise,
(33)

where ϵridgeless is given by Proposition 3.2, and κℓ is defined as in (20).

Proof of Proposition 6.1. We derive (33) alongside Proposition 3.2 in Appendix A.

The Gibbs estimator is sensitive to the scale of the random feature weight distributions through
κℓ, while as noted above the ridgeless estimator is not sensitive to their overall scale. This direct
dependence on κℓ means that the simple argument of Lemma 4.1 cannot be applied. Indeed, in the
limit of large prior variance, where the thermal variance term dominates, structure can improve the
performance of the Gibbs estimator. We make this result precise in the following lemma:
Lemma 6.1. In the setting of Proposition 6.1, consider Bayesian RFMs with weight covariances
scaled as τℓΣ̃ℓ for ℓ = 1, . . . , L. Then, in the non-trivial regime α0, αmin > 1 where the thermal
variance is non-vanishing, we have

lim
τ1,...,τL→∞

ϵBRF∏L
ℓ=1 τℓ

=

L∏
ℓ=0

κℓ
αℓ
≤ κ0
α0
ς2

L∏
ℓ=1

(
1− 1

αℓ

)
, (34)

where the scalars κℓ are defined in terms of the un-scaled covariances Σ̃ℓ as in (20) and ς2 ≡∏L
ℓ=1 Eσ̃ℓ

[σ̃ℓ]. Therefore, in the limit of large prior variance, including structure in the weight priors
is generically advantageous for generalization. If Eσ̃ℓ

[σ̃ℓ] is not finite, then the bound is vacuous.

Proof of Lemma 6.1. The first part of (34) follows from (33) using the scaling properties of κℓ, while
the bound follows from the bounds on κℓ derived as part of Lemma 4.2.

In contrast, weight structure is generally harmful for the Bayesian RFM in the limit of small prior
variance, as its performance then coincides with the ridgeless RFM, as can be seen from the scaling
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of κℓ. This example illustrates that there are cases in which, depending on the estimator used,
weight structure in deeper layers can sometimes be helpful for generalization. However, whereas
the ridgeless estimator is commonly used in practice, the Gibbs estimator is less standard, and the
limit of large prior variance is certainly artificial. Therefore, we emphasize that we give this example
to show that the behavior of the ridgeless estimator is not entirely general, not to show that weight
structure can be helpful in practical settings.

7 Discussion

We have computed learning curves for models with many layers of structured Gaussian random
features learning a linear target function, showing that structure beyond the first layer is generally
detrimental for generalization. This result is consistent with the intuition that in deep linear models
learning a single target direction it is sufficient to modify the representation only at the first layer
[13, 36]. It will be interesting to investigate whether this intuition carries over to nonlinear networks
learning complex tasks, particularly including multi-index targets [35, 48]. Moreover, we have con-
sidered only linear, Gaussian models. As mentioned in the Introduction, past works have established
Gaussian equivalence theorems for nonlinear RFMs with unstructured Gaussian feature weights.
It will be important to investigate the effect of feature weight structure on Gaussian equivalence
in future work, and determine whether our qualitative results carry over to nonlinear RFMs in the
proportional limit.

Though our results are obtained using the replica trick, and we do not address the possibility of
replica symmetry breaking, they should be rigorously justifiable given the convexity of the ridge
regression problem [29, 33, 41]. We note that the replica approach makes it straightforward to handle
models of any finite depth [30]. The relevant averages could of course be computed with alternative
random matrix theory techniques, which could allow for a fully rigorous proof [5, 19–21]. Another
more challenging setting to study with either the replica trick or rigorous techniques would be that in
which one allows for correlations between weights in different layers. This setting could qualitatively
capture aspects of feature learning in deep networks, which induces couplings across depth [45].

In closing, we note that RFMs with structured weights may also have relevance for biological neural
networks. A recent study by Pandey et al. [39] considered RFMs with a single layer of random
features (L = 1) with correlated rows (Γ1 ̸= In0). In several biologically-inspired settings, they
showed that introducing this structure could improve generalization, consistent with our results. More
broadly, biological neural networks are imbued with rich priors [49]; investigating what insights deep
structured models can afford for neuroscience will be an interesting subject for further study.
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A Derivation of Proposition 3.2

In this Appendix, we sketch our replica-theory approach to computing the learning curves, which leads
to Proposition 3.2. Many of the steps of this calculation are all but identical to our previous works on
replica approaches to the spectra of product Wishart random matrices [30], and on unstructured deep
Gaussian random feature models [13], so we will sketch the major steps rather than spelling out all
the details of the algebra.

A.1 Gibbs distribution and replica free energy

We start by introducing a Gibbs distribution at fictitious inverse temperature β associated with the
ridge regression loss

L =
1

2

∥∥∥∥ 1
√
n0

XFv − y

∥∥∥∥2 + λ

2
∥Γ−1/2

L+1 v∥22, (A.1)

with partition function

Z(β,D) ∝
∫
dv e−βL(v,D), (A.2)

where we denote by D all randomness in the problem. For any λ > 0, in the zero-temperature limit
β →∞, this Gibbs distribution concentrates around the unique minimum of the loss E [29, 33].

For the purpose of the replica computation, it is convenient to consider instead the partition function
of the posterior of a related Bayesian model, which corresponds to absorbing βλ into a redefinition
of ΓL+1, and treating the ridge penalty as a Gaussian prior

v ∼prior N (0,ΓL+1). (A.3)

We can then recover the partition function of the ridge regression model by undoing the rescaling:
ΓL+1 ← ΓL+1/(βλ). Without this re-scaling—i.e., in the case in which the prior variance is held
fixed as the temperature goes to zero—this is the Gibbs estimator in the zero-temperature limit, i.e., a
Bayesian model with Gaussian likelihood of vanishing variance [13, 34, 37, 45, 46].

This gives us the partition function

Z = Ev∼N (0,ΓL+1) exp

[
−β
2

p∑
µ=1

[g(xµ;v,F)− yµ]2
]
, (A.4)

which is the extension to structured priors of the Gibbs estimator partition function considered in
[13]. By standard arguments, we expect the quenched free energy

f = − lim
p,n0,...,nL→∞

1

p
logZ, (A.5)

to be self-averaging in the thermodynamic limit, i.e., f = EDf almost surely [29, 33]. To compute
the limiting quenched average, we use the replica trick, and write

f = − lim
m→0

lim
p,n0,...,nL→∞

1

pm
logEDZ

m, (A.6)

where we evaluate the moments EDZ
m for positive integerm, and assume that they can be analytically

continued to m→ 0.

Following previous work [13, 30], we can compute the quenched averages and integrate out the
weights by introducing order parameters

(C0)
ab =

1

n0
(Fva −w∗)

⊤Σ0(Fv
b −w∗), (A.7)

for ℓ = 0,

(Cℓ)
ab =

1

nℓ · · ·nL
(va)⊤U⊤

L · · ·U⊤
ℓ+1ΣℓUℓ+1 · · ·ULv

b (A.8)
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for ℓ = 1, . . . , L− 1 and

(CL)
ab =

1

nL
(va)⊤ΣLv

b, (A.9)

along with corresponding Lagrange multipliers Ĉℓ, which yields

EDZ
m =

∫
dC0 dĈ0

(4πi/n0)m(m+1)/2

∫
dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

[
−pm

2
S
]

(A.10)

for

mS = log det(Im + βC0 + βη21m1⊤
m)

− α0
1

n0
v(w̃∗1

⊤
m)⊤[Ĉ0 ⊗ Σ̃0][Imn0 −C1Ĉ0 ⊗ Σ̃0]

−1 v(w̃∗1
⊤
m)

+

L∑
ℓ=0

αℓ

[
tr(CℓĈℓ) +

1

nℓ
log det(Imnℓ

−Cℓ+1Ĉℓ ⊗ Σ̃ℓ)

]
, (A.11)

where we let CL+1 = Im and

Σ̃ℓ = Γ
1/2
ℓ+1ΣℓΓ

1/2
ℓ (A.12)

for ℓ = 0, . . . , L. We note that ⊗ here denotes the Kronecker product, and we use the convention
that the standard matrix product has higher precedence than the Kronecker product, i.e., AB⊗C =
(AB)⊗C. Importantly, the quantity of interest—the generalization error—is simply given by the
diagonal elements of C0, i.e., ϵ = (C0)

aa. Therefore, if we can solve for the order parameters at zero
temperature, we will obtain the generalization error.

In the thermodynamic limit, the integral over these order parameters can be evaluated using the
method of steepest descent. We make a replica symmetric Ansatz, and seek saddle points of the form

Cℓ = qℓIm + cℓ1m1⊤
m, (A.13)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤
m. (A.14)

Under this Ansatz, we have

S = log(1 + βq0) +
β(c0 + η2)

1 + βq0

− α0
1

n0
(w̃⊤

∗ Σ̃0(In0 − q1q̂0Σ̃0)
−1w̃∗)q̂0

+

L∑
ℓ=0

αℓ

(
qℓq̂ℓ + qℓĉℓ + cℓq̂ℓ + Eσ̃ℓ

log(1− qℓ+1q̂ℓσ̃ℓ)

− (qℓ+1ĉℓ + cℓ+1q̂ℓ)Eσ̃ℓ

[
σ̃ℓ

1− qℓ+1q̂ℓσ̃ℓ

])
+O(m) (A.15)

to leading order in m, where we recall the boundary condition qL+1 = 1, cL+1 = 0 [30]. The
resulting saddle point equations can be simplified to give a closed system for the replica non-uniform
components,

α0q̂0 = − β

1 + βq0
(A.16)

αℓq̂ℓ = αℓ−1q̂ℓ−1Eσ̃ℓ−1

[
σ̃ℓ−1

1− qℓq̂ℓ−1σ̃ℓ−1

]
(ℓ = 1, . . . , L) (A.17)

qℓ = qℓ+1Eσ̃ℓ

[
σ̃ℓ

1− qℓ+1q̂ℓσ̃ℓ

]
(ℓ = 0, . . . , L) (A.18)
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with the boundary condition qL+1 = 1, and a linear system for the replica uniform components,

α0ĉ0 =
β2(c0 + η2)

(1 + βq0)2
(A.19)

α1ĉ1 = α0
1

n0
(w̃⊤

∗ Σ̃
2
0(In0

− q1q̂0Σ̃0)
−2w̃∗)q̂

2
0

+ α0

(
ĉ0Eσ̃0

[
σ̃0

1− q1q̂0σ̃0

]
+ (q1ĉ0 + c1q̂0)q̂0Eσ̃0

[(
σ̃0

1− q1q̂0σ̃0

)2
])

(A.20)

αℓ
αℓ−1

ĉℓ = ĉℓ−1Eσ̃ℓ−1

[
σ̃ℓ−1

1− qℓq̂ℓ−1σ̃ℓ−1

]
+ (qℓĉℓ−1 + cℓq̂ℓ−1)q̂ℓ−1Eσ̃ℓ−1

[(
σ̃ℓ−1

1− qℓq̂ℓ−1σ̃ℓ−1

)2
]

(ℓ = 2, . . . , L)

(A.21)

c0 =
1

n0
(w̃⊤

∗ Σ̃0(In0
− q1q̂0Σ̃0)

−2w̃∗)

+

(
c1Eσ̃0

[
σ̃0

1− q1q̂0σ̃0

]
+ (q1ĉ0 + c1q̂0)q1E

[(
σ̃0

1− q1q̂0σ̃0

)2
])

(A.22)

cℓ = cℓ+1Eσ̃ℓ

[
σ̃ℓ

1− qℓ+1q̂ℓσ̃ℓ

]
+ (qℓ+1ĉℓ + cℓ+1q̂ℓ)qℓ+1Eσ̃ℓ

[(
σ̃ℓ

1− qℓ+1q̂ℓσ̃ℓ

)2
]

(ℓ = 1, . . . , L) (A.23)

with the boundary condition cL+1 = 0.

A.2 Converting between the Gibbs and maximum-likelihood estimators

As our primary aim is to study ridge regression, we must now account for the fact that the prior over
the readout weights scales with the inverse temperature β. In particular, we have a prior with scaled
covariance ΓL+1/(βλ), where ΓL+1 does not scale with β. If we perform this rescaling in (A.16)
and (A.16), we can see that the re-scaled order parameters

q̄ℓ = βλqℓ (A.24)

¯̂qℓ =
1

βλ
q̂ℓ (A.25)

c̄ℓ = cℓ (A.26)

¯̂cℓ =
1

(βλ)2
ĉℓ (A.27)

obey an identical system of equations to the original order parameters in the Bayesian case at inverse
temperature

β =
1

λ
. (A.28)

Therefore, if we can solve the saddle point equations for the Gibbs estimator in the zero-temperature
limit, we can simply read off the corresponding result for the ridge regression estimator in the
ridgeless limit. The important difference is that the replica nonuniform component q0 of C0 is
O(1/β) in the ridge regression case, hence only the replica uniform component c0 contributes to
the generalization error. We note that this allows one to read off the generalization error of a deep
linear RFM with unstructured features from the results of our previous work [13] simply by setting
the Bayesian prior variance σ2 to zero.

A.3 Solutions for the generalization error

The replica-symmetric saddle point equations in (A.16) and (A.19) are nearly identical to those
analyzed our computation of the maximum eigenvalue of a structured Wishart product matrix [30],
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which in turn are related to those in our original paper on unstructured deep linear RFMs [13] by the
replacement of the spectral moment generating function of the identity matrix with the appropriate
spectral generating functions. Given this similarity, and the fact that we have provided extensive
exposition of how to solve such systems in those previous works, we will merely state the results for
the order parameters relevant to the computation of the generalization error.

Let

MΣ̃ℓ
(z) = lim

nℓ→∞

1

nℓ
tr[Σ̃ℓ(zInℓ

− Σ̃ℓ)
−1] (A.29)

be the moment generating function of Σ̃ℓ, with functional inverse M−1

Σ̃ℓ
(z). Then, at finite temper-

ature, after eliminating the Lagrange multipliers, the replica nonuniform components of the order
parameters are given by

qℓ =

L∏
j=ℓ

A

αj
M−1

Σ̃j

(
A

αj

)
(A.30)

for ℓ = 0, . . . , L, where

A = q0q̂0 = − βq0
1 + βq0

(A.31)

satisfies the closed equation

− 1

β
=
A+ 1

A

L∏
ℓ=0

A

αℓ
M−1

Σ̃ℓ

(
A

αℓ

)
. (A.32)

From [30], we recognize this as the self-consistent equation for the moment generating function
M = A of the feature kernel K = XFF⊤X⊤/n0, evaluated at −1/β. Even in the unstructured case,
this equation must in general be solved numerically at finite temperature [30].

Given a solution to this equation, we can solve the system of linear equations (A.19) for c0, mirroring
the computation of the extremal eigenvalues of structured product Wishart matrices in [30]. After
eliminating the Lagrange multipliers, this calculation boils down to solving a three-term recurrence
relation, which is detailed in previous works [13, 30]. We therefore simply state the result of this
computation here. Let ζ = −A, which then satisfies

λ =
1− ζ
ζ

L∏
ℓ=0

−ζ
αℓ
M−1

Σ̃ℓ

(
− ζ

αℓ

)
. (A.33)

For ℓ = 0, . . . , L, let

κℓ = −M−1

Σ̃ℓ

(
− ζ

αℓ

)
(A.34)

so that κℓ satisfies

ζ

αℓ
= Eσ̃ℓ

[
σ̃ℓ

κℓ + σ̃ℓ

]
. (A.35)

Viewing κℓ as a function of ζ, we may alternatively write the self-consistent equation for ζ as

1

β
=

1− ζ
ζ

L∏
ℓ=0

ζ

αℓ
κℓ(ζ) (A.36)

In terms of κℓ, let

µℓ = −
αℓ
ζ
κℓM

′
Σ̃ℓ

(−κℓ) (A.37)

= 1− αℓ
ζ
Eσ̃ℓ

[(
σ̃ℓ

κℓ + σ̃ℓ

)2
]

(A.38)
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We then finally have[
1 +

(
L∑
ℓ=0

1− µℓ
µℓ

)
(1− ζ)

]
c0 =

1

µ0

1

n0
(w̃⊤

∗ Σ̃0(κ0In0
+ Σ̃0)

−2w̃∗)κ
2
0

+

(
L∑
ℓ=1

1− µℓ
µℓ

)
1

n0
(w̃⊤

∗ Σ̃0(κ0In0 + Σ̃0)
−1w̃∗)κ0

+

( L∑
ℓ=0

1− µℓ
µℓ

)
ζη2. (A.39)

Using the mapping of Appendix A.2 and again defining the weighted generating function

ψ(z) = lim
n0→∞

1

n0
w̃⊤

∗ Σ̃0(zIn0
+ Σ̃0)

−1w̃∗. (A.40)

this yields Proposition 3.1.

We now want to extract the zero-temperature/ridgeless limit. As β →∞, the self-consistent equation
for ζ admits the solution

ζ = 1, (A.41)

valid for αℓ > 1 for all ℓ, which gives q0 ∼ O(1), the solution

ζ = α0, (A.42)

valid for α0 < 1, α0 < α1, . . . , αL, which gives q0 ∼ O(1/β), and, for ℓ∗ = 0, . . . , L, the solutions

ζ = αℓ∗ , (A.43)

valid for αℓ∗ < 1, αℓ∗ < α0, αℓ∗ < αℓ for all ℓ ̸= ℓ∗, which also give q0 ∼ O(1/β). These
solutions mirror those found in the unstructured setting [13]. We remark that, as in [13], we can
determine the regimes in which each solution is physical by demanding that the order parameters qℓ
are non-negative.

For the ζ → 1 solution, we immediately have

c0 =
1

µ0

1

n0
(w̃⊤

∗ Σ̃0(κ0In0 + Σ̃0)
−2w̃∗)κ

2
0

+

(
L∑
ℓ=1

1− µℓ
µℓ

)
1

n0
(w̃⊤

∗ Σ̃0(κ0In0 + Σ̃0)
−1w̃∗)κ0

+

( L∑
ℓ=0

1− µℓ
µℓ

)
ζη2, (A.44)

where by a minor abuse of notation we simply write κℓ and µℓ for the corresponding quantities
evaluated at ζ = 1.

If ζ → αℓ, then κℓ ↓ 0 and µℓ ↓ 0. We can then apply L’Hôpital’s rule to evaluate the limit in A.39,
which corresponds to extracting the most divergent terms on each side of A.39. For the ζ = α0

solution, one finds that

c0 =
α0

1− α0
η2. (A.45)

Finally, for the solutions with ζ = αℓ∗ for ℓ∗ = 1, . . . , L, one finds that

c0 =
1

1− αℓ∗
1

n0
(w̃⊤

∗ Σ̃0(κ0In0
+ Σ̃0)

−1w̃∗)κ0

+
αℓ∗

1− αℓ∗
η2, (A.46)

where we must be careful to recall that κ0 now satisfies

αℓ∗
α0

= Eσ̃0

[
σ̃0

κ0 + σ̃0

]
. (A.47)
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But, we recognize that αℓ∗ = αmin = min{α1, . . . , αL}, so we will write

κmin = κ0

∣∣∣∣
ζ=αmin

(A.48)

to avoid clashing with our notation for the ζ = 1 solution.

Therefore, recalling from Appendix A.2 that the generalization error for the ridge regression estimator
in the ridgeless limit is simply given by c0, we have

ϵridgeless =


(∑L

ℓ=1
1−µℓ

µℓ

)
κ0ψ(κ0)− κ2

0

µ0
ψ′(κ0) +

(∑L
ℓ=0

1−µℓ

µℓ

)
η2, α0, αmin > 1

κminψ(κmin)
1−αmin

+ αmin

1−αmin
η2, αmin < 1, αmin < α0

α0

1−α0
η2, α0 < 1, α0 < αmin,

(A.49)

as reported in (23), where we again define the weighted generating function

ψ(z) = lim
n0→∞

1

n0
w̃⊤

∗ Σ̃0(zIn0 + Σ̃0)
−1w̃∗. (A.50)

To obtain the average generalization error for the Gibbs estimator in the zero-temperature limit, we
must account for the effect of q0 in the regime αℓ > 1, as in all other regimes it is q0 ∼ O(1/β). But,
we recognize that

q0 =

L∏
j=0

−1
αj
M−1

Σ̃j

(
−1
αj

)
=

L∏
ℓ=0

κℓ
αℓ

(A.51)

from the definition above, hence we conclude that

ϵBRFM = ϵridgeless +


∏L
ℓ=0

κℓ

αℓ
, α0, αmin > 1

0, αmin < 1, αmin < α0

0, α0 < 1, α0 < αmin.

(A.52)

A.4 Physical interpretation of the order parameters and thermal bias-variance decomposition

With these results in hand, we now comment on the interpretation of the replica uniform and replica
non-uniform contributions to

C0 = q0Im + c01m1⊤
m. (A.53)

At the saddle point, we have

(C0)
ab = ED

〈
1

n0
(Fva −w∗)

⊤Σ0(Fv
b −w∗)

〉
β

, (A.54)

where ⟨·⟩β denotes the expectation with respect to the replicated Gibbs measure at inverse temperature
β. Under the replica-symmetric Ansatz, considering off-diagonal elements a ̸= b, we can use the fact
that the replicas are initially uncoupled and identical to write

c0 = Cab0 (A.55)

= ED
1

n0
(F⟨va⟩β −w∗)

⊤Σ0(F⟨vb⟩β −w∗) (A.56)

= ED
1

n0
(F⟨v⟩β −w∗)

⊤Σ0(F⟨v⟩β −w∗) (A.57)

= ED
1

n0
∥Σ1/2

0 (F⟨v⟩β −w∗)∥2. (A.58)
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Similarly, we have
q0 = Caa0 − Cab0 (A.59)

= ED

〈
1

n0
(Fva −w∗)

⊤Σ0(Fv
a −w∗)

〉
β

− c0 (A.60)

= ED

〈
1

n0
(Fδv + F⟨v⟩β −w∗)

⊤Σ0(Fδv + F⟨v⟩β −w∗)

〉
β

− c0 (A.61)

= ED

〈
1

n0
(Fδv)⊤Σ0(Fδv)

〉
β

+ ED
1

n0
(F⟨v⟩β −w∗)

⊤Σ0(F⟨v⟩β −w∗)− c0 (A.62)

= ED

〈
1

n0
(Fδv)⊤Σ0(Fδv)

〉
β

(A.63)

= ED

〈
1

n0
∥Σ1/2

0 Fδv∥2
〉
β

, (A.64)

where we write δv = v − ⟨v⟩β . Therefore, at the saddle point, c0 and q0 correspond exactly to the
bias and variance terms in the thermal bias-variance decomposition of the generalization error:

ED

〈
1

n0
∥Σ1/2

0 (Fv −w∗)∥2
〉
β

= ED
1

n0
∥Σ1/2

0 (F⟨v⟩β −w∗)∥2 + ED

〈
1

n0
∥Σ1/2

0 Fδv∥2
〉
β

.

(A.65)
This makes concrete an argument which was presented only intuitively in [13]. As a result, if one
considered the Bayesian MMSE estimator v̂ = ⟨v⟩β , the zero-temperature generalization error would
simply coincide with that for the ridgeless estimator.

B Properties of the inverse generating functions

Here, we record a few useful properties of the inverse spectral generating functions
1

αℓ
= −MΣ̃ℓ

(−κℓ) = Eσ̃ℓ

[
σ̃ℓ

κℓ + σ̃ℓ

]
(B.1)

and their relatives

µℓ = −αℓκℓM ′
Σ̃ℓ

(−κℓ) = 1− αℓEσ̃ℓ

[(
σ̃ℓ

κℓ + σ̃ℓ

)2
]
. (B.2)

These results are used in the proofs of Lemmas

B.1 Dependence on width

Implicitly differentiating the self-consistent equation defining κℓ, we have
dκℓ

d(1/αℓ)
= − 1

Eσ̃ℓ

[
σ̃ℓ

(κℓ+σ̃ℓ)2

] , (B.3)

showing that κℓ is a decreasing function of 1/αℓ. As 1/αℓ ↓ 0, we should have κℓ ↑ ∞, while as
1/αℓ ↑ 1, we should have κℓ ↓ 0.

B.2 Behavior under rescaling

Consider the re-scaling Σ̃′
ℓ = τℓΣ̃ℓ for τℓ > 0. Then, we have κℓ and κ̃′ℓ given by

1

αℓ
= −MΣ̃ℓ

(−κℓ) = Eσ̃ℓ

[
σ̃ℓ

κℓ + σ̃ℓ

]
(B.4)

and
1

αℓ
= −MΣ̃′

ℓ
(−κ′ℓ) = Eσ̃ℓ

[
τℓσ̃ℓ

κ′ℓ + τℓσ̃ℓ

]
(B.5)

respectively. We can then see that we should have
κ′ℓ = τℓκℓ. (B.6)
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B.3 Bound on κℓ in terms of isotropic spectrum

We now prove that

κℓ ≤ (αℓ − 1)E[σ̃ℓ] (B.7)

in the relevant regime αℓ > 1. For any z > 0,

σ̃ℓ 7→
σ̃ℓ

(z + σ̃ℓ)
(B.8)

is a concave function of σ̃ℓ ≥ 0, hence Jensen’s inequality implies that

Eσ̃ℓ

[
σ̃ℓ

(z + σ̃ℓ)

]
≤ E[σ̃ℓ]
z + E[σ̃ℓ]

. (B.9)

Then, note that

z 7→ Eσ̃ℓ

[
σ̃ℓ

z + σ̃ℓ

]
(B.10)

and

z 7→ E[σ̃ℓ]
z + E[σ̃ℓ]

(B.11)

are both decreasing functions of z ≥ 0, and both are equal to 1 when z = 0. Thus, if κℓ > 0 solves

1

αℓ
= Eσ̃ℓ

[
σ̃ℓ

κℓ + σ̃ℓ

]
(B.12)

as specified by its definition and κ̄ℓ > 0 solves

1

αℓ
=

E[σ̃ℓ]
κ̄ℓ + E[σ̃ℓ]

, (B.13)

we must have

κℓ ≤ κ̄ℓ. (B.14)

But, we can easily see that κ̄ℓ = (αℓ − 1)E[σ̃ℓ], hence the claim follows.

B.4 Bound on µℓ terms of isotropic spectrum

We next prove that

µℓ ≤ 1− 1

αℓ
(B.15)

in the relevant regime αℓ > 1. By definition, we have

µℓ = 1− αℓEσ̃ℓ

[(
σ̃ℓ

κℓ + σ̃ℓ

)2
]
. (B.16)

By Jensen’s inequality and the definition of κℓ, we have

Eσ̃ℓ

[(
σ̃ℓ

κℓ + σ̃ℓ

)2
]
≥ Eσ̃ℓ

[
σ̃ℓ

κℓ + σ̃ℓ

]2
(B.17)

=
1

α2
ℓ

. (B.18)

As αℓ > 1 by assumption, this bound is always positive. Therefore, we conclude the desired claim.
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C Simplifying the generalization error for fixed data

In this appendix, we show how the ridgeless generalization error can be simplified in each regime for
fixed data. Using the solution to the ridge regression problem (6),

v̂ =
1
√
n0

(
λΓ−1

L+1 +
1

n0
F⊤X⊤XF

)−1

F⊤X⊤y, (C.1)

we have

ϵ = lim
λ↓0

lim
p,n0,...,nL→∞

ED
1

n0
∥Σ1/2

0 (Fv̂ −w∗)∥2 (C.2)

= lim
λ↓0

lim
p,n0,...,nL→∞

ED
1

n0

∥∥∥∥∥ 1
√
n0

Σ
1/2
0 F

(
λΓ−1

L+1 +
1

n0
F⊤X⊤XF

)−1

F⊤X⊤y −Σ
1/2
0 w∗

∥∥∥∥∥
2

.

(C.3)

Following our discussion in the main text, we may set ΓL+1 = InL
without loss of generality, as

otherwise we may re-define ΣL. Then, we have

ϵ = lim
λ↓0

lim
p,n0,...,nL→∞

ED
1

n0

∥∥∥∥∥ 1
√
n0

Σ
1/2
0 F

(
λInL

+
1

n0
F⊤X⊤XF

)−1

F⊤X⊤y −Σ
1/2
0 w∗

∥∥∥∥∥
2

.

(C.4)

In the subsequent sections, we will simplify this expression in each regime.

For the Gibbs estimator, we must account for the additional contribution to the generalization error
from thermal variance. Following our previous work [13], we may compute the bias and variance
terms directly from the posterior moment generating function of the readout weight vector,

Z(j) ∝
∫
dv exp

(
−β
2
∥n−1/2

0 XFv − y∥2 − 1

2
∥Γ−1/2

L+1 v∥2 + j⊤v

)
(C.5)

∝ exp

(
βn

−1/2
0 y⊤XF(Γ−1

L+1 + βn−1
0 F⊤X⊤XF)−1j

+
1

2
j⊤(Γ−1

L+1 + βn−1
0 F⊤X⊤XF)−1j

)
, (C.6)

yielding

⟨v⟩β =
1
√
n0

(
1

β
Γ−1
L+1 +

1

n0
F⊤X⊤XF

)−1

F⊤X⊤y (C.7)

and

⟨vv⊤⟩β − ⟨v⟩β⟨v⟩⊤β =

(
Γ−1
L+1 +

β

n0
F⊤X⊤XF

)−1

. (C.8)

We then can see that

⟨v⟩β = v̂

∣∣∣∣
λ=1/β

, (C.9)

which is precisely in agreement with the conversion in Appendix A.2. Considering the thermal
bias-variance decomposition of the generalization error for the Gibbs estimator,

ED

〈
1

n0
∥Σ1/2

0 (Fv −w∗)∥2
〉
β

= ED
1

n0
∥Σ1/2

0 (F⟨v⟩β −w∗)∥2 + ED

〈
1

n0
∥Σ1/2

0 Fδv∥2
〉
β

,

(C.10)

we can then see that the bias term at zero temperature coincides exactly with the generalization error
of the ridgeless estimator, as we found in Appendix A. The variance term is

lim
β→∞

ED

〈
1

n0
∥Σ1/2

0 Fδv∥2
〉
β

= lim
β→∞

ED
1

n0
tr

[
Σ0F

(
Γ−1
L+1 +

β

n0
F⊤X⊤XF

)−1

F⊤

]
.

(C.11)
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In both the bias and variance terms, we can see that we may set ΓL+1 = InL
without loss of

generality, as otherwise we may simply re-scale ΣL as discussed in Lemma 2.1. Then, we need only
consider the thermal variance term

lim
β→∞

ED

〈
1

n0
∥Σ1/2

0 Fδv∥2
〉
β

= lim
β→∞

ED
1

n0
tr

[
Σ0F

(
InL

+
β

n0
F⊤X⊤XF

)−1

F⊤

]
.

(C.12)

Here, we leave the thermodynamic limit implicit to allow the expression to fit on a single line.

C.1 The overparameterized regime

First, consider the regime p < min{n0, . . . , nL}. Here, we expect the kernel

K =
1

n0
XFF⊤X⊤ (C.13)

to be invertible with probability one in the thermodynamic limit, and with overwhelming probability
at large but finite size [50]. Applying the push-through identity and passing to the ridgeless limit, we
have

ϵ = lim
λ↓0

lim
p,n0,...,nL→∞

ED
1

n0

∥∥∥∥∥ 1
√
n0

Σ
1/2
0 FF⊤X⊤

(
λIp +

1

n0
XFF⊤X⊤

)−1

y −Σ
1/2
0 w∗

∥∥∥∥∥
2

(C.14)

= lim
p,n0,...,nL→∞

ED
1

n0

∥∥∥√n0Σ1/2
0 FF⊤X⊤ (XFF⊤X⊤)−1

y −Σ
1/2
0 w∗

∥∥∥2 . (C.15)

Averaging over label noise, we have

ϵ = lim
p,n0,...,nL→∞

ED
1

n0

∥∥∥Σ1/2
0 FF⊤X⊤ (XFF⊤X⊤)−1

Xw∗ −Σ
1/2
0 w∗

∥∥∥2
+ η2 lim

p,n0,...,nL→∞
ED

∥∥∥Σ1/2
0 FF⊤X⊤ (XFF⊤X⊤)−1

∥∥∥2 . (C.16)

Turning our attention to the Gibbs estimator, we can use the Woodbury identity to write the thermal
variance term as

ED

〈
1

n0
∥Σ1/2

0 Fδv∥2
〉
β

= ED
1

n0
tr

[
Σ0F

(
InL

+
β

n0
F⊤X⊤XF

)−1

F⊤

]
(C.17)

= ED
1

n0
tr
[
Σ0FF

⊤]− ED
1

n0
tr

[
Σ0FF

⊤X⊤
(
β−1InL

+
1

n0
XFF⊤X⊤

)−1

XFF⊤

]
(C.18)

= ED
1

n0
tr
[
Σ0FF

⊤]− ED
1

n0
tr

[
Σ0FF

⊤X⊤
(

1

n0
XFF⊤X⊤

)−1

XFF⊤

]
+O(β−1),

(C.19)

where the thermodynamic limit is implied [13]. Therefore, in this regime we do not expect the
thermal variance term to vanish, consistent with Proposition 6.1.

C.2 The bottlenecked regime

If min{n1, . . . , nL} < min{n0, p}, then the situation is slightly more complicated. Let

ℓmin = argmin
ℓ

nℓ (C.20)
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be the index of the narrowest hidden layer. Then, let

F1 =
1

√
n1 · · ·nℓmin

U1 · · ·Uℓmin ∈ Rn0×nmin (C.21)

and

F2 =
1

√
nℓmin+1 · · ·nL

Uℓmin+1 · · ·UL ∈ Rnmin×nL (C.22)

such that

F = F1F2. (C.23)

Then, the matrices F⊤
1 X

⊤XF1 and F2F
⊤
2 are invertible with probability one, and upon passing to

the ridgeless limit we have

ϵ = lim
p,n0,...,nL→∞

ED
1

n0
∥
√
n0Σ

1/2
0 F1(F

⊤
1 X

⊤XF1)
−1F⊤

1 X
⊤y −Σ

1/2
0 w∗∥2. (C.24)

Averaging over the label noise,

ϵ = lim
p,n0,...,nL→∞

ED
1

n0
∥Σ1/2

0 F1(F
⊤
1 X

⊤XF1)
−1F⊤

1 X
⊤Xw∗ −Σ

1/2
0 w∗∥2

+ η2 lim
p,n0,...,nL→∞

ED∥Σ1/2
0 F1(F

⊤
1 X

⊤XF1)
−1F⊤

1 X
⊤∥2 (C.25)

Focusing on the label noise term, we have

ED∥Σ1/2
0 F1(F

⊤
1 X

⊤XF1)
−1F⊤

1 X
⊤∥2 = ED tr[F⊤

1 Σ0F1(F
⊤
1 X

⊤XF1)
−1]. (C.26)

Then, using the fact that

X⊤X ∼ Wn0
(Σ0, p), (C.27)

we have

F⊤
1 X

⊤XF1 ∼ Wnmin(F
⊤
1 Σ0F1, p). (C.28)

Then, as we expect the matrix F⊤
1 Σ0F1 to be invertible with overwhelming probability, the standard

formula for the mean of an inverse-Wishart distribution [50] gives

ED(F
⊤
1 X

⊤XF1)
−1 =

1

p− nmin − 1
(F⊤

1 Σ0F1)
−1, (C.29)

so

lim
p,n0,...,nL→∞

ED tr[F⊤
1 Σ0F1(F

⊤
1 X

⊤XF1)
−1] = lim

p,n0,...,nL→∞

nmin

p− nmin − 1
(C.30)

=
αmin

1− αmin
. (C.31)

This proves that, in this regime, the label noise term does not depend on data structure, matching the
result of our replica computation.

Considering the Gibbs estimator, we can see immediately that the thermal variance term is O(β−1)
because of the fact that F⊤

1 X
⊤XF1 and F2F

⊤
2 are invertible with probability one. This is consistent

with Proposition 6.1.

C.3 The overdetermined regime

Finally, consider the regime in which n0 < min{p, n1, . . . , nL}. Then, both X⊤X and FF⊤ are
invertible with probability one, and we can easily compute

ϵ = lim
p,n0,...,nL→∞

lim
λ↓0

ED
1

n0
∥Σ1/2

0 (λInL
+

1

n0
FF⊤X⊤X)−1 1

√
n0

FF⊤X⊤y −w∗∥2 (C.32)

= lim
p,n0,...,nL→∞

ED∥Σ1/2
0 (X⊤X)−1X⊤ξ∥2 (C.33)

= η2 lim
p,n0,...,nL→∞

ED tr[Σ0(X
⊤X)−1]. (C.34)
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Then,

(X⊤X)−1 ∼ W−1
n0

(Σ−1
0 , p), (C.35)

so using the formula for the mean of the inverse-Wishart [50] we have

ϵ = η2 lim
p,n0,...,nL→∞

ED tr[Σ0(X
⊤X)−1] (C.36)

= η2 lim
p,n0,...,nL→∞

n0
p− n0 − 1

(C.37)

=
α0

1− α0
η2, (C.38)

as we found using replicas.

Here, again, we can see that the thermal variance term for the Gibbs estimator is O(β−1), matching
Proposition 6.1.

D A notational dictionary

In this appendix, we show that special cases of our general result recover the results reported in
previous works. This is largely a matter of translating notation, as the conventions used in different
communities are often at odds with each other.

D.1 Shallow ridgeless regression

In the shallow case L = 0, our general result for a fixed target (23) reduces to

ϵ =


−κ

2
0

µ0
ψ′(κ0) +

1− µ0

µ0
η2, α0 > 1

α0

1− α0
η2, α0 < 1

(D.1)

where, writing expectation with respect to the limiting spectral distribution of Σ0 as Eσ0
, we recall

that κ0 is determined by the implicit equation

1

α0
= −MΣ0

(−κ0) = Eσ0

[
σ0

κ0 + σ0

]
, (D.2)

in terms of which we have

µ0 = 1− α0Eσ0

[(
σ0

κ0 + σ0

)2
]
, (D.3)

and that

ψ(z) = lim
n0→∞

1

n0
w⊤

∗ Σ0(zIn0 +Σ0)
−1w∗. (D.4)

Working in the eigenbasis of Σ0 and assuming that ∥w∗∥2 = n0, we introduce the weighted density

ρ(σ0) = lim
n0→∞

1

n0

n0∑
j=1

(w∗)
2
jδ(σ0 − σj) (D.5)

in terms of which we have

ψ(z) = Eσ0∼ρ

[
σ0

z + σ0

]
(D.6)

and

−ψ′(z) = Eσ0∼ρ

[
σ0

(z + σ0)2

]
. (D.7)

We can now make contact with the result of Hastie et al. [5]. We note that those authors use an
opposite definition for p and n: following the convention in the statistics literature, they use p for
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the dimensionality and n for the number of examples, while we follow the convention in the physics
literature of using n0 for the dimensionality and p for the number of examples. Then, Hastie et al.
[5]’s γ, defined such that, in our terms, n0/p→ γ, is precisely our α0. Moreover, they use H(z) to
denote the limiting spectral law of Σ0, and G(z) to denote the law corresponding to the weighted
density we define above as ρ. We note also that their σ2 is our η2. In these terms, their Theorem 2
gives the generalization error in the overparameterized regime α0 > 1 as

ϵ =

1 + α0c0
Eσ0

[
σ2
0

(1+c0α0σ0)2
]

Eσ0 [
σ0

(1+c0α0σ0)2
]

Eσ0∼ρ

[
σ0

(1 + c0α0σ0)2

]
+ η2α0c0

Eσ0
[

σ2
0

(1+c0α0σ0)2
]

Eσ0 [
σ0

(1+c0α0σ0)2
]

(D.8)

where c0 is defined by the implicit equation

1− 1

α0
= Eσ0

[
1

1 + c0α0σ0

]
. (D.9)

Subtracting one from both sides, the implicit equation for c0 gives

1

α0
= Eσ0

[
c0α0σ0

1 + c0α0σ0

]
(D.10)

from which we can see that

c0α0 =
1

κ0
. (D.11)

Then, we have

Eσ0∼ρ

[
σ0

(1 + c0α0σ0)2

]
= κ20Eσ0∼ρ

[
σ0

(κ0 + σ0)2

]
(D.12)

= −κ20ψ′(κ0) (D.13)

and

α0c0
Eσ0 [

σ2
0

(1+c0α0σ0)2
]

Eσ0
[ σ0

(1+c0α0σ0)2
]
=

Eσ0 [
(α0c0σ0)

2

(1+c0α0σ0)2
]

Eσ0
[ α0c0σ0

(1+c0α0σ0)2
]

(D.14)

=
Eσ0 [

σ2
0

(κ0+σ0)2
]

Eσ0 [
κ0σ0

(κ0+σ0)2
]

(D.15)

=
1− µ0

α0Eσ0
[ κ0σ0

(κ0+σ0)2
]

(D.16)

=
1− µ0

α0Eσ0 [
σ0

κ0+σ0
]− α0Eσ0 [

σ2
0

(κ0+σ0)2
]

(D.17)

=
1− µ0

µ0
, (D.18)

which proves the equivalence of our results. This also shows that we recover the results of other
works on ridgeless kernel interpolation [4, 6, 7, 16, 17] that are in this setting equivalent to the results
of Hastie et al. [5].

D.2 Two-layer linear random feature models with unstructured weights and isotropic targets

Another special case in which we can make contact with prior work is that of a single hidden layer
(L = 1) and with target averaging. In this case, our general result (27) reduces to

ϵ̄ =



(
1 +

1

α1 − 1

)
χ(α0) +

(
1− µ0

µ0
+

1

α0 − 1

)
η2 α0, α1 > 1

1

1− α1
χ

(
α0

α1

)
+

α1

1− α1
η2 α1 < 1, α1 < α0

α0

1− α0
η2 α0 < 1, α0 < α1

(D.19)

S13



where in this case we find it convenient to write κ0/α0 and α0κmin/αmin in terms of χ(z), which
solves

1 = −zMΣ̃0
[−zχ(z)] (D.20)

= Eσ̃0

[
σ̃0

χ(z) + z−1σ̃0

]
. (D.21)

It is then easy to show that our result agrees with that of Maloney et al. [19]. Their notation is:

M = n0 (D.22)
N = n1 (D.23)
T = p. (D.24)

When M > N,T , their result is, in the absence of label noise,

ϵ̄ =
1

M


1

1−N/T
∆−1(N,M), N < T

1

1− T/N
∆−1(T,M), N > T,

(D.25)

where ∆−1(N,M) solves

1 = tr[Σ0(∆−1(N,M)IM +NΣ0)
−1] (D.26)

and similarly for ∆−1(T,M). To map this to our results, let us re-define

∆̄−1(N,M) ≡ 1

M
∆−1(N,M), (D.27)

which then satisfies

1 =
1

M
tr[Σ0(∆̄−1(N,M)IM + (N/M)Σ0)

−1], (D.28)

or
N

M
= −MΣ0

(
−M
N

∆̄−1(N,M)

)
(D.29)

Then, we can see that, in our notation,

∆̄−1(N,M) = χ

(
M

N

)
= χ

(
α0

α1

)
, (D.30)

while

∆̄−1(T,M) = χ

(
M

T

)
= χ(α0). (D.31)

Then, noting that

1

1− T/N
=

1

1− 1/α1
=

α1

α1 − 1
= 1 +

1

α1 − 1
, (D.32)

we can see that we recover their result in these regimes. We can also map their ∆0 to our µ0. For
T < M , they let

∆0

1 + ∆0
=

M∑
j=1

Tσ2
j

(Tσj +∆−1)2
(D.33)

=
1

T

M∑
j=1

σ2
j

(σj +M/T ∆̄−1)2
, (D.34)

hence we can see that
∆0

1 + ∆0
= 1− µ0. (D.35)
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Figure D.1: Phase diagrams in different parameterizations of the thermodynamic limit. (a). Phase
diagram in the (α0, α1) plane. Region 1 (orange) is the overparameterized regime, Region 2 (yellow)
is the bottlenecked regime, and Region 3 (green) is the overdetermined regime. (b). As in (a), but in
the (1/α0, α1/α0) plane, matching the parameterization used in our previous work [13]. Note that
the plane is divided identically, but the locations of the phases are swapped.

This mapping also enables our application of their interpolating approximate solutions for ∆−1 and
∆0 in the case of power law spectra. For a finite-size spectrum

σj =
σ+
j1+ω

(j = 1, . . . ,M), (D.36)

with

σ+ =M1+ωσ−, (D.37)

where we denote the exponent by ω rather than α as Maloney et al. [19] do to avoid clashing with our
notation elsewhere, they obtain the approximate solution

1

M
∆−1(N,M) =

σ−
{
k

[(
M

N

)ω
− 1

]
+ [2 + ω(1− k)]

(
1− N

M

)}
, N < M

0 N > M

(D.38)

for

k =

 π
1+ω

sin
(

π
1+ω

)
1+ω

=

 1

sinc
(

π
1+ω

)
1+ω

, (D.39)

which leads to the expression

χ(z) =

σ−
{
k(zω − 1) + [2 + ω(1− k)]

(
1− 1

z

)}
, z > 1

0 z < 1.

(D.40)

Moreover, for T < M , they give the approximate solution

∆0(T,M) = ω +
1

M/T − 1
. (D.41)

By applying these results, we obtain the result claimed in the main text, (31). We note that we fix σ−
to be constant rather than σ+ as Maloney et al. [19] do, which ensures normalizability of the limiting
eigenvalue distribution at the expense of diverging moments.

D.3 Deep linear models with unstructured weights and data

In [13], we studied deep Bayesian linear models with unstructured features and data.2 There, and in
very recent work by Schröder et al. [20], a different parameterization for the thermodynamic limit

2In [13], we focused on the Gibbs estimator rather than on the ridgeless maximum-likelihood estimator (MLE).
However, given the average generalization error for the Gibbs estimator, it is easy to obtain the generalization
error for the MLE. We discuss this point in detail in Appendix A.
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was used:

p, n0, . . . , nL →∞, with
p

n0
→ α̃,

nℓ
n0
→ γ̃ℓ (ℓ = 1, . . . , L), (D.42)

where we decorate α̃ and γ̃ℓ with tildes to avoid confusion with parameters used elsewhere in the
present work. The conversion to the parameterization used in the present work and in [30] is then
given by

α̃ =
1

α0
, (D.43)

γ̃ℓ =
αℓ
α0
, (ℓ = 1, . . . , L). (D.44)

Though these parameterizations are mathematically equivalent, it is important to distinguish between
them as they give phase diagrams that divide the plane identically but swap the locations of the phases,
as is shown in Figure D.1. Moreover, though the parameterization used here is more convenient for
the replica computation [30], that given in (D.42) is conceptually useful, as it is closer to what one
does in practical machine learning settings: the input dimension n0 is fixed by the task, and one can
vary the dataset size p and the network widths nℓ. This is why we plot the phase diagrams in Figure 1
in the (1/α0, α1/α0) plane.

E Large-width expansions

In this appendix, we consider the limit of large width, i.e., the limit in which α1, . . . , αL →∞ for
fixed α0. Our first task is to determine how the quantities κℓ behave in this limit, as it is through these
inverse generating functions that the hidden layer widths enter the generalization error.

Starting from the defining equation

1

αℓ
= Eσ̃ℓ

[
σ̃ℓ

κℓ + σ̃ℓ

]
(E.1)

we can see that κℓ should tend to infinity linearly with αℓ as αℓ →∞. In particular, we should have
κℓ
αℓ
→ Eσ̃ℓ

[σ̃ℓ] (E.2)

at large widths. Then, µℓ has limiting behavior

µℓ = 1− αℓEσ̃ℓ

[(
σ̃ℓ

κℓ + σ̃ℓ

)2
]

(E.3)

→ 1 (E.4)

From this, we can see that in the infinite-width limit the generalization error of the random feature
model in Proposition 3.2 reduces to that of shallow ridgeless regression as in Corollary 3.1, as we
would expect.

We now want to compute the leading correction to this result. In the unstructured case, this is easy,
because we have κℓ = (αℓ−1)σ̃ℓ, hence there is anO(1) correction and nothing else. More generally,
we assume Laurent series behavior of the form

κℓ = αℓκ
1
ℓ + κ0ℓ +

1

αℓ
κ−1
ℓ + . . . . (E.5)

Expanding, we have

σ̃ℓ
κℓ + σ̃ℓ

=
σ̃ℓ
αℓκ1ℓ

− σ̃ℓ(σ̃ℓ + κ0ℓ)

α2
ℓ (κ

1
ℓ)

2
+O(α−3

ℓ ) (E.6)

hence, if we integrate term-by-term, we have

1

αℓ
=

Eσ̃ℓ
[σ̃ℓ]

αℓκ1ℓ
− Eσ̃ℓ

[σ̃ℓ
2] + Eσ̃ℓ

[σ̃ℓ]κ
0
ℓ

α2
ℓ (κ

1
ℓ)

2
+O(α−3

ℓ ). (E.7)
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If we solve order-by-order, we again find that

κ1ℓ = Eσ̃ℓ
[σ̃ℓ] (E.8)

while the coefficients of all higher-order terms in 1/αℓ must vanish. In particular, this gives

κ0ℓ = −
Eσ̃ℓ

[σ̃2
ℓ ]

Eσ̃ℓ
[σ̃ℓ]

. (E.9)

This computation assumes that the spectrum has finite moments, which is not the case for the
heavy-tailed power law spectra considered in Corollary 5.1.

Then, we have

µℓ = 1− αℓEσ̃ℓ

[(
σ̃ℓ

κℓ + σ̃ℓ

)2
]

(E.10)

= 1− Eσ̃ℓ
[σ̃2
ℓ ]

αℓ(κ1ℓ)
2
+ 2

Eσ̃ℓ
[σ̃3
ℓ ] + Eσ̃ℓ

[σ̃2
ℓ ]κ

0
ℓ

α2
ℓ (κ

1
ℓ)

3
+O(α−3

ℓ ) (E.11)

= 1− Eσ̃ℓ
[σ̃2
ℓ ]

Eσ̃ℓ
[σ̃ℓ]2

1

αℓ
+O(α−2

ℓ ). (E.12)

Collecting our results, we have

κℓ = Eσ̃ℓ
[σ̃ℓ]αℓ

(
1− Eσ̃ℓ

[σ̃2
ℓ ]

Eσ̃ℓ
[σ̃ℓ]2

1

αℓ
+O(α−2

ℓ )

)
(E.13)

and

µℓ = 1− Eσ̃ℓ
[σ̃2
ℓ ]

Eσ̃ℓ
[σ̃ℓ]2

1

αℓ
+O(α−2

ℓ ). (E.14)

Each term in these expansions has the expected behavior under rescaling: if we let Σ̃′
ℓ = τℓΣ̃ℓ for

τℓ > 0, we have κ′ℓ = τℓκℓ and µ′
ℓ = µℓ.

Then, substituting these expansions into (23), we find that the generalization error of an RFM in the
ridgeless limit expands at large widths as

ϵ = −κ
2
0

µ0
ψ′(κ0) +

1− µ0

µ0
η2

+

(
L∑
ℓ=1

Eσ̃ℓ
[σ̃2
ℓ ]

Eσ̃ℓ
[σ̃ℓ]2

1

αℓ

)
(κ0ψ(κ0) + η2)

+O(α−2
1 , . . . , α−2

L ) (E.15)

in the regime α0 > 1; if α0 < 1 the generalization error does not depend on the hidden layer widths
so long as they are greater than 1.

For an RFM trained using the Gibbs estimator, as considered in Proposition 6.1, we find that

ϵBRFM = −κ
2
0

µ0
ψ′(κ0) +

1− µ0

µ0
η2 +

κ0
α0
ς2

+

(
L∑
ℓ=1

Eσ̃ℓ
[σ̃2
ℓ ]

Eσ̃ℓ
[σ̃ℓ]2

1

αℓ

)(
κ0ψ(κ0) + η2 − κ0

α0
ς2
)

+O(w−2) (E.16)

where we have defined

ς2 ≡
L∏
ℓ=1

Eσ̃ℓ
[σ̃ℓ], (E.17)
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upon expanding the thermal variance term

L∏
ℓ=0

κℓ
αℓ

=
κ0
α0

[
L∏
ℓ=1

Eσ̃ℓ
[σ̃ℓ]

]

− κ0
α0

[
L∏
ℓ=1

Eσ̃ℓ
[σ̃ℓ]

]
L∑
ℓ=1

Eσ̃ℓ
[σ̃2
ℓ ]

Eσ̃ℓ
[σ̃ℓ]2

1

αℓ

+O(w−2). (E.18)

Here, we denote by O(w−2) all terms of O(α−2
ℓ ) for a given layer ℓ = 1, . . . , L or terms of

O(α−1
ℓ α−1

ℓ′ ) for two different layers ℓ, ℓ′.

F Numerical methods

In this appendix, we describe the numerical methods used to produce Figures 1, 2. All simulations
were performed using MATLAB 9.13 (R2022b; The MathWorks, Natick MA, USA; https://www.
mathworks.com/products/matlab.html) on a desktop workstation (CPU: Intel Xeon W-2145,
64GB RAM). They were not computationally intensive, and required less than an hour of compute
time in total. Code to reproduce the figures is archived as part of the online supplemental material.
Numerical computation of the solution to the ridgeless regression problem—the minimum-norm
interpolant—was performed using the lsqminnorm solver (https://www.mathworks.com/help/
matlab/ref/lsqminnorm.html), which uses an algorithm based on the complete orthogonal
decomposition of the design matrix.

S18

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/help/matlab/ref/lsqminnorm.html
https://www.mathworks.com/help/matlab/ref/lsqminnorm.html

	Introduction
	Preliminaries
	Asymptotic learning curves
	How does weight structure affect generalization?
	Power law spectra
	Bayesian inference and the Gibbs estimator at large prior variance
	Discussion
	Derivation of Proposition 3.2
	Gibbs distribution and replica free energy
	Converting between the Gibbs and maximum-likelihood estimators
	Solutions for the generalization error
	Physical interpretation of the order parameters and thermal bias-variance decomposition

	Properties of the inverse generating functions
	Dependence on width
	Behavior under rescaling
	kappa bound
	mu bound

	Simplifying the generalization error for fixed data
	The overparameterized regime
	The bottlenecked regime
	The overdetermined regime

	A notational dictionary
	Shallow ridgeless regression
	Two-layer linear random feature models with unstructured weights and isotropic targets
	Deep linear models with unstructured weights and data

	Large-width expansions
	Numerical methods

