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ABSTRACT

Inspired by Darcet et al. (2024) where extra tokens (or registers) are introduced to
offset the artifacts in feature maps due to high-norm tokens, this paper presses fur-
ther and asks a more challenging question: Can we find a suitable regularization
term such that the extra tokens can evolve into disentangled representations, ca-
pable of attending to finer details of objects (e.g., parts)? We propose XTRA, an
intuitive yet powerful framework that augments Vision Transformers with dedi-
cated “factor tokens” and enforces disentanglement via a novel Minimum Volume
Constraint (MVC). A multi-stage aggregation process further confines these factor
tokens into semantically pure components, especially when the amount of hyper-
parameters is large. On ImageNet-1K, XTRA boosts KNN accuracy by 5.8% and
linear-probe accuracy by 2.3% over leading self-supervised learning (SSL) base-
lines, outperforming even models trained on larger datasets.

1 INTRODUCTION

It is widely believed that the power of deep learning lies in its ability to learn meaningful repre-
sentations (Bengio et al., 2013), which remains a central challenge. In recent years, self-supervised
learning (SSL) (He et al., 2020; 2021; Bao et al., 2022; Zhou et al., 2022) has sparked growing in-
terest in representation learning and achieved remarkable performance in various downstream tasks
(Caron et al., 2021a; Touvron et al., 2021a;b; Wang et al., 2021). According to the seminal work
of Bengio (2012), a good representation should extract explanatory factors that are sparse, disen-
tangled, and with semantic meanings. In particular, it has been shown through DINO (Caron et al.,
2021a; Oquab et al., 2024) that features from self-supervised Vision Transformer (ViT) contain ex-
plicit information about the semantic segmentation of an image. More recently, Darcet et al. (2024)
demonstrated that by appending additional tokens (or registers) to the input sequence, a correla-
tion can be established between high-norm tokens and artifacts of the feature maps. While making
breakthrough discoveries of the semantic meaning of extra tokens, these works have not considered
the disentanglement aspect of representation learning. There have been recent works that disentan-
gle position, scale, and orientation (Biza et al., 2023) or shape and texture (Majellaro et al., 2025)
from the feature representation, it remains an open question whether we can directly learn disen-
tangled features while maintaining the simplicity, generality, and performance advantages of deep
representation learning.

Direct learning of disentangled features requires explicit constraint(s) to regularize the learning tra-
jectory. Here, we draw inspiration from the field of remote sensing and spectral unmixing for po-
tential choices of constraints. In remote sensing, due to the large footprint, where, for example, a
Landsat 8 pixel typically covers a ground area of 30× 30 m2 (Roy et al., 2014), the measured spec-
trum at a single pixel is usually a so-called “mixture” and can be modeled as a linear combination
of several ground cover spectra, referred to as the “pure spectra” or signature. Spectral unmixing is
to extract the pure substance from the mixture to achieve subpixel-level quantification. One of the
most effective regularization terms in extracting the pure spectra is to minimize the “volume” of the
space spanned by the pure spectra (Craig, 1994; Miao & Qi, 2007).

The mixture model and the unmixing process resemble the generation of disentangled attention maps
(i.e., pure spectra) pertaining to consistent parts across multiple objects in the scene (i.e., mixture),
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Figure 1: XTRA enables disentangled attention maps pertaining to consistent parts across multiple
objects in the scene.

as shown in Fig. 1. Disentangled representation learning also is also analogous of teh well-known
cocktail party problem, where the “listening attention” should be focused on a single talker among
a mixture of conversations and background noise.

Built on top of (Darcet et al., 2024) where non-regularized extra tokens are added to the input, in
this paper, we consider the patch tokens as “mixtures” of semantic contents in the scene. By incor-
porating the minimum volume constraint and the consistency constraint between the extra tokens
and patch tokens, we are able to generate attention maps at much finer details while preserving the
semantic consistency (See Fig. 1). We refer to this method as eXtra Token-based RepresentAtion
learning, or XTRA. Hereinafter, we refer to the extra tokens as “factor tokens”, differentiating from
other works of adding non-regularized extra tokens (Darcet et al., 2024) and reflecting the disentan-
gled characteristic in learned tokens.

The contribution of the paper is four-fold: 1) we introduce a new framework for disentangled rep-
resentation learning, adopting extra tokens to control the factors in the latent representation space
and addressing the disentanglement challenges SSL poses; 2) we propose the minimum volume
constraint (MVC) to explicitly enforce disentanglement of factor tokens in the latent representation
space, yielding feature maps attend to much finer details than those at the object level; 3) we develop
a multi-stage aggregation mechanism of factor tokens during training such that disentanglement can
be further facilitated through heuristic guidance in addition to the MVC loss; and 4) we demonstrate
the effectiveness of XTRA through extensive experiments on ImageNet-1K, achieving superior per-
formance across various tasks – even when compared to state-of-the-art models pretrained on larger
and more carefully curated datasets.

2 RELATED WORK

Object-centric Representation Learning. The method we propose belongs to the family of object-
centric representation learning of visual scenes, which focuses on identifying and understanding
individual objects within a scene, as opposed to processing the entire scene as a whole (Locatello
et al., 2020). Object-centric learning models assume that the image is composed of K distinct ob-
jects, including the background, and the model is trained in an unsupervised manner to identify these
K objects, thereby providing a more detailed and nuanced understanding of the scene. Earlier work
like Eslami et al. (2016) adopted a recurrent neural network (RNN) to perform probabilistic infer-
ence that attends to and processes one object in a scene at a time. Greff et al. (2019); Engelcke et al.
(2019) achieved meaningful decomposition of non-trivial scenes with a variable number of objects
using, e.g., the CLEVR dataset (Johnson et al., 2017). More recently, Slot Attention (Locatello et al.,
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2020) and variants (Kipf et al., 2022; Singh et al., 2022; Zhang et al., 2022; Jia et al., 2023; Biza
et al., 2023; Kori et al., 2024) introduced a non-probabilistic iterative mechanism that is competitive
with its predecessors while being faster to train and more memory efficient.

Disentanglement in Representation Learning. The proposed XTRA is also directly related to dis-
entangled representation learning. Within this area, probabilistic models such as Greff et al. (2020);
Burgess et al. (2019) can obtain a degree of disentanglement due to their VAE backbone. Other
works, such as Anciukevicius et al. (2020), pursued explicit disentanglement of position and depth,
also within a probabilistic framework. Mansouri et al. (2023), instead, exploited weak supervision
from sparse perturbations and causal representation learning to disentangle object properties. In a
non-probabilistic setting, Singh et al. (2022) learned disentangled representations in a non-explicit
manner, while Biza et al. (2023) introduced invariance to changes in position, scale, and rotation
with the use of slot-centric reference frames, allowing for the explicit disentanglement of those
three factors.

Extra Tokens in Transformers. BERT (Devlin et al., 2019) is among the first that uses special
tokens (e.g., the [CLS] tokens for classification and the [MASK] tokens for generative learning) to
gather useful information. Beyond the [CLS] tokens, Visual Prompt Tuning (VPT) and its variants
(Jia et al., 2022; Yoo et al., 2023; Wang et al., 2024b) introduced a small set of learnable tokens
injected at every transformer layer, enabling efficient downstream adaptation without modifying the
pretrained weights. Tokens have also been studied in relation to uninformativeness. For example,
A-ViT (Yin et al., 2022) learns a per-token halting probability to discard low-value tokens; Attentive
Tokens (Long et al., 2022) select or merge tokens based on learned importance scores; and more
recently, Darcet et al. (2024) introduced extra tokens were used to offset artifact behaviors to yield
a smoother attention map.

Unlike explicitly disentangling shape and texture as in object-centric learning, this paper focuses on
data-driven feature disentanglement via introducing regularized extra tokens for self-distillation. To
the best of our knowledge, no research has addressed the explicit disentanglement in self-supervised
learning, which is the primary focus of our work.

3 METHOD

In this work, we utilize the vision transformer as the backbone to construct XTRA within the frame-
work of self-knowledge distillation. In the following, we first explain the rationale behind the min-
imum volume constraint (MVC) and how volume is calculated based on the factor tokens. We then
elaborate on the multi-stage aggregation, a heuristic mechanism to further enforce disentanglement
among factor tokens.

3.1 LEARNING FACTOR TOKENS WITH THE MINIMUM VOLUME CONSTRAINT (MVC)

The goal of factor tokens is not merely to store high-level information, such as high norm or noise, as
in Darcet et al. (2024), but to ensure that the patch tokens (i.e., the mixture) can be adequately repre-
sented by the factor tokens (e.g., pure spectra) in the representation space. Specifically, given the set
of N patch tokens, {pi}Ni=1, and the set of M extra factor tokens, {fi}Mi=1, we seek a disentangled
representation of pi such that

pi = F ·wi, F = [f1, · · · , fM ] (1)

where a linear mixing model has been assumed as in most spectral unmixing formulations (Miao
& Qi, 2007). wi is the learnable weight vector indicating the contribution of each factor token in
making up the patch token.

We thus define the latent loss on the relationship between the patch tokens and the factor tokens as:

Llatent = λfactor · Lfactor + λvolume · J(F ) (2)

Lfactor =
1

2
log

(
N∑
i=1

∥pi − F ·wi∥2
)

(3)

J(F ) = ∥FTF − I∥2F (4)
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where J(F ) is the volume penalty term on the space spanned by the factor vectors in F , and λvolume
is a hyperparameter controlling the strength of this penalty. The two loss terms in Eq. 2 has an
intuitive geometrical interpretation, as shown in Fig. 2a, where the circles indicate patch tokens in
the latent space and the vertices of the triangle (or simplex) indicate the factor tokens. As such,
the first term, Lfactor, serves as the external force to drive the search to move outward, so that the
generated simplex contains all patch tokens with relatively small errors, and the second term, J(F ),
serves as the internal force, which constrains the simplex volume to be small. A solution is found
when these two forces balance each other.

Figure 2: (a) A geometric illustration of the two loss terms within the latent loss (Eq. 2) where
the minimum volume constraint, J(F ), serves as the internal force pointing inward and the patch
reconstruction constraint, Lfactor, serves as the external force pointing outward. (b) Illustration of
how the factor tokens and patch tokens evolve across two stages of aggregations.

In addition to controlling the volume of the simplex, J(F ) also encourages the vectors in F to be
orthogonal. In Eq. 4, FTF is the Gram matrix of F , and I is the identity matrix. The Frobenius norm
of FTF − I quantifies the deviation from orthogonality, and minimizing this term encourages the
vectors in F to be mutually orthogonal. The orthogonality reduces redundancy by ensuring that each
vector in F carries unique information, thus enhancing separability; in addition, it guarantees that
the factor set F spans a unique subspace, avoiding overfitting and promoting better generalization.

To simplify computation, the volume of the space spanned by the factor tokens {fi}Mi=1 can be
computed through Singular Value Decomposition (SVD). Given the SVD of F = UΣV T , where U
and V are orthogonal matrices, and Σ is a diagonal matrix of singular values σi, the volume of the
space spanned by F is then given by J(F ) =

∑r
i=1 σ

2
i with r being the rank of matrix F .

One of the key advantages of the proposed framework is that it promotes interpretability by ensuring
that the factor tokens {fi}Mi=1 is decoupled and structured. This structure provides a way to interpret
how the factor vectors contribute to the final representation of the patch tokens, making the model
more explainable.

3.2 MULTI-STAGE AGGREGATION OF FACTOR TOKENS

Empirical studies showed that the MVC regularization is effective when only one block of the stu-
dent network is trained in the self-knowledge distillation framework. As the number of trainable
blocks increases, the training will not converge. See the first data point in Fig. 6b with 12 trainable
blocks. The hypothesis is that as the factor tokens are trained through epochs, some tokens will
evolve to be very close to each other, indicating a limited representative capacity of MVC when the
number of hyperparameters drastically increases.

To achieve the representation disentanglement in self-knowledge distillation via extra tokens, we de-
sign a dual-stream framework, including a self-attention stream [Fig. 3(top)] of the teacher network
and a multi-stage aggregation stream [Fig. 3(bottom)] of the student network. The multi-stage ag-
gregation stream is further illustrated in Fig. 4, where each stage incorporates an aggregation block
at its end to merge correlated factor tokens into a new factor token. Fig. 2b illustrates how the factor
tokens and patch tokens evolve across two stages of aggregations.

Formally, suppose there are L aggregation stages indexed by l, a set of learnable aggregation tokens
{gi}Ml

i=1, and the initial factor tokens {fi}M0

i=1, where M0 is the initial number of factor tokens. We
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Figure 3: Illustration of XTRA built upon the dual-stream self-knowledge distillation network. Top:
teacher network. Bottom: The multi-stage aggregation student network.

Figure 4: Illustration of a 2-stage aggregation of factor tokens

simplify
{
f li
}Ml−1

i=1
to
{
f li
}

and similarly
{
gl
i

}Ml

i=1
to
{
gl
i

}
. Starting with l = 1, for each aggregation

stage, the number of [CLS] token and patch tokens are fixed at 1 and N , respectively. We first con-
catenate factor tokens

{
f li
}

, the [CLS] token,
{
cl
}

, and the patch tokens,
{
pl
i

}
, together and then

input them into the self-attention layers, each of which performs information propagation between
them, {

ĉl
}
,
{
f̂ li

}
,
{
p̂l
i

}
= Self-Attentions

([{
cl
}
;
{
f li
}
;
{
pl
i

}])
(5)

where [; ] denotes the concatenation operator. Then we aggregate the updated Ml−1 factor tokens{
f̂ li

}
into Ml new factor tokens

{
f l+1
i

}
via an Aggregation Block as

{
f l+1
i

}
= Aggregation

({
gl
i

}
,
{
f̂ li

})
. (6)

In each aggregation stage Ml < Ml−1, i.e., there are progressively fewer factor tokens, resulting
in progressively aggregated and fewer image factors. See details in Appendix A. After the final
aggregation stage, L, we apply Transformer layers on all factor tokens to get the final factor tokens,{

f̂L+1
i

}
= Self-Attentions

({
fL+1
i

})
(7)

3.3 KNOWLEDGE DISTILLATION FROM THE FOUNDATION MODEL

As discussed in Sec. 3.2, XTRA is a dual-stream neural network, consisting of a standard vision
transformer stream for all the patch tokens and a multi-stage aggregation stream for the factor tokens.
Specifically, rather than concatenating only one trainable [CLS] token with the patch tokens, the
M trainable factor tokens are also concatenated with the patch tokens. These trainable tokens are
then fed to the designed network that outputs the learned [CLS] token, patch tokens, and M factor
tokens, after L aggregation stages.
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Following the standard self-knowledge distillation framework, given the image x, first, random data
augmentations are used to generate distinct views. For clarity, we consider two views, i.e., x1

and x2, whose representations are extracted by the teacher network T and the student network S,
respectively. Then, the [CLS] tokens are further processed using projection heads. In this paper, we
select the asymmetric contrastive loss to measure the similarity between the [CLS] tokens output
from the teacher and the student networks, representing the distillation loss, Ldistill. See details in
Appendix B.

3.4 TOTAL LOSS FUNCTION

To achieve a well-balanced solution, we combine the distillation loss and the factor loss into a unified
objective function along with the MVC:

Ltotal = λdistill · Ldistill + λfactor · Lfactor + λvolume · J(F ) (8)

where λdistill, λfactor, and λvolume are hyperparameter that control the trade-off among the different loss
terms. We minimize the total loss function Ltotal that results in a model that effectively represents the
patch tokens through a set of factor tokens that is both structurally simple and robust, with mutually
independent vectors that span a well-defined subspace. Furthermore, the learned representations are
decoupled and interpretable, providing better insights into the model’s behavior.

3.5 IMPLEMENTATION DETAILS

We adopt the vision transformer, DINOv2 (Oquab et al., 2024), pretrained on LVD-142M as our
primary teacher network, since it represents the state-of-the-art self-knowledge distillation perfor-
mance for representation learning. Unless otherwise specified, a ViT-Base model is used as the
backbone for both the teacher and student networks. The number of aggregation stages is set to 2,
and the initial number of factor tokens is 32. The aggregation follows 32 → 16 → 8, and the final
number of factor tokens is 8. Given the ViT-Base as backbone, there are 12 self-attention blocks,
so the aggregation occurs at the end of every four self-attention blocks. The weights for the differ-
ent loss terms are preset at [λdistill, λfactor, λvolume] = [1, 0.45, 0.05] according to extensive empirical
studies. We pretrain the models on the ImageNet1K without labels. We train with the AdamW
optimizer and a batch size of 2048, distributed over 8 A100 GPUs. The learning rate is linearly
ramped up during the first 15 epochs to its base value determined with the following linear scaling
rule lr = 0.0005 × batchsize ÷ 256. After this warmup, we decay the learning rate with a cosine
schedule. The weight decay also follows a cosine schedule from 0.04 to 0.4. The temperature τ
is set to 0.1 while we use a linear warmup for τ from 0.04 to 0.07 during the first 30 epochs. For
consistency, we use the same augmentations as in DINO (Caron et al., 2021b).

4 EXPERIMENTS AND RESULTS

4.1 COMPARISON WITH STATE-OF-THE-ART

KNN & Linear Probing. Following standard self-supervised evaluation protocols, we evaluate
XTRA’s representations on ImageNet-1K using KNN and linear-probe accuracy, as shown in Ta-
ble 1. We observe that XTRA outperforms all prior ImageNet-1K pre-training methods by 2.1% in
KNN and 1.5% in linear probing. XTRA also outperforms every DINO models, including DINO
v2 and its variant with register. It demonstrates that XTRA, using a foundation model as a teacher,
can generate better representations, with a lightweight trainable student network and extra token
regularization.

We further investigate the performance of learned representation “without” the strong pre-trained
teacher network. For fair comparison, we use the same backbone, ViT-Base, and pre-train both
DINO v2 and XTRA on the same dataset, ImageNet-1K. The results are reported in Table 2. We
observe that even without a pre-trained foundation model as teacher, XTRA maintains its superior
performance.

Downstream Tasks. We evaluate XTRA’s generality by fine-tuning on three downstream
benchmarks—ImageNet-1K classification, ADE20K semantic segmentation, and COCO2017 ob-
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Table 1: Evaluation of representation from pre-trained model in KNN and Linear Probing (%).

Backbone Dataset Epochs KNN Linear
MoCo-v3 ViT-B IN-1K 1200 51.2 76.3

MAE ViT-B IN-1K 800 54.75 71.8
BEiT ViT-B IN-1K 800 49.06 56.7
iBOT ViT-B IN-1K 1600 72.9 82.3

DINO v1 ViT-B IN-1K 300 76.1 78.2
OpenCLIP ViT-G IN-1K 800 75.2 78.2

OpenCLIP + Reg ViT-G IN-1K 800 75.8 78.1
DINO v2 ViT-G LVD-142M - 82.1 84.5

DINO v2 + Reg ViT-G LVD-142M - 82.0 83.6

XTRA ViT-B IN-1K 300 84.2 86.0

Table 2: Evaluation of representation without pre-trained teacher network in KNN and Linear
Probing (%).

Backbone Dataset Epochs KNN Linear
DINO v2 ViT-Base IN-1K 300 76.9 80.1

DINO v2 + Register ViT-Base IN-1K 300 77.3 82.1
XTRA ViT-Base IN-1K 300 81.9 83.8

ject detection—each for 100 epochs. See Appendix C for detailed hyperparameter setup. Table 3
summarizes Top-1 accuracy for classification, mIoU for segmentation, and APbox for detection.
XTRA surpasses state-of-the-art methods on ImageNet classification, ADE20K segmentation, and
COCO2017 object detection, demonstrating the robustness of its learned representations across di-
verse tasks.

4.2 REPRESENTATION DISENTANGLEMENT

Since disentangled representation learning by explicit regularization is the main claim of XTRA,
in this set of experiments, we evaluate the degree of disentanglement of the learned representaiton.
Given no ground truth, we follow Wang et al. (2024a) and adopt an unsupervised disentanglement
metric SEPIN@k (Do & Tran, 2021). SEPIN@k measures how each token {pi} is disentangled
from others {p̸=i} by computing their conditional mutual information with the top k features.

As shown in Table 4, the representation from XTRA exhibits significantly better disentanglement
than DINO v2 and its variant in all top-k dimensions. Since the learned features also contain noisy

Table 3: Evaluation of representation from pre-trained model with different downstream tasks (%).

Classification (Top-1) Segmentation (mIoU) Detection (AP box)
Backbone ImageNet 1K ADE20K COCO2017
MoCo-v3 83.1 47.3 47.9

MAE 83.6 48.1 50.3
BEiT 83.2 47.1 49.8
iBOT 84.0 50.0 48.2

DINO v1 82.8 51.3 46.8
DINO v2 85.8 54.4 51.2

DINO v2 + Register 85.6 54.2 50.5

XTRA 85.9 55.1 52.1

7
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components, the all-dimension (k = 768) results are close among all methods, with XTRA still
maintaining a slight advantage.

In Fig. 5, we further show the representation SEPIN@k score at the different aggregation stages,
where the first two stages are the representation after aggregation, and the last stage is the output
representation. For comparison purpose, we also use DINO v2 and DINO v2-Reg, both of which
have four self-attention blocks at each stage. The results again demonstrate that the factor token
aggregation helps drastically enhance the disentanglement of representation.

Figure 5: Evaluation of the disentanglement score at different aggregation stages in XTRA

Table 4: Representation disentanglement score with SEPIN@k on ImageNet-1k, where k denotes
the top-k dimensions (higher is better).

SEPIN@1 SEPIN@10 SEPIN@100 SEPIN@all
DINO v2 0.47 0.39 0.28 0.11

DINO v2 + Register 0.42 0.35 0.25 0.13
XTRA 3.95 3.02 1.54 0.16

4.3 ABLATION STUDY

Effectiveness of Each Module XTRA integrates three components—knowledge distillation from
a frozen LVD-142M DINO v2 teacher (Ldistill), factor representation capacity (Lfactor), and a
volume penalty, (J(F )), on the space spanned by the factor tokens , as shown in Eq. 8. Table 5
reports results from an incremental ablation study. We observe that freezing the teacher reduces
KNN accuracy but improves linear-probe performance, indicating more generative representations;
adding factor reasoning alone reduces both metrics by over 3.5%; but incorporating the volume
penalty improves performance by 6.8% (KNN) and 7.9% (linear probe). We view the combination
of factor reasoning and volume regularization as a Min-Max operator in latent space that robustly
pushes representations toward the desired properties.

Effect of Model Complexity We further study how the number of trainable self-attention blocks
in the student affects performance. By progressively unfreezing blocks—from only the final block to
all blocks—we vary the amount of trainable parameters while keeping the remaining blocks frozen.

Table 5: Ablation study of the effect of each module in XTRA (%)

Frozen Teacher Factors Rep Volume Penalty kNN Linear Probing
◦ ◦ ◦ 76.1 78.2
✓ ◦ ◦ 76.0 ↓ 0.1 79.2 ↑ 1.0
✓ ✓ ◦ 72.4 ↓ 3.6 74.8 ↓ 4.4
✓ ◦ ✓ 79.2 ↑ 6.8 82.9 ↑ 7.9
✓ ✓ ✓ 84.2 ↑ 4.0 86.0 ↑ 3.1
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Figure 6: The effect of model complexity and aggregation. KNN & linear probing performance on
(a) student networks of different numbers of trainable blocks and (b) different aggregation levels.

As shown in Fig. 6(a), KNN accuracy improves from 78.3% to 84.2%, and linear-probe accuracy
from 82.6% to 86.0%, as more blocks become trainable. Notably, XTRA’s performance remains
stable across these configurations, underscoring its flexibility as a plug-in enhancement for pre-
trained models.

Effect of Multi-Stage Aggregation In addition to the above two studies, we also investigate the
effects of the number of aggregation stages. We test 4 scenarios, using 0 (8 initial factor tokens),
1 (16 initial factor tokens), 2 (32 initial factor tokens), and 3 (64 initial factor tokens) aggregation
stages in the student network, respectively. The results are shown in Fig. 6b. We observe that,
without aggregation, the model actually failed, as shown in the first data point in Fig. 6b (KNN
13.9%, linear probing 18.1%). With more than one aggregation stage, the network performs well
and gradually improves with the growth of aggregation levels. Comparing performance between
the two and three aggregation stages, we see that the improvement is limited (KNN increases 0.9%,
linear probing increases 0.2%), so more aggregation may not bring improvement. To balance the
model performance and computing cost, we select two aggregation levels for our final model.

5 CONCLUSION & LIMITATION

Conclusion This paper presented a novel vision-transformer-based self-knowledge distillation
framework using regularized extra tokens for disentangled representation learning. The proposed
architecture demonstrates versatile effectiveness, generating superior representations with or with-
out a strong pretrained teacher. The key innovation lies in utilizing regularized extra tokens as
interpretable factors through multiple aggregatable stages and structured reasoning between factor
and patch tokens, decomposing visual information into semantically meaningful components. Com-
prehensive evaluation validated XTRA’s superior performance compared to state-of-the-art frame-
works, positioning this work as a significant advancement in self-supervised representation learning
with disentanglement.

Limitation and Future Work We list the limitations of XTRA as follows. (1) Although XTRA
can produce disentangled factor tokens that attend to finer details, it cannot automatically map the
semantics with the token without human inspection. Controllable generative learning will be our
future work. (2) We have not looked into the dynamics of the evolution of factor tokens. Current
work focuses on the structure of the latent space in the final stage of the vision transformer, rather
than the entire network. The dynamics of the factor tokens throughout the entire network can reveal
interesting behaviors of the learning mechanism, further providing a potential way to control the
learning target. (3) The aggregation mechanism lacks the flexibility of data-driven clustering with a
variable number of resulting tokens.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Titas Anciukevicius, Christoph H. Lampert, and Paul Henderson. Object-centric image generation
with factored depths, locations, and appearances, 2020. URL https://arxiv.org/abs/
2004.00642.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers,
2022. URL https://arxiv.org/abs/2106.08254.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pp. 17–36. JMLR Workshop
and Conference Proceedings, 2012.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Ondrej Biza, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gamaleldin F. Elsayed, Aravindh Ma-
hendran, and Thomas Kipf. Invariant slot attention: Object discovery with slot-centric reference
frames, 2023. URL https://arxiv.org/abs/2302.04973.

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
tation, 2019. URL https://arxiv.org/abs/1901.11390.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A MULTI-STAGE AGGREGATION OF FACTOR TOKENS

As a supplement explanation to Sec . 3.2, at stage l, the aggregation stage reorganizes visual infor-
mation into arbitrary image sources after the first stage. It merges all the factor tokens assigned to
the same aggregation token into a new factor based on similarity in the embedding space. Formally,
we compute the similarity matrix Al between the aggregation tokens

{
ĝl
i

}
and factor tokens

{
f̂ li

}
via a Gumbel-Softmax operation computed over the group tokens as

Al
i,j =

exp
(
Wqg

l
i ·Wk f̂

l
j + γi

)
∑Ml

k=1 exp
(
Wqgl

k ·Wk f̂ lj + γk

) (9)

where Wq and Wk are the weights of the learned linear projections for the aggregation and factor
tokens, respectively, and {γi} are i.i.d random samples drawn from the Gumbel ( 0, 1) distribution.
We compute the aggregation to assign a factor token by taking the one-hot operation of its argmax
over all the aggregations. Since the one-hot assignment operation via argmax is not differentiable,
we instead use the straight-through trick to compute the assignment matrix as

Âl = one−hot
(
Al

argmax

)
+Al − sg

(
Al
)

(10)

where sg is the stop gradient operator, with straight-through trick, Âl has the one-hot value of
assignment to a single aggregation, but its gradient is equal to the gradient of Al, which makes the
aggregation block differentiable and trainable from end to end. We call this one-hot assignment
strategy a hard assignment. After assigning the factor tokens to the different learned aggregations,
we merge the embedding of all the tokens belonging to the same aggregation to form a new factor
token f l+1

i . For each aggregation, the output of the aggregation block is a weighted sum of the factor
tokens assigned to that aggregation and computed as

f l+1
i = gl

i +Wo

∑Ml−1

j=1 Âl
i,jWv f̂

l
j∑Ml−1

j=1 Âl
i,j

(11)

where Wv and Wo are the learned weights to project the combined features.

B KNOWLEDGE DISTILLATION FROM THE FOUNDATION MODEL

As a supplement explanation to Sec . 3.3, given the image x, first, random data augmentations
are used to generate distinct views. For clarity, we consider two views, i.e., x1 and x2, whose
representations are extracted by the teacher network T and the student network S, respectively.
So,

[
ĉ, f̂ , p̂

]
= T (x1) and

[
c̃, f̃ , p̃

]
= S(x2), respectively. Then, the [CLS] tokens are further

processed using projection heads. i.e., ĥc = ˆproj (ĉ) and h̃c = ˜proj (c̃). Subsequently, they are
substituted in different loss functions, such as InfoNCE loss, clustering loss, and similarity loss.
Some methods also attach a predictor head to the student network, and we omit it for conciseness.

In this paper, we select the asymmetric contrastive loss to measure the similarity between the [CLS]
tokens output from the teacher and the student networks, representing the distillation loss, Ldistill,
and is defined as

Ldist = Lĥc↔h̃c = Lĥc→h̃c + Lh̃c→ĥc (12)

which is composed of two asymmetric contrastive losses defined as

Lĥc→h̃c = − 1

B

B∑
i=1

log
exp

(
ĥc
i · h̃c

i/τ
)

∑B
j=1 exp

(
ĥc
i · h̃c

i/τ
) (13)
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Table 6: Hyperparameters for pre-training on ImageNet-1K using ViT-Base model.
Hyperparameters Base Size

SA layers in SA Block 4
Aggregation Levels 2
Initial Number of Factor Tokens 32
Final Number of Factor Tokens 8

Layers 12
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Layer scale 0.1
Patch size 16× 16
Relative positional embeddings ✓
Shared relative positional embeddings ◦
Training epochs 300
Batch size 2048
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Peak learning rate 1.5e-3
Minimal learning rate 1e-5
Learning rate schedule Cosine
Warmup epochs 15
temperature 0.1

Stoch. depth 0.1
Gradient clipping 3.0
Dropout ◦
Stoch. depth ◦
Weight decay 0.05

Data Augment RandomResizeAndCrop
Input resolution 224× 224
Color jitter 0.4

CLS Loss InfoNCE
Latent Loss Smooth L1
Factor Constraint MVC

Lh̃c→ĥc = − 1

B

B∑
i=1

log
exp

(
h̃c
i · ĥc

i/τ
)

∑B
j=1 exp

(
h̃c
i · ĥc

i/τ
) (14)

Here, B is the batch size. The CLS token is often adopted to encode the global context, which could
be a good representation for global semantic information. However, it may be less representative
of factors controlling different aspects of an image, such as foreground/background, object posi-
tion/rotation, object properties, etc. To enhance the representation in the capability of explainability
and disentanglement, we introduce the factor tokens, which can be complementary to enhance rep-
resentations. Specifically, we design the properties of the latent space spanned by the factor tokens
and look into the relationship between factor tokens and patches.

C MORE TRAINING DETAILS

C.1 PRETRAINING AND EVALUATION

In our pretraining, we adopt the vision transformer, DINO v2 Oquab et al. (2024), pretrained on
LVD-142M as our primary teacher network, since it represents the state-of-the-art self-knowledge
distillation performance for representation learning. Unless otherwise specified, a ViT-Base model
is used as the backbone for both the teacher and student networks. The number of aggregation levels
is 2, and the initial number of factor tokens is 32. The aggregation follows 32 → 16 → 8, and
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Table 7: Hyperparameters for linear-probing
on ImageNet-1K.

Hyperparameters ViT-B/16

Peak learning rate 5e-4
Fine-tuning epochs 100
Warmup epochs 20
Layer-wise learning rate decay 0.65
Batch size 1024
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Minimal learning rate 1e-6
Learning rate schedule Cosine

Stoch. depth 0.1
Repeated Aug ✓
Weight decay 0.05
Dropout ◦
Gradient clipping ◦
Input resolution 224× 224

Table 8: Hyperparameters for fine-tuning on
ImageNet-1K.

Hyperparameters ViT-B/16

Peak learning rate 5e-4
Fine-tuning epochs 100
Epochs 100
Warmup epochs 10
Layer-wise learning rate decay 0.65
Batch size 1024
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Minimal learning rate 4e-4
Learning rate schedule Cosine

Stoch. depth 0.1
Repeated Aug ◦
Weight decay 0.05
Label smoothing ε 0.1
Dropout ◦
Gradient clipping ◦
Erasing prob. 0.25
Input resolution 224× 224
Rand Augment 9/0.5
Mixup prob. 0.6
Cutmix prob. 0.75

the final factor tokens are 8. Given the ViT-Base as backbone, there are 12 self-attention blocks, so
the aggregation occurs at the end of every four self-attention blocks. The weights for the different
loss terms are preset at [λdistill, λfactor, λvolume] = [1, 0.45, 0.05] according to extensive empirical
studies. We pretrain the models on the ImageNet 1K without labels. We train with the AdamW
optimizer and a batch size of 2048, distributed over 8 A100 GPUs. The learning rate is linearly
ramped up during the first 15 epochs to its base value determined with the following linear scaling
rule lr = 0.0005 × batchsize ÷ 256. After this warmup, we decay the learning rate with a cosine
schedule. The weight decay also follows a cosine schedule from 0.04 to 0.4. The temperature τ is
set to 0.1 while we use a linear warm-up for τ from 0.04 to 0.07 during the first 15 epochs. For
consistency, we use the same augmentations as in DINO v1 Caron et al. (2021b).

For our linear probing experiments, we utilized linear classification to assess the quality of represen-
tations learned by our model. Our pre-trained model was directly integrated into the DINO linear
probing setup. We adopted the ViT-base architecture with a patch size 16 and an input resolution of
224 × 224 for the linear probing implementation. Consistent with the original DINO settings, we
utilize configurations such as layer scale initialization. Following standard linear evaluation proto-
cols, a supervised linear classifier was appended to the frozen backbone. The training was conducted
using the AdamW optimizer with a learning rate of 4 × 10−3, and the models were trained for 100
epochs on the ImageNet-1K dataset. Linear probing hyperparameter setups are shown in Table 7.

C.2 DOWNSTREAM TASKS

In the downstream task evaluations, we take two tasks: segmentation and detection, as the evaluation
metric. For each task, a specific task head is integrated with the pretrained XTRA model, the UpNet
for segmentation, and Mask R-CNN for detection. For the segmentation task, with ADK20K, the
The hyperparameter setups are shown in Table 9 and Table 10.

D MORE EXPERIMENTS RESULTS

D.1 ABLATION STUDY

Besides the experiments in Sec. 4.3, we conducted more research and showed them in this part. First,
in Figure 6(a), we further study how the number of trainable self-attention blocks in the student af-

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameters for fine-
tuning on ADE20K.

Hyperparameters ViT-B

Segmentation Head UpNet
Pretrained Model Finetune ✓
Relative positional embeddings ✓
Shared relative positional embeddings ◦
Epochs 100
Peak learning rate 0.5e-4
Fine-tuning steps 160K
Batch size 16
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.75
Minimal learning rate 0
Learning rate schedule Linear
Warmup steps 1500

Dropout ◦
Stoch. depth 0.1
Weight decay 0.05

Input resolution 512× 512

Table 10: Hyperparameters for fine-
tuning on COCO2017.

Hyperparameters ViT-B

Detection Head Mask R-CNN
Pretrained Model Finetune ✓
Relative positional embeddings ✓
Shared relative positional embeddings ◦
Epochs 100
Peak learning rate 0.5e-4
Fine-tuning steps 160K
Batch size 16
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.75
Minimal learning rate 0
Learning rate schedule Linear
Warmup steps 1500

Dropout ◦
Stoch. depth 0.1
Weight decay 0.05

Input resolution 640× 640

Table 11: The effect of different volumes method (%)

Metric Backbone Gram SVD
KNN ViT-Base 13.9 83.1

Linear Probing ViT-Base 18.1 84.4

fects performance. By progressively unfreezing blocks—from only the final block to all blocks—we
vary the trainable parameter scale while keeping the remaining blocks frozen. As shown in Fig-
ure 6(a), KNN accuracy improves from 78.3% to 83.1%, and linear-probe accuracy from 82.6%
to 84.4%, as more blocks become trainable. Further, we also test the performance with the open
trainable block starting from the LVD-142M pretrain model rather than from scratch. The results
are shown in Figure 7, KNN accuracy improves from 79.5% to 83.5%, and linear-probe accuracy
from 83.6% to 85.5%. Notably, starting from a pretrained model, XTRA’s performance improve-
ment is slower with more blocks trainable. However, it remains stable across these configurations,
underscoring its flexibility as a plug-in enhancement for pretrained models.

Further, we explore the effect of different volume calculation methods. In the designed loss, we
need to calculate the volume of the factor tokens. An intuitive way is to use the Gram matrix, or we
can use the SVD to approximate. We explore the effect of different choices and show them in the
Tab. 11. From the results, we can find that the Gram matrix failed, but SVD works well. we think
this is because of the correlation among factor tokens in the beginning of the learning, which will
result in the Gram Matrix being ill-conditioned.

D.2 FACTOR TOKEN VISUALIZATION

In this paper, we consider the initial extra tokens as “mixtures” of semantic contents in the scene.
By incorporating the minimum volume constraint and the consistency constraint between the extra
tokens and patch tokens, we can generate remarkable attention maps with much finer details while
preserving semantic consistency. The main paper showed that the different factor tokens can present
different parts of the object, including high norms Darcet et al. (2024). In this part, we present more
results. See Fig. 8 and Fig. 9. In Fig. 8, we show the results on different animals, and the results
show the capability of the factor tokens to capture the semantic part. We also show the factor token
with a high norm. In Fig. 9, we show the results on other objects, such as no animals, which is easier
to capture the whole object. We think it may be because these objects are difficult to disentangle
into part-wise properties. This is a potential direction for our future exploration.
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Figure 7: Effect of Model Complexity

Figure 8: Visualization of Factor Tokens
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Figure 9: Visualization of Factor Tokens (Other Objects)

18


	Introduction
	Related Work
	Method
	Learning Factor Tokens with the Minimum Volume Constraint (MVC)
	Multi-Stage Aggregation of Factor Tokens
	Knowledge Distillation from the Foundation Model
	Total Loss Function
	Implementation Details

	Experiments and Results
	Comparison with State-of-the-Art
	Representation Disentanglement
	Ablation Study

	Conclusion & Limitation
	Multi-Stage Aggregation of Factor Tokens
	Knowledge Distillation from the Foundation Model
	More Training Details
	Pretraining and Evaluation
	Downstream Tasks

	More Experiments Results
	 Ablation Study
	 factor Token Visualization


