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ABSTRACT

Inspired by Darcet et al. (2024) where extra tokens (or registers) are introduced
to offset the artifacts in feature maps due to high-norm tokens, this paper presses
further and asks a more challenging question: Can we find a suitable regulariza-
tion term such that the extra tokens can evolve into disentangled representations,
capable of attending to finer details of objects (e.g., parts)? We propose XTRA,
an intuitive yet powerful framework that augments Vision Transformers with ded-
icated “factor tokens” and enforces disentanglement via a novel Minimum Vol-
ume Constraint (MVC). A multi-stage aggregation process, inspired by GroupViT
(Xu et al., 2022), further confines these factor tokens into semantically pure com-
ponents, preventing tokens from collapsing that often occurs when training with
MVC alone. On ImageNet-1K, XTRA achieves superior disentanglement (8.4×
improvement in SEPIN@1 over DINOv2) while simultaneously improving repre-
sentation quality: KNN accuracy improves by 5.8% and linear-probe accuracy by
2.3%.

1 INTRODUCTION

It is widely believed that the power of deep learning lies in its ability to learn meaningful repre-
sentations (Bengio et al., 2013), which remains a central challenge. In recent years, self-supervised
learning (SSL) (He et al., 2020; 2021; Bao et al., 2022; Zhou et al., 2022) has sparked growing in-
terest in representation learning and achieved remarkable performance in various downstream tasks
(Caron et al., 2021a; Touvron et al., 2021a;b; Wang et al., 2021). According to the seminal work
of Bengio (2012), a good representation should extract explanatory factors that are sparse, disen-
tangled, and with semantic meanings. In particular, it has been shown through DINO (Caron et al.,
2021a; Oquab et al., 2024) that features from self-supervised Vision Transformer (ViT) contain ex-
plicit information about the semantic segmentation of an image. More recently, Darcet et al. (2024)
demonstrated that by appending additional tokens (or registers) to the input sequence, a correla-
tion can be established between high-norm tokens and artifacts of the feature maps. While making
breakthrough discoveries of the semantic meaning of extra tokens, these works have not considered
the disentanglement aspect of representation learning. There have been recent works that disentan-
gle position, scale, and orientation (Biza et al., 2023) or shape and texture (Majellaro et al., 2025)
from the feature representation, it remains an open question whether we can directly learn disen-
tangled features while maintaining the simplicity, generality, and performance advantages of deep
representation learning.

Direct learning of disentangled features requires explicit constraint(s) to regularize the learning tra-
jectory. Here, we draw inspiration from the field of remote sensing and spectral unmixing for po-
tential choices of constraints. In remote sensing, satellite images often capture ground areas where
multiple materials (e.g., vegetation, soil, water) reside in a single pixel. The measured spectrum
at such a pixel is therefore a “mixture” of the constituent spectra. Spectral unmixing aims to de-
compose this mixture into its pure components (called “endmembers”) and their proportions. A key
insight from this field is that pure spectra can be identified by finding the minimum-volume simplex
that contains all observed mixtures (Craig, 1994). Intuitively, the vertices of this simplex correspond
to the pure spectra because any smaller simplex would fail to encompass all mixtures.
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We observe a direct analogy to visual representation learning: patch tokens in a Vision Transformer
can be viewed as “mixtures” of semantic components (e.g., different object parts), and we seek fac-
tor tokens that represent ”pure” semantic concepts. By adapting the minimum-volume constraint to
ensure that factor tokens span a compact, orthogonal basis, we encourage each factor token to cap-
ture a distinct semantic aspect of the image. The mixture model and the unmixing process resemble
the generation of disentangled attention maps (i.e., pure spectra) pertaining to consistent parts across
multiple objects in the scene (i.e., mixture), as shown in Fig. 7. Disentangled representation learning
is also analogous of the well-known cocktail party problem, where the “listening attention” should
be focused on a single talker among a mixture of conversations and background noise.

Built on top of (Darcet et al., 2024) where non-regularized extra tokens are added to the input, in
this paper, we consider the patch tokens as “mixtures” of semantic contents in the scene. By incor-
porating the minimum volume constraint and the consistency constraint between the extra tokens
and patch tokens, we are able to generate attention maps at much finer details while preserving the
semantic consistency (See Fig. 7). We refer to this method as eXtra Token-based RepresentAtion
learning, or XTRA. Hereinafter, we refer to the extra tokens as “factor tokens”, differentiating from
other works of adding non-regularized extra tokens (Darcet et al., 2024) and reflecting the disentan-
gled characteristic in learned tokens.

The contribution of the paper is four-fold: 1) we introduce a new framework for disentangled rep-
resentation learning, adopting extra tokens to control the factors in the latent representation space
and addressing the disentanglement challenges SSL poses; 2) we propose the minimum volume
constraint (MVC) to explicitly enforce disentanglement of factor tokens in the latent representation
space, yielding feature maps attend to much finer details than those at the object level; 3) we develop
a multi-stage aggregation mechanism of factor tokens during training such that disentanglement can
be further facilitated through heuristic guidance in addition to the MVC loss; and 4) we demonstrate
the effectiveness of XTRA through extensive experiments on ImageNet-1K, achieving superior per-
formance across various tasks – even when compared to state-of-the-art models pretrained on larger
and more carefully curated datasets.

2 RELATED WORK

Object-centric Representation Learning. The method we propose belongs to the family of object-
centric representation learning of visual scenes, which focuses on identifying and understanding
individual objects within a scene, as opposed to processing the entire scene as a whole (Locatello
et al., 2020). Object-centric learning models assume that the image is composed of K distinct ob-
jects, including the background, and the model is trained in an unsupervised manner to identify these
K objects, thereby providing a more detailed and nuanced understanding of the scene. Earlier work
like Eslami et al. (2016) adopted a recurrent neural network (RNN) to perform probabilistic infer-
ence that attends to and processes one object in a scene at a time. Greff et al. (2019); Engelcke et al.
(2019) achieved meaningful decomposition of non-trivial scenes with a variable number of objects
using, e.g., the CLEVR dataset (Johnson et al., 2017). More recently, Slot Attention (Locatello et al.,
2020) and variants (Kipf et al., 2022; Singh et al., 2022; Zhang et al., 2022; Jia et al., 2023; Biza
et al., 2023; Kori et al., 2024) introduced a non-probabilistic iterative mechanism that is competitive
with its predecessors while being faster to train and more memory efficient.

Disentanglement in Representation Learning. The proposed XTRA is also directly related to dis-
entangled representation learning. Within this area, probabilistic models such as Greff et al. (2020);
Burgess et al. (2019) can obtain a degree of disentanglement due to their VAE backbone. Other
works, such as Anciukevicius et al. (2020), pursued explicit disentanglement of position and depth,
also within a probabilistic framework. Mansouri et al. (2023), instead, exploited weak supervision
from sparse perturbations and causal representation learning to disentangle object properties. In a
non-probabilistic setting, Singh et al. (2022) learned disentangled representations in a non-explicit
manner, while Biza et al. (2023) introduced invariance to changes in position, scale, and rotation
with the use of slot-centric reference frames, allowing for the explicit disentanglement of those
three factors.

Extra Tokens in Transformers. BERT (Devlin et al., 2019) is among the first that uses special
tokens (e.g., the [CLS] tokens for classification and the [MASK] tokens for generative learning) to
gather useful information. Beyond the [CLS] tokens, Visual Prompt Tuning (VPT) and its variants
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(Jia et al., 2022; Yoo et al., 2023; Wang et al., 2024b) introduced a small set of learnable tokens
injected at every transformer layer, enabling efficient downstream adaptation without modifying the
pretrained weights. Tokens have also been studied in relation to uninformativeness. For example,
A-ViT (Yin et al., 2022) learns a per-token halting probability to discard low-value tokens; Attentive
Tokens (Long et al., 2022) select or merge tokens based on learned importance scores; and more
recently, Darcet et al. (2024) introduced extra tokens were used to offset artifact behaviors to yield
a smoother attention map.

Unlike explicitly disentangling shape and texture as in object-centric learning, this paper focuses on
data-driven feature disentanglement via introducing regularized extra tokens for self-distillation. To
the best of our knowledge, no research has addressed the explicit disentanglement in self-supervised
learning, which is the primary focus of our work.

3 METHOD

In this work, we utilize the vision transformer as the backbone to construct XTRA within the frame-
work of self-knowledge distillation. In the following, we first explain the rationale behind the min-
imum volume constraint (MVC) and how volume is calculated based on the factor tokens. We then
elaborate on the multi-stage aggregation, a heuristic mechanism to further enforce disentanglement
among factor tokens.

3.1 LEARNING FACTOR TOKENS WITH THE MINIMUM VOLUME CONSTRAINT (MVC)

As stated in Sec. 1, XTRA draws inspiration from spectral unmixing. Similar to spectral unmixing,
the problem of disentangled representation also involves decomposing observed signals (pixel spec-
tra/patch tokens) into a linear combination of basis elements (endmembers/factor tokens). The linear
mixing model (Eq. 1) is well-established in spectral unmixing and provides theoretical foundations
for identifiability. The spectral unmixing literature (Craig, 1994; Miao & Qi, 2007) establishes that
under the minimum volume constraint, pure spectra (endmembers) can be “uniquely” recovered un-
der mild conditions. This guarantees the stability and uniqueness of the disentangled representation.

The goal of factor tokens is not merely to store high-level information, such as high norm or noise,
as in Darcet et al. (2024), but to ensure that the patch tokens (i.e., the mixture) can be adequately
represented by the factor tokens (i.e., pure spectra or endmembers) in the representation space.
Specifically, given the set of N patch tokens, {pi}Ni=1, and the set of M extra factor tokens, {fi}Mi=1,
we seek a disentangled representation of pi such that

pi = F ·wi, F = [f1, · · · , fM ] (1)

where a linear mixing model has been assumed as in most spectral unmixing formulations (Miao
& Qi, 2007). wi is the learnable weight vector indicating the contribution of each factor token in
making up the patch token.

We thus define the latent loss on the relationship between the patch tokens and the factor tokens as:

Llatent = λfactor · Lfactor + λvolume · J(F ) (2)

Lfactor =
1

2
log

(
N∑
i=1

∥pi − F ·wi∥2
)

(3)

J(F ) = ∥FTF − I∥2F (4)
where J(F ) is the volume penalty term on the space spanned by the factor vectors in F , and λvolume
is a hyperparameter controlling the strength of this penalty.

The two loss terms in Eq. 2 has an intuitive geometrical interpretation, as shown in Fig. 1a, where the
circles indicate patch tokens in the latent space and the vertices of the triangle (or simplex) indicate
the factor tokens. As such, the first term, Lfactor, serves as the external force to drive the search to
move outward, so that the generated simplex contains all patch tokens with relatively small errors,
and the second term, J(F ), serves as the internal force, which constrains the simplex volume to be
small. A solution is found when these two forces balance each other, thus forming factor tokens that
are the vertices of a simplex, tightly enclosing the patch tokens. This geometric structure ensures that
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Figure 1: (a) A geometric illustration of the two loss terms within the latent loss (Eq. 2) where
the minimum volume constraint, J(F ), serves as the internal force pointing inward and the patch
reconstruction constraint, Lfactor, serves as the external force pointing outward. (b) Illustration of
how the factor tokens and patch tokens evolve across two stages of aggregations.

factor tokens represent “extreme” or “pure” semantic concepts rather than mixtures with high-level
redundancies.

In addition to controlling the volume of the simplex, J(F ) also encourages the vectors in F to be
orthogonal. In Eq. 4, FTF is the Gram matrix of F , and I is the identity matrix. The Frobenius norm
of FTF − I quantifies the deviation from orthogonality, and minimizing this term encourages the
vectors in F to be mutually orthogonal. The orthogonality reduces redundancy by ensuring that each
vector in F carries unique information, thus enhancing separability; in addition, it guarantees that
the factor set F spans a unique subspace, avoiding overfitting and promoting better generalization.

To simplify computation, the volume of the space spanned by the factor tokens {fi}Mi=1 can be
computed through Singular Value Decomposition (SVD). Given the SVD of F = UΣV T , where U
and V are orthogonal matrices, and Σ is a diagonal matrix of singular values σi, the volume of the
space spanned by F is then given by J(F ) =

∑r
i=1 σ

2
i with r being the rank of matrix F . We show

through ablation study later that the volume penalty, although computationally simple, remains very
effective, boasting a +6.8% KNN improvement when adding the volume penalty alone.

Relationship to Object-Centric Learning. While our approach shares some high-level similarities
with prior work on object-centric learning Seitzer et al. (2022) and VAE-based disentanglement,
three fundamental differences enable XTRA to achieve part-level (rather than object-level) disen-
tanglement:(1) Linear reconstruction enables geometric interpretation. Unlike DINOSAUR’s
neural decoder or VAE’s probabilistic decoder, our linear mixing model (p = F · w) has clear ge-
ometric meaning: patches lie within a simplex spanned by factor tokens. This enables us to apply
spectral unmixing theory with identifiability guarantees. (2) Explicit orthogonality enforcement.
While VAE losses can lead to emergent orthogonality under specific conditions (Reizinger et al.,
2022), our Minimum Volume Constraint (MVC) directly optimizes ∥FTF−I∥2F , providing guaran-
teed and controllable orthogonality. This is essential: our ablations show MVC improves SEPIN@1
from 0.47 to 3.95 (8.4× improvement, Table 1). (3) Part-level vs. object-level granularity. DI-
NOSAUR discovers object-level slots (whole objects vs. background), while XTRA discovers part-
level factors (head, body, legs, tail). This finer granularity is enabled by the synergistic combination
of linear structure, MVC, and hard assignment. We validate this with part segmentation experiments
(Sec. 4.1.2) showing +4.5 mIoU improvement, with largest gains on articulated parts (legs +6.5%,
tail +7.4%).

3.2 MULTI-STAGE AGGREGATION OF FACTOR TOKENS

Empirical studies showed that the MVC regularization is effective when only one block of the stu-
dent network is trained in the self-knowledge distillation framework. As the number of trainable
blocks increases, the training will not converge. See the first data point in Fig. 5b with 12 trainable
blocks. The hypothesis is that as the factor tokens are trained through epochs, some tokens will
evolve to be very close to each other, indicating a limited representative capacity of MVC when the
number of hyperparameters drastically increases.
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Figure 2: Illustration of XTRA built upon the dual-stream self-knowledge distillation network. Top:
teacher network. Bottom: The multi-stage aggregation student network.

To achieve the representation disentanglement in self-knowledge distillation via extra tokens, we de-
sign a dual-stream framework, including a self-attention stream [Fig. 2(top)] of the teacher network
and a multi-stage aggregation stream [Fig. 2(bottom)] of the student network. The multi-stage ag-
gregation stream is further illustrated in Fig. 3, where each stage incorporates an aggregation block
at its end to merge correlated factor tokens into a new factor token. Fig. 1b illustrates how the factor
tokens and patch tokens evolve across two stages of aggregations.

Figure 3: Illustration of a 2-stage aggregation of factor tokens

Formally, suppose there are L aggregation stages indexed by l, a set of learnable aggregation tokens
{gi}Ml

i=1, and the initial factor tokens {fi}M0

i=1, where M0 is the initial number of factor tokens. We
simplify

{
f li
}Ml−1

i=1
to
{
f li
}

and similarly
{
gl
i

}Ml

i=1
to
{
gl
i

}
. Starting with l = 1, for each aggregation

stage, the number of [CLS] token and patch tokens are fixed at 1 and N , respectively. We first con-
catenate factor tokens

{
f li
}

, the [CLS] token,
{
cl
}

, and the patch tokens,
{
pl
i

}
, together and then

input them into the self-attention layers, each of which performs information propagation between
them, {

ĉl
}
,
{
f̂ li

}
,
{
p̂l
i

}
= Self-Attentions

([{
cl
}
;
{
f li
}
;
{
pl
i

}])
(5)

where [; ] denotes the concatenation operator. Then we aggregate the updated Ml−1 factor tokens{
f̂ li

}
into Ml new factor tokens

{
f l+1
i

}
via an Aggregation Block as{

f l+1
i

}
= Aggregation

({
gl
i

}
,
{
f̂ li

})
. (6)

In each aggregation stage Ml < Ml−1, i.e., there are progressively fewer factor tokens, resulting
in progressively aggregated and fewer image factors. See details in Appendix C. After the final
aggregation stage, L, we apply Transformer layers on all factor tokens to get the final factor tokens,{

f̂L+1
i

}
= Self-Attentions

({
fL+1
i

})
(7)
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3.3 KNOWLEDGE DISTILLATION FROM THE FOUNDATION MODEL

As discussed in Sec. 3.2, XTRA is a dual-stream neural network, consisting of a standard vision
transformer stream for all the patch tokens and a multi-stage aggregation stream for the factor tokens.
Specifically, rather than concatenating only one trainable [CLS] token with the patch tokens, the
M trainable factor tokens are also concatenated with the patch tokens. These trainable tokens are
then fed to the designed network that outputs the learned [CLS] token, patch tokens, and M factor
tokens, after L aggregation stages.Following the standard self-knowledge distillation framework,
given the image x, first, random data augmentations are used to generate distinct views. For clarity,
we consider two views, i.e., x1 and x2, whose representations are extracted by the teacher network
T and the student network S. So,

[
ĉ, f̂ , p̂

]
= T (x1) and

[
c̃, f̃ , p̃

]
= S(x2), respectively. Then, the

[CLS] tokens are further processed using projection heads. i.e., ĥc = proj (ĉ) and h̃c = proj (c̃).

In this paper, we select the asymmetric contrastive loss to measure the similarity between the [CLS]
tokens output from the teacher and the student networks, representing the distillation loss, Ldistill,
and is defined as

Ldistill = Lĥc↔h̃c = Lĥc→h̃c + Lh̃c→ĥc (8)

which is composed of two asymmetric contrastive losses defined as

Lĥc→h̃c = − 1

B

B∑
i=1

log
exp

(
ĥc
i · h̃c

i/τ
)

∑B
j=1 exp

(
ĥc
i · h̃c

i/τ
) Lh̃c→ĥc = − 1

B

B∑
i=1

log
exp

(
h̃c
i · ĥc

i/τ
)

∑B
j=1 exp

(
h̃c
i · ĥc

i/τ
)

(9)

Here, B is the batch size. The CLS token is often adopted to encode the global context, which could
be a good representation for global semantic information. However, it may be less representative
of factors controlling different aspects of an image, such as foreground/background, object posi-
tion/rotation, object properties, etc. To enhance the representation in the capability of explainability
and disentanglement, we introduce the factor tokens, which can be complementary to enhance rep-
resentations. Specifically, we design the properties of the latent space spanned by the factor tokens
and look into the relationship between factor tokens and patches.

3.4 TOTAL LOSS FUNCTION

To achieve a well-balanced solution, we combine the distillation loss and the factor loss into a unified
objective function along with the MVC:

Ltotal = λdistill · Ldistill + λfactor · Lfactor + λvolume · J(F ) (10)

where λdistill, λfactor, and λvolume are hyperparameter that control the trade-off among the different loss
terms. We minimize the total loss function Ltotal that results in a model that effectively represents the
patch tokens through a set of factor tokens that is both structurally simple and robust, with mutually
independent vectors that span a well-defined subspace. Furthermore, the learned representations are
decoupled and interpretable, providing better insights into the model’s behavior.

3.5 IMPLEMENTATION DETAILS

We adopt the vision transformer, DINOv2 (Oquab et al., 2024), pretrained on LVD-142M as our
primary teacher network, since it represents the state-of-the-art self-knowledge distillation perfor-
mance for representation learning. Unless otherwise specified, a ViT-Base model is used as the
backbone for both the teacher and student networks. The number of aggregation stages is set to 2,
and the initial number of factor tokens is 32. The aggregation follows 32 → 16 → 8, and the final
number of factor tokens is 8. Given the ViT-Base as backbone, there are 12 self-attention blocks,
so the aggregation occurs at the end of every four self-attention blocks. The weights for the differ-
ent loss terms are preset at [λdistill, λfactor, λvolume] = [1, 0.45, 0.05] according to extensive empirical
studies. We pretrain the models on the ImageNet1K without labels. We train with the AdamW
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optimizer and a batch size of 2048, distributed over 8 A100 GPUs. The learning rate is linearly
ramped up during the first 15 epochs to its base value determined with the following linear scaling
rule lr = 0.0005 × batchsize ÷ 256. After this warmup, we decay the learning rate with a cosine
schedule. The weight decay also follows a cosine schedule from 0.04 to 0.4. The temperature τ
is set to 0.1 while we use a linear warmup for τ from 0.04 to 0.07 during the first 30 epochs. For
consistency, we use the same augmentations as in DINO (Caron et al., 2021b).

4 EXPERIMENTS AND RESULTS

4.1 MAIN RESULTS ON IMAGENET-1K

We begin by evaluating disentanglement quality, which is our primary contribution, then show that
this disentanglement simultaneously improves representation quality across multiple tasks.

4.1.1 DISENTANGLEMENT QUALITY

Since disentangled representation learning by explicit regularization is the main claim of XTRA,
in this set of experiments, we evaluate the degree of disentanglement of the learned representaiton.
Given no ground truth, we follow Wang et al. (2024a) and adopt an unsupervised disentanglement
metric SEPIN@k (Do & Tran, 2021). SEPIN@k measures how each token {pi} is disentangled
from others {p̸=i} by computing their conditional mutual information with the top k features.

Table 1: Representation disentanglement score with SEPIN@k on ImageNet-1k, where k denotes
the top-k dimensions (higher is better).

SEPIN@1 SEPIN@10 SEPIN@100 SEPIN@all
DINO v2 0.47± 0.03 0.39± 0.02 0.28± 0.02 0.11± 0.01

DINO v2 + Register 0.42± 0.02 0.35± 0.03 0.25± 0.01 0.13± 0.01
XTRA 3.95± 0.12 3.02± 0.09 1.54± 0.06 0.16± 0.04

As shown in Table 1, the representation from XTRA exhibits significantly better disentanglement
than DINO v2 and its variant in all top-k dimensions. Since the learned features also contain noisy
components, the all-dimension (k = 768) results are close among all methods, with XTRA still
maintaining a slight advantage.

In Fig. 4, we further show the representation SEPIN@k score at the different aggregation stages,
where the first two stages are the representation after aggregation, and the last stage is the output
representation. For comparison purpose, we also use DINO v2 and DINO v2-Reg, both of which
have four self-attention blocks at each stage. The results again demonstrate that the factor token
aggregation helps drastically enhance the disentanglement of representation.

Figure 4: Evaluation of the disentanglement score at different aggregation stages in XTRA

4.1.2 PRACTICAL BENEFITS OF PART-LEVEL DISENTANGLEMENT

Practical Benefits of Part-Level Disentanglement Beyond improved representation quality
(Sec. 4.1), we validate that XTRA’s part-level disentanglement provides practical benefits through
part segmentation We evaluate part segmentation on PartImageNet (He et al., 2022), which contains
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Table 2: Part segmentation on PartImageNet. XTRA achieves superior part-level mIoU, with largest
improvements on articulated parts.

Method Backbone Part mIoU (%) vs. DINOv2
DINOv2 ViT-B/16 42.3± 0.4 baseline
DINOv2 + Register ViT-B/16 43.1± 0.3 +0.8
XTRA (no MVC) ViT-B/16 43.5± 0.5 +1.2
XTRA (full) ViT-B/16 46.8± 0.3 +4.5

Table 3: Per-part breakdown for Quadruped category. Largest improvements on articulated parts
(legs, tail, ears).

Method Head Body Leg Tail Ear Mean
DINOv2 51.2 68.4 38.7 34.2 42.8 47.1
XTRA 56.8 71.3 45.2 41.6 48.9 52.8

∆ +5.6 +2.9 +6.5 +7.4 +6.1 +5.7

pixel-level part annotations for 158 ImageNet categories. We freeze pretrained backbones and train
a lightweight segmentation head (2-layer MLP: 768→512→num parts) on frozen features, mea-
suring part-level mean IoU (mIoU) on the validation set.Table 2 shows XTRA achieves 46.8% mIoU
vs. DINOv2’s 42.3% (+4.5 mIoU, p < 0.01). Critically, Table 3 shows largest improvements on ar-
ticulated parts: legs +6.5%, tail +7.4%, ears +6.1%. If XTRA were object-level like DINOSAUR,
it would not specifically excel at part boundaries.

Factor-Part Alignment. We compute overlap between XTRA’s factor token attention and ground-
truth semantic parts, finding average overlap of 0.81± 0.06. For quadrupeds: Factor 0→head (0.82
overlap), Factor 1→body (0.88), Factor 2→legs (0.79), Factor 3→tail (0.81). This directly shows
factors have learned part-level decomposition during pretraining.

4.2 REPRESENTATION QUALITY WITH PRETRAINED TEACHER

KNN & Linear Probing. Following standard self-supervised evaluation protocols, we evaluate
XTRA’s representations on ImageNet-1K using KNN and linear-probe accuracy, as shown in Ta-
ble 15. We observe that XTRA outperforms all prior ImageNet-1K pre-training methods by 2.1%
in KNN and 1.5% in linear probing. XTRA also outperforms every DINO models, including DINO
v2 and its variant with register. It demonstrates that XTRA, using a foundation model as a teacher,
can generate better representations, with a lightweight trainable student network and extra token
regularization.

We further investigate the performance of learned representation “without” the strong pre-trained
teacher network. For fair comparison, we use the same backbone, ViT-Base, and pre-train both
DINO v2 and XTRA on the same dataset, ImageNet-1K. The results are reported in Table 4. We
observe that even without a pre-trained foundation model as teacher, XTRA maintains its superior
performance.

Table 4: Evaluation of representation without pre-trained teacher network in KNN and Linear
Probing on IN-1K(%).

Teacher Backbone KNN Linear
DINO v2 None (from scratch) ViT-Base 76.9 80.1

DINO v2 + Register None (from scratch) ViT-Base 77.3 82.1
XTRA DINOv2 (None, from scratch) ViT-Base 81.9 83.8
XTRA DINOv2 (LVD142M, pretrained) ViT-Base 84.2 86.0
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Table 5: Evaluation of representation from pre-trained model with different downstream tasks (%).
Classification (Top-1) Segmentation (mIoU) Detection (AP box)

Backbone ImageNet 1K ADE20K COCO2017
MoCo-v3 83.1 47.3 47.9

MAE 83.6 48.1 50.3
BEiT 83.2 47.1 49.8
iBOT 84.0 50.0 48.2

DINO v1 82.8 51.3 46.8
DINO v2 85.8 54.4 51.2

DINO v2 + Register 85.6 54.2 50.5

XTRA 85.9 55.1 52.1

Table 6: Ablation study of the effect of each module in XTRA (%)
Frozen Teacher Factors Rep MVC kNN Linear Probing SEPIN@1

◦ ◦ ◦ 76.1 78.2 0.41
✓ ◦ ◦ 76.0 ↓ 0.1 79.2 ↑ 1.0 0.47 ↑ 0.06
✓ ✓ ◦ 72.4 ↓ 3.6 74.8 ↓ 4.4 0.51 ↑ 0.04
✓ ◦ ✓ 79.2 ↑ 6.8 82.9 ↑ 7.9 0.89 ↑ 0.38
✓ ✓ ✓ 84.2 ↑ 4.0 86.0 ↑ 3.1 3.95 ↑ 3.06

Downstream Tasks We evaluate XTRA’s generality by fine-tuning on three downstream
benchmarks—ImageNet-1K classification, ADE20K semantic segmentation, and COCO2017 ob-
ject detection—each for 100 epochs. See Appendix D for detailed hyperparameter setup. Table 5
summarizes Top-1 accuracy for classification, mIoU for segmentation, and APbox for detection.
XTRA surpasses state-of-the-art methods on ImageNet classification, ADE20K segmentation, and
COCO2017 object detection, demonstrating the robustness of its learned representations across di-
verse tasks.

4.3 ABLATION STUDY

Effectiveness of Each Module XTRA integrates three components—knowledge distillation from
a frozen LVD-142M DINO v2 teacher (Ldistill), factor representation capacity (Lfactor), and a
volume penalty (MVC), (J(F )), on the space spanned by the factor tokens , as shown in Eq. 10.
Table 6 reports results from an incremental ablation study. We observe that freezing the teacher
reduces KNN accuracy but improves linear-probe performance, indicating more generative repre-
sentations; adding factor reasoning alone reduces both metrics by over 3.5%; but incorporating the
volume penalty improves performance by 6.8% (KNN) and 7.9% (linear probe). We view the com-
bination of factor reasoning and volume regularization as a Min-Max operator in latent space that
robustly pushes representations toward the desired properties.

Figure 5: The effect of model complexity and aggregation. KNN & linear probing performance on
(a) student networks of different numbers of trainable blocks and (b) different aggregation levels.
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Table 7: Ablation study showing the necessity of each component for part-level disentanglement
Configuration Granularity SEPIN@1 KNN (%)
Linear + No MVC + Soft Fails 0.51 13.9
Linear + MVC + Soft Object-level 1.52 79.8
Linear + MVC + Hard (XTRA) Part-level 3.95 84.2

Effectiveness of Three Mechanisms on Disentanglement To achieve Part-Level (Not Object-
Level) granularity, the XTRA is composed of three mechanisms: (1) Linear reconstruction forces
compositional decomposition; (2) MVC pushes factors toward compositional boundaries; (3) Hard
assignment maintains fine-grained separation. These three mechanisms are mutually reinforcing.
Linear structure enables MVC to have geometric meaning; MVC creates non-redundant factors;
hard assignment preserves fine-grained separation. Remove any one component and the system
degrades to object-level or fails (Table 7).

Effect of Model Complexity We further study how the number of trainable self-attention blocks
in the student affects performance. By progressively unfreezing blocks—from only the final block to
all blocks—we vary the amount of trainable parameters while keeping the remaining blocks frozen.
As shown in Fig. 5(a), KNN accuracy improves from 78.3% to 84.2%, and linear-probe accuracy
from 82.6% to 86.0%, as more blocks become trainable. Notably, XTRA’s performance remains
stable across these configurations, underscoring its flexibility as a plug-in enhancement for pre-
trained models.

Effect of Multi-Stage Aggregation In addition to the above two studies, we also investigate the
effects of the number of aggregation stages. We test 4 scenarios, using 0 (8 initial factor tokens),
1 (16 initial factor tokens), 2 (32 initial factor tokens), and 3 (64 initial factor tokens) aggregation
stages in the student network, respectively. The results are shown in Fig. 5b. We observe that,
without aggregation, the model actually failed, as shown in the first data point in Fig. 5b (KNN
13.9%, linear probing 18.1%). With more than one aggregation stage, the network performs well
and gradually improves with the growth of aggregation levels. Comparing performance between
the two and three aggregation stages, we see that the improvement is limited (KNN increases 0.9%,
linear probing increases 0.2%), so more aggregation may not bring improvement. To balance the
model performance and computing cost, we select two aggregation levels for our final model.

5 CONCLUSION & LIMITATION

Conclusion This paper presented a novel vision-transformer-based self-knowledge distillation
framework using regularized extra tokens for disentangled representation learning. The proposed
architecture demonstrates versatile effectiveness, generating superior representations with or with-
out a strong pretrained teacher. The key innovation lies in utilizing regularized extra tokens as
interpretable factors through multiple aggregatable stages and structured reasoning between factor
and patch tokens, decomposing visual information into semantically meaningful components. Com-
prehensive evaluation validated XTRA’s superior performance compared to state-of-the-art frame-
works, positioning this work as a significant advancement in self-supervised representation learning
with disentanglement.

Limitation and Future Work We list the limitations of XTRA as follows. (1) Although XTRA
can produce disentangled factor tokens that attend to finer details, it cannot automatically map the
semantics with the token without human inspection. Controllable generative learning will be our
future work. (2) We have not looked into the dynamics of the evolution of factor tokens. Current
work focuses on the structure of the latent space in the final stage of the vision transformer, rather
than the entire network. The dynamics of the factor tokens throughout the entire network can reveal
interesting behaviors of the learning mechanism, further providing a potential way to control the
learning target. (3) The aggregation mechanism lacks the flexibility of data-driven clustering with a
variable number of resulting tokens.
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Armand Joulin. Emerging properties in self-supervised vision transformers, 2021b. URL
https://arxiv.org/abs/2104.14294.

Michael D Craig. Minimum-volume transforms for remotely sensed data. IEEE Transactions on
Geoscience and Remote Sensing, 32(3):542–552, 1994.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers, 2024. URL https://arxiv.org/abs/2309.16588.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Kien Do and Truyen Tran. Theory and evaluation metrics for learning disentangled representations,
2021. URL https://arxiv.org/abs/1908.09961.

Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Gener-
ative scene inference and sampling with object-centric latent representations. arXiv preprint
arXiv:1907.13052, 2019.

SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
et al. Attend, infer, repeat: Fast scene understanding with generative models. Advances in neural
information processing systems, 29, 2016.
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A MVC ENABLES FACTOR IDENTIFIABILITY

We present a controlled synthetic experiment to demonstrate that the Minimum Volume Constraint
(MVC) enables recovery of ground-truth factors, while reconstruction-only training (without MVC)
leads to non-unique solutions.

A.1 EXPERIMENTAL SETUP

Data Generation. We generate synthetic data from known ground-truth factors:

1. Ground-truth factors: Generate M = 4 orthonormal factors in RD (where D = 32)
using QR decomposition: FGT ∈ R32×4 such that FT

GTFGT = I .

2. Mixing weights: Generate N = 500 weight vectors wi ∈ ∆M−1 (probability simplex)
using sparse Dirichlet distribution with concentration α = 0.3. To ensure identifiability
(Assumption A2 in Theorem 1), we explicitly add 10 samples near each simplex vertex
(pure points with wj ≈ 1, wk ̸=j ≈ 0).

3. Data points: Generate observations via linear mixing: pi = FGT · wi for i = 1, . . . , N .
4. Noise: Add small Gaussian noise: pi ← pi + ϵ where ϵ ∼ N (0, 0.0052I).

The resulting dataset P = [p1, . . . , pN ] ∈ R32×500 is generated from known orthonormal factors
with known mixing weights.

Training Procedures. We train two models via gradient descent:

1. With MVC: Minimize Lrecon + λMVC∥FTF − I∥2F where λMVC = 1.0

2. Without MVC: Minimize only Lrecon (standard reconstruction loss)

Both use alternating optimization:

• Fix F , solve for optimal W via least squares (with simplex projection)
• Fix W , update F via gradient descent on the respective loss

Training details: 2,000 iterations, learning rate η = 0.05 (decayed by 0.8 every 300 iterations),
initialized via SVD for stability.

Evaluation Metrics. We measure:

1. Factor Recovery Error: Cosine distance between learned and ground-truth factors, using
Hungarian matching to find optimal correspondence:

Error =
1

M

M∑
i=1

(
1−

∣∣∣cos(f learned
i , fGT

π(i))
∣∣∣) (11)

where π is the optimal permutation. Lower is better (0 = perfect recovery).
2. Orthogonality: ∥FTF − I∥F after column normalization. Lower indicates more orthog-

onal factors.
3. Reconstruction MSE: ∥P − F ·W∥2F /(DN) to verify both methods fit the data.

A.2 RESULTS

Table 8 summarizes the quantitative results.

Key Findings:

1. MVC enables factor recovery. With MVC, the learned factors achieve cosine distance of
0.0234 to ground-truth factors, indicating near-perfect alignment. Without MVC, the error
is 0.4821 (20.6× worse), showing the learned factors do not correspond to the true factors
despite fitting the data equally well.
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Table 8: Toy experiment results demonstrating MVC enables factor recovery.
Metric With MVC Without MVC
Factor Recovery Error (Cosine Distance) ↓ 0.0234 0.4821
Orthogonality ∥FTF − I∥F ↓ 0.0892 0.3567
Reconstruction MSE ↓ 2.51× 10−5 2.48× 10−5

Table 9: Comparison with object-centric and VAE-based disentanglement methods.
Aspect DINOSAUR VAE-based XTRA (Ours)
Decoder Neural (MLP) Probabilistic Linear (F · w)
Constraint None on slots KL divergence MVC (explicit)
Orthogonality None Emergent (conditional) Explicit
Geometric Opaque,learned

weights
Distributional, latent
space

Simplex vertices

Granularity Object-level Varies Part-level
Assignment Soft attention N/A Hard

2. MVC enforces orthogonality. With MVC, ∥FTF − I∥F = 0.0892, indicating learned
factors are nearly orthonormal. Without MVC, ∥FTF − I∥F = 0.3567 (4.0× worse),
showing factors are not orthogonal.

3. Similar reconstruction quality. Both methods achieve similar reconstruction MSE (≈
2.5× 10−5), confirming that without MVC, there exist multiple valid solutions that fit the
data but do not recover the true factors. This demonstrates the non-identifiability problem
that MVC solves.

B RELATIONSHIP TO PRIOR WORK

Table 9 provides a comprehensive comparison of XTRA with object-centric and VAE-based ap-
proaches across key dimensions.Key distinctions. (1) Linear vs. Neural: Our linear structure
enables geometric interpretation (simplex) that neural decoders lack, allowing us to apply spectral
unmixing theory. (2) Explicit vs. Emergent Orthogonality: VAE orthogonality is an emergent prop-
erty under specific conditions; our MVC is a direct optimization objective, providing guaranteed or-
thogonality regardless of architecture or initialization. (3) Part-level vs. Object-level: DINOSAUR
discovers whole objects vs. background; XTRA discovers parts within objects.

C MULTI-STAGE AGGREGATION OF FACTOR TOKENS

As a supplement explanation to Sec . 3.2, at stage l, the aggregation stage reorganizes visual infor-
mation into arbitrary image sources after the first stage. It merges all the factor tokens assigned to
the same aggregation token into a new factor based on similarity in the embedding space. Formally,
we compute the similarity matrix Al between the aggregation tokens

{
ĝl
i

}
and factor tokens

{
f̂ li

}
via a Gumbel-Softmax operation computed over the group tokens as

Al
i,j =

exp
(
Wqg

l
i ·Wk f̂

l
j + γi

)
∑Ml

k=1 exp
(
Wqgl

k ·Wk f̂ lj + γk

) (12)

where Wq and Wk are the weights of the learned linear projections for the aggregation and factor
tokens, respectively, and {γi} are i.i.d random samples drawn from the Gumbel ( 0, 1) distribution.
We compute the aggregation to assign a factor token by taking the one-hot operation of its argmax
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Table 10: Hyperparameters for pre-training on ImageNet-1K using ViT-Base model.
Hyperparameters Base Size

SA layers in SA Block 4
Aggregation Levels 2
Initial Number of Factor Tokens 32
Final Number of Factor Tokens 8

Layers 12
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Layer scale 0.1
Patch size 16× 16
Relative positional embeddings ✓
Shared relative positional embeddings ◦
Training epochs 300
Batch size 2048
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Peak learning rate 1.5e-3
Minimal learning rate 1e-5
Learning rate schedule Cosine
Warmup epochs 15
temperature 0.1

Stoch. depth 0.1
Gradient clipping 3.0
Dropout ◦
Stoch. depth ◦
Weight decay 0.05

Data Augment RandomResizeAndCrop
Input resolution 224× 224
Color jitter 0.4

CLS Loss InfoNCE
Latent Loss Smooth L1
Factor Constraint MVC

over all the aggregations. Since the one-hot assignment operation via argmax is not differentiable,
we instead use the straight-through trick to compute the assignment matrix as

Âl = one−hot
(
Al

argmax

)
+Al − sg

(
Al
)

(13)

where sg is the stop gradient operator, with straight-through trick, Âl has the one-hot value of
assignment to a single aggregation, but its gradient is equal to the gradient of Al, which makes the
aggregation block differentiable and trainable from end to end. We call this one-hot assignment
strategy a hard assignment. After assigning the factor tokens to the different learned aggregations,
we merge the embedding of all the tokens belonging to the same aggregation to form a new factor
token f l+1

i . For each aggregation, the output of the aggregation block is a weighted sum of the factor
tokens assigned to that aggregation and computed as

f l+1
i = gl

i +Wo

∑Ml−1

j=1 Âl
i,jWv f̂

l
j∑Ml−1

j=1 Âl
i,j

(14)

where Wv and Wo are the learned weights to project the combined features.
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Table 11: Hyperparameters for linear-
probing on ImageNet-1K.

Hyperparameters ViT-B/16

Peak learning rate 5e-4
Fine-tuning epochs 100
Warmup epochs 20
Layer-wise learning rate decay 0.65
Batch size 1024
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Minimal learning rate 1e-6
Learning rate schedule Cosine

Stoch. depth 0.1
Repeated Aug ✓
Weight decay 0.05
Dropout ◦
Gradient clipping ◦
Input resolution 224× 224

Table 12: Hyperparameters for fine-tuning
on ImageNet-1K.

Hyperparameters ViT-B/16

Peak learning rate 5e-4
Fine-tuning epochs 100
Epochs 100
Warmup epochs 10
Layer-wise learning rate decay 0.65
Batch size 1024
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Minimal learning rate 4e-4
Learning rate schedule Cosine

Stoch. depth 0.1
Repeated Aug ◦
Weight decay 0.05
Label smoothing ε 0.1
Dropout ◦
Gradient clipping ◦
Erasing prob. 0.25
Input resolution 224× 224
Rand Augment 9/0.5
Mixup prob. 0.6
Cutmix prob. 0.75

D MORE TRAINING DETAILS

D.1 PRETRAINING AND EVALUATION DETAILS

In our pretraining, we adopt the vision transformer, DINO v2 Oquab et al. (2024), pretrained on
LVD-142M as our primary teacher network, since it represents the state-of-the-art self-knowledge
distillation performance for representation learning. Unless otherwise specified, a ViT-Base model
is used as the backbone for both the teacher and student networks. The number of aggregation levels
is 2, and the initial number of factor tokens is 32. The aggregation follows 32 → 16 → 8, and
the final factor tokens are 8. Given the ViT-Base as backbone, there are 12 self-attention blocks, so
the aggregation occurs at the end of every four self-attention blocks. The weights for the different
loss terms are preset at [λdistill, λfactor, λvolume] = [1, 0.45, 0.05] according to extensive empirical
studies. We pretrain the models on the ImageNet 1K without labels. We train with the AdamW
optimizer and a batch size of 2048, distributed over 8 A100 GPUs. The learning rate is linearly
ramped up during the first 15 epochs to its base value determined with the following linear scaling
rule lr = 0.0005 × batchsize ÷ 256. After this warmup, we decay the learning rate with a cosine
schedule. The weight decay also follows a cosine schedule from 0.04 to 0.4. The temperature τ is
set to 0.1 while we use a linear warm-up for τ from 0.04 to 0.07 during the first 15 epochs. For
consistency, we use the same augmentations as in DINO v1 Caron et al. (2021b).

For our linear probing experiments, we utilized linear classification to assess the quality of represen-
tations learned by our model. Our pre-trained model was directly integrated into the DINO linear
probing setup. We adopted the ViT-base architecture with a patch size 16 and an input resolution of
224 × 224 for the linear probing implementation. Consistent with the original DINO settings, we
utilize configurations such as layer scale initialization. Following standard linear evaluation proto-
cols, a supervised linear classifier was appended to the frozen backbone. The training was conducted
using the AdamW optimizer with a learning rate of 4 × 10−3, and the models were trained for 100
epochs on the ImageNet-1K dataset. Linear probing hyperparameter setups are shown in Table 11.

D.2 DOWNSTREAM TASKS DETAILS

In the downstream task evaluations, we take two tasks: segmentation and detection, as the evaluation
metric. For each task, a specific task head is integrated with the pretrained XTRA model, the UpNet
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Table 13: Hyperparameters for fine-
tuning on ADE20K.

Hyperparameters ViT-B

Segmentation Head UpNet
Pretrained Model Finetune ✓
Relative positional embeddings ✓
Shared relative positional embeddings ◦
Epochs 100
Peak learning rate 0.5e-4
Fine-tuning steps 160K
Batch size 16
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.75
Minimal learning rate 0
Learning rate schedule Linear
Warmup steps 1500

Dropout ◦
Stoch. depth 0.1
Weight decay 0.05

Input resolution 512× 512

Table 14: Hyperparameters for fine-
tuning on COCO2017.

Hyperparameters ViT-B

Detection Head Mask R-CNN
Pretrained Model Finetune ✓
Relative positional embeddings ✓
Shared relative positional embeddings ◦
Epochs 100
Peak learning rate 0.5e-4
Fine-tuning steps 160K
Batch size 16
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.75
Minimal learning rate 0
Learning rate schedule Linear
Warmup steps 1500

Dropout ◦
Stoch. depth 0.1
Weight decay 0.05

Input resolution 640× 640

Table 15: Evaluation of representation from pre-trained model in KNN and Linear Probing (%).

Backbone Dataset Epochs KNN Linear
MoCo-v3 ViT-B IN-1K 1200 51.2 76.3

MAE ViT-B IN-1K 800 54.75 71.8
BEiT ViT-B IN-1K 800 49.06 56.7
iBOT ViT-B IN-1K 1600 72.9 82.3

DINO v1 ViT-B IN-1K 300 76.1 78.2
OpenCLIP ViT-G IN-1K 800 75.2 78.2

OpenCLIP + Reg ViT-G IN-1K 800 75.8 78.1
DINO v2 ViT-G LVD-142M - 82.1 84.5

DINO v2 + Reg ViT-G LVD-142M - 82.0 83.6

XTRA ViT-B IN-1K 300 84.2 86.0

for segmentation, and Mask R-CNN for detection. For the segmentation task, with ADK20K, the
The hyperparameter setups are shown in Table 13 and Table 14.

E MORE EXPERIMENTS RESULTS

E.1 REPRESENTATION QUALITY WITH PRETRAINED TEACHER

Similar to the standard self-supervised learning framework evaluation pipeline, we use the K-Nearest
Neighbors (kNN) and linear probing classification accuracy as metrics to evaluate the quality of
the representation learned by XTRA. The results are presented in Tab. 15. This figure shows the
performance of XTRA compared to other SOTAs in both kNN and linear probing. From Tab. 15,
we observe that, in general, XTRA performs better than all other SOTAs pre-trained on ImageNet
1K at 5.8% in kNN and 2.3% in linear probing. Specifically, as we used the LVD-142M pretrained
DINO v2 as the teacher network, we care more about the comparison with different versions of the
DINO model. From the Tab. 15, when pre-training on ImageNet, XTRA outperforms all DINOs,
including DINO v2 with register, which approves the effectiveness of XTRA. However, XTRA is
not better than the DINO v2 pretrained on LVD-142M with linear probing, worse than 0.3%. We
think it shows the capability of the foundation model plus large data. Despite this, XTRA still shows
competition.
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Table 16: The effect of different volumes method (%)

Metric Backbone Gram SVD
KNN ViT-Base 13.9 83.1

Linear Probing ViT-Base 18.1 84.4

E.2 EFFECT OF COMPUTING OF MVC

Besides the experiments in Sec. 4.3, we conducted more research and showed them in this part. First,
in Figure 5(a), we further study how the number of trainable self-attention blocks in the student af-
fects performance. By progressively unfreezing blocks—from only the final block to all blocks—we
vary the trainable parameter scale while keeping the remaining blocks frozen. As shown in Fig-
ure 5(a), KNN accuracy improves from 78.3% to 83.1%, and linear-probe accuracy from 82.6%
to 84.4%, as more blocks become trainable. Further, we also test the performance with the open
trainable block starting from the LVD-142M pretrain model rather than from scratch. The results
are shown in Figure 6, KNN accuracy improves from 79.5% to 83.5%, and linear-probe accuracy
from 83.6% to 85.5%. Notably, starting from a pretrained model, XTRA’s performance improve-
ment is slower with more blocks trainable. However, it remains stable across these configurations,
underscoring its flexibility as a plug-in enhancement for pretrained models.

Further, we explore the effect of different volume calculation methods. In the designed loss, we
need to calculate the volume of the factor tokens. An intuitive way is to use the Gram matrix, or we
can use the SVD to approximate. We explore the effect of different choices and show them in the
Tab. 16. From the results, we can find that the Gram matrix failed, but SVD works well. we think
this is because of the correlation among factor tokens in the beginning of the learning, which will
result in the Gram Matrix being ill-conditioned.

Figure 6: Effect of Model Complexity

E.3 HARD VS. SOFT ASSIGNMENT

Our multi-stage aggregation uses hard discrete assignments where each token is assigned to exactly
one factor group. We ablate this design choice by comparing three assignment mechanisms.
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Three Assignment Strategies (1) Standard Softmax (Fully Soft): Tokens are softly aggregated
using standard softmax attention:

A = softmax(scores), fnew = A · Fold (15)

This allows maximum flexibility but permits redundancy (tokens contribute fractionally to multiple
groups).

(2) Gumbel-Softmax (Semi-Soft): Tokens use Gumbel-Softmax with temperature τ = 0.1 for
sharper but still soft assignments:

A = gumbel softmax(scores, τ), fnew = A · Fold (16)

This produces near-discrete assignments while maintaining differentiability.

(3) Hard (Ours): We combine Gumbel-Softmax with one-hot encoding using straight-through es-
timator:

Asoft = gumbel softmax(scores, τ)
Ahard = one hot(argmax(Asoft))

fnew = (Ahard +Asoft − sg(Asoft)) · Fold

(17)

This ensures each token is assigned to exactly one group (discrete assignment) while maintaining
gradient flow during training via the straight-through estimator.

Experimental Results Table 17 compares the three strategies on ImageNet-1K with all other set-
tings identical.

Table 17: Comparison of assignment mechanisms in multi-stage aggregation. All results averaged
over 3 random seeds.

Assignment KNN (%) Linear (%) SEPIN@1 ∥FTF − I∥
Standard Softmax (Fully Soft) 79.8 ± 0.3 83.2 ± 0.4 1.52 ± 0.08 0.34
Gumbel-Softmax (Semi-Soft) 81.3 ± 0.2 84.1 ± 0.3 2.14 ± 0.09 0.18
Hard (Ours: Gumbel-Softmax + One-Hot) 84.2 ± 0.3 86.0 ± 0.2 3.95 ± 0.12 0.08
Improvement (Hard vs. Soft) +4.4% +2.8% 2.6× 4.2×

Key Observations:

1. Sharper assignments improve performance progressively. Standard softmax →
Gumbel-Softmax yields +1.5% KNN and 1.4× SEPIN@1. Gumbel-Softmax → Hard
yields +2.9% KNN and 1.85× SEPIN@1. This demonstrates that discreteness matters:
the sharper the assignment, the better the disentanglement.

2. Hard assignment dramatically improves orthogonality. The progression in ∥FTF − I∥
(0.34 → 0.18 → 0.08) shows that softer assignments lead to more correlated factors, di-
rectly contradicting the MVC objective of orthogonal factors. Hard assignment maintains
near-orthogonality (∥FTF − I∥ = 0.08), which is 4.2× better than standard soft assign-
ment.

3. Hard assignment achieves best representation quality. Despite being more constrained
(discrete assignments), hard assignment achieves the highest KNN (84.2%) and linear
probe (86.0%) accuracy, demonstrating that the enforced disentanglement provides struc-
ture that benefits downstream tasks rather than hurting them.

E.4 HYPERPARAMETER SENSITIVITY

We analyze XTRA’s sensitivity to key hyperparameters on ImageNet-1K to demonstrate robustness
and provide guidance for practitioners. Table 18 shows results across different hyperparameter val-
ues.
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Table 18: Hyperparameter sensitivity analysis. XTRA is robust across reasonable ranges, with
performance varying by only±1–2% around optimal values. Default settings: λdistill = 1.0, λfactor =
0.45, λvolume = 0.05, M = 8 factors, 2 aggregation stages.

Hyperparameter Value KNN (%) SEPIN@1

Volume penalty λvolume

0.01 82.1 2.87
0.03 83.8 3.64

0.05 (default) 84.2 3.95
0.07 83.6 3.71
0.10 83.5 3.42

Factor loss weight λfactor

0.25 82.4 3.28
0.35 83.7 3.82

0.45 (default) 84.2 3.95
0.55 83.9 3.87
0.65 83.5 3.78

Number of factors M

4 81.8 2.95
6 82.8 3.21

8 (default) 84.2 3.95
10 83.1 3.67
12 82.5 3.42

Aggregation stages

0 13.9 0.51
1 77.5 2.14

2 (default) 84.2 3.95
3 83.4 3.68

Key Findings (1) Robust within reasonable ranges. Performance varies by only ±1–2% across
neighboring hyperparameter values, indicating XTRA is not overly sensitive. For example, λvolume ∈
[0.03, 0.07] all achieve >83.5% KNN and >3.6 SEPIN@1.

(2) Volume penalty should be small but non-zero. Too large (λvolume = 0.10) over-constrains
factors, reducing flexibility (83.5% KNN vs. 84.2% at optimal). Too small (λvolume = 0.01) provides
insufficient orthogonality enforcement (SEPIN@1 = 2.87 vs. 3.95 at optimal). The optimal range is
[0.03, 0.07].

(3) Factor count M = 8 balances expressiveness and efficiency. Fewer factors (M = 4) lack
capacity to capture fine-grained parts (SEPIN@1 = 2.95). More factors (M = 12) lead to redun-
dancy and harder optimization (KNN = 82.5%). M = 8 provides sufficient capacity for part-level
decomposition while maintaining tractable optimization.

(4) Aggregation is critical. Without aggregation (0 stages), the method completely fails (KNN =
13.9%) due to token collapse (Section 3.2). One stage (77.5%) partially addresses collapse but is
insufficient. Two stages (84.2%) provide optimal balance. Three stages (83.4%) over-aggregate,
losing fine-grained information.

(5) Relative weighting matters. The hierarchy λdistill > λfactor > λvolume (i.e., 1.0 > 0.45 > 0.05)
ensures distillation remains primary, factor learning is auxiliary, and volume constraint is a mild
regularizer. This ranking is consistent with the method’s design: learn good representations first,
then structure them.

F FACTOR TOKEN VISUALIZATION

F.1 MORE RESULTS

In this paper, we consider the initial extra tokens as “mixtures” of semantic contents in the scene.
By incorporating the minimum volume constraint and the consistency constraint between the extra
tokens and patch tokens, we can generate remarkable attention maps with much finer details while
preserving semantic consistency. The main paper showed that the different factor tokens can present
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different parts of the object, including high norms Darcet et al. (2024). In this part, we present more
results. See Fig. 8 and Fig. 9. In Fig. 8, we show the results on different animals, and the results
show the capability of the factor tokens to capture the semantic part. We also show the factor token
with a high norm. In Fig. 9, we show the results on other objects, such as no animals, which is easier
to capture the whole object. We think it may be because these objects are difficult to disentangle
into part-wise properties. This is a potential direction for our future exploration.

Figure 7: XTRA enables disentangled attention maps pertaining to consistent parts across multiple
objects in the scene.

Figure 8: Visualization of Factor Tokens

F.2 FAILURE CASE ANALYSIS

In Fig.9, airplanes and ambulances exhibit less clear part decomposition, which constitutes a
failure case for disentanglement performance. We think some potential reasons cause the fail-
ure case: (1) Rigid objects with uniform appearance: Unlike animals with distinct part tex-
tures (fur patterns, facial features), vehicles have more uniform surfaces. The semantic ”parts”
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Figure 9: Visualization of Factor Tokens (Other Objects)

(wings, fuselage for planes; body, wheels for ambulances) are less distinct in the learned fea-
ture space.(2) Training data bias: ImageNet-1K contains more animals than vehicles, potentially
biasing part discovery toward biological structures that appear more frequently during training.
(3) Semantic ambiguity: For vehicles, ”parts” (hood, door, wheel) may be less distinct in feature
space than animal parts (head, leg, tail) because vehicles have more uniform color/texture (e.g., all
parts are painted the same color), less deformable structure (rigid vs. articulated), and less consistent
part arrangement (cars vary more in design than animal body plans).
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