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Abstract

Over the last decades, developing more powerful neural architectures and simul-
taneously designing optimization algorithms to effectively train them have been
the core of research efforts to enhance the capability of machine learning models.
Despite the recent progresses, particularly in developing Language Models (LMs),
there are fundamental challenges and unanswered questions about how such models
can continually learn/memorize, self-improved, and find “effective solutions,”. In
this paper, we present a new learning paradigm, called Nested Learning (NL), that
coherently represents a model with a set of nested, multi-level, and/or parallel
optimization problems, each of which with its own “context flow”. NL reveals
that existing deep learning methods learns from data through compressing their
own context flow, and explain how in-context learning emerges in large models.
NL suggests a path (a new dimension to deep learning) to design more expressive
learning algorithms with more “/evels”, resulting in higher-order in-context learn-
ing abilities. In addition to its neuroscientifically plausible and mathematically
white-box nature, we advocate for its importance by presenting three core contribu-
tions: (1) Deep Optimizers: Based on NL, we show that well-known gradient-based
optimizers (e.g., Adam, SGD with Momentum, etc.) are in fact associative memory
modules that aim to compress the gradients with gradient descent. Building on this
insight, we present a set of more expressive optimizers with deep memory and/or
more powerful learning rules; (2) Self-Modifying Titans: Taking advantage of NL’s
insights on learning algorithms, we present a novel sequence model that learns
how to modify itself by learning its own update algorithm; and (3) Continuum
Memory System: We present a new formulation for memory system that general-
izes the traditional viewpoint of “long-term/short-term memory”. Combining our
self-modifying sequence model with the continuum memory system, we present a
learning module, called HOPE, showing promising results in language modeling,
continual learning, and long-context reasoning tasks.

1 Introduction

This version of the paper has been extensively summarized to fit the page limit of NeurIPS camera
ready, and some materials, experiments, better baselines, discussions, and methods are in the full
version, which might make some parts of this version hard to follow or cause inconsistencies. To
avoid such cases, please read our arXiv version [1].
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Uniform and Reusable Structure

Neuroplasticity is the brain’s ability to reorganize itself via mechanisms like

forming new synapses, strengthening/weakening existing ones, rerouting
Delta Waves Theta Waves signals through alternate pathways, etc. Such ability requires uniform and
(0.5 - 4 Ha) (4- 8 Ha) reusable structure across brain.

(i.e, linear or locally deep MLPs), each of which with its own context flow and

In Nested Learning (NL), architectures are decomposed into a set of neurons
objective. This design provides a uniform and reusable structure for learning.

Multi Time Scale Update

Brain oscillations (or brain waves) critical for the brain to coordinate its activity.

y

) Gamma Waves Notably, the brain does not rely on a single centralized clock to synchronize
Beta Waves (30 - 100 Hz) every neuron: the earlier layers update their activity quickly in high-frequency
(12 - 30 Hz) cycles, whereas later layers integrate information over longer, slower cycles.

InNL, parameters in each “level” are updated with their own specific frequency
and does not rely on a single centralized clock. The HopE’s design allows the
earlier layers update their activity quickly in high-frequency cycles, whereas
later layers integrate information over longer, slower cycles.

Figure 1: The uniform and reusable structure as well as multi time scale update in the brain are the
key components to unlock the continual learning in humans. Nested Learning (NL) allows for multi
time-scale update for each component of the brain, while showing that well-known architectures such
as Transformers are in fact linear layers with different frequency updates.

For decades, Al research has focused on designing machine learning algorithms that learn from
data [2-5] or experience [6-8]; often by optimizing an objective £(0) over parameters 6 € © with
gradient-based methods. While traditional machine learning techniques required careful engineering
and domain expertise to design feature extractors, limiting their ability to directly process and learn
from natural data [9], deep representation learning offered a fully automated alternative to discover
the representations needed for the task. Thereafter, deep learning has been an inseparable part of the
large-scale computational models with seminal success in chemistry and biology [10], games [11, 12],
computer vision [13, 14], and multimodal and natural language understanding [15—17].

Stacking of multiple layers, as it is done in deep learning models, provides the models with larger
capacity, better expressive power in representing complex features, and more internal computations
(e.g., #FLOPS) [18-20], all of which are critical and desirable characteristics for static tasks that
require in-distribution predictions over a previously fixed set. This deep design, however, is not
a universal solution to all the challenges and cannot help the expressive power of the models in
multiple aspects, for example: (i) The computational depth of deep models might not change with
more layers [21, 22], leaving their ability to implement complex algorithms untouched compared
to traditional shallow approaches [23]; (ii) The capacity of some class of parameters might show
marginal improvement with increasing the depth/width of the model [24]; (iii) The training process
might converge to a suboptimal solution, mainly due to the suboptimal choice of the optimizer or its
hyperparameters; and (iv) The model’s ability to fast adapt to a new task, continually learn, and/or
generalize to out-of-distribution data might not changed with stacking more layers and requires more
careful designs.

The core part of the efforts to overcome the above challenges and to enhance the capability of
deep learning models concentrate on: (1) developing more expressive class of parameters (i.e.,
neural architectures) [13, 25-28]; (2) introducing objectives that can better model the tasks [29—
32]; (3) designing more efficient/effective optimization algorithms to find better solutions or with
more resilience to forgetting [33-36]; and (4) scaling the model size to enhance its expressivity,
when the “right” choice of architecture, objective, and optimization algorithms are made [24, 37, 38].
Collectively, these advancements and new findings on scaling patterns of deep models have established
the foundations upon which Large Language Models (LLMs) have been built.

The development of LLMs marks a pivotal milestone in deep learning research: a paradigm shift from
task-specific models to more general-purpose systems with various emergent capabilities as a result
of scaling the “right” architectures [38, 39]. Despite all their success and remarkable capabilities in
diverse sets of tasks [15, 40, 41], LLMs are largely static after their initial deployment phase, meaning
that they successfully perform tasks learned during pre- or post-training, but are unable to continually
acquire new capabilities beyond their immediate context. The only adaptable component of LLMs
is their in-context learning ability—a (known to be emergent) characteristic of LLMs that enables
fast adaption to the context and so perform zero- or few-shot tasks [38]. Beyond in-context learning,
recent efforts to overcome the static nature of LLMs either are computationally expensive, require
external components, lack generalization, and/or might suffer from catastrophic forgetting [42—-44],
which has led researchers to question if there is a need to revisit how to design machine learning



models and if a new learning paradigm beyond stacking of layers is required to unleash the capabilities
of LLMs in continual setups.

Current Models only Experience the Immediate Present. As an analogy and to better illustrate the
static nature of LLMs, we use the example of anterograde amnesia—a neurological condition where a
person cannot form new long-term memories after the onset of the disorder, while existing memories
remain intact [45]. This condition limits the person’s knowledge and experiences to a short window
of present and long past—before the onset of the disorder—which results in continuously experiencing
the immediate present as if it were always new. The memory processing system of current LLMs
suffer from a similar pattern. Their knowledge is limited to either, the immediate context that fits into
their context window, or the knowledge in MLP layers that stores long-past, before the onset of “end
of pre-training.” This analogy, has motivated us to take inspiration from neurophysiology literature
and how brain consolidate its short-term memories:

1.1 Human Brain Perspective and Neurophysiological Motivation

Human brain is highly efficient and effective when it comes to continual learning (a.k.a. effective
context management), which is often attributed to neuroplasticity—the brain’s remarkable capacity
to change itself in response to new experiences, memories, learning, and even damage [46, 47].
Recent studies support that the formation of Long-term memory involves at least two distinct but
complementary consolidation processes [48—50]: (1) A rapid “online” consolidation (also known as
synaptic consolidation) phase occurs immediately or soon after learning, even during wakefulness.
This is when new and initially fragile memory traces are stabilized and begin transferring from
short-term to long-term storage; (2) An “offline” consolidation (also known as systems consolidation)
process repeats the replay of the recently encoded patterns—during sharp-wave ripples (SWRs) in
the hippocampus, coordinated with cortical sleep spindles and slow oscillations—strengthens and
reorganizes the memory and supports transfer to cortical sites [51-53].

Coming back to the analogy of anterograde amnesia, evidence indicates that the condition can impact
both stages, but especially the online consolidation phase, mainly due to the fact that hippocampus is
the gateway for encoding new declarative memories, and so its damage means new information never
will be stored in long-term memory. As mentioned above, the design of LLMs, and more specifically
Transformer-based backbones, suffers from a similar condition after the pre-training phase. That
is, the information provided in the context, never impacts the long-term memory parameters (e.g.,
feedforward layers), and so the model is not capable of acquiring new knowledge or skill, unless
the information is still stored in the short-term memory (e.g., attention). To this end, although the
second stage is equally, or even more, crucial for the consolidation of memories, and its absence can
damage the process and might cause loss of memory [54, 55], in this work, we focus on the first
stage: memory consolidation as an online process.

Notations. We let x € RY X9 be the input, M, represent the state of memory/model M at time ¢,
K be the keys, V be the values, and Q be the query matrices. We use bold lowercase letters with
subscript ¢ to refer to the vector corresponds to the input ¢ (i.e., k¢, v¢, and g,). We further refer to
the distribution of any entities f as p(f). Through the paper, we use simple MLPs with L > 1
layers and residual connection as the architecture of the memory module M(-). When it is needed,
we parameterized the memory module with ¢ 2 {Wy, Wa, ... , W, ™ }, which at least includes
the parameters of linear layers in the MLP. We use superscript with parenthesis to refer to parameters
in different levels of nested learning (different update frequency): i.e., W),

2 Nested Learning

This section discusses the motivations, formal definitions, and general high-level implications of
Nested Learning (NL). We start with a formulation of associative memory and then by using step-
by-step examples, we build the intuition behind architecture decomposition and its connection to
modeling a neural network as an integrated system of optimization problems. We aim to first show
how existing methods and concepts in deep learning fall under the NL paradigm and then we present
new formulations that go beyond traditional methods and/or provide insights on how to improve
existing algorithms and designs.
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The above figure illustrates the nested learning representation of a hybrid
model (i.e., RNN + Attention). While deep learning representation (as a flatten
image of NL) hides the internal gradient flow of the model and separates
its training process with the architecture, NL makes all the internal process
transparent and mathematically white-box.

Level 3

Figure 2: Nested Learning Paradigm that represent a machine learning model and its training
procedure as a set of nested optimization problems. (Left) An example of Hybrid architecture. While
deep learning perspective, as the flattened image of NL, does not provide insight about the depth of
computation in the blocks, NL transparently represent all the inner gradient flows. (Right) A Neural
Learning Module: A computational model that learns how to compress its own context flow. For
example, the first level corresponds to the model’s the most outer-loop training, often refer to as
“pre-training” step.

2.1 Associative Memory

Associative memory—the ability to form and retrieve connections between events—is a fundamental
mental process and is an inseparable component of human learning [56]. Often in the literature, the
concept of memorization and learning are used interchangeably; in neuropsychology literature, how-
ever, these two are clearly distinguished. More specifically, following neuropsychology literature [57],
we build our terminology based on the following definition of memory and learning:

Learning vs. Memorization:

Memory is a neural update caused by an input, and learning is the process for acquiring
effective and useful memory.

In this work, our goal is to first show that all the elements of a computational sequence model,
including optimizers and neural networks, are associative memory systems that compress their own
context flow. Broadly speaking, associative memory is an operator that maps a set of keys to a set of
values. We follow the general definition of associative memory by Behrouz et al. [58]:

Definition 1 (Associative Memory). Given a set of keys K C R4 and values V C R, associative
memory is an operator M : K — V that maps two sets of keys K and values V. To learn such

mapping from the data, an objective [',(, -) measures the quality of the mapping and M can be
defined as:

M = argn}&ln LIM(K); V). (1

While the operator itself is a memory and the mapping acts as a memorization process (i.e., memoriz-
ing the connections of events in the context), acquiring such effective operator based on the data, is a
learning process. It is notable that, here, keys and values can be any arbitrary events that memory aims
to map them and are not limited to tokens. Later in this section, we will discuss that given a context
flow, keys and values might be tokens, gradients, sub-sequences, etc. Furthermore, while the term
of associative memory is more common in neuroscience and neuropsychology literature, the above
formulation is also closely related to data compression and low-dimensional representation. That is,
one can interpret the optimization process in Equation 1 as the training process of a network M(.)
that aims to compress the mappings into its parameters and so represent them in a lower dimensional
space.

In sequence modeling, where keys and values are input tokens (e.g., tokenized text), the choice
of objective and the optimization process for solving Equation 1 can result in distinct sequence



modeling architectures (see [59] and [58]) such as global/local softmax attention [27], or other
modern recurrent models [28, 60, 61]. This simple formulation of sequence models provides us with
better understanding of their internal process and also a tool to simply compare their modeling power
based on their objective and optimization process. In the following, using step-by-step examples, we
discuss how this formulation can be applied to all components of a neural architecture (including its
optimization process in pre-training) and in fact, how a model is an integrated system of multi-level,
nested, and or parallel memories, each of which with its own context flow.

A Simple Example of MLP Training. We start with a simple example, in which we aim to train
a l-layer MLP (parameterized with 1) for task 7" and on dataset Diin = {%1,...,%|p.,|} bY
optimizing the objective £(-; -) with gradient descent. In this case, the training process is equivalent
to the following optimization problem:

W* = arg mmi/n L(W; Diain) @

whose optimization by gradient descent results in a weight update rule equivalent to:
Wiv1 = Wi = i1 Vw, LW 2441) ©)
=Wi =11V, LW 2001) @ 2441,  Where 241 ~ Diain, 4

where y;+1 = Waxyyq is the output of the model for input x4, 1. Given this formulation, one can
let U1 = Vyt LW 241) apd reformglate the bgclfpropagation process  as the solutior.l to
an optimization problem on finding an optimal associative memory that maps input data points
Dirain = {xt}g‘f‘"‘ to their corresponding w1 = Vyt +_1£(Wt; Z¢11). That is,.we let M(-) = Wt .
parametrizes the memory, and use dot-product similarity to measure the quality of W;’s mapping

between z;,1 and V,, L(W;; 2441):
. 1
W1 = argmin (W1, up) + 5— [[W = Wil[3 ®)
w 277t+1
. 1
=argmin (Wz¢, Vy,,, LWy 041)) + W — Well3. (6)
w 27]t+1

In the above formulation, w1 = V., £(Wy;2¢41) can be interpreted as a local surprise signal in
representation space that quantifies the mismatch between the current output and the structure the
objective L(-; ) enforces. Therefore, this formulation translates the training phase of the model as a
process of acquiring effective memory that maps data samples to their Local Surprise Signal (LSS) in
representation space—defined as the mismatch between the current output and the structure enforced
by the objective L(;-). Accordingly, in this example, our model has a single gradient flow over the
data samples, which is only active over dataset Dyin = {21, . . ., ¥|p,,,| } and will be frozen for any
other data samples afterwards (a.k.a inference or test time).

Next, in the above example, we replace the gradient descent algorithm with its enhanced momentum-
based variant, resulting in an update rule of:

Wi =Wy —myqq, (7
my 1 = my — N1 Vi, LW 0e41) = my — 01V, LW 241) @ 241 (®)

In Equation 8, given the previous state of Equation 7 (at time t), the value of Vyy, L(Wy; 2411) or
similarly V,, , , £(W}; 2441) are independent of recurrence in Equation 8 and so can be pre-computed

beforehand.yzlro1 this end, we let us11 = Vi, L(Wy; 2441), and so Equation 8 can be reformulated as:
Wi =W, —myqq, ©

my 1 = argmniln —(m, Vi, LWy 41)) + 141 [m — my|2 (10)

= argmniln —(m a1, Vo LW 241)) + g | m — my |3, (11)

where the optimization problem in Equation 10 is equivalent to on step of gradient descent with
adaptive learning rate of 7,11. Given these formulation, one can interpret the momentum term
as either: (1) a key-less associative memory that compress the gradients into its parameters, or
(2) an associative memory that learns how to map data points to their corresponding LSS-value.
Interestingly, this formulation reveals that gradient descent with momentum is indeed a two-level



optimization process, where the memory is optimized by simple gradient descent algorithm. This
process is closely related to Fast Weight Programs (FWPs) [62], where the weight update process
(i.e., Equation 9) is the slow network that its momentum weight is generated by a fast network (i.e.,
Equation 10).

Concluding the above examples, we observed that the training process of a 1-layer MLP with:
(1) Gradient descent is a /-level associative memory that learns how to map data points to their
corresponding LSS-value; and (2) Gradient descent with momentum is a 2-level associative memory
(or optimization process) that the inner-level learns to store gradient values into its parameters, and
then the outer-level updates the slow weight (i.e., W;) with the value of the inner-level memory.
While these are the most simple examples with respect to both architecture and optimizer algorithms,
one might ask if similar conclusion can be made in more complex setups.

An Example of Architectural Decomposition. In the next example, we replace the MLP module
with a linear attention [60]. That is, we aim to train a 1-layer linear attention for task 7 and on a

sequence of Dyain = {1, ..., T|p,,,|} by optimizing the objective £ with gradient descent. Recalling
the unnormalized linear attention formulation:
ki = 2, Wy, vy = W, q, = 2 Wy, (12)
M= M1 + vk, (13)
Yyr = Miqy . (14)

As discussed in earlier studies [58, 59], the recurrence in Equation 13 can be reformulated as the
optimization process of a matrix-valued associative memory M (), in which, it aims to compress
the mappings of keys and values into its parameters. In more details, in Definition 1, if we let
E(Mtfl; ki, v;) := —(My_1k,v,) and aim to optimize the memory with gradient descent, the
memory update rule is: (Note that V[Z(/\/lt_l; ki, v,) = 'vtk:;r and we let learning rate 7, = 1)

My = arg Ir}&ln (MEqii1,ve41) + || M — M;||3  with gradient descent, (15)
= My = M; — VZ:(MtQ kiy1,vi01) = Mg + Ut+1ktT+1a (16)

which is equivalent to the update rule of an unnormalized linear attention in Equation 13. Also, note
that as we observed in the first example, training a linear layer with gradient descent is a 1-layer
optimization problem of an associative memory (see Equation 3) and so the general training/updating
process of projection layers (i.e., Wy, W,,, and W) is itself an optimization process of associative
memory. Accordingly, this setup, i.e., training a linear attention with gradient descent, can be seen as
a two-level optimization process, where the outer-loop (also known as training process) optimizes the
projection layers with gradient descent, while the inner-loop optimizes the inner memory of M, with
gradient descent.

Note that, as discussed above, here, we have two associative memories, and so each of which
has their own optimization process and gradient flow. That is, in the optimization of outer-level
parameters of Wy, W,,, and W there is no gradient with respect to parameter M(-) and so there is
no backpropagation through it. Similarly, in the inner-level, there is no backpropagation through
projection layers and they are considered frozen. Furthermore, it is notable that in this example, the
above formulation is also closely connected to FWPs perspective of linear attentions [63], where
projections are considered slow weights, and memory update in Equation 13 is the fast weight update
rule.

Architectural Decomposition with More Levels. In both above examples, we discussed simple
cases, where they can be translated into 2-level optimization processes, which also coincides with their
FWPs interpretations. In practice, however, we need to use more powerful optimization algorithms to
train the model, and/or use more powerful recurrent update rule for memory. As a simple example,
assume we use gradient descent with momentum to train a linear attention model. In the above
examples, we show that how the linear attention component can be decomposed into two nested
optimization problem. Similarly, here the model can be represented as a 2-level optimization problem,
where (1) the inner level optimizes the memory to compress the context using gradient descent (see
Equation 15), and (2) the outer level optimizes the projection layers with gradient descent with
momentum. Interestingly, from the first example, we know that “gradient descent with momentum”
algorithm itself is indeed a 2-level optimization problem where the momentum term itself is an
associative memory that compress the past gradients into its parameters.



2.2 Nested Optimization Problems

In the previous section, we provided examples to demonstrate how one can decompose a machine
learning model into a set of nested or multi-level optimization problems. Next, we first aim to present
a formal formulation for nested learning problems and then define Neural Learning Module—an
integrated computational system that learns from data.

As we observed in the previous section, while we decomposed the model into a set of optimization
process, it is still unclear if we can define a hierarchy (or order) over these problems, and uniquely
represent the model in this format. Inspired by the hierarchy of brain waves that indicates the
information processing frequency rate of each part (discussed in Section 1), we use the update rate of
each optimization problem to order the components in multiple levels. To this end, we let the one
update step over one data point to be the unit of time, and define the update frequency rate of each
component as:

Definition 2 (Update Frequency). For any component of A, which can be a parametric component
(e.g., learnable weights or momentum term in gradient descent in momentum) or a non-parametric
component (e.g., attention block), we define its frequency, denoted as f s, as its number of updates
per unit of time.

Given the above update frequency, we can order the components of a machine learning algorithm
based on operator (- > -). We let A to be faster than B and denote A > B if: (1) f4 > fB, or
(2) fa = fp but the computation of the B’s state at time ¢ requires the computation of A’s state

at time t. In this definition, when A ¥ B and B # A, we let A L B, which indicates that A and
B has the same frequency update, but their computation is independent of each other (Later, we
provide an example of this cases in AdamW optimizer). Based on the above operator, we sort the
components into an ordered set of “levels”, where (1) components in the same level have the same
frequency update, and (2) the higher the level is, the lower its frequency. Notably, based on the above
definition, each component has its own optimization problem and so context. While we optimize
the component’s inner objective with gradient-based optimizers, the above statement is equivalent to
having exclusive gradient flow for each component in the model. In general case, however, one can
use non-parametric solution (as we later discuss about attention).

Neural Learning Module. Given the above definition of nested learning problems, we define neural
learning module as a new way of representation of machine learning models that shows the model
as an interconnected system of components, each of which with its own gradient flow. Note that,
orthogonal to deep learning, nested learning allows us to define neural learning models with more
levels, resulting in more expressive architecture.

Nested learning allows computational models that are composed of multiple (multi-layer)
levels to learn from and process data with different levels of abstraction and time-scales.

Next, we study optimizers and well-known deep learning architectures from the nested learning
perspective, and provide examples that how NL can help to enhance those components.

2.3 Optimizers as Learning Modules

In this section, we start by understanding how well-known optimizers and their variants are special
instances of nested learning. Recall the gradient descent method with momentum,

Wit =W; +m;
m; = ajpim; — VL (Wi ;) a7

where matrix (or vector) m; is the momentum at state ¢ and «; and 7); are adaptive learning and
momentum rates, respectively. Assuming a1 = 1, the momentum term can be viewed as the result
of optimizing the following objective with gradient descent:

min (m VL(W;;2;)",T). (18)

This interpretation shows that momentum can indeed be viewed as a meta memory module that
learns how to memorize gradients of the objective into its parameters. Building on this intuition, we



can show that Adam is the optimal associative memory for the L2 regression objective on models’
gradients. Next, we show that how this perspective can result in designing more expressive optimizers:

Extension: More Expressive Association. As discussed earlier, momentum is a value-less asso-
ciative memory and so has limited expressive power. To address this issue, following the original
definition of associative memory (i.e., mapping keys to values), we let value parameter v; = P; and
so the momentum aims to minimize:

min (m Vﬁ(Wi;xi)T,Pi>, (19)

using gradient descent, resulting in the update rule:

Wit1 =W +m;
m;y; = OG411M; — ﬁtPiVE (Wi; Iz) . (20)

This formulation is equivalent to using preconditioning the momentum GD. In fact, preconditioning
means that the momentum term is an associative memory that learns how to compress the mappings
between P; and the gradient term V.L(W;; ;). While any reasonable choice (e.g., random features)
of preconditioning can improve the expressivity of the initial version of GD with momentum per se is
a value-less memory (i.e., mapping all gradients to a single value), the above perspective gives more
intuition about what preconditioning are more useful. That is, the momentum acts as a memory that
aims to map gradients to their corresponding values, and so a function of gradients (e.g., information
about Hessian) can provide the memory with a more meaningful mappings.

Extension: More Expressive Objectives. As discussed by Behrouz et al. [58], optimizing an
inner objective of dot-product similarity results in Hebbian-like update rule, which can cause the
memory to be less effective. A natural extension of this internal objective is to use ¢5(-) regression
loss (for measuring the corresponding key-value mapping fitness) and minimize the loss func-
tion |[mVL(W;;z;) T — P;||3, resulting in the update rule of:

Wipr = Wi+ mjiq, (21)
m;, 1 = (Oéi+1I — VE (WZ, (EZ)T V,C (Wl, l’l)> m; — ntPZV,C (VVZ7 .’EZ) s (22)

This update is based on delta-rule [64] and so it allows the memory (momentum) to better manage its
limited capacity and better memorize the series of past gradients.

Extension: More Expressive Memory. As discussed earlier, momentum can be viewed as a meta
memory model that uses a linear layer (i.e., matrix-valued) to compress the past gradient values.
Due to the linear nature of momentum, only linear functions of past gradients can be learned by
its internal objective. To increase the learning capacity of this module, one alternative is to use
alternative powerful persistent learning modules: i.e., replacing a linear matrix-valued memory for
momentum with an MLP. Therefore, momentum as the a memory for the past gradients, has more
capacity to capture the underlying dynamics of the gradients. To this end, we extend the formulation
in Equation 17 as:

Wi+1 =W; + m;g (ul) , and m; ;] = op1m; — ntVE(Q)(mZ-; u;, I), (23)

where u; = VL (W;;z;) and VL) (-) is the internal objective of momentum (e.g., dot product
similarity (m(u;" ), 1)). We refer to this variant as Deep Momentum Gradient Descent (DMGD).

Extension: None Linear Outputs. Building upon the above perspective, in which we see the
momentum as a neural architecture, one common technique to enhance the representation power
of momentum memory module is to use non-linearity on top of its output [28, 65]. That is, we
re-formulate Equation 23 as:

Wis1 =Wi+o(mi (), and m g = aipm; — 7, VL (my;u,, 1), (24)

where o (+) is an arbitrary non-linearity. As an example, we let o(-) = Newton-Schulz(-), where
Newton-Schulz(-) is the iterative Newton-Schulz method [66], and m(-) be a linear layer; the
resulted optimizer is equivalent to Muon optimizer [34].



Going Beyond Simple Backpropagation. As discussed earlier in Section 2.1, the pre-training
process and backpropagation is a form of associative memory, where input data is mapped to the
surprised caused by its predicted output V,,, L(Wy; 4 ):

Wit1 =Wy — i Vi, LWy ) = Wy — 41V LWy ) @ 2, where @y ~ Digin, (25)

which from the associative memory perspective is equivalent to one step of gradient descent in
optimization process of:

I%[i/l’l (Wxt,vytﬁ(Wt;xt». (26)

As we discussed in Appendix D, the above formulation cause ignoring the dependencies of data
samples like z;. To extend it to a more powerful formulation where it also consider the dependencies
of data points (which is extremely important when we use optimizer in the token space as they are
not independent), we use Lo regression objective with one step of gradient descent as follows:

min ||Wz; — Vi L(Wes )3 27)

This formulation results in a new variant of gradient descent, which can be simplified as follows:
Werr = Wy (T= 242/ ) = net Vi, L(We; 22) (28)
=W (I - xtl’:) - 77t+1vyt£(Wt;xt) Q x4, where x; ~ Dtrain; (29)

Later, we use this optimizer as the internal optimizer of our HOPE architecture.

3 HOPE: A Self-Referential Learning Module with Continuum Memory

Existing architectural backbones consist of (1) a working memory module (e.g., attention), which is
responsible to actively fuse the information across sequence length, and (2) a feed-forward layer (e.g.,
MLP) that fuse information across features and acts as the persistent memory or knowledge storage
of pre-training phase. From the NL perspective, pre-training is the phase that the most outer level
of the learning module is updated over its /imited context flow. Accordingly, in the continual setup,
such pre-training phase is also rarely updated over time, and so its corresponding knowledge storage
needs to rarely be updated over time. Given this intuition, we extend the traditional view-point of
long-term/short-term memory system and suggest a knowledge storage feed-forward for each level
(frequency domain).

Given the definition of frequency and arbitrary chosen objective £, Continuum Memory System
(CMS) is formalized as a chain of MLP blocks MLP(/1)(-), ... MLP{/*)(.), each of which associated

. . ® L
with a chunk size of C¥) := % such that given input = {z1,...,z7} the output of the
chain is calculated as (we disregard normalizations for the sake of clarity):

Y = MLP(f’“)(MLP(f""l)(“'MLP(fl)(l’t))), (30)

where the parameters of /-th MLP block, i.e., o'/ 2), are updated every C' 0 steps:

o) _ gt _ { Xt cw nVf(O05m) i i =0 (mod CO), 1
ir1 = . €1y
0 otherwise.

In Appendix C, we discuss different variants of this formulation, including fully nested MLP layers.
Here nt(e) are learning rates corresponds to 0% and f() is the error component of an arbitrary

optimizer (e.g., VE(HEf 2); x¢) in gradient descent). The MLP block in conventional Transformers

architecture [27] is a special instance of this formulation, where k& = 1 and frequency is zero
(after pre-training). It is notable that Equation 31 provides an important interpretation: parameters

0§f *) are responsible for compressing their own context into the their parameters and so they are a
representative of abstract knowledge of their context.

HoPE. We further present a self-referential learning module based on Titans [28] and our variant of
gradient descent in Appendix B. Combining this self-referential sequence model with continuum
memory system results in HOPE architecture.
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Figure 3: A comparison of Hope architectural backbone with Transformers (Normalization and
potential data-dependent components are removed for the sake of clarity). It is notable that while
self-modifying Titans is a replacement for the attention block, CMS is a replacement for the static
MLP block.

Table 1: Performance of HOPE and baselines on language modeling and common-sense reasoning
tasks. Hybrid models are marked with *.

Model Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppld ppll | accT acctT acc_nt acct accT acc_n?T acctT acct T
760M params / 30B tokens
Transformer++ | 2521 27.64 | 3578 6692 42.19 5195 60.38 3246 3951 60.37 48.69

RetNet 26.08 2445 | 3451 67.19 41.63 5209 63.17 32778 3836 57.92 48.46
DeltaNet 2437 2460 | 37.06 6693 4198  50.65  64.87 31.39 3988 59.02 48.97
TTT 24.17 2351 | 3474 6725 4392 5099 6453 3381 40.16 59.58 47.32
Samba* 20.63 2271 | 39.72  69.19 4735 5201  66.92 3320 3898 61.24 51.08

Titans (LMM) 20.04 2196 | 3740 69.28 48.46 52.27 66.31 3584  40.13 62.76  51.56
HOPE (ours) | 20.53  20.47
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~
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N
©
]
)
(=)}
(e
vy
I
(=]
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w
A8}
)
(=)}

1.3B params / 100B tokens
Transformer++ | 18.53 1832 | 42.60 70.02 5023  53.51  68.83 3510 40.66 57.09 5225

RetNet 19.08 17.27 | 40.52 70.07 49.16 54.14 67.34 3378  40.78 60.39  52.02
DeltaNet 17.71  16.88 | 4246 70.72 5093 5335  68.47 3566 4022 5529 52.14
Samba* 16.13  13.29 | 4494 7094 5342 5556  68.81 36.17 3996 62.11 54.00

Titans (LMM) | 15.60 11.41 | 49.14 73.09 56.31 59.81 7243 40:82 42.05 6097 56.82
HOPE (ours) | 15.11 11.63 | 50.01 7329 56.84 60.19  72.30 4124 4252 6146 5723

4 Experiments

For the sake of space, in the main paper, we report the results of the HOPE’s evaluation on language
modeling, and common-sense reasoning, tasks. However, we report an extensive set of results,
including on experiments on optimizers, emergence of in-context learning, continual learning abilities
of HOPE, ablation studies, long-context tasks, etc. in the appendix. Details about the experimental
setups and other used datasets are in Appendix F

Language Modeling and Common-sense Reasoning. We follow recent sequence modeling stud-
ies [28, 67, 68] and report the results of HOPE and baselines with size of 760M, and 1.3B on language
modeling and also commonsense reasoning downstream tasks [69—75]. These results are reported in
Table 1. HOPE demonstrate a very good perfomance across all the scales and benchmark tasks, out-
performing both Transformers and recent modern recurrent neural networks, including DeltaNet [63]
and Titans [28]. Comparing HOPE to Titans and DeltaNet, we can see that dynamically changing the
key, value, and query projections based on the context as well a deep memory module can result in a
model with lower perplexity and higher accuracy in benchmark results.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction both accurately state the main theoretical contri-
butions of the paper and accurately discuss our experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our method in the main text, including its scope,
assumptions, and potential areas for future improvement.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All assumptions are stated in the body of the theorems directly. As much of
the proofs as possible is provided in the main paper text. We provided all detailed proofs of
lemmas and theorems introducing this work.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper fully discloses all the information needed to reproduce the main
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: In the paper, we provide all the details need to produce the results, including
the details of the implementation. All the datasets used in this paper are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: Detailed descriptions of the experiment and the associated code are provided
in the supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To account for variability and support statistical validity, we report the results
computed over multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have used TPUVS to perform all the experiments in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There are no violations of the NeurIPS Code of Ethics in this paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provided a discussion in the Appendix about the impact of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all external assets and explicitly acknowledge their licenses
and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: This paper does not introduce new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve any user studies.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No usage of LLMs in the methodology or experiments.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Related Work

In this section, we provide a more comprehensive review of literature that are connected to our work:

Modern Deep Learning Architectures. Recent research has focused on developing efficient
recurrent alternatives to Transformers to mitigate their quadratic computational cost and limitations in
modeling long contexts, primarily driven by the faster inference and training capabilities of recurrent
architectures [76]. Initial models, including RetNet [61], RWKYV [77], and S5 [78], employed
data-independent transition matrices with Hebbian-like update rules. Subsequent approaches began
integrating input-dependent parameters into these linear architectures (e.g. SSMs [79, 80], RWKV6
[81]) or adopted more expressive memory updating mechanisms based on the delta rule [59, 63, 82—
84]. More recent advancements have extended these memory architectures to deeper models, utilizing
delta-rule-like [65] or momentum-based [28] update rules. To further improve delta-rule-based
sequence models, Siems et al. [85] proposed employing multiple gradient descent updates per token,
leading to enhanced expressiveness in state tracking tasks.

Fast Weight Programs. The conceptualization of recurrence as key-value associative memory
systems originates from Hopfield networks [86] and fast weight programmers, where dynamic fast
programs function as writable memory within recurrent neural networks [62, 63, 87]. Among the
learning paradigms for these systems, the Hebbian [88] and delta [64] rules are prominent and
have been extensively investigated in the literature [62, 63, 83, 84, 89-91]. Also, recently, the
duality of meta-learning perspective and the architecture has been in the core of attention of several
studies [58, 63, 92, 93]. Furthermore, our HOPE, can be seen as the generalization of SRWM [94],
where instead of a matrix valued memory, HOPE uses a neural networks and also its update rule is
generalized using: (1) a data-dependent gating mechanism that helps to forget the past data; (2) We
update the memory using gradient descent with momentum, where SRWM is equivalent to update
the memory using a simple gradient descent. Also, while SRWM is not parallelizable, we present a
parallelizable training algorithm for our HOPE.

B Reformulating Modern Architectures as Learning modules

Modern sequence models such as Transformers [27] and recurrent models [28, 60, 63, 65] are the
backbones of recent advances in language models. Recently, the equivalency of such models with
associative memories that aim to learn a mapping from keys to values from data have been studied in
different settings and objectives [58, 59, 65, 92]. Particularly, we focus on the general framework of
Miras [58], which defines associative memory as Definition 1 and optimizes the internal objective
(called “attentional bias’’) with a choice of optimization algorithm on an arbitrary class of functions
(i.e., memory architecture). While this formulation alone indicates that the well-known architectures
are instances of nested systems of associative memory, next, we review this equivalency for some
learning rules and architectures.

From now on, we assume that keys {k;}% , values {v;}~_,, and queries {q,}~_, are given: they
often are defined as the projections of the input, i.e.,

ki=x,We, vi=xW,, g, =xV, (32)

In this design, since projection parameters (i.e., Wy, IW,,, and W) are optimized in a lower frequency
level, the sequence model component (e.g., self-attention) has a higher frequency and so the learning
process of the associative memory happens in a lower level. Accordingly, for the sake of clarity, we
only discuss the higher frequency level (i.e., the internal learning process of the associative memory).

Softmax Attention. From the associative memory viewpoint: given keys {k;}~_,, values {v;}£ ,,
and queries {q;}~ ,, Softmax attention block [27, 95] can be reformulated as a non-parametric
solution to the ¢5(-) regression objective with Nadaraya-Watson estimators [96, 97]:

L L

. S(kmq)
M* = argmin Y s(k;, q)|lv; — M|3 = <L /7.
M ; ; Zfﬂ s(kj,q)

where L is the sequence length [65]. This formulation optimizes the memory M(-) with respect to
the entire context; however, one design choice can be to limit the optimization process to the past ¢

v;, (33)
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tokens, resulting in:

t

t
. S(ki7 q)
M* = arg min s(ki, q;)||vi — M|)% = 7 vy, (34)
M i:;+1 i:;Jrl Zj:tchrl s(kj. q)

which is equivalent to the sliding window attention (SWA). Therefore, attention and its more ex-
pressive variants [92] also are instances of Definition 1, when instead of gradient descent or other
parametric methods, we find the optimal non-parametric solution to the mapping.

RNNs with Hebbian Rule. The first generation of modern recurrent architectures (e.g., Linear
attention [60], RetNet [61], RWKYV [77], lightening attention [98]) are based on Hebbian-like learning
rules [88]. For this class of models, the inner objective to measure the quality of mapping between
keys and values is the dot-product similarity. That is, given a matrix-valued memory M € RZx",
keys and values k, v € R¢, objective /3(/\/(; ki, vi) := —2(Mk;, v;), and a kernel ¢(-), we optimize
the equivalent associative memory optimization problem (see Definition 1) with gradient descent and
weight decay, resulting in:

My =a M1 —n VMt,lﬁ (Mi—1;0(ke),ve) = apMy_1 + 1 v (ktT) ) (35)

7vt¢(k:)

which recovers the original linear attention recurrence [60]. Given different settings for o (i.e.,
either is 1, learnable, channel-wise, and/or input-dependent) and also ¢(-) (i.e., identity, polynomial
kernels, etc.), the above recurrence recovers different variants of linear attention with Hebbian
rule [60, 61, 81, 99-101]. Therefore, the variants of linear attention with Hebbian rule can be
reformulated as the process of an optimization problem, in which the memory aims to learn the
mapping between keys and values based on dot-product similarity objective, with gradient descent.

RNNs with Delta Rule. To improve the memory management and to enhance the memory capacity
of the above group, several studies suggest replacing Hebbian rule with Delta rule as the learning
algorithm in recurrent neural networks [63], resulting in models such as DeltaNet [63], Longhorn [59],
and RWKV7 [82]. When letting M € R?X", delta rule is equivalent to optimizing MSE objective
L: = [|[Mik; — v¢]|3 with Ret;(M, M;_1) = | M; — M;_1]|% as local retention, and stochastic
gradient descent as the optimizer:

M=M= Vo, L (Mi—150 (k) ,ve) = (I - ntktk2—> M1+ ’Utk; (36)

(Mtflktf’vt)kz

Using other forms of retention gates (e.g., Ret;(M, M;_1) = | M; — oy M;_1]|%), optimization
algorithms with weight decay (e.g., regularizing with || M, ||g for a given ¢ > 0), multiple steps of
gradient descent, and/or different formulations of learnable parameters such as 7; and a; can result in
diverse variants of delta rule [58, 59, 65, 67, 82, 85, 91, 92]. Therefore, Delta rule and its variants are
all instances of an optimization problem, in which the model aims to learn a mapping between keys
and values based on the Lo-regression objective.

Beyond Conventional Learning Rules: Omega, Oja’s, and Non-Euclidean Learning Rules.
More recently, there have been growing interests in designing architectures from the associative
memory perspective (see Definition 1) and use more complex internal objectives, and/or optimization
algorithms, resulting in learning algorithms beyond Delta and Hebbian rules [58, 68, 102—-104]. More
specifically, to enhance the stability of Hebbian rule (discussed in Equation 35), Irie et al. [102]
introduced OjaNet based on Oja’s rule [105] with the following recurrence:

My =M1+ v (k)T — M{_jvy) . (37)

In the associative memory formulation (as in Definition 1), this recurrence can simply be reformulated
as one step of gradient descent as:

My =My = Vi, L(Mi—1;6 (ki) ,ve), (38)

M vi—vigp(ke)T
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where £(M; ki, v;) = —2(Mky,v;) + [|MT v|)3 and ¢(-) is a kernel [102, 106]. Although this
design enhances the Hebbian learning rule by enforcing a unit-norm constraint for the single-neuron,
it has been reported to empirically underperform models based on Delta learning rule [102]. To
further enhance the Delta rule through the design of more expressive objectives, recently, Behrouz
et al. [58] suggested going beyond Euclidean spaces and use L, = || - ||5 norm for the internal
regression objective, showing better empirical performance and robustness in long context tasks
compared to Delta rule and its variants.

While the majority of learning rules are online update mechanisms—meaning that at each state, the
models only need to keep the memory and the current (batch of) input—-Omega rule [68] suggest an
update rule based on a set of past (batches of) inputs (or all inputs). More specifically, given a memory
M with an arbitrary structure, keys and values k, v € R9, an arbitrary objective £(M; k;, v;), and a
kernel ¢(-), Omega rule is defined as:

t
My=or M1 — Y i LM o(ki), vi), (39)

1=t—c+1

where ¢ > 1 is the local window of cached inputs. Note that in the special case of v, ; = 1 and ¢
equal to the entire context length, the optimal solution of the above design collapses into an online
case, where the update rule only depends on the current state and the current input [103]. For further
discussion with more details about representing architectures as associative memories and so an
optimization problem, we refer the reader to Behrouz et al. [58].

A Note on Gating in Modern Sequence Models. One of the recent architectural changes in modern
language models is the gating of a linear layer’s output with the output of the sequence model.
Despite significant improvement resulted by this method, it is still unclear that how it enhances the
performance. The main difference between feedforward network and modern recurrent memory
modules (e.g., linear attention [60] or deep memory modules [28]) when their initial state of the
memory is meta-learned, is the second level in memory modules that perform in-context learning
and adapt its state with the context. From this viewpoint, when the initial value of the memory is not
meta-learned, it only relies on the in-context adaption of the memory and so there is no persistent
memory system that stores the knowledge of pre-training in this block. Therefore, when the initial
value of memory is not meta-learned, which is common in earlier variants of linear transformers, the
gating of linear attention acts as a persistent memory and the initialization of the memory module.

C Details on initialization of CMS

As discussed earlier, different levels might have different process of knowledge transfer. Accordingly,
while the above formulation suggests a spectrum of memory systems in different levels and so with
different frequencies, their connections can vary based on the design. In the following, we discuss
some potential variants:

Nested Continuum Memory Systems. The first variant is a fully nested continuum memory system,
in which the initial state of the MLP block in level s + 1 is meta-learned in level s. This design allows
for higher-order in-context learning ability, where each of the levels has its own context flow and
re-initialized after the end of the context. More specifically, given an arbitrary 1 < s < k,

egfs-%—l)

U®o,T; ‘@)] ; (40)

=argmin E+_ce
[

where C(*) is the context length of the MLP block in s-th level. Following this design, at the end of
the optimization process of each block (i.e., after [C' (s) /C (SHW steps.) the value of the memory will

be re-initialized to Géf ) Note that the update mechanism of each block in its own level remain
unchanged (i.e., Equation 31).

Sequential Continuum Memory Systems. In the second variant, the MLP blocks are located

sequentially (i.e., the output of the MLP block in level s is the input for the MLP block in level s + 1)
and also the initial state of MLP blocks are all connected through backpropagation in the lowest
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frequency level. Given an arbitrary 1 < s < k,

0o, T;9)|, (41)

O(st) =argmin E+_ o)
o

where C(1) is the context length of the MLP block in the lowest frequency level. Since the initial
state of all memories are meta-learned in the lowest frequency, the most persistent knowledge of all
components is the compression of the same context flow.

Independent (Head-wise) Continuum Memory Systems. In this variant, we keep the knowledge
transfer process in Equation 41, but change the output computation in Equation 30. While the
previous formulation designs the memory system as a sequence of blocks, and so making their
input/out dependent to each other, this variant uses independent blocks with different context length
and then combine them using an aggregation process:

y, = Agg (MLP(f’“)(wt), MLPr=1) (g,), - .. ,MLP(fl)(act)) . (42)

The above Agg (-) is an arbitrary function that aggregates all the inputs to compute the output. For
example, one straightforward and simple design choice is to use a learnable weighted sum of the
input.

CMS Design Helps with Continual Learning. Based on the design of CMS, a fair question is
to ask: Why and how CMS can help with longer context length and generally continual learning.
Here, we provide a simple answer to this question: Viewing MLP blocks in CMS as the storage
of model’s knowledge catastrophic forgetting can happen when we update a block and as its result,
the old knowledge stored in its parameters are forgotten. In CMS design, however, when updating
an arbitrary block of MLP(/*)(.) for some 1 < s < k, the potentially forgotten knowledge from
MLP(/+)(.) is still stored in other components such as MLP(/s')(-), where s’ < s. Also, in this case
(i.e., the knowledge is already forgotten from MLP(/+) () but it is still in MLP(/+") () for s’ < s) the
knowledge transfer through backpropagation (for their initial state) can circle back the knowledge to
MLP(/s) (+), resulting in a loop through time dimension, and so hardly forgetting important knowledge.

Is CMS Efficient Enough? A common concern when updating the parameters of a model in a
continual manner is its efficiency. Therefore, a fair question is to ask if CMS causes significant
computational overhead for the model. To answer this question, let us recall from Appendix B that
modern recurrent neural networks are also continually updating a subset of their parameters (i.e.,
their memory state). These parameter updates, however, take advantage of sequence parallelization as
well as updating only a small number of parameters. To this end, for CMS, we highlight two points:

* In the CMS design, at each time, updates are restricted to blocks approaching their scheduled
update time (based on their frequency). As a simple example, consider a Transformers but
with replacing its MLP blocks with CMS. Let the model have Ly, layers, 4 levels of MLP

blocks in CMS with highest frequency of f , and hidden dimension of dj,. On average, the
update cost is for O (% X L'Ty X d?n) of parameters, which consists of only a small number
of parameters at each time.

* The update mechanism of Equation 31, not only helps with the enhancing the persistent
memory of the model, but it also unlocks the sequence parallelization for higher frequency
levels. More specifically, for input &; when ¢ Z 0 (mod C' (e)) there is no sequential process
inside the chunk and so all the computations for tokens correspond to different values of
i #Z 0 (mod C'¥)) can be done in parallel. The details of such training algorithm is the same
as the training procedure in Behrouz et al. [28], Sun et al. [65].

Therefore, in summary, CMS can be fast in practice, mainly due to the fact that it updates only small
number of parameters at each time, and also its design unlocks sequence parallelization.

D Reformulating Modern Optimizers as Instances of NL

In this section, we start with viewing backpropagation process and optimizing a neural network from
the associative memory and data compression perspective. Then, we discuss how variants such as
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momentum-based optimizers are instances of nested associative memory systems. Finally, we discuss
alternative methods leading to deep optimizers with higher expressive power from the associative
memory perspective.

D.1 Backpropagation as an Associative Memory

Updating the weights of a neural network through backpropagation [29, 107] has been the critical
component of training large-scale deep neural networks. Intuitively, in this optimization process, first,
the error of the model’s output with respect to target is calculated, and then each layer is updated
based on its contribution to this error. This section aims to explain this process through the lens
of associative memory and discuss how it fits within the nested learning paradigm. For the sake of
clarity and simplicity, we assume a deep MLP model, but all the derived formulations in the following
can simply be adapted to other architectures as well. Given an MLP with L layers parameterized
with {W, - + by} eL:p the required gradients in backpropagation are computed as:

oL .
oW, Sediq, and Sy =Jg, (20)" (Wii0e11), “43)

local output surprise for layer £

where zy = Wy &y_1 + by is pre-activation, and so &, = ¢, (z,) is the output of ¢-th layer, ¢,(-) is
its non-linearity, and J,(-) is the Jacobian. Therefore, the update of the ¢-th layer with gradient
descent is computed as:

Wft+1 = Wft — My ] 53;71 . 44)

Here, &,_1 is the input of the layer and d, measures the local error signal for layer ¢ or equivalently
is a metric that measures the surprise of layer £’s output given its input. Similar to our example in
Section 2.1, we can write Equation 44 as:

1

We,., :argrr‘}‘i/n (Wxp_1,0,) + HWfWgtH%, (45)

g1

which is an associative memory module that aim to map the input of each layer &,_; to its local error
signal, d, (see Definition 1). That is, the above formulation implies that the training process of a
neural network with gradient descent and backpropagation can be viewed as a compression process,
in which each layer stores the mappings between its input and the corresponding local error signal.

D.2 Momentum-based Optimizers as Associative Memories

Momentum-based optimizers are the major components of modern machine learning models’ train-
ing [33, 34, 108]. To explain momentum-based optimizers as associative memories, let us start from
a simple gradient descent algorithm:

Wigr = Wy — 0V, LWy @4 41), (46)

which updates the current state of the weights based on the momentary gradient (surprise). This
update rule does not incorporate the previous tokens and also the loss landscape that have been
traversed so far, resulting in slower (or less robust) convergence in many scenarios. To fix this,
momentum-based gradient descent methods incorporate an Exponential Moving Averages (EMAs) of
past gradients:

Wng =W, + my,
T
my, = g1y, — o1V, £L(We,i@ep1) = qoppimie, — Negt1 6o &y, (47)

where matrix (or vector) m, is the momentum at state ¢ and «; and 7, are (adaptive) learning and
momentum rates, respectively, and d, and &y_; are defined the same as in Equation 43. Similar to
Equation 45 and one of the examples in Section 2.1, assuming «; 1 = 1, the momentum term can be
viewed as the result of optimizing the following objective with gradient descent:

min (m &y_1,0y). (48)

The case of ai;1 # 1 is equivalent to GD on the above minimization plus an ¢,-regularization on
the momentum term. Thus, momentum can indeed be viewed as an associative memory module
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that learns how to compress the past gradients of the objective into its parameters. Contrary to
Equation 45, which was a simple 1-level associative memory and the update was directly applied to
the memory, here the state of the momentum determines the update for the weights. In other words, it
is a 2-level optimization procedure, in which the inner-loop learns the momentum and the outer-loop
uses the state of the momentum to update the weights.

From this perspective, we can generalize the definition of momentum from EMAs to any arbitrary
associative memory module that aims to compress the past gradients or maps the input of each token
to its corresponding local error. This generalized momentum can be expressed as:

We, o, =We, +my, (49)
(50)

where my is the solution of the following associative memory, optimized by gradient descent:
min £ (m; &1, —08;). (51)

Here, the objective £(-) is different from the original objective of the problem at hand, and £(-)
is the objective that defines the momentum and measures the quality of its mappings. In fact, the
momentum term in this formulation aims to adapt in-context (recall that the context of the momentum
is the gradients) to the local error rates based on the input of the layer. Most popular optimizers
are formulated as element-wise update rule (for computational efficiency reasons) and so we first
explore the element-wise associative memory formulation of momentum and connect it to popular
optimizers such as Adam [33]. Showing that Adam can be viewed as the optimal associative memory
to the Lo-regression objective that aims to predict the variance of gradients, we discuss other similar
algorithms such as RMSProp [109], SignSGD and its momentum-based variants [110], NAdam [111],
AMSGrad [112], RAdam [113], and Lion [114] are also instances of an associative memory that aims
to compress the gradients. We then go beyond element-wise formulation and show that AdaGrad [108]
is also an associative memory module. Due to the connection of AdaGrad with optimizers such as
Shampoo [35] and Soap [36]-i.e., as the approximation of the preconditioning term—we then conclude
that all these optimizers can be re-formulated as associative memory. Next, we discuss another class
of optimizers based on preconditioning and reformulate them from NL’s perspective in more details:

Preconditioning and Approximation of Hessian. Another class of algorithms is preconditioning
algorithms where the idea is to approximate Hessian inverse to mimic the behavior of Newton’s
algorithm. Formally, gradient descent with preconditioning is defined as:

Wi, =W, =1 P ge,, (52)

where preconditioner Py, is often a positive-definite matrix. A critical interpretation of precon-
ditioner is their role in performing gradient descent in a transformed coordinate system, which can
be viewed as a mapping from gradients to that system of interest. Accordingly, we reformulate and
interpret the preconditioner in Equation 52 as an associative memory that maps the set of gradients
(or a function of gradients denoted as g) to the system of our choice, denoted as g:

We,o = We, = Ph (96, ) - (53)
where internally (in a nested level), P, learns how to perform this mapping using an objective:
min  £(P(9):9). (54)

Given this viewpoint, the main question is about finding the best coordinate system that can empower
the compression process. The most simple variant is an identity mapping, where we preserve the
metric system and use P to map g (i.e., gradients in this case) to itself, resulting in preconditioning
terms in Adam [33] and AdaGrad [108]. These results, along with the representation of Adam and its
variants as associative memories, show that not only momentum-based optimizers are associative
memories, but they also can be decomposed into a set of nested learning problems, each of which
optimized with gradient descent. In a more general form, however, one can use more nested levels
and optimize the inner problems in Equation 54 with gradient descent, resulting in:

Piii =P — G1VP L (Piigii1Giia) - (55)
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In the NL framework, to design an effective preconditioning, one needs to find the right choice

of g and L. This viewpoint can also lead to other classes of algorithms with gradient/momentum
orthogonalization: e.g., Muon and its variants [34]. Recalling Muon optimizer [34]:

Wi,,, = Wy, + NewtonSchulzy, (my, )
My, = Q1M — nf,tJrleetﬁ (Wlt;wtﬂ) ) (56)

where NewtonSchulzy(-) performs k steps of Newton-Schulz orthogonalization process. From the
above discussion about the general formulation of preconditioning, one can see NewtonSchulzy(-)
operator as a mapping from gradients of momentum term to a proper metric system. The choice
of proper coordinate system in Muon is to orthogonalize the gradients and so we aim to find a
mapping P (-) by minimizing a loss function minp £(P; O, m) where objective L(+; -, -) measures
the quality of mapping from O to either m or g by P(-). A critical challenge in this process is that
the parameter O itself is not given and so the mapping requires learning both the mapping and the
proper orthogonal space. A simple formulation measuring orthogonalization, can be achieved by
defining the objective as:

L(P(9):9) = |P(g)" P(g) — I|F. (57)

where P(g) is the orthogonal space that we aim to directly learn from gradients. This objective
ensures that the gradients (or momentum) and their mapping are relatively close while the mapping is
to an orthogonal space. Optimizing the above objective to find O = P(g) with one step of gradient
descent results in:

Oi11 =0, —(11Vo, L(0i;g,) = O; — Gy (Oi —g; +20; (OiTOi - I)) , (58)

which recovers the 3-degree polynomial (initial value O = g,). In a summary, the higher-frequency
level learns the orthogonal mapping and then the lower-frequency process use the learned mapping to
optimize the weights.

E Details on Hope Architecture

A general formulation for the associative memory-based blocks is to project the data into keys, values,
and queries and learns how to map keys to values and how to retrieve from the mapping based on
queries. More formally, for a parametric associative memory, let x; € R? fort = 1,..., L be the
input, we have:

ki =2 Wi, vy = x W, q, = x W, ne = xeWy, ap =z W, (59)
n}\i{n L(M; ke vy), with an optimization algorithm (60)
Y, = Mtqt . (61)

For the sake of clarity, we use red (resp. blue) to highlight computations/weight in the upper level
(resp. lower level). We can add a new level for each of Wy, W,,, Wy, W,,, and W,, and allow them to
be updated in-context. For the sake of efficiency, a simple version is to share the values for all the
components in the nested system of associative memories:

ki = Mk,tq (iEt) s vy = My (wt) s q; = Mq,tfl (th) , e = Mry,tfl (fEt) ,

Qy = Ma,tfl (wt) , (62)

I/\r}lin L (Mp; O, vy), with an optimization algorithm, O € {k,v,q,n, a}, (63)
O

/rvlnin L (Mnem; kt, v1) with an optimization algorithm, (64)

Y = Mmem,t (qt) ) (65)

where the initial states of all memories, i.e., M forany O € {k, v, q,7, o, memory} are meta-
learned across all sequences/contexts. As discussed earlier, the meta-learning of the initial states of
memories is essential for both fast-adaption, training stability, robustness to noise in the data.

This design provides a fully adaptive memory, where all the components can adapt themselves
in-context. It, however, (1) still lacks self-modification, where the model in response to new data
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changes its own parameters or learning process [115]; (2) has suboptimal design as it shares of
keys and values for all the memories. In continual learning, where the model requires consistent
weight/knowledge update in response to new data, it is critical for the model to not solely rely on data,
and instead learns how to modify itself when it is needed. Motivated by the above points, and inspired
by the self-modifying mechanisms that generate their own values based on the context [94, 115, 116],
we present self-modifying deep associative memory where the models generate their own values:

Y, = Mmemory,tfl (qt) ) kt = Mk:,tfl ("Bt) ) Uy = Mv,tfl (xt) 5 e = M?],t/fl (mt) 5

ap = Mgy (wt) ) (66)
oo = Moo (ve), (Generating its own values for each memory) (67)
H&in L (MD; k:, f’[l,t) , with an optimization algorithm, O € {k, v, ¢g,n, a, memory},
Mp

(68)

where q, = x;V/ is the only non-adaptive projection, 7; is the learning rate in optimization process,
and o is the retention gate (forget gate or weight decay) in the optimization process. Note that, again,
the initial states of all memories, i.e., M o for any O € {k, v, g, n, o, memory} are meta-learned
across all sequences/contexts, and so are optimized in the higher levels (or outer-loop).

Learning the mappings for associative memory modules (see Equation 68) requires a choice of
optimization algorithm as well as an objective £ that measures the quality of mappings. A simple and
common choice for objective and optimization process are Lo-regression loss, and gradient descent
algorithm. As for the objective, we use Lo-regression loss, i.e., L(M; k,v) = || M(k) — v||3. As
discussed earlier, the choice of optimizer highly depends on the context of optimization. For example,
gradient descent from associative memory perspective is based on dot-product similarity and so the
update at each step, is solely based on the input and does not incorporate the previous data samples to
the update. When performing optimization in the token space, however, we know tokens are highly
correlated. Therefore, we use our DGD with weight decay, resulting in general update rule of:

Y, = Mmemory,t—l (qt) 5 kt = Mk:,t—l ("Bt) ) Vg = Mv,t—l (mt) 5 m = M'r/,t—l (mt) 5

oy = Mu,t—l (fct) ) (69)
toy = Mpa (vy), (Generating its own values for each memory)

(70)
Mp = Mpi (OétI - ntktk:) —eVL My, (Mp—15 ke, D00t) (71)

O € {k,v, q,n, o, memory}.

Here, the architecture of the memories are arbitrary and even we are not forced to use the same
architecture for all components. We use a 2-layer MLP block as the architecture of all the memories:

Mg(+) = () + Woro(Woa(+))- (72)

E.1 Fast and Parallelizable Training

In the above, we discussed how to design a model that can learn to generate its own latent values and
so modify itself. The main challenge from the practical point of view is the efficiency of the method
and if its training is parallelizable. We follow the chunk-wise training algorithm of non-linear update
rules [28, 65] and use update frequency of f = CLD, where L is the context length. While there is

no limitation to use different chunk-sizes, in our experiments, we use two different value of chunk
sizes, one for the update of Mmemory(+) and the other for all the other memories in the self-referential
Titans.

In more details, given an input sequence {x;}X ; and chunk size 1 < C' < L, we split the sequence
into [£] chunks of {@(;—1)c44 }i21 fori =1,...,[Z£], and then generate all elements in Equa-
tion 69 at the end of each chunk for the next chunk. This allows for generating all the elements for
the entire chunk in parallel, before starting the computation for this chunk. Furthermore, to update
the memory modules based on Equation 71, we take the gradient with respect to the last state of the
previous chunk. Again, this allows for computing all the gradients for the next chunk in parallel. In
more details, given this chunk-wise updating procedure, the update rule for the self-referential Titans
is computed as:
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Y = Mmemory,Cx [&7 (qt) ;o k= Mk,CX [&1 (wt) y U = Mv,CX [&7 (wt) )

e =M, oxrey (@), =M, cure (@), (73)

vo, = Mpox [& (vy), (Generating its own values for each memory)

MD,t = MD,tfl (atI - Utktk?tT) - ﬂtngm XL (MD,Cx(g};kt,@D,t) s 74
OxT ;

O e {k,v,q,n, o, memory}.
Here, the architecture of the memories are arbitrary and even we are not forced to use the same
architecture for all components. We use a 2-layer MLP block as the architecture of all the memories:
Mao() = () + Woo(Woe()). (75)
Since all the gradients as well as new keys, values, learning-rates, and weight decays can be computed
in parallel before starting the processing of the current chunk, the above updates accepts the fast
parallelizable dual form that is discussed by Sun et al. [65] and Behrouz et al. [28]. To better illustrate
the above update rule for self-referential Titans, let us derive the recurrent formula for the simplest
case of matrix-valued memory. We derive the recurrent form for two different objectives:

* Dot-product similarity L(M; k,v) = —(Mk, v): Given this objective and linear memory,
the gradient is calculated as vk ", which results in update rule of:

Mo = Moy (e = mikok] ) = miom oy (76)

O e {k,v,q,n, a, memory}
» Ls-regression loss: Given this objective and linear memory, the gradient is calculated as
(ME — v)k ", which results in update rule of:

Mo = Moy (e = mikik] ) = m (Mo exrerhe — 900 K/ )
O e {k,v,q,n, a, memory}.

E.2 Hope Neural Learning Module

In the previous sections, we first discussed Continuum Memory System (CMS) that allows for more
persistent storage of memories and defines memory as a spectrum of blocks with different frequencies
of update. Due to the larger capacity and constraints for scaling the parameters, often CMS requires
simple learning rule but higher capacity to store more persistent knowledge. On the other hand, in
the previous section, we discussed the design of a self-modifying Titans, where it can generate its
own keys and so learning update to better adapt to the context. Contrary to CMS, the self-modifying
Titans has a small capacity but is using a complex and expressive learning rule. Accordingly, these
two systems seem to be complementary and their combination can enhance the model expressiveness
from different aspects.

To this end, we present HOPE architecture: A neural learning module that incorporates self-modifying
Titans followed by Continuum Memory System. The HOPE design is illustrated in Figure 3. Formally,

let ¢, € R fort = 1,..., L be the input, the HOPE forward pass is defined as (we remove the
normalization and convolution layers for the sake of clarity):
0 = Mumemory,t—1 (@) 5 ki = M1 (x:), vy = Moy o1 (24), (78)
e = Mpi1 (), o = Mg -1 (x), (79)
Vo = Mpoy—i (ve), (80)
MD,t = MD,t—1 (OétI - Wtktk;r) - 7]tv£/\/lgw,,_1 (MD,t—1; kt,@D,t), (81)
O e {k,v,q,n, o, memory}.
Yy, = MLP(fk)(MLp(fk—l)(. .. 1\/[]'_.13(]01)(00))7 (82)

where the block’s output for token ¢ is y,. In our experiments, we also normalize g and k with Lo
normalization and also use local convolutions with window size of 4.

Hope-Attention. We also use another variant of HOPE, in which we simply replace the self-modifying
Titans with softmax global attention [27].
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Table 2: Architectural Details.
Model Block Dim Head Peak LR Token

170M 12 768 16 3e-3 15B
340M 24 1024 16 1.5e-3 15B
760M 24 1536 16 1.25e-3 30B
1.3B 18 2048 8 Te-4 100B

F Experimental Setups

To study HOPE as a backbone of a language model and evaluate it on common language modeling
and common-sense reasoning tasks with the setup of:

¢ Datasets: We evaluate HOPE and baselines on Wikitext [69], LMB [70], PIQA [71], Hel-
laSwag [72], WinoGrande [73], ARC-easy (ARC-e) and ARC-challenge (ARC-c) [74],
SIQA [75], and BoolQ [117] benchmarks.

 Baselines: As for the baselines, we use RetNet [61] and DeltaNet [63] as the representatives
of the models that are purely based on Hebbian- or Delta-rule, and two modern matrix-
valued recurrent models with the best performance compared to others: i.e., RWKV-7 [118]
and Comba [67]. As another group of baselines, we compare with attention-free deep
memory modules with diverse internal attentional bias of dot-product, Lo, and L,, regression:
i.e., TTT [65], Miras [58], DLA [68] and Titans [28]. Finally, we also compare with
Transformers [27] as well as the hybrid of attention and linear RNN, Samba [119].

* Training: We train models with about 760M and 1.3B parameters, trained with 30B and 100B
tokens, respectively, from a mixture of FineWeb-Edu [120] and long-context documents with
a vocabulary size of 32K to train all the models from scratch. All models are trained with
standard next-token prediction for language modeling, optimized using AdamW with tuned
learning rate for each model, and with the default optimizer configuration as in Behrouz
et al. [28].
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