
Under review as a conference paper at ICLR 2024

TOWARDS COST-EFFICIENT FEDERATED MULTI-AGENT
REINFORCEMENT LEARNING WITH LEARNABLE AG-
GREGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent reinforcement learning (MARL) often adopts centralized training with
a decentralized execution (CTDE) framework to facilitate cooperation among
agents. When it comes to deploying MARL algorithms in real-world scenarios,
CTDE requires gradient transmission and parameter synchronization for each
training step, which can incur disastrous communication overhead. To enhance
communication efficiency, federated MARL is proposed to average the gradients
periodically during communication. However, such straightforward averaging leads
to poor coordination and slow convergence arising from the non-i.i.d. problem
which is evidenced by our theoretical analysis. To address the two challenges, we
propose a federated MARL framework, termed cost-efficient federated multi-agent
reinforcement learning with learnable aggregation (FMRL-LA). Specifically, we
use asynchronous critics to optimize communication efficiency by filtering out
redundant local updates based on the estimation of agent utilities. A centralized
aggregator rectifies these estimations conditioned on global information to improve
cooperation and reduce non-i.i.d. impact by maximizing the composite system
objectives. For a comprehensive evaluation, we re-create a federated multi-agent
autonomous driving environment based on MetaDrive. Our findings indicate that
FMRL-LA can outperform other baselines by at least 5% with respect to the system
utility on average.

1 INTRODUCTION

Federated reinforcement learning (RL) (Chen et al., 2021; Khodadadian et al., 2022; Zhuo et al.,
2019; Jin et al., 2022; Cha et al., 2020) has exhibited immense potential in integrating deep rein-
forcement learning models into a client-server paradigm. It has been proven effective in balancing
communication efficiency and privacy preservation. With the burgeoning rise of the Internet of
Things (Pinto Neto et al., 2023) that requires agent cooperation, and the prevalent use of multi-agent
systems (MAS) (Lowe et al., 2017), it is desirable to develop federated multi-agent reinforcement
learning (MARL) frameworks.

In MARL, centralized training with decentralized execution (CTDE) (Rashid et al., 2020; Kuba
et al., 2022; Sunehag et al., 2017) is a conventional learning regime lying between independent
learning (de Witt et al., 2020) and fully decentralized learning (Wen et al., 2022). This middle-
ground strategy can not only mitigate the non-stationarity caused by agents’ simultaneous decision-
making, but also prevent state and action spaces from expanding exponentially with agent number.
Nevertheless, the training phase of CTDE requires continual communication between agents and
servers. Thus, simply incorporating CTDE into federated learning (FL) (McMahan et al., 2017)
will lead to intractable communication overhead and bandwidth burdens. On the other hand, agent
interactions with their local environments make their experiences non-independent and identically
distributed (non-i.i.d.).

While recent efforts like FMARL (Xu et al., 2023) and Fed-MADRL (Song et al., 2022) have marked
advances in federated MARL (Kumar et al., 2017; Chen et al., 2021; Li et al., 2022b), they typically
assume an implicit i.i.d. in agent interactions and lack server-side coordination. Furthermore, these
methods tend to optimize singular, task-oriented objectives, e.g., the average speed in multi-vehicle
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Figure 1: Framework Comparison. πi: local policy whose parameters are θi; Qi: local value
function; Qtot: joint value function; ∇θi: local gradients; θ̄k: global model’s parameters at round
k; hi: local hidden state; wi: local utility. The left figure is the conventional value decomposition
framework where the parameters of the local policies are synchronized from time to time. The middle
figure indicates one current federated MARL framework where local parameters are synchronized
periodically and the global model is updated by direct averaging over local gradients. The right
figure is our proposed method which follows the federated learning paradigm and the weights of local
gradients for updating the global model are produced by the learnable aggregation module.

autonomous systems (Xu et al., 2023) and the system throughput in wireless communications (Song
et al., 2022). Such settings may be impractical for complex real-world settings with composite
objectives. For instance, in autonomous driving (Li et al., 2022a; Peng et al., 2021b), apart from
communication efficiency, we also consider factors like success rate in reaching destinations, overall
safety, and average vehicle speed.

In response to these challenges, we introduce Cost-Efficient Federated MARL with Learnable
Aggregation (FMRL-LA). It decouples the CTDE by separating the training steps of the server and
the client. On the server side, we propose two components for learnable aggregation: 1. Asynchronous
critics evaluate the utility of learning agents, guiding selection for optimal system communication.
2. A centralized aggregator integrates global information with agent utilities to periodically update
the global model, thus maximizing composite system targets. This design facilitates FMRL-LA to
improve coordination under the federated paradigm. Delving deeper into the non-i.i.d. challenge
posed by federated MARL, we theoretically delineate its adverse effects, providing a convergence
upper bound. We further prove that the proposed learnable aggregation can mitigate the challenge.
The comparison of different frameworks is exhibited in Fig. 1.

To conduct experiments with FMRL-LA, we resort to real-world multi-agent environment simulations
based on MetaDrive (Li et al., 2022a), an intricate autonomous driving benchmark out of its flexibility
across diverse scenarios. We extend it to support a client-server learning paradigm, incorporating
communication efficiency. To further enhance the practicality, in addition to the existing navigation
tasks, we design a multi-vehicle cooperative exploration task. Notably, we have integrated baselines
from the representative methods of cooperative MARL (de Witt et al., 2020) and communication-
inclusive MARL (Foerster et al., 2016), as well as the state-of-the-art method (Peng et al., 2021b)
using MetaDrive. Our experimental evaluations in navigation and exploration tasks underscore that
FMRL-LA can optimize system performance and efficiency simultaneously, delivering a balanced
performance across the metrics corresponding to composite objectives.

2 PRELIMINARY

Cooperative MARL Cooperative MARL can be formulated as Decentralized Partially Observable
Markov Decision Processes (Dec-POMDPs) (Rashid et al., 2020; Kuba et al., 2022), described by
a tuple G = ⟨n, S,O,A, P, r, Z, γ⟩, where n is the number of agents, and S, O denote the state
and observation spaces. A, the joint action space, is the product of all agents’ action spaces, i.e.,
A =

∏n
i=1Ai, where i is the agent index. We use lowercase s, o, a to represent an element in

the corresponding space. The environments’ dynamics are characterized by the transition function
P (s′|s, a) : S×A×S → [0, 1]. The system has a shared team reward function r(s, a) : S×A→ R.
In the aspect of each agent, due to the partially observable setting, at time step t, its observation
ot is drawn by applying the function Z to the current state st. Thus, oti = Zi(s

t) : S → O. γ is
the discount factor. The solution of a Dec-POMDP is a joint policy π̄ = (π1, π2, ..., πn), where
πi stands for the policy of agent i and we use θi, θ̄ to represent the parameters of agent i and the
joint policy, respectively. Each agent policy is trained with the agent’s experience comprised of a
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collection of agent observation-action history denoted as ξi = {(ot, at, ot+1)}Tt=0, where T denotes
the time horizon. In addition, we use ξ = {(st, at, st+1, rt)}Tt=0to represent one global team episode.
The goal of MARL is to learn a joint policy that can maximize the expected cumulative reward, i.e.,
π∗ = argmaxπ̄ Eτ∼π̄[RT (τ)],whereRT (τ) =

∑T
t=0 γ

tr(t).

Federated MARL We use τ to represent the number of local updates. K is the termination condition
of the training process, which is usually set as maximum communication rounds (Chen et al., 2021).
ψ denotes the system communication efficiency. We use the parameter θ to represent policy π. F (·)
represents the global objective function, while Fi(·) stands for the local objective function for each
agent i. Their relationship between the global objective and the locals in (Song et al., 2022; Xu et al.,
2023; Chen et al., 2021) are the same: F (x) = 1

n

∑n
i=1 Fi(x). In round k, all agent policies are

synchronized as θ̄k, which is drawn from the server. Then, each agent interacts with the environment
concurrently to accumulate local experience for updating the local policy indicated by {θk,τii }ni=1.
Next, the parameters {θk,τii }ni=1 or stochastic gradients {g(θk,ji ; ξk,ji )}τij=1 for i ∈ 1, 2, · · · , n will be
uploaded to the server. To sum up, the update rules on the server and client side are:

θ̄k+1 = θ̄k − η
1

n

n∑
i=1

τk
i∑

j=1

g(θk,ji ), θk+1,j
i =

{
θ̄k+1, j mod τi = 0,

θk,ji − ηg(θk,ji ), otherwise.
(1)

To indicate the convergence of the algorithm, we use the expected averaged gradient norm to guarantee
convergence to a stationary point (Wang et al., 2020; Bottou et al., 2018; Wang & Joshi, 2021):

E[
1

K

K−1∑
k=0

||∇F (θk)||2] ≤ ϵ, (2)

where || · || is the ℓ2-norm and ϵ is used to describe the sub-optimality. When the above condition
holds, we say the algorithm achieves an ϵ-suboptimal solution.

3 FEDERATED MARL WITH LEARNABLE AGGREGATION

Server Side When federated MARL (Xu et al., 2023; Song et al., 2022) adopts Eq. 1 as the
update rule for the server, it implicitly assumes that the agents are homogeneous. However, in
real-world environments, the agents are diverse in various aspects such as computing capability,
network connection, and local observation distributions, which results in heterogeneous agents with
non-i.i.d. experience distribution.

To deal with these issues, we introduce Asynchronous Critics to dynamically evaluate the agent
utilities in each communication round. Each critic corresponds to one learning agent. Its goal is to
maximize the return of the current agent. The inputs are hidden information hki , accumulated rewards

in recent communication round rk :=
∑τk

i

j=τk−1
i

rji and in agent history
∑τk

i
j=0 r

j
i . The output is a

prediction of the agent’s local utility:

wki = Ci

(
hki , r

k,
∑
k

rk

)
, (3)

where Ci is the asynchronous critic network of agent i. The output wki can be zero, which means
the corresponding agent does not need to upload its training parameters to the server in the current
communication round to implement client selection.

Next, the agent utilities are passed through a Centralized Aggregator to facilitate coordination. It
works similarly to the mixing network in value decomposition methods such as (Rashid et al., 2020;
Sunehag et al., 2017), which takes the local utility function as input and facilitates agent coordination
by maximizing the system utility condition on the global state. The RL loss is back-propagated to the
critics for improving the local utility estimation:

Qtot =Mix
(
wk1 , w

k
2 , · · · , wkn

)
, (4)
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Figure 2: The workflow of our proposed framework.

where Qtot denotes the system utility, which is reflected by the composite objectives. The server
aggregates the gradients based on the local utilities to update the global policy. Thus, the update rule
of the server is:

θ̄k+1 = θ̄k − η

n∑
i=1

wki

τk
i∑

j=1

g(θk,ji ), (5)

while the update rule for the clients remains the same as conventional federated MARL.

Client Side Considering the generalization of our method, we choose an independent reinforcement
learning algorithm and take the hidden states as additional outputs. During the communication, the
upload process of the clients can be divided into two stages. In the first stage, the agents upload their
rewards and hidden information to the asynchronous critics for local utility estimation and agent
selection, optimizing the communication efficiency. In the second stage, the selected agents upload
their gradients to the server for aggregation.

Framework Design Compared to the update rule for FMARL (Xu et al., 2023; Song et al., 2022)
represented by Eq. 1, we adopt a weighted aggregation for global policy update implemented by
the learnable aggregation module. The workflow of FMRL-LA is illustrated by Fig. 2. Specifically,
1. the server broadcasts the global model θ̄k to each agent; 2. The agents learn local behavior
policies {πi}ni=1 by interacting with the environment and maintaining hidden states; 3 and 4. During
client-server communication, agents conduct the two-stage upload described in the above subsection;
5. The centralized aggregator maximizes the composite system objectives condition on the global
states to facilitate coordination; 6. The global model is updated based on the local utilities.

4 CONVERGENCE ANALYSIS

In FL theory, a substantial body of research is devoted to exploring convergence properties under
diverse settings. These settings predominantly fall into two categories, i.i.d.(McMahan et al., 2017;
Xu et al., 2023; Song et al., 2022; Chen et al., 2021), and non-i.i.d. (Li et al., 2020; Wang et al.,
2020; Karimireddy et al., 2020). While i.i.d. settings facilitate robust theoretical results, non-i.i.d.
settings are more realistic about data distribution. Despite the theoretical progresses in FL schemes in
supervised learning, the influence of non-i.i.d. in federated MARL remains uncharted. To address
this issue, we conduct our theoretical analysis in the following paragraphs.

We begin with showing the convergence under the ideal i.i.d. setting. To do that, we first list out the
following assumptions:

Assumption 1 (Lipschitz continuity) The local loss functions at the client side are Lipschitz continu-
ous, which means ||▽Fi(θ1)− ▽Fi(θ2)|| ≤ L||θ1 − θ2||,∀i ∈ {1, 2, ..., n}.

4



Under review as a conference paper at ICLR 2024

Assumption 2 (Unbiased gradients and bounded variance under i.i.d.) The stochastic gradients
at the client side are unbiased estimators of the global gradient, i.e., Eξ[gi(θ)] = ∇F (θ) and
Eξ[||gi(θ)−∇F (θ)||2] ≤ µ||∇F (θ)||2 + σ2,∀i ∈ {1, 2, ..., n}, µ and σ2 are non-negative.

Assumption 3 (Unbiased local gradients and bounded variance under non-i.i.d.) The stochastic
gradient at each client is an unbiased estimator of the local gradient, i.e., Eξ[gi(θ)] = ∇Fi(θ) and
Eξ[||gi(θ|ξ)−∇Fi(θ)||2] ≤ µ||∇Fi(θ)||2 + σ2,∀i ∈ {1, 2, ..., n}, µ and σ2 are non-negative.

Assumption 4 (Bounded Dissimilarity) For any sets of weights {wki ≥ 0}ni=1,
∑n
i=1 w

k
i ≤

Mk,Mkis finite,∀k ∈ [0,K], there exist constants β2 ≥ 1, κ2 ≥ 0 such that∑n
i=1 w

k
i ||∇Fi(θ)||2 ≤ β2{||

∑n
i=1 w

k
i∇Fi(θ)||2, ||

∑n
i=1

1
n∇Fi(θ)||

2}min + κ2,∀k ∈ [0,K]. If
local loss functions are identical to each other, then we have β2 = 1, κ2 = 0.

Assumption 1 is Lipschitz continuity, a common assumption in the convergence analysis in FL
theory. Assumption 2 states that the local stochastic gradient is an unbiased estimation of the local
gradient and the variance of the deviation is bounded to support our exploration under a i.i.d. setting.
Assumption 3, on the other hand, is the gradient bias and variance assumption under non-i.i.d. setting.
Assumption 4 is inspired by FedNova Wang et al. (2020), which bounds the dissimilarities on the
weighted norm of local gradients.

We provide the convergence bound under the i.i.d. and non-i.i.d. settings, respectively. In Theorem 3,
we show that the learnable aggregation mechanism can potentially reduce such impact. The prove of
these theorems as well as more theoretical details are provided in Appendix A.3.

Theorem 1 Suppose {θk,ji } and {θk} are parameters’ sequences generated by equation 1. The
federated MARL is conducted under Assumptions 1 and 2. If the total communication rounds K is
large enough, which can be divided by τ , and the learning rate η satisfies:{

Lη < 1, 2L2η2τ(2µ+ 1 + τ) < 1
}
, (6)

then the expected gradient norm after K iterations is bounded by:

E[
1

K

K∑
k=1

||∇F (θ̄k)||2] ≤ 2[F (θ̄1)− F (θ̄K)]

ηK
+
ηLσ2

n
+ η2L2σ2(τ + 1), (7)

where θ̄1 stands for one lower bound of the objective function.

Theorem 2 Suppose {θk} are parameters’ sequences generated by the weighted gradients equation 2,
while the {θk,ji } remains the same. The federated MARL is conducted under Assumptions 1, 3 and
4. If the total communication rounds K is large enough, and the learning rate η satisfies equation 6,
then the expected gradient norm after K iterations is bounded by:

E[
1

K

K∑
k=1

||∇F (θ̄k)||2] ≤
4
(
E
[
F
(
θ̄1
)
− E

[
F
(
θ̄K
)])

Kη

+ 4

(
C +D + E + F + µηC

K∑
k=0

1

K

n∑
i=1

w2
i τ
k
i

)
,

(8)

where Ā = 1
K

∑K
i=1A, B = 2L2η2τ(2µ + 1 + τ), C = η2σ2L2

µLητβ2+2Bβ2 , D =

(1−2µLητβ2)κ2

(2µLητβ2+4Bβ2)(1+4β2) , E = µLητκ2

2µLητβ2+4Bβ2 , and F = Lησ2

2K

∑K
k=1

(
Mk
)2

;

Theorem 3 Suppose the same condition as Theorem 2, we can reduce the convergence upper bound
by tuning the aggregation weights. If we define wi → 1

nτk
i

, then the expected gradient norm after K
iterations is bounded by:

E[
1

K

K∑
k=1

||∇F (θ̄k)||2] ≤
4
(
E
[
F
(
θ̄1
)
− E

[
F
(
θ̄K
)])

Kη

+ 4O

(
Ā+ C +D + E + F + µηC

K∑
k=0

1

K

n∑
i=1

w2
i τ
k
i

)
.

(9)
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Figure 3: The six extended scenarios used in our evaluation.

4.1 DISCUSSION

The result of Theorem 1 is an ideal upper bound where the distribution of each client is i.i.d. More
generally, in Theorem 2, we provide another upper bound to illustrate the impact introduced by the
non-i.i.d. issue. In Theorem 3, we prove that learnable weighting can reduce such impact.

Special Cases Whenwki ≡ 1
n , the convergence upper bound degenerates to the same as FMARL (Xu

et al., 2023), which derives the same upper bound as in its Theorem 2. When wki ≡ 1
n and τki ≡ 1,

the convergence upper bound further degenerates to the same as PASGD, which coincides with the
conclusions drawn from (Wang & Joshi, 2021).

Discussion with Federated Learning in supervised learning We compare our method with
FedNova (Wang et al., 2020) – a general federated method targeting supervised learning. It induces
several federated learning methods in a general form and targets the problem of an unbalanced
number of local updates by regularizing the weights for one-period local gradients with the number
of local updates. However, in MARL, the different number of policy iterations may not be a more
significant reason than the diversity of local environments to the non-i.i.d. issue. In other words, this
issue cannot be rectified by simply regularizing the weights of local gradients by the number of local
policy iterations, which necessitates the importance of our learnable aggregation mechanism.

System Utility To provide a comprehensive evaluation for fair comparisons, we propose a general
utility function that reconciles both theoretical and practical considerations. Specifically, from the
perspective of numerical performance, both task-oriented performance and system efficiency are
crucial metrics. We denote them as Qs and ψ, respectively. For instance, in a multi-agent navigation
environment, Qs can be a composite objective comprised of navigation success rate, average speed,
and safety while ψ refers to the system communication and computation cost. As for the convergence
property, we consider an ideal setting where the agents are i.i.d. It serves as the optimal convergence
upper bound ϵm. By comparing the convergence bound with it, we can tell the tightness of the
federated MARL method. Thus, we derive our system utility function as Qtot = Qs−λψ

e∥ϵ−ϵm∥2 , where λ
is a positive constant used to balance the importance of system cost and performance.

5 EXPERIMENTS

Baseline Methods We present a comparative analysis of our proposed method alongside strong
baselines from related fields, namely conventional MARL (IPPO (de Witt et al., 2020)) and
communication-based MARL (RIAL and DIAL (Foerster et al., 2016)), as well as state-of-the-art
methods CoPO (Peng et al., 2021b), FMARL (Xu et al., 2023) in a multi-agent autonomous driv-
ing simulation environment, MetaDrive (Li et al., 2022a). We provide a detailed introduction and
adaptation of these methods in the Appendix A.5.

Implementation by Extending MetaDrive The MetaDrive benchmark is a flexible, lightweight
autonomous driving simulation benchmark that contains several tasks. In this paper, we focus on its
multi-agent tasks. The agents adopt the conventional MARL suite, including parameter sharing and
disregarding communication overhead. We add six challenging scenarios whose maps are depicted
by Fig 3. Originally, MetaDrive used parameter sharing for all the methods, so we first expanded
this benchmark into a client-server learning setting by adopting a non-parameter sharing scheme and
simulating a virtual server. This server only periodically collects local gradients and hidden states
from the clients, aggregates the gradients for the update of the global model, and then sends it back to
the agents. When an existing vehicle terminates and a new vehicle spawns, it accepts the latest global
model from the server to prevent the "cold start" problem. To enrich the testing bed, in addition to
the existing navigation task, we extend a cooperative exploration task where vehicles cooperatively
explore the specified destinations.
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Figure 4: The system performance and efficiency comparison with baselines in six scenarios of the
cooperative navigation tasks.
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Figure 5: The system performance and efficiency comparison with baselines on six scenarios of the
cooperative exploration tasks.

Evaluation Metrics MetaDrive provides three evaluation metrics: success rate, efficiency, and
safety, which respectively reflect navigation capability, navigation efficiency, and safety driving. In
our cooperative exploration task, we adapt the navigation success rate to the exploration success rate.
For realistic concerns, we also record the communication overhead which is reflected by the number
of parameters exchanged between the agents and the server.

In summary, in the cooperative navigation task, our evaluation metrics including the navigation
success rate (Success), safety (Safety), overall agents’ speed (Speed), and communication efficiency
(Comm-efficiency). As for the cooperative exploration, our evaluation metrics including the explo-
ration success rate (Explore), safety (Safety), overall agents’ speed (Speed), communication efficiency
(Comm-efficiency).

Main Results Analysis The experiment results on cooperative navigation and exploration across
six scenarios can be found in Fig. 4 and Fig. 5, respectively. More detailed results related to the
performance on two tasks can be found in Tab. 2, 3, 4, and 5 in the Appendix A.6.

Our Performance. In both tasks, though the preference for different metrics relies on the specific
environments, we use the average of the metrics as the system utility for fair comparison. We find that
FMRL-LA achieves or is comparable to the best success, speed, safety, and system utility. Since more
than half of the baselines adapt PPO(Schulman et al., 2017) as the algorithm of the clients, while
RIAL (Foerster et al., 2016) uses a simpler algorithm with fewer parameters, the communication
efficiency of our method cannot outperform it. But compared to the baselines with the same client-side
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algorithm, our method exhibits the capacity to dynamically harmonize the system performance and
communication efficiency.

In detail, we focus on the performance of IPPO, FMARL, and our FMRL-LA in both tasks. The
three methods have nearly the same client-side algorithms but differ from each other on the server
side. IPPO only conducts direct training parameter averaging, while the FMARL adds a weight decay
mechanism during the averaging. And FMRL-LA dynamically learns the aggregation weights. From
IPPO to FMARL, then to FMRL-LA, the performance of success, safety, speed, and system utility
follow an ascending manner. We believe that it is because the performance of IPPO is bound by
the averaging capability of all learning agents while FMARL can enlarge the bound to some extent
by weight decay. Nonetheless, the potential performance of FMRL-LA is bound by the best agent,
which improves the generalization of our method since we can deploy a suitable behavior model for
the clients in advance if we can make use of prior knowledge about the environments.

Task Comparison. Comparing the overall performance of all methods on cooperative navigation and
cooperative exploration on six scenarios, we can find navigation is more difficult than exploration,
especially in relatively complex scenarios, e.g., scenario 4, 5, and 6. We notice that in the navigation
task, each agent has its own destination. Therefore, we believe the different performance on the two
tasks may be because the relationship between the local utilities and the system utility is easier to
capture in exploration than in navigation.

Scenario Difficulty. In both tasks, if we compare the performance pair by pair such as scenario 1
and scenario 5, we observe that generally, the more building blocks involved in a scenario, the more
challenging it is. Then, looking into the performance of scenario 1 and 2, both of them consists of
four building blocks while scenario 2 contains one more roundabout than scenario 1. If we compare
the safety of CoPO, FMARL, and our FMRL-LA, three robust methods in the two tasks on these
six scenarios, we can find that roundabout tends to result in more crushes. Further, if we compare
the performance of scenarios 1 and 4 on two tasks, we observe that though the two scenarios both
contain one roundabout and the same number of building blocks, the performance of our method and
other baselines is generally better in scenario 1. Considering the difference in these two scenarios,
we hypothesize that it is due to the influence of wide turn. For intuitive methods like IPPO and RIAL,
it is difficult for them to avoid crushing or driving out of the roads during the wide turns. On the
other hand, the safety of CoPO in scenarios 3 and 4 is relatively high, it may benefit from its explicit
modeling of the surrounding agents.

Ablation Study To investigate the effectiveness of our design and components in FMRL-LA, we
conduct an ablation study about the usage of asynchronous critics and a centralized aggregator as well
as an alternative design for the federal mixer. From Tab. 1 we can observe that if we directly use critics
without the centralized aggregator, the performance is unstable, resulting in large standard errors. In
scenario 4, the performance w.r.t. system utility is worse than federated IPPO. We believe that without
the coordination of the centralized aggregator, the server cannot filter out less valuable agents, so
their parameters can depreciate the update of the global model in the current round. Meanwhile, the
asynchronous critics are useful in our method since the variant that only uses an aggregator performs
worse than the full model. We believe that accepting information from all involved agents can
stagnate the learning of an aggregator due to redundant information. When we change the centralized
aggregator to a VDN-based (Sunehag et al., 2017) one, it yields an inferior performance compared
to our QMIX-based (Rashid et al., 2020) design, which suggests the non-linear modeling of the
relationship between the agents and the server is more suitable for complex realistic environments
than a simple sum as in VDN.

Client Selection Analysis To investigate the effectiveness of the learnable aggregation on the
perspective of client selection during client-server communication, we conduct experiments on
cooperative navigation tasks in scenarios 1, 2, and 3 with different numbers of learning agents. The
results are shown in Fig. 6. The average number of selected agents is calculated during the evaluation
intervals, which is consistent with the calculation of all the evaluation metrics. Thus, it reflects the
number of agents selected for the overall training phase. The less the agents are selected, the higher
the communication efficiency we achieve. When there are only 3 agents in the scenarios, due to the
partial observability and the complexity of the tasks, the agents require a longer time to learn stable
policies. Besides, each agent’s gradients are important to the system. Thus, the learnable aggregation
module does not select agents’ gradients frequently and may pay more attention to weighting the
gradients toward a better collective policy learning. However, as the number of agents increases in
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Table 1: Ablation study on the effectiveness of our critical components on navigation task. Average
system utility is provided.

Experiment Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 Scenario6

IPPO 49.96±3.06 45.13±3.68 51.49±2.73 33.12±5.29 34.41±6.17 34.33±5.97

FMRL-LA w/o aggregator 54.75±6.00 49.28±5.23 52.06±4.71 40.43±7.02 32.85±8.92 40.22±7.74

FMRL-LA w/o critics 52.69±3.55 48.46±4.65 55.49±3.18 45.35±5.26 38.49±6.19 48.07±5.57

FMRL-LA w/ vdn-aggregator 57.98±2.97 55.84±4.39 57.26±3.69 52.50±5.80 46.98±6.81 50.86±5.09

FMRL-LA 59.84±2.82 62.30±4.29 63.16±3.33 57.27±4.70 50.28±6.67 56.42±5.63
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Figure 6: Number of selected clients under different numbers of learning agents for the three scenarios

the same tasks, the effect of selection becomes more significant. More experiments related to the
results of selection effects can be found in Tab. 6 in Appendix A.6.

6 RELATED WORK

Cooperative MARL Cooperative MARL has widespread applications in real-world scenarios (Yu
et al., 2022a; Li et al., 2022a). Current methods are mainly developed in game scenarios (Rashid
et al., 2020; Lowe et al., 2017) where the methods can focus on technical design rather than practical
details. These environments support parameter sharing (PS) (Christianos et al., 2021) and CTDE
regime (Lowe et al., 2017; Hu et al., 2021) to enable multiple agents to be trained on one device and
facilitate cooperation, respectively. However, when it is the stage to consider practical MARL in
realistic environments(Peng et al., 2021b; Abegaz et al., 2023), either PS or CTDE cannot be simply
applied due to privacy concerns and communication overhead.

Federated MARL Federated MARL (Song et al., 2022; Li et al., 2022b) appears to be a feasible
way towards realistic MARL. Most of these methods enable agents to learn individual behavior
policies and set a virtual server to maintain a global policy. The agents’ policies are aggregated and
updated periodically through communication with the server (Chen et al., 2021; Xu et al., 2022).
In this way, the communication overhead is reduced, and the majority of them aggregate the local
gradients by direct averaging (Xu et al., 2023) or weighted by the relative mini-batch size (Song
et al., 2022). Although this oversimplified update may work well under i.i.d. setting, the MASs are
naturally non-i.i.d. due to the interaction among agents. The notorious non-i.i.d. issue can stagnate
convergence (Li et al., 2020; Wang et al., 2020; Li et al., 2019). Besides, without centralized training,
it is hard for MARL to learn coordination (Kuba et al., 2022; Fu et al., 2022).

7 CONCLUSION

We aim to adapt MARL for real-world applications by introducing a hybrid distributed, client-
server learning framework that takes into account communication and computation overhead. Our
framework offers theoretical guarantees even under the influence of non-i.i.d. distribution of agents
in local environments. To empirically validate the efficacy of our proposed Cost-Efficient Federated
Multi-Agent Reinforcement Learning with Learnable Aggregation (FMRL-LA) method, we modify
an existing multi-agent autonomous driving simulation environment to conform to a client-server
scheme. Experimental results emphasize the superior performance against baseline methods.
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