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ABSTRACT

To further enhance the ability of Large Language Models (LLMs) to solve com-
plex, multi-step reasoning problems, test-time scaling (TTS) methods have gained
widespread attention. Existing approaches such as Best-of-N and majority voting
are limited as their performance depends on the quality of candidate responses,
making them unable to produce a correct solution when all candidates are incor-
rect. Introducing an additional model to select the best response also incurs sig-
nificant deployment costs. To this end, we introduce Generative Self-Refinement
(GSR), a novel parallel test-time scaling framework where a single and unified
model first generates a set of candidate responses in parallel and then performs
self-refinement to synthesize a new superior solution based on a prompt consisting
of the problem and these candidates. However, LLMs struggle to perform refine-
ment effectively when prompted directly. Therefore, we design a hybrid training
pipeline by jointly optimizing for two complementary objectives, solving prob-
lems directly and refining candidate responses. Experimental results demonstrate
that our method achieves state-of-the-art performance across five mathematical
benchmarks. We further show that this learned self-refinement skill is a model-
agnostic enhancement, robust across different model scales and generalizing to
out-of-distribution reasoning tasks.

1 INTRODUCTION

The ascent of Large Language Models (LLMs) (Brown et al., 2020) marks a significant milestone
toward Artificial General Intelligence (AGI), with the power largely stemming from training-time
scaling (Kaplan et al., 2020; Hoffmann et al., 2022). Recently, a complementary paradigm has
gained prominence, in which model performance can be consistently improved by allocating addi-
tional compute at inference time (Brown et al., 2024; Snell et al., 2024). This approach is formally
termed test-time scaling (TTS).

A key frontier in TTS is enhancing a model’s ability to solve complex, multi-step problems, which
often requires sophisticated strategies to push the performance boundaries of the model. A common
strategy is majority voting (Wang et al., 2023), which leverages the principle of self-consistency to
improve performance, identifying the most frequent answer from multiple reasoning paths. Best-of-
N (BoN) approach takes this process further by introducing an external verifier, typically a Reward
Model (RM), to score, rank and select the best response from candidates (Irvine et al., 2023; Song
et al., 2025). Moving beyond selective mechanisms, other methods such as LLM-Blender (Jiang
et al., 2023), LMCor (Vernikos et al., 2024), AFT (Li et al., 2025) and CoT-based-Synthesizer
(Zhang et al., 2025a) train a dedicated model to fuse information from multiple candidate responses.

However, these prevailing strategies have fundamental limitations. The performance of majority
voting and BoN, is inherently bounded by the quality of the set of candidates. They are mechanis-
tically incapable of producing a solution that transcends the quality of candidate proposals, which
becomes particularly problematic when all candidates are flawed. Moreover, this approach discards
non-selected candidates entirely, losing valuable insights contained within the reasoning process.
For fusion methods, training a specialized synthesizer model to fuse candidates generated by other
policy models solely decouples the connection between the generation and integration, therefore
precluding any synergy that might exist between these two intertwined capabilities. The design of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

introducing an external model to verify or fuse imposes complex data curation, extra compute cycles
and GPU memory occupancy (Ahmadian et al., 2024; Sareen et al., 2025).

Figure 1: An example of our method. The model
is provided with the original problem and a set
candidate solutions generated by itself. Even pro-
vided with four incorrect candidates, the model
can still reference them, diagnose the flaws, and
finally construct a correct answer. We provide a
more detailed case in Appendix H.

To address this, we propose a novel paral-
lel test-time scaling method, Generative Self-
Refinement. The core innovation of our method
is to empower a single and unified model to
perform self-refinement on its own diverse par-
allel outputs. Concretely, our model first gen-
erates a set of candidate responses in parallel
and then performs self-refinement on a prompt
consisting the problem and candidates. Our
model is prompted to leverage its intrinsic in-
context reasoning ability and selectively syn-
thesize valid insights from candidate responses
to produce a final better solution. As illus-
trated in Figure 1, our model is able to iden-
tify errors in candidates and provide a correct
solution even when all responses are incorrect.
This finding supports a premise that even erro-
neous solutions discarded after selection could
contain valid intermediate steps, identified pit-
falls, or explored pathways. Consequently, our
method achieves a significantly higher perfor-
mance boundary than majority voting or Best-
of-N, as it can construct a correct solution even when all candidates are flawed. Empirically, our
method demonstrates strong performance on problems with few correct candidate responses, which
are typically the most difficult.

However, we find that advanced self-refinement capability cannot be reliably elicited through
prompting alone in some cases. This is because data specifically for refining responses is absent
from standard training corpora. Furthermore, we observe that there is a potential synergistic rela-
tionship between generating responses effectively and integrating multiple responses into a better
answer. The effectiveness of integration at inference time is directly contingent upon the quality of
the generated candidates, while training the model on the refinement task solely also in turn enhances
its foundational ability for direct generation. Motivated by this, we design a hybrid training pipeline
to improve the performance by jointly optimizing for two complementary objectives, direct-solving
and self-refinement. This process aims to equip the model with dual abilities to generate high-quality
responses directly and to self-refine existing solutions. Our key contributions are as follows:

• We propose Generative Self-Refinement, a novel test-time scaling method which can refine
its own outputs to improve the performance on complex reasoning.

• To further improve the performance, we propose a hybrid training pipeline designed to train
the model on complementary objectives, direct-solving and self-refinement.

• We demonstrate that our method achieves state-of-the-art results on multiple challeng-
ing mathematical benchmarks. Furthermore, extended experiments demonstrate that self-
refinement is a robust, generalizable and model-agnostic skill.

2 RELATED WORK

Test-time scaling Test-time scaling (TTS) (Brown et al., 2024; Wu et al., 2025) is a promising ap-
proach for improving model’s performance by increasing computation at inference time (Snell et al.,
2024). TTS approaches generally fall into four categories (Zhang et al., 2025b): (1) parallel, where
multiple samples are generated concurrently and then aggregated; (2) sequential, where a solution is
iteratively refined; (3) hybrid, which combines both parallel generation and sequential improvement;
(4) internal, which performs long-chain reasoning within the model’s internal parameters. The most
well-known approach within parallel scaling is majority voting (Wang et al., 2023), which leverages
the self-consistency of the model’s outputs to select the most consistent answer. Best-of-N (BoN)
extends this principle, replacing the voting mechanism with an external verifier, which is typically
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a Reward Model (RM). The external verifier is used to either assign a scalar score (Cobbe et al.,
2021; Rafailov et al., 2024; Winata et al., 2025), or to perform discriminative methods to indicate a
preference (Stiennon et al., 2020; Nakano et al., 2022). Some works have introduced the Generative
Reward Model (GenRM) (Kim et al., 2024; Mahan et al., 2024), which leverages the model’s gener-
ative capacity to provide a detailed and interpretable justification alongside the evaluation. A recent
line of work (Whitehouse et al., 2025; Chen et al., 2025; Guo et al., 2025) focuses on integrating
reasoning capabilities into reward modeling to enhance performance and interpretability.

Correction Methods Some studies have explored that models can refine responses to improve
the performance (Cobbe et al., 2021; Gou et al., 2024; Ferraz et al., 2024). Self-Refine (Madaan
et al., 2023), RIC (Kim et al., 2023) and REFINER (Paul et al., 2024) focus on sequential self-
refinement, where a single model is used to generate feedback on its own output and iteratively revise
the solution accordingly. However, Huang et al. (2024) find that LLMs struggle to self-correct their
reasoning without external feedback. Distinct from sequential approaches, LLM-Blender (Jiang
et al., 2023), LMCor (Vernikos et al., 2024), AFT(Li et al., 2025), CoT-based-Synthesizer (Zhang
et al., 2025a) train a dedicated generative model to fuse multiple solutions. However, these methods
focus exclusively on the task of improving parallel solutions, while neglecting to train the model to
solve problems directly. Besides, MoA (Wang et al., 2025) and Multiagent FT (Subramaniam et al.,
2025) leverages multi-agent society of specialized LLMs to improve responses, incurring significant
inference and deployment overhead.

3 METHODOLOGY

3.1 OVERVIEW

We introduce Generative Self-Refinement (GSR), a framework that generates a superior final answer
by selectively leveraging insights from multiple parallel candidate solutions generated by itself. We
employ a single model to first generate a set of solutions directly and then perform self-refinement
to produce a superior solution after constructing the augmented prompt consisting of the problem
and candidates. Our method is based on dual abilities: the ability not only to generate high-quality
solutions directly but also to scrutinize and improve upon the candidate solutions. Consequently,
the dual abilities offer significant flexibility during inference, enabling a choice between solving
problems directly and performing self-refinement based on the trade-off between compute budget
and accuracy.

3.2 SELF-REFINEMENT

The self-refinement process employs a single model and involves two main stages. First, the model
generates a set of diverse candidate solutions in parallel. We prompt the model in a standard
question-answer format. Since the thinking model reasons in a Chain-of-Thought (CoT) style, which
can be verbose, we parse the raw outputs and extract only the summary content to serve as the fi-
nal response. Then, these candidates are used to construct a new augmented prompt consisting of
the original problem and the candidate solutions. As shown in Figure 2, we design a template to
explicitly instruct the model towards a reflective and synthetic reasoning process. Since the quality
of the candidate responses is unknown beforehand in practice, we explicitly inform the model of
this uncertainty in the prompt. The model is prompted to first analyze the connection between the
candidates and the original problem, and to selectively leverage any valuable insights from candi-
dates. Crucially, even if all candidates are flawed, the model is required to reason independently and
produce the final correct solution. The augmented prompt is subsequently passed back to the model
to elicit a final improved solution. This self-refinement process is built upon the model’s intrinsic
reasoning ability and its ability to leverage the provided candidates.

3.3 HYBRID TRAINING PIPELINE

However, it is infeasible to directly prompt a model to achieve the optimal performance. To address
this challenge, we design a hybrid training pipeline to endow the model with the dual abilities,
generating high-quality responses as candidates and perform self-refinement. As illustrated in Figure
3, this process involves constructing a specialized dataset for the refinement task and then combing
it with a traditional instruction dataset. We employ a teacher-student distillation framework. The
model we aim to train is designated as the student model, while a more capable ”oracle” model
serves as the teacher to generate the target responses.
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...provided with a challenging problem and a set of candidate responses which may be correct, par-
tially correct or even wrong.
...You should first fully summarize the connection between the candidates and the problem ...gen-
erate a correct solution yourself if all candidates are wrong. Don’t copy candidates, use insights
selectively and reason independently.
Problem:
{Problem}
Candidate Response 1:
{Response 1}
Candidate Response 2:
{Response 2}
...

Figure 2: Prompt template for our method. Full prompt template is provided in Appendix D.

Figure 3: An overview of the hybrid training pipeline, which consists of a data generation stage
(Left) followed by a supervised fine-tuning (SFT) stage (Right). We use a teacher model to construct
hybrid dataset and then train the student model on dual tasks.

We now formalize the training process. Consider a dataset, D = {q(i), a(i)}Ni=1, q is the query
and a is the corresponding ground truth. Let Mθ represent the student model parameterized by θ
and Pθ be the distribution over input tokens. The data generation process begins with the student
model Mθ sampling K diverse candidate solutions OK = {o(1)stu, · · · o

(K)
stu } ∼ Pθ(q,S) with its

specific decoding strategy S for the query q. The objective of any TTS strategy is to maximize the
expectation of obtaining the ground truth. Formally, this objective can be expressed as:

max
θ

E(q,a)∼D[EOK∼Pθ(·|q)[1{U(OK) = a}]] (1)

where U denotes a TTS strategy function and 1{·} is the indicator function. Unlike approaches that
rely on an external verifier or self-consistency, our method first concatenates the candidates OK with
the original query q to construct an augmented prompt qaug . In practice, we distill correct outputs of
the teacher model as target to approximately optimize this objective, which makes self-refinement as
a learnable inference strategy. We also sample the teacher model’s direct responses to the queries as
another set of training targets. Previously generated self-refinement data is combined with traditional
direct-answer instruction data, to constitute the final hybrid training corpus. The training process is
achieved by minimizing a composite loss function Ldistill(θ) in this hybrid dataset, which is defined
as follows:

Direct-Solving Let Ddirect be the dataset for the direct-answer task. Given a training instance
(q, o) ∈ Ddirect where q is the question and o is the golden solution generated by the teacher. The
objective is to maximize the conditional probability of the target sequence given the question, which
can be achieved by minimizing the negative log-likelihood (NLL) loss. The loss function for a
instance is defined as:

Ldirect(θ; q, o) = −
∑

t∈[|o|]

logPθ(ot|q, o<t) (2)

where o<t denotes the target sequence of preceding tokens (o1, · · · , ot−1).
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Self-Refinement Let DselfR be the dataset for the self-refinement task. Given a question q and
OK = {o(i)stu}Ki=1, a corresponding set of K candidate solutions generated by the student model. We
construct the augmented prompt qaug by concatenating the original question with candidates:

qaug = q ⊕ ⟨sep⟩ ⊕ o
(1)
stu ⊕ ⟨sep⟩ ⊕ · · · ⊕ o

(K)
stu

(3)

where ⊕ denotes token sequence concatenation and ⟨sep⟩ denotes some separator tokens. The loss
function for a single instance from dataset DselfR is defined as:

LselfR(θ; q,OK , o∗) = −
∑

t∈[|o∗|]

logPθ(o
∗
t |qaug, o∗<t) (4)

where o∗ is the golden solution generated by the teacher.

Optimize Objective The overall loss function Ldistill(θ) for model Mθ is formulated as:

Ldistill(θ) = E(q,o)∼Ddirect
[Ldirect(θ; q, o)] + E(q,OK ,o∗)∼DSelfR

[LselfR(θ; q,OK , o∗)] (5)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset Curation We establish a data pipeline based on a single large-scale math dataset, Open-
MathReasoning (Moshkov et al., 2025). After filtering and construction, we constitute the final
368K training dataset with 184K direct-answer dataset and 184K self-refinement dataset. For the
self-refinement dataset, every problem consists of the original query and four candidate responses.
More details are provided in Appendix F.1.

Training Settings We train Qwen2.5-7B-Instruct (Yang et al., 2025b) using Supervised Fine-
Tuning (SFT) and employ QwQ-32B (QwenTeam, 2025) to generate target output. We refer to
the fine-tuned model as GSR-7B. We present more details on parameter settings in Appendix F.2.

Baselines To rigorously evaluate the efficacy of our method, we compare it with the following
TTS baselines: (1) Majority Voting (Wang et al., 2023), A non-parametric heuristic that selects
the most consistent answer from a set of solutions without any external modules. (2) Skywork-
Reward-Gemma-2-27B-v0.2 (Liu et al., 2024), a state-of-the-art scalar reward model that provides
a single numerical score to rank the overall quality without explanations or reasoning. (3) RM-
R1-DeepSeek-Distilled-Qwen (Chen et al., 2025) and RRM (Guo et al., 2025), two concurrent
approaches integrating reasoning capabilities into reward modeling, significantly surpassing con-
ventional generative RM’s performance. (4) Synthesizer-8B-math (Zhang et al., 2025a), which
is a generative integration method that achieves SOTA performance on mathematical datasets by
synthesizing and correcting multiple Chain-of-Thought (CoT) paths to produce final answers.

Benchmarks For a comprehensive evaluation of mathematical performance, we evaluate all base-
lines across five challenging and most representative benchmarks (Hochlehnert et al., 2025) in the
mathematical domain: AIME24 (AI-MO, 2024a), AIME25 (Lin, 2025), AMC22 & AMC23 (AI-
MO, 2024b), MATH500 (Hendrycks et al., 2021) and OlympiadBench (He et al., 2024).

Evaluation Settings We report direct-sovling average accuracy using pass@1. For a direct and
fair comparison, we report the average metrics maj@4 (majority voting), BoN@4 (Best-of-N),
cor@4 (correctoin methods), and SelfRef@4 (Generative Self-Refinement) on the same sets of four
candidate responses (k = 4). To ensure a fair comparison of computational budget, we further
report the average metrics for majority voting and non-generative BoN methods with five candi-
date responses (k = 5). We use abbreviations for Skywork-Reward-Gemma-2-27B-v0.2 (SkyRM-
27B), Synthesizer-8B-math (Syn-8B), RM-R1-DeepSeek-Distilled-Qwen (RM-R1) and QwQ-32B-
Preview (QwQ-Preview). More details can be found in Appendix F.3.

4.2 MAIN RESULTS

We present a comprehensive evaluation of our method against advanced test-time scaling baselines.
The results, summarized across five challenging mathematical benchmarks, are presented in Table
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Table 1: Comprehensive performance evaluation on five mathematical benchmarks. We report the
results of our GSR-7B and base Qwen2.5-7B-Instruct for reference. We denote the Best-of-N and
fusion methods by the name of external models used to perform them. We report the average metrics
of 32 runs for AIME24 and AIME25 and 16 runs for the remaining. Additionally, we report the
pass@1 metric for two leading models from Yang et al. (2025c) and QwenTeam (2024).

Method AIME24 AIME25 AMC22-23 MATH500 Olympiad Average
Larger Models

QwQ-Preview 50.0 32.7 90.6
o1-mini 56.7 50.8 90.0

Qwen2.5-7B-Instruct

pass@1 13.2 7.2 43.6 75.9 39.5 35.9
maj@4 16.7 9.6 47.7 79.4 43.5 39.4
SkyRM-27B@4 17.1 9.2 48.0 78.6 43.0 39.2
selfRef@4 15.6 11.3 47.5 78.7 43.8 39.4

GSR-7B

pass@1 50.1 37.8 78.5 90.6 64.4 64.3
maj@4 60.0 46.7 84.6 92.8 68.3 70.5
maj@5 60.7 48.3 84.9 93.1 68.8 71.1
Syn-8B 60.2 44.0 84.0 92.0 67.7 69.6
SkyRM-27B@4 58.3 46.7 81.6 92.5 67.6 69.3
SkyRM-27B@5 59.2 46.3 82.8 92.7 67.7 69.7
RRM-7B 60.4 46.3 80.4 90.6 64.6 68.5
RM-R1-7B 62.1 45.4 84.6 93.5 69.1 70.9
selfRef@4 66.0 51.7 85.7 93.4 71.0 73.6

1. A primary observation is the substantial performance uplift after the training process. Compared
to the base model, GSR-7B exhibits dramatic improvements across all standard metrics, particularly
on the most challenging benchmarks. For instance, its pass@1 accuracy on AIME24 increases from
a modest 13.2% to 50.1%, confirming the efficacy of our approach.

Our method shows significant improvement after post-training. Before training, the performance
of selfRef@4 on the base model is comparable with majority voting. After training, our method
emerges as the state-of-the-art method, achieving 73.6% average accuracy. It surpasses not only
standard baselines such as majority voting but also more complex Best-of-N (BoN@4), as demon-
strated on AIME24 (66.0% vs. 62.1%). We note that in the MATH500 dataset, selfRef@4 is
marginally underperformed by BoN@4 (93.4% vs. 93.5%). We hypothesize that it is due to the
specific dynamics of high-accuracy regimes (90.6% on pass@1). In such a scenario, at least a cor-
rect answer is highly likely to be present in any set of candidate responses, making selection methods
like Best-of-N particularly effective.

Overall, the experimental results validate the effectiveness of the model’s dual abilities. GSR-7B’s
pass@1 accuracy (e.g., 50.1% on AIME24 and 37.8% on AIME25) makes it competitive with the
QWQ-32B-Preview. With the addition of our parallel test-time scaling method, it can even surpass
OpenAI o1-mini, as shown by AIME24 (66.0% vs. 56.7%) and AIME25 (51.7% vs 50.8%).

4.3 FINE-GRAINED ANALYSIS ON SELF-REFINEMENT

Although the overall accuracy metrics are informative in Section 4.2, the underlying mechanism of
our approach is still obscure. To dissect the true capabilities of our method, we conduct a more
fine-grained conditional analysis. The goal is to understand how our method performs when pro-
vided with imperfect or even entirely incorrect candidates. We report the average accurate rates
conditioned on the number of correct candidates out of 4 (Nc ∈ {0, 1, 2, 3, 4}).

Comparison with Baselines As shown in Table 2, we first compare various parallel test-time scal-
ing approaches in AIME24 benchmark. When a clear majority of candidates are correct (Nc ≥ 3),
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all methods perform exceptionally well, often achieving near-perfect accuracy. However, our meth-
ods begin to differentiate in more ambiguous cases (Nc < 3). When only one candidate is correct,
our selfRef@4 achieves an impressive 60.2% accuracy, substantially outperforming majority voting
(maj@4 at 18.8%), cor@4 (38.3%) and all BoN@4 variants. The most illuminating results, even
when all candidates are incorrect (Nc = 0), our approach can still produce a correct solution 5.9%
of the time, whereas all baseline methods fail completely. These low Nc scenarios serve as a proxy
for a class of most challenging problems where generating a correct solution is difficult. The effec-
tiveness of our method in these situations highlights its robustness for solving difficult problems. In
contrast, both majority voting and best-of-N are incapable of producing a correct answer if no cor-
rect candidate exists. The correction method (syn-8B) also falters on more challenging benchmarks.
We hypothesize that training exclusively on synthesis while neglecting the continued training of
foundational reasoning, which in turn acts as a bottleneck, constrains the effective application of the
synthesizing faced with more complex problems.

Generalization across Benchmarks To verify that the superiority of our approach is not dataset-
specific, we report the performance across five diverse benchmarks in Table 3. The findings reveal a
remarkable consistent trend. Across all benchmarks, our model’s ability to recover from a complete
set of incorrect candidates (Nc = 0) is consistently demonstrated, ranging from 3.4% on MATH500
to 9.0% on AMC22-23. This consistency proves this capability is not a fluke but a generalizable
skill that our model has acquired.

Table 2: Fine-grained analysis on the AIME24.
We report accurate rates in percentage (%) condi-
tioned on the number of correct candidates (Nc).

Method Nc

4 3 2 1 0

maj@4 100 100 94.4 18.8 0.0
Syn-8B 99.6 96.2 83.3 38.3 0.0
SkyRM-27B 100 79.5 83.3 43.8 0.0
RM-R1-7B 100 94.9 80.6 56.3 0.0
RRM-7B 100 89.7 77.8 53.1 0.0
selfRef@4 100 97.4 89.6 60.2 5.9

Table 3: Robustness analysis of our method
across five diverse benchmarks. The full de-
tails are provided in Appendix Table 9.

Benchmark Nc

4 3 2 1 0

AIME24 100 97.4 89.6 60.2 5.9
AIME25 100 95.8 87.1 65.6 4.5
AMC22-23 99.9 99.3 80.0 53.6 9.0
MATH500 99.8 94.3 76.4 49.1 3.4
Olympiad 99.8 94.0 81.0 50.7 4.4

4.4 ABLATION STUDY ON TRAINING

To validate our claim that a hybrid training strategy is essential for both direct-solving and self-
refinement capabilities, we conduct a ablation study. To ensure a fair comparison, we construct
three distinct training datasets randomly sampled from the total dataset, all of which contain exactly
20,000 samples and share an identical set of questions: (1) Direct-Solving Only: 20k samples from
Ddirect. (2) Refinement Only: 20k samples from DselfR. (3) Hybrid: a balanced mix of 10k from
Ddirect and 10k from DselfR.

Table 4: Ablation study on different training strategies. We compare hybrid training against strate-
gies using only direct-solving data (direct) or only refinement data (ref).

Method Benchmark Base Model SFT (20k direct) SFT (20k ref) SFT (20k hybrid)

pass@1 AIME24 13.2 27.9 26.4 27.5
AIME25 7.2 26.7 23.3 25.6

selfRef@4 AIME24 15.6 37.5 45.0 45.6
AIME25 9.6 30.2 30.0 32.7

The results presented in Table 4 lead to a clear conclusion. The model trained on a Direct-Solving
Only dataset achieves the highest pass@1 scores. However, its capacity for self-refinement is
severely limited, lagging significantly behind hybrid model. It demonstrates that generative self-
refinement is not an innate or emergent property but a skill that must be explicitly learned.

To our surprise, even with training purely on the Refinement Only dataset, the model still achieves
a higher pass@1 score than the base model. This indicates that learning the skill of refinement
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imparts a more general reasoning ability which directly benefits the model’s foundational reason-
ing performance. However, this model excels at the self-refinement task but demonstrates subpar
pass@1 performance compared with two others. This reveals that the efficacy of the self-refinement
at inference is contingent upon the model’s ability to first generate strong candidate solutions.

Hybrid model strikes the optimal balance. It achieves the highest selfRef@4 scores across both
benchmarks while maintaining a highly competitive pass@1 performance, confirming the necessity
of the hybrid training pipeline.

4.5 ROBUSTNESS AND GENERALIZATION ANALYSIS

To further investigate the robustness and underlying mechanism of our framework, we conduct
additional experiments on two larger-scale models: Qwen2.5-14B-Instruct and Qwen2.5-32B-
Instruct (Yang et al., 2025b). This investigation is designed to address two critical questions: (RQ1)
Is our method effective across different model scales? (RQ2) Does the model learn a generalizable
improvement heuristic, or does it merely learn to correct its own specific errors? We use the same
hybrid training dataset and experimental setup as described in Section 4.4.

Table 5: Performance on AIME benchmarks across different model scales. The table compares two
fine-tuned models (w SFT) against their base counterparts (w/o SFT).

Settings Method Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct

AIME24 AIME25 AIME24 AIME25

w/o SFT
pass@1 13.5 12.7 16.7 12.9
maj@4 17.5 15.8 19.2 15.8
selfRef@4 16.0 15.8 22.3 16.3

w SFT
pass@1 49.4 36.9 66.3 54.2
maj@4 56.7 41.7 72.5 59.2
selfRef@4 68.1 49.6 75.2 67.3

Robustness Across Different Model Sizes The results, presented in Table 5, demonstrate the ef-
fective scalability of our approach to models of a larger-scale. After training, both the 14B and 32B
models exhibit substantial performance improvements across standard metrics (pass@1 and maj@4)
compared to their w/o SFT counterparts. More critically, the results demonstrate the effectiveness
of our method. For fine-tuned models, selfRef@4 consistently outperforms their respective majority
voting baselines. For instance, the fine-tuned 14B model achieves a 20.1% relative improvement
(68.1% vs. 56.7%) in AIME24, while the 32B model shows a 13.7% relative improvement (67.3%
vs. 59.2%) in AIME25. This phenomenon contrasts with the 14B base model, which fails to ben-
efit from self-refinement and even shows a performance degradation in AIME24 compared to the
majority voting baseline. To our surprise, the base 32B model already exhibits a slight advantage
with selfRef@4 over maj@4. We hypothesize that this may be due to the more advanced in-context
learning (ICL) capability of the 32B model relative to smaller models. This finding justifies the use
of larger powerful reasoning model as the teacher in our training pipeline.

Generalization via Data Decoupling A crucial aspect of this experiment is that we reuse the hy-
brid dataset from Section 4.4 to train larger models. In particular, all candidate solutions within this
dataset are generated by Qwen2.5-7B-Instruct. Although there is a mismatch between the candidate
generator and learners, the results clearly indicate that both models successfully acquire the ability
of self-refinement. This finding provides compelling evidence for a decoupling of the model’s inter-
nal knowledge representation from the self-refinement skill. It demonstrates that the training process
does not simply teach a model to patch its own flaws. Rather, it fosters a general, model-agnostic
ability to evaluate proposed solutions regardless of their origin and aggregate a superior one.

4.6 INPUT SCALING ANALYSIS

To scale up to a larger number of inputs, previous work (Zhang et al., 2025a; Guo et al., 2025)
has often employed a hierarchical strategy, partitioning candidate responses into fixed-size groups,
producing outputs for each group, and then iteratively combining across groups. This approach has
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been shown to be general and effective. However, such methods are not indeed scaling on input and
have a time complexity of O(N).

Figure 4: Accuracy of input scaling on
the performance on the (Left) AIME24
and (Right) AIME25 benchmarks.

Our experiments are conducted on a fixed set of four
candidate responses. To evaluate our model’s extrapola-
tion capability, we conduct an input scaling experiment.
Specifically, we evaluate performance with the number of
candidate responses, k, ranging from 2 to 16. We com-
pare our method with the maj@k (majority voting) and
oracle pass@k. In Figure 4, for a smaller number of can-
didates (k ≤ 4), our method shows strong performance,
even slightly surpassing the pass@2 (63.2% vs. 62.5%)
on AIME24 at k = 2. For a larger number of candi-
dates (k ≤ 10), our method consistently outperforms ma-
jority voting, and its performance scales with the num-
ber of candidates. This suggests that our method effec-
tively extrapolates to a number of candidates greater than
four. However, as the number of candidates is further in-
creased, the performance of our method begins to saturate
and even shows a slight decline. We hypothesize that this
is due to the increase in the input, which increases additional noise and complexity, thereby disrupt-
ing the model’s attention mechanism.

4.7 OUT-OF-DISTRIBUTION ANALYSIS

Figure 5: Experiments results for base
model (Left) and our model (Right) on
a subset of K&K dataset. The arrows
and percentages quantify the relative
performance change when applying our
method over majority voting.

GSR-7B is trained exclusively on math datasets. To fur-
ther analyze its generalization ability to an unseen do-
main, we test it on the Knights and Knaves (K&K) logic
puzzles dataset (Xie et al., 2025), where some charac-
ters tell the truth and others only lie. For evaluation,
we use the 4ppl subset of the K&K dataset and refor-
mat original problems as multiple-choice questions to al-
low more accurate scoring. We report the performance of
pass@1, majority voting (maj@4) and our method (self-
Ref@4). In Figure 5, GSR-7B demonstrates a substantial
performance improvement over the base model. Com-
pared to the base model’s pass@1 accuracy of 12.9%,
our model achieves 37.3%. More critically, we observe
a clear divergence in self-refinement ability. The base
model’s selfRef@4 performance decreases by 7.6% rel-
ative to maj@4, while our model shows a performance
improvement of 7.2%. These results confirm that the self-
refinement ability is a skill acquired during training and
that this skill even successfully generalizes to an unseen
out-of-distribution domain.

5 CONCLUSION

In this paper, we propose Generative Self-Refinement, a novel parallel test-time scaling method by
which a single and unified model performs self-improvement on its own parallel solutions. This is
achieved through a training process that optimizes for a hybrid objective. Our extensive experiments
demonstrate that our approach consistently outperforms strong baselines. Even in the most challeng-
ing scenarios, where all candidate responses are incorrect, our model is still able to produce a correct
solution. Furthermore, we find that this skill is generalizable to out-of-distribution reasoning tasks,
applicable across various model scales, and decoupled from the model’s specific internal parame-
ters. This indicates that we have established a universal and model-agnostic reasoning methodology.
Finally, our self-contained refinement framework highlights a promising direction for developing
more capable and efficient LLM reasoners.
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A USE OF LLMS

We only use Large Language Models (LLMs) to polish the manuscript and correct grammatical
errors. The research content, including all ideas, experimental design and findings, is not cooperated
with LLMs.

B ETHICS STATEMENT

We acknowledge the ICLR Code of Ethics and confirm that our work adheres to its principles. Our
research is conducted on the OpenMathReasoning dataset (Moshkov et al., 2025), which is a publicly
available collection of mathematical problems curated from community forums and has undergone
benchmark decontamination. The dataset does not contain personally identifiable information or
other sensitive data. Our study does not involve human subjects.

C REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Our experiments are based on
the publicly available OpenMathReasoning dataset (Moshkov et al., 2025). The details about our
data curation is provided in Appendix F.1. The training settings, including all hyperparameters, are
documented in Appendix F.2. Our evaluation settings are thoroughly detailed in Appendix F.3.

To further foster replication of our results, we provide our source code as part of the supplementary
materials.

D PROMPT TEMPLATE

Our model support dual abilities during inference: direct-answer generation and self-refinement.
The choice between modes is achieved by constructing different input prompts. Here we provide
the detailed prompt template used to prompt our model to perform self-refinement. The prompt
template consists of the original problem and a set of candidate solutions mainly.

Prompt Template on the Self-Refinement Mode for Generative Self-Refinement

You are an expert and creative solver, provided with a challenging problem and a set of
candidate responses which may be correct, partially correct or even wrong.
You should first fully summarize the connection between candidate responses and problem,
then generate a new and superior solution. You should generate a correct solution your-
self if all candidates are wrong. Don’t copy candidates, use insights selectively and reason
independently.
Problem:
{Problem}
Think step by step and put final answer within \boxed{}.

Candidate Response 1:
{Response 1}

Candidate Response 2:
{Response 2}

Candidate Response 3:
{Response 3}

Candidate Response 4:
{Response 4}

We also provide a common prompt template to instruct the model to solve the problem directly. This
common prompt template is applicable for any LLMs.
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Common Prompt Template for Direct-Answer Generation

{Problem}
Think step by step and put final answer within \boxed{}.

E ANALYSIS OF CANDIDATE INPUTS BURDEN

Figure 6: Average token counts of model Direct-Solving outputs across five benchmarks, showing
the breakdown between the Thinking (solid) and Summary (hatched) components. Percentages
indicate the proportion of summary tokens.

A critical factor for the feasibility of our method is the management of context length, as recontex-
tualizing the verbose responses from thinking model can lead to prohibitive compute overhead. We
innovatively mitigate this by exclusively extracting the summary component from responses while
discarding the preceding thinking component.

To quantify the efficiency of this strategy, we analyze the token composition of our model’s outputs
across the five benchmarks of Section 4.2. As illustrated in Figure 6, the summary component is
remarkably succinct, consistently accounting for only a small fraction of the total generated tokens
(e.g., 6.6% to 14.8%). In particular, for difficult benchmarks like AIME24 and AIME25, the total
number of tokens generated is substantial and exceeds 13,000 on average. Despite this, the summary
component itself still remains remarkably concise, with an average token count of fewer than 1,000.
Across the five distinct and representative benchmarks, the token length of the summary component
varies from 570 to 960 tokens. This demonstrates that the input context is well controlled, imposing
an average input burden of less than 4000 tokens even on the challenging AIME24 benchmark.

As detailed in Table 6, we further calculate the average token length for GSR-7B to perform self-
refinement given four candidate responses. We find that token consumption is significantly lower
than the direct-solving approach. We attribute this efficiency to the model’s ability to leverage valu-
able information from correct candidate responses and thus to prune the search space significantly
during its chain-of-thought reasoning.

Table 6: Average token counts of model Self-Refinement outputs across five benchmarks.

Benchmark AIME24 AIME25 AMC22-23 MATH500 Olympiad
Token Length 8878 10477 5270 2745 5910
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F EXPERIMENTS DETAILS

F.1 DATASET CURATION

For simplicity, we establish a data pipeline based on a single large-scale mathematics data set, Open-
MathReasoning(Moshkov et al., 2025). OpenMathReasoning dataset is curated from the AoPS com-
munity forums, performed rigorous filtering, classification, transformation, and benchmark decon-
tamination, containing 540K mathematical problems and 3.2M generations from DeepSeek-R1 and
QwQ-32B.

The detailed procedure, including the numbers of problems and samples remaining at each stage, is
documented in Table 7. In summary, the pipeline involves several filtering steps, such as removing
generations not used in the Kaggle competition, removing problems without an extracted answer,
and discarding any generations without a pass rate evaluated by Qwen2.5-72B-Instruct. Subse-
quently, we aggregate the corresponding solutions for each problem, and then retaining problems
with a pass rate between 0.25 and 0.9, yielding a prefiltered pool of 56K unique problems and 617K
generations.

Table 7: Step by step filtering process for the construction of problems. The process starts from a
large-scale raw dataset and applies a series of filtering operations to yield the final curated dataset.
The number of unique problems and their corresponding generated outputs are tracked at each step.

Step Filtering Operation Problems Generations
- Initial Raw Dataset 540K 3.2M
1 Remove generations not used in Kaggle competition. - 2.2M
2 Retain data with ’problem type’ == ’has answer extracted’. - 1.3M
3 Discard problems that have no ’pass rate 72b tir’. - 1.2M
4 Aggregate generations by their corresponding unique problem. 116K 1.2M
5 Filter problems to keep only those with a ’pass rate 72b tir’ between 0.25 and 0.90. 56K 617K

We construct the self-refinement dataset (DselfR) using theses 56K problems. As summarized in
Table 8, for each problem, we generate 6 candidate responses with Qwen2.5-7B-Instruct using tem-
perature of 1.0, top-p of 0.95, and a maximum output length of 4096 tokens to foster diversity. Given
the inherent difficulty of the problems, we implement a specific selection process for the 6 responses.
We filter and construct a fixed size set of 4 candidate responses. This set is composed of all correct
solutions from the initial candidate pool of 6, with the remaining filled by incorrect solutions to
meet the required size of 4. The order of these 4 candidates is then randomized. By combining each
original problem with its set of candidate responses according to the prompt template in Appendix
D, we constructed a dataset of 56K self-refinement problems. We further remove data where the
prompt length exceeded 8,192 tokens, resulting in a final dataset of 53K samples.

Table 8: Step by step curation of final hybrid training datasets from the prefiltered pool.

Path Step Operation Problems Generations
- - Prefiltered Pool (from Table 7 Step 5). 56K 617K
DselfR 1 Use all 56K problems for self-refinement generation. 56K -

2 Generate 6 solutions as candidates using Qwen2.5-7B-Instruct. 56K 336K
3 Construct augmented prompts for self-refinement. 56K -
4 Remove data where the prompt length exceeded 8,192 tokens. 53K -
5 Generate 10 solutions for per problem using QwQ-32B. 53K 530K
6 Subsample final solutions based on correctness. - 184K

Ddirect 1 Randomly sample 184K generations from the pre-filtered pool. - 184K
Final Dataset 1 Merge the direct-answer dataset with self-refinement dataset. - 368K

For these 53K self-refinement problems, we utilize QwQ-32B model and generate up to 10 solutions
for each problem in our dataset. We use temperature of 0.7, top-p of 0.95, and limit generations to
16,384 tokens. The generated solutions by QwQ-32B are then filtered based only on the correctness.
Specifically, if a problem yields between one and nine correct solutions (out of 10), we retain all of
them. However, for problems where all 10 generated solutions are correct, we randomly sample four
of them. This curation process yields our final training dataset DselfR for self-refinement task of
184K samples.
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For the direct-answer dataset, we randomly sample an equal number of 184K, the size of our self-
refinement dataset, from the dataset obtained after Step 5 in Table 7 to create our Ddirect dataset.
We then merge the self-refinement dataset DselfR with direct-answer dataset Ddirect to create our
final hybrid 368K training dataset.

F.2 TRAINING SETTINGS

We train Qwen2.5-7B-Instruct(Yang et al., 2025b) on the 368K SFT dataset for 3 epochs with the
AdamW optimizer, employing a 10% linear warmup followed by a cosine learning rate decay sched-
ule. The maximum learning rate is set to 1e-4, with a batch size of 128 and a maximum sequence
length of 24K tokens. To support longer context windows and align with advanced thinking mode,
we adopted the chat template from the Qwen3 family(Yang et al., 2025a) and extended the maxi-
mum sequence length by setting max position embeddings to 65,536.

In the ablation study, we train the model for 5 epochs and set the maximum learning rate to 4e-5.
All other settings remain the same.

F.3 EVALUATION SETTINGS

We explicitly instruct all models to think step by step and to enclose the final answer within
\boxed{} (Hochlehnert et al., 2025). We use the Math-Verify framework, a more robust way
to extract and verify answer.

We first sample candidate responses in the direct-solving mode and then perform various test-time
scaling strategies based on these candidate responses. For base Qwen2.5-7B-Instruct, we configure
the evaluation process to set the maximum new tokens of 4,096 and apply optimal hyperparameters.
For our GSR-7B, we configure the maximum new tokens of 32,768, temerature of 0.6 and top-p 0.95.
To mitigate the evaluation variance (Hochlehnert et al., 2025), we repeat 32 trials for every problem
in AIME24 and AIME25, and 16 for all other benchmarks. We present the average accuracy across
16 or 32 samples generated directly for every problem as pass@1.

Then, we compute several TTS metrics based on non-overlapping groups of every four candidate
responses: maj@4 (majority voting accuracy), BoN@4 (Best-of-N), cor@4 (correction methods),
and SelfRef@4. The final scores for these metrics are the average performance across all groups.
For all baseline models, we follow the exact hyperparameter values and the specific prompt rec-
ommended in their official documentation or model cards. For RRM and RM-R1, we employ a
knockout tournament strategy (Guo et al., 2025), a method of iterative pairwise comparison and
elimination to determine the best answer, which effectively guides LLMs to perform BoN sampling.
Our method is evaluated with a maximum of 32,768 output tokens, 6,144 tokens for candidate re-
sponse input (1,566 tokens per candidate response), temperature of 0.6 and top-p 0.95. We ensure
that our method also runs 32 trails for AIME24 and AIME25, and 16 for the remaining benchmarks.

G FULL RESULTS OF FINE-GRAINED ANALYSIS

In this section, we provide the full experiment results in Section 4.3. The results of fine-grained
analysis of our method across AIME24, AIME25, AMC22-23, MATH500, Olymiad is provided in
Table 9. For each number of correct candidate responses (from 0 to 4), we compile statistics on our
model’s performance, including the number of correct answers, wrong answers, total trials, and the
final correct ratio.

H CASE STUDY

In this section, we present a more detailed case study from AIME24. This case demonstrates that
our method can recover from four incorrect candidate responses and produce a final correct solution.

H.1 ORIGINAL QUESTION AND CANDIDATE SOLUTIONS

The following is the original problem and four candidate responses provided to the model. Due to
space constraints, the content of the candidate responses has been condensed.
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Table 9: Full results of robustness analysis of our method across five mathematical benchmarks. We
report correct number, wrong number, correct ratio and total conditioned on the number of correct
candidates.

Number of Statistics Benchmarks
Correct Candidates AIME24 AIME25 AMC22-23 MAHT500 Olympiad

4

Correct 260 200 867 6604 5573
Wrong 0 0 1 12 11
Correct Ratio(%) 100 100 99.9 99.8 99.8
Total 260 200 868 6616 5584

3

Correct 152 92 147 581 1049
Wrong 4 4 1 35 67
Correct Ratio(%) 97.4 95.8 99.3 94.3 94.0
Total 156 96 148 616 1116

2

Correct 129 101 80 165 564
Wrong 15 15 20 51 132
Correct Ratio(%) 89.6 87.1 80 76.4 81.0
Total 144 116 100 216 696

1

Correct 77 84 30 112 367
Wrong 51 44 26 116 357
Correct Ratio(%) 60.2 65.6 53.6 49.1 50.7
Total 128 128 56 228 724

0

Correct 16 19 14 11 117
Wrong 256 401 142 313 2563
Correct Ratio(%) 5.9 4.5 9.0 3.4 4.4
Total 272 420 156 324 2680

Question and Candidate Solutions

You are an expert and creative solver, provided with a challenging problem and a set of
candidate responses which may be correct, partially correct or even wrong.
You should first fully summarize the connection between candidate responses and problem,
then generate a new and superior solution. You should generate a correct solution yourself
if all candidates are wrong. Don’t copy candidates, use insights selectively and reason
independently.
Problem:
Let △ABC have circumcenter O and incenter I with IA ⊥ OI , circumradius 13, and
inradius 6. Find AB · AC. Let’s think step by step and output the final answer within
\boxed{}. Candidate Response 1:
...Given the symmetry and the conditions, we can use the known result for the product of the
sides in a right triangle:

AB ·AC = 384

Thus, the product AB ·AC is:
384

Candidate Response 2:
...Thus, the final answer is

26
√
39

Candidate Response 3:
...Thus, the final answer is:

312

Candidate Response 4:
...Thus, the final answer is:

26
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H.2 THINKING PROCESS OF SELF-REFINEMENT

In this section, we present a more detailed trace of the model’s thinking component and summary
component, when provided with a problem and four candidate responses. We split and structure the
model’s raw thinking process into four parts, each marked by a bold title. To provide analytical
insights, we have inserted meta comment in blue italics, focusing on how the model analyzes, dis-
cerns, and selectively utilizes valuable information from four candidates responses. We give special
attention to the model’s ability to self-correct by analyzing candidate responses, identifying flaws
and choosing an alternative decoding path. To make the model’s direct engagement explicit, its
verbatim references to the candidate responses are highlighted in red.

Thinking component of GSR-7B

1. Initial analysis and calculation (Consistent with candidates)
Okay, let me try to tackle this problem step by step. ... First, I remember that there’s a formula
connecting the distance between the incenter and circumcenter (OI) with the circumradius
(R) and inradius (r). The formula is OI2 = R(R − 2r). Let me plug in the given values:
R = 13 and r = 6. So, OI2 = 13(13 − 12) = 13 × 1 = 13, so OI =

√
13. That’s

straightforward. Next, the problem states that IA is perpendicular to OI . Since IA ⊥ OI ,
triangle OIA is a right triangle with right angle at I . The hypotenuse here is OA, which is
the circumradius, so OA = 13. Using the Pythagorean theorem on triangle OIA: OA2 =
OI2 + IA2. Plugging in the known values: 132 = (

√
13)2 + IA2 → 169 = 13 + IA2 →

IA2 = 156 → IA =
√
156.

[Meta comment: The model’s initial calculations align perfectly with the correct steps found
in Candidates 1 and 2, thereby establishing a valid foundational starting point. The model
also notes a critical flaw in Candidates 3 and 4: they employ an incorrect formula, OI2 =
R2 − 2Rr. Although this formula coincidentally produces the correct numerical value for
the specific given radius R = 13, its structural inaccuracy leads the model to correctly flag
these candidates as unreliable early in the process.]

2. Deep dive and critique of candidate strategies
[Meta comment on Candidate 1: The model observes that Candidate 1’s final answer, 384,
is presented without a clear derivation. The model formulates a hypothesis: this answer
might originate from an unstated and potentially incorrect assumption that the triangle is
right-angled at vertex A. It then proceeds to rigorously test this hypothesis.]

Alternatively, perhaps the triangle is right-angled? If △ABC is right-angled, then the
circumradius would be half the hypotenuse. Since the circumradius is 13, then the hy-
potenuse would be 26. Suppose angle A is 90◦, then BC would be the hypotenuse, so
BC = 26. Then, using the inradius formula: r = (AB + AC − BC)/2. Given r = 6, so
(AB+AC−26)/2 = 6 → AB+AC = 38. Also, by Pythagoras, AB2+AC2 = 262 = 676.
... 2AB · AC = 1444 − 676 = 768 → AB · AC = 384. Wait, that’s one of the candidate
answers (Candidate 1’s answer is 384). But does this satisfy the condition IA ⊥ OI? ...
Let me set coordinates: Let’s place A at (0, 0), B at (0, b), C at (c, 0). ... in a right-angled
triangle at A(0,0), with legs on axes, ... the incenter is at (r, r). So here, I would be at
(6, 6). The circumcenter O is the midpoint of BC, which is at (c/2, b/2). Now, we need
to check if IA is perpendicular to OI . Vector I⃗A is from I(6,6) to A(0,0): (−6,−6). Vec-
tor O⃗I is from O(c/2, b/2) to I(6,6): (6 − c/2, 6 − b/2). Their dot product should be zero:
(−6)(6−c/2)+(−6)(6−b/2) = 0 → −36+3c/2−36+3b/2 = 0 → −72+(3/2)(b+c) =
0. But since b + c = 38,→ −72 + (3/2) ∗ 38 = −72 + 57 = −15 ̸= 0. Thus, the dot
product is not zero, so the condition IA ⊥ OI is not satisfied. ...but the calculation gave
AB·AC=384, which is the first candidate’s answer, but it doesn’t satisfy the perpendicular
condition. So that must be incorrect... Therefore, the triangle cannot be right-angled at A.
Hmm, so that approach was wrong.

[Meta comment on Candidate 2: The model shifts its analysis to the other candidates and
identifies a valuable, correct intermediate step within Candidate 2’s reasoning. It decides to
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pursue this line of reasoning to evaluate its potential and identify where, if at all, it deviates
from a correct solution path.]

...Wait, another formula for IA is IA = 2R sin(A/2). Let me check that. Yes, I think that’s
correct. ... IA = 2R sin(A/2) →

√
156 = 2 · 13 · sin(A/2) → sin(A/2) =

√
156/(26) =√

39/13. ... Thus, sinA = 2 sin(A/2) cos(A/2) = 2 · (
√
39/13) · (

√
130/13) =

· · · = (2
√
30)/13. ... We had sinA = 2

√
30/13. Then cosA =

√
1− sin2 A =√

1− (4 · 30)/169 =
√
(169− 120)/169 =

√
49/169 = 7/13.

[Meta comment: The model confirms the validity of Candidate 2’s calculations regarding the
trigonometric properties of angle A, acknowledging this as a key insight. However, it also di-
agnoses the critical failure point in Candidate 2’s approach: the strategy becomes untenable
when it hinges on calculating the semiperimeter, ’s’, a step where the candidate’s method
falters. The model elects to adopt the correct trigonometric values derived by Candidate 2
while consciously avoiding the flawed semiperimeter-dependent strategy.]

...So, 6s = (1/2) · AB · AC · (2
√
30/13) → 6s = (AB · AC ·

√
30)/13 → AB · AC =

(6s · 13)/
√
30. Hmm, so if I can find s, then I can compute AB · AC... This is the path

Candidate 2 took, but they failed to find s correctly. I will retain the trigonometric values for
angle A but seek a more direct path to the solution, avoiding this semiperimeter dead end.

3. Synthesizing a novel, correct solution from useful parts
[Meta comment: After systematically identifying the flaws in Candidates 1, 3, and 4, and
the dead-end in Candidate 2’s approach, the model determines that a novel solution path is
required. The chosen strategy is a synthesis: it leverages the correct trigonometric values for
angle A, which were validated from Candidate 2’s work, and integrates them with a powerful
trigonometric identity not utilized by any of the candidates.]

...We have r = 6, R = 13, so: 6 = 4 · 13 · sin(A/2) sin(B/2) sin(C/2). We already found
sin(A/2) =

√
39/13. Let me plug that in: 6 = 52 · (

√
39/13) · sin(B/2) sin(C/2) → 6 =

4
√
39 ·sin(B/2) sin(C/2) → sin(B/2) sin(C/2) = 6/(4

√
39) = 3/(2

√
39). ... Also, since

B+C = π−A, sin(B/2) sin(C/2) = [cos((B−C)/2)−cos((B+C)/2)]/2 = [cos((B−
C)/2)−sin(A/2)]/2. So, [cos((B−C)/2)−

√
39/13]/2 = 3/(2

√
39) → cos((B−C)/2)−√

39/13 = 3/
√
39 → cos((B − C)/2) = 3/

√
39 +

√
39/13 = · · · = 2

√
39/13. ... Now,

using the identity for sinB sinC: sinB sinC = [cos(B − C) − cos(B + C)]/2. We have
cos(B − C) = 2 cos2((B − C)/2) − 1 = 2 · ((2

√
39/13)2) − 1 = · · · = 143/169. And

cos(B + C) = − cosA = −7/13. sinB sinC = [143/169 − (−7/13)]/2 = [143/169 +
91/169]/2 = (234/169)/2 = 117/169. ... Thus, AB ·AC = 4R2 sinB sinC = 4 · (13)2 ·
(117/169) = 4 · 169 · (117/169) = 4 · 117 = 468.

4. Final verification of the self-derived answer
...Hmm, so the correct answer should be 468. But none of the candidates have this. ... let
me see if that makes sense with the area. The area ∆ = (AB · AC sinA)/2 = (468 ·
(2
√
30/13))/2 = (468 ·

√
30)/13 = 36

√
30. Also, the area is rs = 6s. Thus, 6s =

36
√
30 → s = 6

√
30. ... The sides are a = 4

√
30, and b + c = 2s − a = 12

√
30 −

4
√
30 = 8

√
30. Thus, b + c = 8

√
30, and bc = 468. ... We can check if these satisfy the

Law of Cosines: cosA = (b2 + c2 − a2)/(2bc). We have cosA = 7/13. ... b2 + c2 =

(b+ c)2 − 2bc = (8
√
30)2 − 2(468) = 1920− 936 = 984. Plugging into Law of Cosines:

(984 − 480)/(2 · 468) = 504/936 = 7/13. This matches the earlier result. Thus, the
calculations are consistent. Therefore, the correct answer should be 468.

H.3 SUMMARY COMPONENT OF SELF-REFINEMENT

We now present the summary component generated by the model. This component serves as a
concise distillation of the core content detailed in the preceding chain-of-thought analysis. It is
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worthy that the model autonomously provides a novel solution path, distinct from all candidate
responses, to arrive at the correct answer of 468.

Summary component of GSR-7B

To solve the problem, we need to find the product AB · AC for triangle ABC with circum-
radius R = 13, inradius r = 6, and the condition that IA ⊥ OI .
Key Steps:
1. **Distance Between Incenter and Circumcenter**: Using Euler’s formula:

OI2 = R(R− 2r) = 13(13− 12) = 13 =⇒ OI =
√
13

2. **Right Triangle Condition**: Since IA ⊥ OI , triangle OIA is right-angled at I . Using
the Pythagorean theorem:

OA2 = OI2 + IA2 =⇒ 132 = (
√
13)2 + IA2 =⇒ IA2 = 156 =⇒ IA =

√
156

3. **Trigonometric Relationships**: - The distance IA can also be expressed as IA =
2R sin

(
A
2

)
:

√
156 = 2 · 13 · sin

(
A

2

)
=⇒ sin

(
A

2

)
=

√
39

13

- Using the double-angle identity for sinA:

sinA = 2 sin

(
A

2

)
cos

(
A

2

)
= 2 ·

√
39

13
·
√

130

169
=

2
√
30

13

- The cosine of angle A is:

cosA =
√
1− sin2 A =

7

13
4. **Product of Sides Using Law of Sines**: - The sides AB and AC are given by:

AB = 2R sinC and AC = 2R sinB

- The product AB ·AC is:

AB ·AC = 4R2 sinB sinC

- Using trigonometric identities and the given conditions, we find:

sinB sinC =
117

169

- Substituting R = 13 and sinB sinC:

AB ·AC = 4 · 132 · 117
169

= 4 · 117 = 468

Final Answer:
468
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