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ABSTRACT

Protein function prediction is pivotal for uncovering the mechanisms of life pro-
cesses. Protein function prediction is a multi-label classification task with nu-
merous functional labels that exhibit hierarchical relationships. Relying solely
on unimodal protein features is insufficient for computational models to capture
complex protein functions adequately. Recently, several methods for protein func-
tion prediction have enhanced the performance by integrating multimodal pro-
tein features. However, since multimodal protein features describe protein func-
tions from different perspectives, it is challenging to capture the intricate relation-
ships among these multimodal features with different meanings and heterogeneity.
Therefore, we propose a multimodal method for protein function prediction that
can effectively utilize the intricate internal relationships between spatial structure
features (i.e., protein-protein interaction network, subcellular location, and pro-
tein domains) and sequence features (i.e., amino acid sequence). In this work,
we introduce the Bidirectional Interaction Module (BInM) to facilitate interactive
learning between multimodal features by mapping spatial structure and sequence
features of proteins to each other. Moreover, to deal with the difficulty of hier-
archical multi-label classification in this task, a multi-branch Dynamic Selection
Module (DSM) is designed to select the feature representation that is most favor-
able for current protein function prediction. Comprehensive experiments on hu-
man datasets demonstrate that our model outperforms state-of-the-art multimodal-
based methods such as Graph2GO, DeepGraphGO, and CFAGO. Furthermore, we
assess the efficacy of the features through Davies-Bouldin scores and t-SNE visu-
alization experiments. The experimental results show that our method constructs
more useful protein representations through bidirectional interaction and dynamic
selection mechanisms, leading to improved accuracy in protein function predic-
tion. The code in this work will be made public after its acceptance.

1 INTRODUCTION

Proteins, as essential components of life, play a crucial role in biological research. With the rapid
development of bioinformatics (Giamarellos-Bourboulis et al., 2024; Hasselgren & Oprea, 2024),
protein function prediction has emerged as a key challenge in the field of biology. Protein functions
are standardized through the Gene Ontology (GO) framework. This framework classifies protein
functions into three categories: biological process ontology (BPO), molecular function ontology
(MFO), and cellular component ontology (CCO)(Aleksander et al., 2023). In recent decades, nu-
merous deep learning-based computational methods (You et al., 2021; Zhang et al., 2023) have been
developed to predict protein functions. Most of the previous methods (Kulmanov & Hoehndorf,
2020) utilize one of the following types of information: sequence information, structure informa-
tion, and protein-protein interaction (PPI) network. In the process of analyzing each type of protein
information (Kulmanov & Hoehndorf, 2020), we found that relying on a single-modal feature to
predict protein function is often constrained by the conditions of the data itself. For instance, many
studies (Fan et al., 2020) have shown that using protein sequence information significantly improves
the accuracy of molecular function predictions. However, there are many proteins that share func-
tional similarities but have dissimilar sequences (Lin et al., 2024). As a result, for proteins with
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low sequence similarity, the accuracy of predictions may be compromised. Moreover, structure-
based methods (Jiao et al., 2023; Gligorijević et al., 2021) leverage the rich structure information
provided by resources to improve protein function prediction accuracy. But the high complexity of
protein structures and the cost of data acquisition limit the application of structure-based methods
(Paysan-Lafosse et al., 2023). Furthermore, the noise introduced during the generation of PPI net-
works through high-throughput techniques poses risks to the accuracy of predictions (Chen & Luo,
2024). Therefore, integrating these different types of protein data based on multimodal methods and
taking advantage of their complementary advantages in functional prediction is an important way to
improve the performance of protein function prediction.

Recognizing that unimodal representations are insufficient to encapsulate the information contained
within proteins, multimodal-based methods have emerged. DeepFRI (Gligorijević et al., 2021)
leverages graph convolutional networks to learn features from both protein sequences and structural
properties. Graph2GO (Fan et al., 2020)utilized graph networks to consolidate sequence similarity
networks and PPI networks, incorporating protein sequence and structural information as node fea-
tures for function prediction. However, those using GNNs may amplify noise and face issues with
over-smoothing. To address these limitations, CFAGO(Wu et al., 2023) proposed the incorporation
of Transformer mechanisms within autoencoders to fuse multimodal protein features.

However, current multimodal approaches primarily rely on information fusion mechanisms without
considering the potential complementarity between different modalities. To address this issue, we
propose a bidirectional-interaction and dynamic-selection-driven method (BDGO) that integrates
spatial structure information (i.e., PPI network, subcellular location, and protein domains) and se-
quence information (i.e., amino acid sequence) from proteins. In addition, large language models
play an important role in improving protein function prediction. SaProt(Su et al., 2023), as a large-
scale general-purpose protein language model (PLM) trained on 40 million protein sequence and
structure data, achieved good results in protein function prediction tasks. Inspired by large language
models, the protein sequence information in our method is extracted using the pre-trained ProtT5
(Elnaggar et al., 2021). In this work, to better learn multimodal information, our proposed BDGO
model includes a shared learning branch and an interactive learning branch. In the shared learning
branch, we concatenate features from different modalities and perform joint analysis in a unified
representation space. Moreover, we introduce the Bidirectional Interaction Module (BInM), which
means that each modality not only influences the processing of other modalities but also obtains
information from them, thereby enhancing the overall understanding capability.

Further, faced with thousands of protein functions, accurately predicting the protein function of a
sample remains a challenging issue. Protein function prediction is essentially a complex hierarchi-
cal multi-label classification problem. In this situation, we propose the Dynamic Selection Module
(DSM) to dynamically select the optimal feature combination for fitting more diverse protein func-
tions. Our main contributions can be summarized as follows:

• We propose a multimodal feature-based approach for protein function prediction that over-
comes the limitations of single-modality methods, effectively representing protein func-
tional characteristics to assist the model in understanding protein function.

• Our proposed BInM incorporates a bidirectional interaction mechanism to promote efficient
fusion and information exchange between sequence features and spatial features, enhancing
the model’s ability to capture strong protein information between different modes.

• We design the DSM that enables the model to adaptively select channel features most rele-
vant to specific functional labels, resulting in enhanced classification performance.

2 METHODOLOGY

Our proposed method efficiently captures multimodal information of proteins through a strategy for
two-step training. In the pre-training stage, we use the encoder-decoder model to learn and inject
multimodal knowledge. For spatial features including PPI, subcellular location, and protein do-
mains, a Protein Spatial Structured Information (PSSI) encoder-decoder model using the BiMamba
blocks is introduced in this stage. To mine sequence features including protein sequences, we design
a Protein Sequence Information (PSI) encoder-decoder model based on the Transformer blocks for
pre-training. Then, during our BDGO model training phase, we integrate and learn features from
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Figure 1: An illustration of our proposed method. This method is mainly divided into two stages.
The first stage is to pretrain the Protein Spatial Structure Information (PSSI) encoder and Protein
Sequence Information (PSI) encoder for the injection of multimodal knowledge . The second stage
is training our proposed BDGO model, which consists of an MSL-Branch, a MIL-Branch with the
Bidirectional Interaction Module (BInM), and the Dynamic Selection Module (DSM).

multimodal information. The proposed model is primarily divided into two major branches: one is
the multimodal shared learning branch (MSL-Branch), and the other is the multimodal interactive
learning branch (MIL-Branch). Protein data are processed through these multiple branches to gener-
ate several sets of features, which serve as inputs for our well-designed hard gating network. Finally,
the model dynamic selects the optimal features for the current protein, to enhance performance in
protein function prediction. An illustration of our proposed method can be seen in Figure 1.

2.1 ENCODER-DECODER PRETRAINING

2.1.1 PROTEIN SPATIAL STRUCTURE INFORMATION (PSSI) ENCODER-DECODER

The PPI network gets an N × N adjacency matrix by matrix conversion as input to the encoder.
Moreover, another input to the encoder is obtained by concatenating the bag-of-words encodings of
subcellular location and Protein Domain.

Mamba Preliminaries. Mamba (Gu & Dao, 2023) extends the capabilities of the State-Space Mod-
els (SSMs) (Gu et al., 2023) by enabling the transformation of a continuous 1D input xt ∈ R to
yt ∈ R via a learnable hidden state ht ∈ RN̂ with discrete parameters Ā ∈ RN̂×N̂ , B̄ ∈ R1×N̂ , and
C̄ ∈ R1×N̂ as follows:

ht = Āht−1 + B̄xt, yt = Cht +Dht, Ā = e∆A, B̄ = (∆A)−1(e∆A − I) ·∆B, C̄ = C.
(1)

Ā and B̄ are continuous A and B converted to discrete evolution parameters using a timescale
parameter ∆. To process discrete-time sequences that are sampled at intervals of ∆, SSMs can be
calculated using the recurrence formula. C̄ represents the projection parameters. In addition, the

3
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Figure 2: Structure of the BiMamba block.

models compute output through a global convolution as in the following:

K̄ = (C̄B̄, C̄ĀB̄, . . . , C̄ĀN̂−1B̄), y = x ∗ K̄, (2)

where N̂ is the length of the 1D input x, and K̄ is a structured convolutional kernel.

BiMamba Block. Inspired by the selective scan mechanism in Vision Mamba (Zhu et al., 2024),
BiMamba Block introduces a novel bidirectional selective scanning mechanism designed for protein
data, capturing both the start and end of spatial structure features for enhanced detail and context.
Multi-dimensional features are first converted into one-dimensional vectors. Features xsp from PPI,
subcellular location, and protein domains are then passed through BiMamba blocks, interleaved
with linear layers and residual operations. As shown in Fig. 2, forward (FSScan) and backward
selective scans (BSScan) extract bidirectional matrix features via positional transformations and
reconstructions. Transformed tokens are scanned using Equation 1 to produce new features, with
BiMamba’s output x̃sp expressed as:

x̃sp = FSSCan(xsp) + FSSCan(Linear(Fα ⊙ Fσ + Fβ ⊙ Fσ + Fσ)), (3)
Fα = FSSCan(BSSCan(SSM(Conv 1d(BSSCan(FSSCan(xsp)))))), (4)
Fβ = FSSCan(SSM(Conv 1d(FSSCan(xsp)))), (5)
Fσ = SiLU(FSSCan(xsp)), (6)

where the operation ⊙ denotes the Hadamard product.

PSSI Encoder. In this section, we propose a PSSI encoder architecture designed to effectively map
high-dimensional input data into a low-dimensional latent space. The PSSI encoder is composed of
multiple neural network layers, including multilayer perceptrons (MLPs), BiMamba block, Linear
and Norm layers, which work in concert to extract features from the input data and generate a
compact latent representation. Assume that the input feature x

h(k)
i ∈ RHk

i is a high-dimensional
vector of the i-th protein, and it is reconstructed utilizing the MLP layer. Then the reconstructed
features are processed by the PSSI encoder to output a low-dimensional representation xd

i (k) ∈
RDk

i .

PSSI Decoder. The architecture of the PSSI decoder is a counterpart to that of the encoder. The
PSSI decoder rebuilds the given protein spatial structure information based on the hidden represen-
tations output by the encoder. This process involves BiMamba computation and residual operations,
optimizing the cross-entropy loss function to enhance the performance. After taking the output
xd
i (k) of the PSSI encoder and passing through the BiMamba block, alternating Linear and Norm

layers, we obtain the recovered high-dimensional features x̄h
i (k) ∈ RHk

i .

The overarching objective of the encoder-decoder architecture is to minimize the sample wise binary
cross-entropy loss between the original and reconstructed source features, thereby enhancing the
model’s predictive accuracy and fidelity in representing complex protein data. The loss function of
PSSI encoder-decoder is:

Lsp =
1

N

N∑
i=1

K∑
k=1

Hk
i∑

j=1

−
[
x
h(k)
ij log x̄

h(k)
ij +

(
1− x

h(k)
ij

)
log

(
1− x̄

h(k)
ij

)]
, (7)

where N is the number of total proteins, K is the number of input sources, Hm
i is the feature

dimension of the k-th source, xh(k)
ij denotes the j-th dimension vector of the input feature xh(k)

i , and

x
h(k)
i represents the j-th dimension vector in generated feature x̄

h(k)
ij .
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2.1.2 PROTEIN SEQUENCE INFORMATION (PSI) ENCODER-DECODER

In PSI encoder-decoder, transformer block with multi-head self-attention mechanism (Dosovitskiy
et al., 2021) is used to extract the long-distance features of the protein sequences. Particularly, to
fully exploit the protein sequence features, we use pre-trained ProtT5 (Elnaggar et al., 2021) model
to parse the protein sequences. To achieve this, we froze the parameters of ProtT5 and connected it
to our PSI encoder for further pretaining.

PSI Encoder. The PSI encoder consists of an MLP block and 6 self-attention blocks. The self-
attention block includes a multi-head self-attention (MSA) computation layer, as well as alternating
linear and norm layers, connected through a residual structure. Assuming the input feature to the
self-attention block is s̃di = MLP (shi ), the output feature is ŝdi ∈ RDi :

ŝdi = N(N(s̃di + L(MSA(s̃di ))) + L(N(s̃di + L(MSA(s̃di ))))), (8)
where shi ∈ RHi is the i-th input sequence feature of encoder, L(x) denotes the fuction of Linear
layer, and N(x) denotes the Norm layer.

PSI Decoder. The PSI decoder takes the hidden states from the encoder as input, which contains
compressed information about the input sequence. To obtain the final protein sequence encoding,
we designed the PSI decoder using a combination of 6 self-attention blocks and one MLP block.
Then, the output feature of the PSI decoder is ŝhi ∈ RHi . Like the PSSI encoder-decoder, the loss
function Lse for the PSI encoder-decoder also adopts the form of cross-entropy:

Lse =
1

N

N∑
i=1

Hi∑
j=1

−
[
shij log s̄

h
ij +

(
1− shij

)
log

(
1− s̄hij

)]
, (9)

where i denotes the sequence input of the i-th protein, j is the j-th dimension vector of the feature
map, and Hi is the dimension of input feature.

2.2 BDGO MODEL

2.2.1 BIDIRECTIONAL INTERACTION MODULE (BINM)

The proposed BInM enhances the model’s ability to learn complex patterns by integrating informa-
tion across modalities. Using dual-branch cross-attention, it compares query (Q) vectors with key
(K) vectors from the opposite branch, enabling bidirectional interaction. This approach captures in-
terdependencies between branches more effectively, similar to multi-head self-attention but focused
on cross-branch connections.

Therefore, we assume that the features transformed by PPI are represented as x(1)
i , and the features

obtained from the encoding of subcellular location and protein domains are concatenated to form
x
(2)
i , while the features extracted through the ProtT foundation model for protein sequences are

denoted as x
(3)
i . Subsequently, x(1)

i and x
(2)
i get features with the same dimension after the MLP

block reconstruction features, and their concatenated feature map x̃B
i is used as the input of the first

branch of BInM. Similarly, the input xB
i to the second branch of BInM is obtained through the MLP

block. In BInM, the input embedded patches F (1)
a ∈ RLa×Da and F

(2)
a ∈ RLa×Da are initially and

randomly divided into multiple heads vectors F (1)
b ∈ RLa×Db×Hb and F

(2)
b ∈ RLa×Db×Hb , where

Hb is the number of multiple heads.

As shown in Figure 1, F (1)
b and F

(2)
b are converted into queries Q(1)(F

(1)
b ) and Q(2)(F

(2)
b ). The

key K(1) and value V(1) of F (1)
b , and the key K(2) and value V(2) of F (2)

b are obtained using three
generators Q, K, and V . Then, F (1)

c ∈ RLa×Db×Hb obtained by cross-attention is defined as:

F (1)
c = softmax(Q(1)(F

(1)
b )⊗K(2)(F

(2)
b )T )⊗ V(2)(F

(2)
b ), (10)

where the operation T means matrix transpose, the operation ⊗ represents matrix multiplication, and
the goal of softmax function is to normalize the F

(1)
c . Finally, the cross-attention output feature

F
(1)
d ∈ RLa×Da of the first branch is obtained by feature mapping. Similarly, we can get the cross-

attention output F (2)
d ∈ RLa×Da of the second branch. In this way, the model takes into account

not only the meaning of each branch itself, but also the relationships with other branch features,
resulting in a richer and more accurate representation on multimodal data.

5
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2.2.2 DYNAMIC SELECTION MODULE (DSM)

In the final feature selection stage, we introduce DSM to enhance key features and mitigate the
impact of conflicting ones. As illustrated in Figure 1, this module employs a Mixture-of-Experts
(MoE) (Masoudnia & Ebrahimpour, 2014) strategy for dynamical feature selection. The fea-
tures extracted by the MSL and MIL branches are combined into the input of DSM, denoted as
xdsm = (x1

dsm, x2
dsm, · · · , xV

dsm), where V is the number of expert networks E(x), each respon-
sible for processing one group of features. We set up a hard gating network G(x) to decide which
expert should be activated. Unlike traditional MoE systems, which combine outputs from all experts
through weighted averaging, our hard gating network selects a single expert for computation. This
approach allows the model to better adapt to the complex and large-scale protein function predic-
tion tasks. The hard gating network is composed of two Linear layers. Inputting xdsm into G(x)
for computation yields a V -dimensional one-hot decision vector g = one − hot(argmaxvG(x)v).
Finally, the output of DSM is xϵ =

∑V
v=1 gvEv(xv), where xv represents the v-th groups of the

inputted feature of DSM.

2.2.3 PROTEIN PREDICTION

In this work, protein function prediction is modeled as the multi-label classification task. The output
feature xϵof the DSM is used as input to the predictor, which is constructed from fully connected
layers. The predictor outputs a score vector of M -dimension GO terms Pi = (p1i , p

2
i , · · · , pMi )).

Loss Functions. In the context of GO terms, there are significantly more negative proteins than
positive ones in the training set. Consequently, we employ an asymmetric loss (Wu et al., 2023) as
the prediction loss Lpre. The loss function L = Lpre + Lgate of the final model consists of the loss
of the prediction and the loss of the gating network.

L =
1

NM

N∑
i=1

M∑
m=1

−ymi (1− pmi )
y+

log (pmi )−(1− ymi ) (pmi )
y−log (1− pmi )+λ

V∑
v=1

gvC (Ev) ,

(11)
where ymi represents the ground truth label for the i-th protein, while pmi denotes the predicted score.
The symbols {y+} and {y−} refer to the positive and negative focusing parameters respectively.
C(Ev) denotes the running cost of the v-th expert in DSM.

3 EXPERIMENTS

In this section, we present the experimental setup, including the datasets, baseline models, training
details, and evaluation metrics. Then we provide an analysis of the experimental results, supported
by ablation studies and Davies-Bouldin scores to validate the effectiveness of the model.

3.1 EXPERIMENTAL SETUP

Dataset. We construct our dataset with reference to CFAGO(Wu et al., 2023). The PPI data is ob-
tained from the STRING (Szklarczyk et al., 2023) database (version 11.5). Protein sequences, sub-
cellular localization, and domain data are collected from the UniProt (Consortium, 2022) database
(version 3.5.175). A total of 19,385 proteins are used for pretraining. For the fine-tuning dataset,
we first collected protein function annotation data from the Gene Ontology (Aleksander et al., 2023)
Resource database (version 2022-01-13). Following the standards of the CAFA (Radivojac et al.,
2013)challenge, we extracted GO terms with evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS,
and IC) as labels. Proteins annotated with these GO terms in the pretraining dataset were selected as
the fine-tuning dataset. The dataset was then split based on two time points. The finetuning dataset
for each GO branch is organized as follows: BPO includes 3,197 training proteins, 304 validation
proteins, and 182 testing proteins. MFO includes 2,747 training proteins, 503 validation proteins,
and 719 testing proteins. CCO includes 5,263 training proteins, 577 validation proteins, and 119
testing proteins. Additionally, the number of GO terms is 45 for BPO, 38 for MFO, and 35 for
CCO. We further provide the similarity distributions of the test sets and the corresponding model
performance in Appendix Section 6.3.

6
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Figure 3: Performance comparison of different computational methods.

Implementation Details. All methods are implemented by PyTorch, and we conduct all experi-
ments on a single NVIDIA GTX 4090 GPU with 24GB of memory. The batch size is set to 32.
Additionally, we combine the training and validation sets to train our model. We set the dropout rate
to 0.1 during pre-training, and the model trains for 5000 epochs, with a learning rate of 1 × 10−5

for the first 2500 epochs and 1× 10−6 for the remaining 2500 epochs. During fine-tuning, different
hyperparameters are used for each aspect, with learning rates set to 3.6e-4, 8.6e-2, and 1.4e-4 for
BPO, MFO, and CCO, respectively. The same pre-trained model serves as the feature extractor, and
AdamW is used as the optimizer across all aspects. For BInM module, the cross-attention mecha-
nism is configured with 8 heads, while other settings follow the default parameters in torch.nn. In
DSM module, the temperature parameter τ is set to 1.

Compared Methods. We compare BDGO with nine methods. Based on the data types used
by each method, we roughly divide the nine baseline methods into three types: sequence-based
methods (Naive (Radivojac et al., 2013), BLAST(Altschul et al., 1990)), PPI network-based meth-
ods (GeneMANIA(Mostafavi et al., 2008), deepNF(Gligorijević et al., 2018), Mashup(Cho et al.,
2016), NetQuilt(Barot et al., 2021)), and multimodal methods (Graph2GO(Fan et al., 2020), Deep-
GraphGO(You et al., 2021), CFAGO(Wu et al., 2023)). All methods are trained on single-species
datasets using the hyperparameters and network architectures reported in the corresponding papers,
and all results undergo five random repetitions for validation.

Evaluation Metrics. In this study, we evaluate the predictive performance of various methods using
five metrics, offering different perspectives on model accuracy and effectiveness. These include two
types of area under the precision-recall curve (AUPR)(Davis & Goadrich, 2006): micro-averaged
AUPR (m-AUPR) and macro-averaged AUPR (M-AUPR) (Peng et al., 2021), as well as the F1-score
(F1)(Wu et al., 2023), accuracy (ACC), and F-max score (Fmax)(Lin et al., 2024).

3.2 COMPARISON WITH UNIMODAL-BASED AND MULTIMODAL-BASED METHODS

As shown in Figure 3 and Table 1, BDGO outperforms other methods across multiple metrics in all
three domains. It achieves the best performance in two key metrics: Fmax and m-AUPR, particularly
in MFO and CCO. Specifically, BDGO reaches the highest Fmax values of 0.282 in MFO and 0.421
in CCO, representing improvements of 19.5% and 15.0% over the current state-of-the-art, CFAGO
(0.236 and 0.366). Additionally, BDGO achieves m-AUPR values of 0.172 in MFO and 0.392 in
CCO, which are 8.2% and 16.3% higher than CFAGO (0.159 and 0.337). These results demonstrate
the significant advantage of BDGO in single-species protein function prediction. In addition, we
discuss the Structure-based and PLM-based comparison methods, as detailed in Appendix 6.6.
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Table 1: Comparison results of different methods. The best results are highlighted in bold, and the
sub-optimal results are underlined. After the ± is the standard deviation of the experimental results.

Method Naı̈ve BLAST GeneMANIA Mashup deepNF NetQuilt Graph2GO DeepGraphGO CFAGO BDGO (Ours)

Fmax

BPO 0.051±0 0.270±0 0±0 0.075±0 0.394±0.006 0.164±0.014 0.335±0.01 0.327±0.028 0.439±0.007 0.440±0.013

MFO 0.177±0 0.122±0 0±0 0.058±0 0.153±0.004 0.081±0.013 0.196±0.006 0.142±0.035 0.236±0.004 0.282±0.038

CCO 0.121±0 0.196±0 0.031±0 0±0 0.297±0.009 0.138±0.013 0.298±0.011 0.209±0.023 0.366±0.018 0.421±0.013

m-AUPR
BPO 0.024±0 0.110±0 0.042±0 0.238±0 0.303±0.006 0.077±0.006 0.237±0.014 0.210±0.022 0.328±0.005 0.332±0.007

MFO 0.050±0 0.044±0 0.050±0 0.053±0 0.089±0.001 0.045±0.007 0.103±0.007 0.080±0.021 0.159±0.003 0.172±0.014

CCO 0.047±0 0.084±0 0.103±0 0.179±0 0.178±0.005 0.081±0.003 0.215±0.025 0.133±0.011 0.337±0.005 0.392±0.012

M-AUPR
BPO 0.048±0 0.093±0 0.160±0 0.146±0 0.174±0.005 0.081±0.004 0.150±0.006 0.133±0.008 0.188±0.003 0.171±0.004

MFO 0.029±0 0.084±0 0.109±0 0.089±0 0.118±0.004 0.064±0.003 0.111±0.005 0.098±0.007 0.138±0.005 0.088±0.012

CCO 0.060±0 0.082±0 0.150±0 0.104±0 0.155±0.009 0.063±0.004 0.159±0.021 0.133±0.006 0.210±0.007 0.257±0.011

F1
BPO 0.035±0 0.159±0 0.054±0 0.248±0 0.228±0.005 0.114±0.017 0.222±0.01 0.238±0.012 0.283±0.006 0.264±0.007

MFO 0.004±0 0.064±0 0.008±0 0.106±0 0.117±0.004 0.070±0.016 0.167±0.009 0.165±0.056 0.234±0.005 0.263±0.036

CCO 0.070±0 0.107±0 0.123±0 0.202±0 0.205±0.009 0.108±0.013 0.261±0.015 0.210±0.016 0.314±0.007 0.337±0.018

ACC
BPO 0±0 0.071±0 0±0 0.044±0 0.158±0.011 0.048±0.007 0.257±0.007 0.153±0.034 0.338±0.013 0.331±0.012

MFO 0±0 0.015±0 0±0 0.038±0 0.034±0.002 0.017±0.002 0.114±0.015 0.048±0.007 0.100±0.003 0.103±0.04

CCO 0±0 0.034±0 0±0 0±0 0.080±0.012 0.037±0.005 0.180±0.024 0.066±0.011 0.210±0.008 0.210±0.041

The experimental results show that the performance of BDGO, CFAGO, DeepGraphGO, and
Graph2GO, surpasses that of other unimodal-based methods. It indicates that multimodal data is cru-
cial for improving the performance of protein function prediction. And owing to the pre-training (as
shown in Table 9 of Appendix Section 6.5) and fine-tuning training paradigm, BDGO and CFAGO
exhibit better performance. From Figure 3 (6), BDGO exhibits superior overall performance com-
pared to CFAGO in terms of Fmax and m-AUPR. For the F1 and ACC metrics, BDGO and CFAGO
show closely matched results, such as in the BPO domain, where BDGO’s ACC and F1 scores differ
from CFAGO by only 0.007 and 0.019, respectively. It indicates that BDGO’s architecture enables
a more effective learning of deep representations among multimodal features, leading to a further
enhancement in overall performance. Moreover, critical difference diagrams in Figures 8, 9 and 10
of Appendix Section 6.8, further highlight BDGO’s consistent advantage over other methods. In
addition, we evaluate the model’s ability to predict unannotated proteins in Appendix 6.4 and ana-
lyze enzyme function (EC) prediction in Appendix 6.7, demonstrating that our method outperforms
CFAGO.

At the same time, we observe that BDGO does not achieve optimal results in terms of M-AUPR
for BPO and MFO. This can be attributed to the fact that, in multi-label classification tasks, M-
AUPR evaluates the model’s predictive performance for each class individually, giving equal weight
to classes with fewer samples, which may not accurately reflect the model’s true performance. On
the other hand, m-AUPR, which aggregates the performance across all classes, provides a more
comprehensive measure of the model’s overall predictive capability.

3.3 FEATURE EFFECTIVENESS ANALYSIS

To further evaluate the distinguishing power of the multimodal features extracted by different com-
ponents of our method, Davies-Bouldin (DB)(Wu et al., 2023) scores are used. In the calculation of
DB scores, GO terms are set as the labels for protein clusters, meaning proteins sharing the same
GO term set are grouped into the same cluster. A lower DB score indicates that the features within
clusters are more compact and that the separation between clusters is more distinct.

Based on the results in Figure 4, it is clear that the learned features of the model outperform the origi-
nal input features, indicating that the components of BDGO effectively capture multimodal features.
Comparing the features output by the various components of BDGO, DSM embedding achieves the
best performance across all aspects of GO. Notably, in the CCO aspect, DSM embedding shows
an improvement of at least 29.3% over other features related to CCO, demonstrating that the multi-
branch dynamic feature selection mechanism better identifies features for multi-label classification.
In addition, the SFE branch and IFE branch of BDGO demonstrate their respective performance ad-
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Figure 4: Davies Bouldin Score comparison of different protein feature represents. o PPI, o attribute
and o sequence represent the original embedding of PPI network embedding, protein attribute, and
protein language model, respectively. SFE embedding, IFE embedding, and DSM embedding rep-
resent the embedding from the Shared Feature Extraction branch, the embedding from the Interac-
tion Feature Extraction branch, and the Dynamic Selection Module, respectively.

BPO MFO

CCO Comparison between BDGO and CFAGO

Figure 5: Visualization of different feature representations for BDGO, and comparison with
CFAGO.

vantages in Figure 4, proving the necessity of integrating these two branches in the BDGO method.
SFE embedding achieves a strong score of 1.626 in the BPO aspect, suggesting that the Shared
Feature Extraction contributes significantly to the model’s performance in BPO.

To further analyze the discriminative power of protein features, we visualize them using t-
SNE(Chatzimparmpas et al., 2020) (Figure 5). Raw input features (o PPI, o attribute, o sequence)
show distinct patterns but lack clear clustering boundaries. After interaction through our model,
the gated features achieve a more optimal distribution. BDGO’s DSM embedding performs best,
forming clearer clusters and sharper classification boundaries.

Additionally, we compare the visualization results of the final output features from BDGO and
CFAGO, as shown in Figure 5 Comparison between BDGO and CFAGO. Here, DSM embedding
represents BDGO’s dynamically selected features from both branches, while cf embedding shows
CFAGO’s multimodal feature fusion using a multihead attention mechanism. By comparing
DSM embedding and cf embedding, the visualization of cf embedding shows a tendency for multi-
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Table 2: Results of Ablation Studies. The overall model is denoted as ’MSLB+MILB’, where
’MSLB’ and ’MILB’ are the backbone components: MSL-Branch and MIL-Branch. w/o BInM
and w/o DSM represent removing the BInM and DSM modules from the overall model. w/o SP-
F refers to removing spatial structure features from the input, while w/o SE-F indicates removing
sequence features. The best results are marked in bold.

Method Fmax m-AUPR M-AUPR F1 ACC

BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO

MSLB 0.428 0.231 0.388 0.323 0.153 0.322 0.154 0.082 0.188 0.264 0.240 0.292 0.324 0.075 0.168
MILB 0.396 0.256 0.377 0.270 0.112 0.333 0.156 0.083 0.229 0.240 0.142 0.305 0.313 0.063 0.210
MSLB+MILB 0.440 0.282 0.421 0.332 0.172 0.392 0.171 0.088 0.257 0.264 0.263 0.337 0.331 0.103 0.210
w/o BInM 0.431 0.204 0.390 0.323 0.133 0.315 0.170 0.082 0.218 0.256 0.198 0.337 0.330 0.090 0.176
w/o DSM 0.404 0.167 0.373 0.266 0.131 0.321 0.170 0.083 0.251 0.264 0.176 0.321 0.313 0.085 0.202
w/o SP-F 0.216 0.184 0.265 0.106 0.102 0.171 0.104 0.101 0.112 0.172 0.174 0.230 0.152 0.087 0.156
w/o SE-F 0.249 0.272 0.357 0.118 0.154 0.212 0.116 0.082 0.180 0.181 0.257 0.307 0.173 0.128 0.205

ple clusters to blend together compared to DSM embedding. Particularly in the CCO aspect, BDGO
demonstrates a clearer separation between different clusters, with more distinct boundaries.

4 ABLATION STUDIES

In this section, the contributions of each component in BDGO and the two types of features are eval-
uated, as shown in Table 2. Additionally, we also performed critical difference diagrams in Figures
11, 12 and 13 of Appendix 6.8, which demonstrates that each component contributes positively to
the performance improvement. Further discussion on the ablation studies of the key components in
the Encoder can be seen in Appendix 6.2.

Analysis for Backbone Components. According to lines 1,2, and 3 of Table 2, the results of the
backbone network only using MSL-Branch or MIL-Branch are not as good as those using combined
branches.

Effectiveness of BInM. Considering the correlation of features among space and sequence, this
method uses the BInM block to facilitate bidirectional multimodal feature interaction before dy-
namic selection. As shown in the results of rows 3 and 4 in Table 2, we verify the validity of BInM
for the overall model by removing it.

Effectiveness of DSM. To enable effective feature selection and accurate prediction of protein func-
tions, DSM is used to adaptively select channel features most relevant to specific functional labels.
At the same time, it reduces the interference and conflict caused by redundant features. As shown
in rows 3 and 5 of Table 2, the dynamic selection mechanism achieved by DSM has a positive im-
pact on protein function prediction. Furthermore, we conduct additional experiments in Table 5 in
Section 6.1.2 of the Appendix, exploring different selection mechanisms of DSM, which further
demonstrate its effectiveness.

Impact of Spatial Structure and Spatial Features. To verify the complementarity between se-
quence and spatial structure features, we perform an ablation study, retaining only spatial structure
or sequence features. For the BInM module, it is removed as no interaction occurs with a single
feature type. Rows 6 and 7 of Table 2 show that removing feature interaction significantly reduces
model performance.

5 CONCLUSION

This method enhances the model’s ability to integrate multimodal features through two key com-
ponents: Bidirectional Interaction and Dynamic Selection Mechanisms. As a result, it signifi-
cantly improves protein function prediction performance. Experimental results show that the BDGO
method outperforms current state-of-the-art unimodal and multimodal methods across multiple met-
rics. These results underscore the importance of integrating multimodal data to enhance protein
function prediction. It also validates the superiority of the Bidirectional Interaction Module and
Dynamic Selection Module in multimodal protein data integration.
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6 APPENDIX

6.1 MODULE EXPLORATION EXPERIMENTS

In order to further validate the rationality of the module design, the key modules in BDGO (i.e.,
BInM and DSM) are explored in this section.

6.1.1 BINM EXPLORATION

To explore the feature interaction capability within BInM, we designed an experiment where we
separately removed the cross-attention module in the BInM. BDGO-BInM-0 and BDGO-BInM-1
represent removing the bottom and top cross-attention module from BInM.

Based on the results in Table 3, we find that removing either of the cross-attention modules leads to
a decline in overall performance. This validates the ability of BInM to capture interactions.

Table 3: Performance Comparison Under Different Interaction Settings. The comparison results of
Fmax score, micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-AUPR), F1-score (F1),
and accuracy (ACC), for BPO, MFO and CCO. The best results are highlighted in bold, and the
sub-optimal results are underlined.

Method Fmax m-AUPR M-AUPR F1 ACC

BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO

BDGO 0.440 0.282 0.421 0.332 0.172 0.392 0.171 0.088 0.257 0.264 0.263 0.337 0.331 0.103 0.210
BDGO-BInM-0 0.437 0.262 0.384 0.313 0.166 0.314 0.185 0.079 0.204 0.272 0.278 0.329 0.302 0.051 0.176
BDGO-BInM-1 0.434 0.227 0.319 0.308 0.118 0.215 0.184 0.093 0.174 0.269 0.172 0.251 0.302 0.092 0.202

6.1.2 DSM EXPLORATION

To investigate the difference between hard gating and soft gating in the DSM module, we compare
the module’s performance using both gating mechanisms. Specifically, our model BDGO employs
hard gating, while BDGO-Soft corresponds to the version with soft gating.

Based on the results in Table 4, we find that when soft gating is used, the overall performance of
the model declines. This may be because soft gating selects features that are not decisive for the
functionality.

Table 4: Performance Comparison of Hard Gating and Soft Gating in DSM Module. The comparison
results of Fmax score, micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-AUPR), F1-
score (F1), and accuracy (ACC), for BPO, MFO and CCO. The best results are highlighted in bold.

Method Fmax m-AUPR M-AUPR F1 ACC

BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO

BDGO 0.440 0.282 0.421 0.332 0.172 0.392 0.171 0.088 0.257 0.264 0.263 0.337 0.331 0.103 0.210
BDGO-Soft 0.444 0.246 0.394 0.322 0.143 0.319 0.177 0.080 0.228 0.275 0.184 0.343 0.310 0.092 0.200

To investigate how many features experts should select in the DSM module for optimal performance,
we conduct an additional experiment. This experiment evaluates the performance when experts in
the DSM module select multiple features. Here, BDGO-DSM-Cn

m represents the number of ways
to select n features from m features without repetition. This value also determines the number of
experts in the DSM module.

As shown in Table 5, BDGO achieves the best overall performance when each expert selects only a
single feature.
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Table 5: Performance Comparison Under Different Interaction Settings. The comparison results of
Fmax score, micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-AUPR), F1-score (F1),
and accuracy (ACC), for BPO, MFO and CCO. The best results are highlighted in bold, and the
sub-optimal results are underlined.

Method Fmax m-AUPR M-AUPR F1 ACC

BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO

BDGO 0.440 0.282 0.421 0.332 0.172 0.392 0.171 0.088 0.257 0.264 0.263 0.337 0.331 0.103 0.210
BDGO-DSM-C2

6 0.437 0.201 0.399 0.317 0.110 0.291 0.174 0.124 0.195 0.276 0.200 0.305 0.310 0.089 0.213
BDGO-DSM-C3

6 0.407 0.204 0.382 0.271 0.111 0.284 0.163 0.124 0.192 0.264 0.206 0.295 0.268 0.087 0.230
BDGO-DSM-C4

6 0.426 0.207 0.404 0.294 0.113 0.316 0.176 0.120 0.210 0.274 0.204 0.345 0.292 0.083 0.207
BDGO-DSM-C5

6 0.414 0.210 0.390 0.283 0.113 0.308 0.178 0.124 0.208 0.268 0.208 0.327 0.292 0.087 0.200

6.2 EXPLORING DIFFERENT ARCHITECTURES FOR PROTEIN FEATURE MODELING

In this work, the corresponding PSSI encoder and PSI encoder are trained according to the spatial
structure feature and sequence feature in the pre-training stage. In order to verify the effectiveness
of the PSSI encoder and the PSI encoder, the ablation experiment of the key module of the encoder
is carried out in this section.

In this experiment, the pre-training framework is the same as stage 1 in Figure 1. Here, BiMamba
Block in the pre-trained encoder can be replaced by Multihead Attention Block (Dosovitskiy et al.,
2021), and vice versa. Then, we use the pre-trained encoder for feature extraction in the fine-tuning
task. During fine-tuning, we only use an MLP for classification.

As shown in Table 6, the model names are formed by combining the feature and framework compo-
nents with a hyphen. This indicates that the results are obtained by pre-training the feature with the
framework component and then fine-tuning it.

We model the spatial structure features and sequence features using encoders with different compo-
nents. According to the experimental results in Table 6, we find that the encoder using BiMamba
Block as a component for modeling spatial structure features shows significant advantages in MFO
and CCO. When modeling sequence features, the encoder utilizing Multihead Attention as a com-
ponent demonstrates considerable advantages in BPO and CCO. Additionally, we observe that Bi-
Mamba Block is significantly more efficient in processing spatial structure information, requiring
much less time to predict a protein’s function compared to Multihead Attention. Considering both
inference efficiency and performance, we decide to use an encoder with BiMamba Block as the com-
ponent for spatial structure features modeling. For sequence information, while BiMamba Block
achieves better inference efficiency, we prioritize model performance and opt for Multihead Atten-
tion to model sequence features.

Table 6: Ablation experiments of key components in the pre-trained encoder. The comparison
results of Fmax score, micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-AUPR), F1-
score (F1), and accuracy (ACC), for BPO, MFO and CCO. The Cost Time (ms) represents the time
it takes for the model to test each protein sample. The best results are highlighted in bold.

Method Fmax m-AUPR Cost Time (ms)
BPO MFO CCO BPO MFO CCO

Spatial-BiMamba Block 0.370 0.240 0.419 0.244 0.156 0.371 0.539
Spatial-Multihead Attention 0.430 0.223 0.350 0.291 0.154 0.313 5.661

Sequence-BiMamba Block 0.290 0.237 0.308 0.185 0.157 0.230 0.280
Sequence-Multihead Attention 0.329 0.219 0.345 0.199 0.148 0.248 0.450

6.3 IMPACT OF SEQUENCE SIMILARITY ON MODEL PERFORMANCE

To ensure the validity of our experimental design and avoid potential data leakage, we analyze the
sequence similarity between the test set and the combined training and validation sets for BPO,
MFO, and CCO. We calculate the similarity for each of these sets and categorize the results into
different similarity ranges.
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Figure 6: Distribution of sequence identity across proteins in the test dataset. The x-axis represents
the sequence similarity ranges. The y-axis indicates the number of proteins within each range. Each
bar denotes the number of proteins in the test set that fall within the corresponding similarity range.

Methods :             BDGO             CFAGO    

Figure 7: Performance of the different methods in Different Sequence Similarity Ranges. Figures
show the results of F1-score (F1), accuracy (ACC), F-max score, macro-averaged AUPR (M-AUPR),
and micro-averaged AUPR (m-AUPR) for BPO, MFO and CCO, respectively. The red pillar repre-
sents the results of the BDGO model and the blue pillar shows the results of the CFAGO model.
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The following Figure 6 shows the number of proteins in the test set within each similarity range.
We observe that the majority of proteins in our test set exhibit an average sequence similarity of less
than 50% with the proteins in the combined training and validation sets. Only a few proteins have an
average similarity greater than 70%. Based on these results, we conclude that the time-based split
used in the CAFA challenge is reasonable and does not introduce significant sequence similarity
overlap between our training and test sets.

As shown in Figure 3 and Table 1, the BLAST method, which relies on sequence similarity performs
poorly. This further supports the notion that the sequence similarity between the test set and the
combined training and validation sets is relatively low.

Additionally, we explore the model’s performance in predicting protein functions within different
similarity ranges. We divide the test set into 9 similarity intervals. In this figure 7, we present
the performance of BDGO and CFAGO across different protein similarity ranges. For both BPO
and CCO, our method demonstrates significantly better performance than CFAGO, particularly for
proteins with low similarity. Specifically, range (n-m) represents the average similarity of proteins
in the range of n-m. The results are shown in the following Table 7. The symbol ”-” indicates that
there are no proteins in that interval. Due to the scarcity of proteins with similarity above 50%, we
do not provide further analysis for this group. For proteins with similarity below 50%, the model
performs best in predicting proteins in the similarity range of 30 to 40 for BPO. For MFO and CCO,
the model performs best for proteins in the similarity range of 0 to 30. These results show that
our proposed BDGO model is stable across different sequence similarities and is not reliant on the
sequence similarity of the data.

Table 7: Performance of the different methods in Different Sequence Similarity Ranges. The
comparison results of Fmax score, micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-
AUPR), F1-score (F1), and accuracy (ACC), for BPO, MFO and CCO. The Range represents the
proteins that have average similarity within a specific range.

Method Range Fmax m-AUPR M-AUPR F1 Acc

BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO

CFAGO

0-100 0.439 0.236 0.366 0.328 0.159 0.337 0.188 0.138 0.210 0.283 0.234 0.314 0.338 0.100 0.210
0-20 0.235 0.257 0.333 0.109 0.192 0.214 0.124 0.188 0.212 0.145 0.257 0.292 0.100 0.160 0.136
20-30 0.374 0.242 0.304 0.220 0.178 0.292 0.209 0.189 0.146 0.266 0.215 0.239 0.231 0.138 0.138
30-40 0.507 0.224 0.359 0.390 0.125 0.294 0.226 0.158 0.230 0.318 0.230 0.301 0.278 0.043 0.191
40-50 0.529 0.155 0.513 0.387 0.077 0.426 0.087 0.194 0.179 0.373 0.148 0.436 0.429 0.019 0.077
50-60 0.750 0.137 0.353 0.449 0.066 0.170 0.073 0.219 0.250 0.353 0.100 0.125 0.250 0.067 0.000
60-70 - 0.200 1.000 - 0.070 0.500 - 0.750 0.500 - 0.250 0.500 - 0.000 0.500
70-90 - 0.400 0.667 - 0.125 0.208 - 0.000 0.500 - 0.000 0.500 - 0.000 0.000

90-100 - 0.333 - - 0.100 - - 0.000 - - 0.000 - - 0.000 -

BDGO (Ours)

0-100 0.440 0.282 0.421 0.332 0.172 0.392 0.171 0.088 0.257 0.264 0.263 0.337 0.331 0.103 0.210
0-20 0.291 0.328 0.558 0.133 0.166 0.447 0.108 0.136 0.231 0.169 0.300 0.382 0.100 0.046 0.273
20-30 0.396 0.314 0.526 0.292 0.158 0.495 0.182 0.146 0.154 0.221 0.299 0.444 0.231 0.151 0.241
30-40 0.551 0.255 0.328 0.444 0.134 0.318 0.189 0.116 0.239 0.330 0.275 0.269 0.430 0.069 0.213
40-50 0.400 0.229 0.556 0.222 0.140 0.414 0.092 0.225 0.157 0.271 0.259 0.400 0.357 0.093 0.231
50-60 0.444 0.235 0.500 0.135 0.112 0.288 0.125 0.285 0.250 0.235 0.233 0.500 0.250 0.133 0.000
60-70 - 0.400 0.250 - 0.166 0.106 - 0.750 0.500 - 0.375 0.000 - 0.000 0.000
70-90 - 0.400 0.500 - 0.125 0.195 - 0.000 0.500 - 0.000 0.250 - 0.000 0.000

90-100 - 0.667 - - 0.250 - - 0.000 - - 0.500 - - 0.000 -

6.4 EVALUATING MODEL PREDICTIONS ON UNANNOTATED PROTEINS

To evaluate the reliability of BDGO in predicting the functions of unannotated proteins, we design
an additional experiment. We download 272 unverified human protein records from the UniProt
database. After filtering out proteins lacking PPI data, we obtain a total of 136 protein samples. The
test results, shown in Table 8, indicate that our model performs well in terms of accuracy. This is
primarily because most of the labels for these 136 proteins do not fall within the predefined sets of
45 labels (BPO), 38 labels (MFO), and 35 labels (CCO), resulting in a majority of zero labels.
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Table 8: Performance of BDGO on Unannotated Proteins. The comparison results of Fmax score,
micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-AUPR), F1-score (F1), and accuracy
(ACC), for BPO, MFO and CCO on the annotated and unannotated datasets.

Method Fmax m-AUPR M-AUPR F1 ACC

BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO

BDGO (annotated) 0.440 0.282 0.421 0.332 0.172 0.392 0.171 0.088 0.257 0.264 0.263 0.337 0.331 0.103 0.210
BDGO (unannotated) 0.143 0.025 0.232 0.015 0.010 0.101 0.084 0.041 0.164 0.024 0.022 0.115 0.596 0.559 0.449

6.5 ABLATION STUDY ON THE EFFECTIVENESS OF PRE-TRAINING

To evaluate the effectiveness of BDGO pre-training, we design a supplementary experiment. We
compare the model’s performance with and without pre-training using an ablation study. Specifi-
cally, we use the same network structure and assess the fine-tuned results. As shown in Table 9, the
model with BDGO pre-training consistently outperforms the one without, highlighting the impor-
tance of pre-training in improving model performance.

Table 9: Ablation Study Results on Pre-training Effectiveness. The comparison results of Fmax

score, micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-AUPR), F1-score (F1), and
accuracy (ACC), for BPO, MFO and CCO. The best results are highlighted in bold.

Method Fmax m-AUPR M-AUPR F1 ACC

BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO BPO MFO CCO

BDGO 0.440 0.282 0.421 0.332 0.172 0.392 0.171 0.088 0.257 0.264 0.263 0.337 0.331 0.103 0.210
BDGO w/o pretrain 0.389 0.176 0.386 0.195 0.071 0.225 0.135 0.105 0.168 0.248 0.153 0.297 0.335 0.144 0.269

6.6 COMPARISON WITH STRUCTURE-BASED AND PLM-BASED METHODS

To ensure a fair comparison, we conduct an additional experiment, evaluating the performance of
the structure-based method DeepFRI, and PredGO method using a protein language model (PLM).
The results demonstrate that our approach outperforms both methods in the BPO and CCO aspects.

Table 10: Comparison with Structure-based and PLM-based methods. The comparison results of
Fmax score, and micro-averaged AUPR (m-AUPR) for BPO, MFO and CCO. The best results are
highlighted in bold.

Method Focus Fmax m-AUPR

BPO MFO CCO BPO MFO CCO

DeepFRI Structure based 0.362 0.461 0.385 0.308 0.382 0.360
PredGO Structure + PLM based 0.108 0.455 0.252 0.058 0.254 0.183
BDGO (Ours) Multi-modal based 0.440 0.282 0.421 0.332 0.172 0.392

6.7 ENZYME FUNCTION PREDICTION USING BDGO

In this subsection, we evaluate the performance of BDGO on enzyme function (EC) prediction.
Following the experimental setup of DeepFRI (Gligorijević et al., 2021) and GraphEC (Song et al.,
2024), we construct an EC dataset for this task. The dataset consists of 2,331 proteins in the training
set, 364 proteins in the validation set, and 290 proteins in the test set, with a total of 1,130 unique
labels. The hyperparameters of the CFAGO model are configured as described in its original paper.
For BDGO, the learning rate is set to 1e-3 , while other settings remain consistent with those used
in this study.

The experimental results, presented in Table 11, show that BDGO achieves superior overall perfor-
mance compared to the baselines. This indicates that the structure of BDGO is effective for EC
prediction in the classification task.
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Table 11: Performance Comparison of BDGO and Baseline Methods on EC Prediction. The compar-
ison results of Fmax score, micro-averaged AUPR (m-AUPR), macro-averaged AUPR (M-AUPR),
F1-score (F1), and accuracy (ACC). The best results are highlighted in bold.

Method Fmax m-AUPR M-AUPR F1 ACC

CFAGO 0.452 0.420 0.117 0.265 0.407
BDGO (Ours) 0.831 0.834 0.120 0.432 0.766

Figure 8: Critical Difference Diagram for Comparative Experiments on BPO

6.8 CRITICAL DIFFERENCE DIAGRAMS FOR STATISTICAL COMPARISON

To assess the significance of the results and compare the performance of different approaches, we
use critical difference diagrams. These diagrams, as described in scikit-posthocs documentation, are
particularly useful in visualizing whether differences between approaches are statistically signifi-
cant.

The critical difference diagrams used for the comparative experiments are shown in Figures 8, 9 and
10.The critical difference diagrams used for the module ablation experiments are shown in Figures
11, 12 and 13.
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Figure 9: Critical Difference Diagram for Comparative Experiments on MFO
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Figure 10: Critical Difference Diagram for Comparative Experiments on CCO
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Figure 11: Critical Difference Diagram for Module Ablation on BPO
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Figure 12: Critical Difference Diagram for Module Ablation on MFO
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Figure 13: Critical Difference Diagram for Module Ablation on CCO
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