
Text-to-Model: Text-Conditioned Neural Network
Diffusion for Train-Once-for-All Personalization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Generative artificial intelligence (GenAI) has made significant progress in under-1

standing world knowledge and generating content from human languages across2

various modalities, like text-to-text large language models, text-to-image stable dif-3

fusion, and text-to-video Sora. While in this paper, we investigate the capability of4

GenAI for text-to-model generation, to see whether GenAI can comprehend hyper-5

level knowledge embedded within AI itself parameters. Specifically, we study a6

practical scenario termed train-once-for-all personalization, aiming to generate per-7

sonalized models for diverse end-users and tasks using text prompts. Inspired by the8

recent emergence of neural network diffusion, we present Tina, a text-conditioned9

neural network diffusion for train-once-for-all personalization. Tina leverages a10

diffusion transformer model conditioned on task descriptions embedded using a11

CLIP model. Despite the astronomical number of potential personalized tasks (e.g.,12

1.73× 1013), by our design, Tina demonstrates remarkable in-distribution and out-13

of-distribution generalization even trained on small datasets (∼ 1000). We further14

verify whether and how Tina understands world knowledge by analyzing its capa-15

bilities under zero-shot/few-shot image prompts, different numbers of personalized16

classes, prompts of natural language descriptions, and predicting unseen entities.17

1 Introduction18

Tina:
Text-to-Model Neural Network Diffusion

Meta Training

Give me a dog-cat
classifier, now!

Help me to classify
different cat breeds!

I want a vehicle
classifier, please.

Dog: 0.95
Cat : 0.05

Users

Server

Test

Truck : 0.85
Car : 0.10
Bicycle: 0.02
...

Ragdoll: 0.65
Berman: 0.15
Maine : 0.10
...

A large dataset

Figure 1: Demonstration of train-once-for-all
personalization scenario. Users have text descrip-
tions of the desired personalized models.

Generative artificial intelligence (GenAI) has19

been flourishing in different aspects of human20

life, and people can simply generate content21

from natural language text prompts [1, 2, 3, 4].22

Large language models [1, 5], like GPT-4, have23

especially shown emergent intelligence [6] in24

the knowledge of language through text-to-25

text transformation [7, 8, 1, 5]. Besides, re-26

cent progress in text-to-image (e.g., stable dif-27

fusion) [9, 4, 2, 10] and text-to-video (e.g.,28

Sora) [3, 11] diffusion models has shown the29

great power of AI in understanding the physical30

world and generating high-quality images and31

videos that are virtually indistinguishable from32

reality [12, 3]. The text-prompted GenAI maps33

the human languages’ semantics to the world34

knowledge in different forms in language and vision. One step further, in this paper, we propose35

and study whether the GenAI can understand hyper-level knowledge—the knowledge inherently36

resides in the AI itself models’ parameters. Specifically, we study text-to-model generation; akin to37

text-to-text, text-to-image, and text-to-video, text-to-model targets whether the GenAI models can38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

directly generate the model parameters given the human’s text prompts to meet the personalization39

demand of diverse end users.40

We focus on a practical scenario called train-once-for-all personalization [13], which means that41

the generic model is trained just once and can later be customized into a condensed model on the42

fly for different end-users and requests, given their task descriptions. For example, the CIFAR-10043

dataset [14] contains 100 classes, but an end user may just need a personalized model with a certain44

10 classes according to a specific scenario (e.g., classifying items in the kitchen). In other words,45

train-once-for-all personalization targets that train the model once and customize the model to be46

well performed in a sub-distribution when deployed, and an example is in Figure 1. But there are47

tremendous sub-distributions, for the CIFAR-100 example, the number of personalized 10-way tasks48

is
(
100
10

)
= 1.73× 1013, even not taking permutations into consideration, so it is challenging for the49

GenAI model to generalize. Inspired by recent progress in neural network diffusion [15, 16], we50

propose Tina, a Text-Conditioned Neural Network Diffusion for Train-Once-for-All Personalization.51

Tina is trained on model parameters with the models’ task descriptions, and it can be generalized to52

unseen tasks, or even unseen classes (entities), given the text prompts.53

In Tina, a CLIP model [17] is used to embed the users’ task descriptions into the diffusion model as54

the conditions. The diffusion model of Tina is the diffusion transformer (DiT) [12] that is shown to55

have high expressive power under scaling law in the fields of image [12] and video generation [3].56

We demonstrate that DiT’s scaling law applies to model parameter generation as well: increasing57

the number of parameters and data sizes enhances the model’s capability to generalize across more58

challenging tasks that involve scaling the dimension of generated models. However, it is surprising to59

find that even though the number of personalized tasks is astronomical (e.g., 1.73× 1013 for 10-way60

tasks), by our designs, Tina can generalize on extremely small datasets (∼ 1000 data points) and61

support different lengths of classification tasks (5-way or 8-way tasks, etc.) in training once. Our62

analysis shows that Tina can reach both in-distribution and out-of-distribution personalization of63

generated models. Thanks to the vision-language alignment of CLIP, Tina can also take images64

as prompts and generalize under few-shot or even zero-shot settings. We also verify whether Tina65

understands world knowledge by testing its abilities under prompts of natural language descriptions66

and predicting unseen entities. Our contributions are as follows:67

• We explore the potential of GenAI in generating personalized models followed by users’68

text prompts, i.e., text-to-model generation. We open more applications of neural network69

diffusion; to the best of our knowledge, it is the first paper that takes the text prompts as70

conditions for neural network diffusion.71

• We propose Tina, a well-performed text-conditioned neural network diffusion framework72

for train-once-for-all personalization. Tina can generalize on unseen tasks and entities even73

given small model datasets.74

• In addition, we analyze the abilities and the boundaries of Tina and gain insights about75

whether and how it generalizes and understands world knowledge.76

2 Methodology77

2.1 Problem Setup78

2.1.1 Definition of Setup79

Following [13], we consider image classification for train-once-for-all personalization due to the80

natural personalization requirements of image classification. We note that our method is not limited81

to classification tasks and can be extended to other tasks for personalization. Define a task k as82

classification over a subset of classes Yk ⊂ Y . The goal of personalization is to learn a neural83

network predictor fθk : X 7→ Yk, parameterized by θk. To handle many tasks at the same time, we84

further assume we have the task description natural text tk for Yk, and it is generally the description85

of the classes and styles of Yk. We want to build a neural network generator G(tk) where given tk,86

it will output the model parameters θk. Specifically, consider using a large-scale dataset with many87

classes covering Y to learn the personalized-friendly function fθk = Gϕ(tk) parameterized by ϕ. Gϕ88

is learned on the large dataset to generate any personalized model directly from the task descriptions,89

and the setup is called train-once-for-all personalization [13]. Train-once-for-all personalization has90

wide applications in a server-user system, where the model generator Gϕ is learned on the server for91

personalized cloud services to many future users. We refer to [13] for more detailed advantages and92

usages of train-once-for-all personalization.93

2

2.1.2 Strong Baselines: Classifier Selection and TAPER94

Classifier Selection. For a generic network fθ, we consider that it consists of a feature extractor95

parameterized by ψ with a linear classifier w = [w(1), . . . ,w(|Y|)] of |Y| vectors for output96

predictions over all classes in Y . The generic model is trained on the large dataset, and we want97

to personalize it into a few-way classification task k. One effective method is to build a personalized98

classifier wk by selecting only the row vectors in w for the relevant classes. Therefore, the99

personalized model for task k are θk = {ψ,wk}, and this approach is called classifier selection,100

which serves as a strong baseline [13].101

TAPER. We briefly introduce TAPER [13] proposed by the original paper on train-once-for-all per-102

sonalization and discuss its limitations. The main idea of TAPER is to train several experts (bases) and103

learn a mixture network to fuse these experts into a personalized model. It has three stages as follows.104

• Stage 1: train a generic model on the large dataset.105

• Stage 2: divide the dataset into several shards and finetune the generic model on each shard106

respectively for specification. Each finetuned model can be seen as a domain expert.107

• Stage 3: For a given personalized task, learn an MLP mixer (i.e., the generator G) whose108

input is the text embedding of the task description and the output is the aggregation weights of109

the expert models. Then, weighted aggregation is conducted to merge several expert models110

into a personalized one. Also, the expert models can be finetuned during personalization.111

TAPER requires finetuning the expert models on the target task, so it is not applicable to unseen tasks112

without having task-specific data. Also, the MLP mixer only generates the aggregation weights instead113

of the parameters, so it has limited generalization and expressiveness. While in our design of Tina,114

we try to construct an end-to-end text-to-model system that can understand the hyper-knowledge115

residing parameters and can generalize to unseen tasks, even unseen classes.116

2.1.3 Dataset Preparation and Description117

We introduce how to conduct datasets for training Tina and elaborate on the differences in training118

and inference between Tina and TAPER.119

Training data preparation for Tina. Tina takes the personalized model parameters as training data120

for diffusion training, and the dataset is conducted in two stages. i) Stage 1: Similar to TAPER, we121

train a generic model on the large dataset to let the model have a generic capability on all classes. ii)122

Stage 2: We craft the personalized tasks and finetune the generic model on the personalized tasks to123

obtain the personalized models (p-Models) for Tina training. For each personalized task k, we select124

the corresponding |Yk| classes out of |Y| classes to craft the data for p-Model, and then finetune to125

get a p-Model as a data sample for Tina. Each data sample for Tina contains the “(task description,126

p-Model)” pair.127

...

...

Seen Tasks Unseen Tasks

Samples

Models

p-Models as Data
for Training Tina

Samples for
Training p-Models

In-Distribution
Samples for Testing
Generated p-Models

Out-of-Distribution
Samples for Testing
Generated p-Models

Figure 2: Description of the training and testing
data for Tina. p-Model is short for personalized
models. The blue blocks are for training, and the
green blocks are for testing.

Testing data preparation. The overall demon-128

stration of data partitions can be found in Fig-129

ure 2. The blue blocks refer to the training data,130

and the green blocks are the testing data. For131

testing, there are two kinds of evaluation metrics:132

i) In-distribution (ID, the light green blocks):133

the personalized tasks are seen during training134

of the generative model G, and G generates the135

p-Models tested on the testset of each seen task.136

ii) Out-of-distribution (OOD, the dark green137

blocks): the tasks are unseen during the gener-138

ator G’s training, and G directly generates the139

p-Models from the task prompts (the text de-140

scriptions). We note that the original TAPER141

cannot be tested on the OOD tasks since it re-142

quires the target personalized training data for143

finetuning the expert models. To remedy this, we derive TAPER-Mixer to only train the mixer without144

finetuning the experts and verify its OOD generalization on unseen tasks.145

3

Diffusion Transformer

Random Noise

Text Condition
Task Description:
e.g., {Classify "Ragdoll,
Berman, Maine"}

Augmentation

CLIP Text
Encoder

...

Diffusion Transformer

Decoding

Generated p-Model

User Text Prompt
Task Description:
e.g., {Classify "Husky,
Shiba, Labrador"}

CLIP Text
Encoder

...

CLIP
Image
Encoder

User Image
Prompt
Few-shot Images
as condition

(b) Test(a) Train

p-Model

Tokenizing

Augmentation

p-Model'

Add Noise

Noised p-Model'

Padding
......

...

Padding
...

Tokenizing

Padding
.........

...

Padding
.........

...

...

Decoding

Predicted p-Model'

...

Figure 3: Framework overview of Tina.

2.2 Proposed Tina: Text-conditioned Neural Network Diffusion Model146

2.2.1 Framework Overview147

We present Tina, a text-conditioned neural network diffusion model for train-once-for-all148

personalization. The framework overview is in Figure 3. Generally, Tina consists of DiT and CLIP149

encoders for generating personalized models from text prompts. During training, we use the CLIP150

text encoder for encoding texts, and due to the alignment of image and text in CLIP, during inference,151

Tina can also take images as prompts by utilizing the CLIP image encoder. Additionally, we devise152

an effective data augmentation approach to enable training Tina under limited samples. We also153

propose a classification sequence padding strategy to enable Tina can generate models with different154

lengths of classes for further personalization.155

2.2.2 Architecture and Training Objective156

Algorithm 1 Tina Training

1: Input: Number of training iteration Niter, p-Model
dataset K = {(tk, θk)}Kk=1, Tina, diffusion pro-
cess length J , diffusion cumulative variance sched-
ule ᾱ.

2: Initialize: Learnable parameters ϕ for G
3: for i = 1, 2, ..., Niter do
4: # Sample a mini-batch of data
5: (tk, θk) ∼ K
6: # Noise p-Model parameters
7: j ∼ U({1, ..., J})
8: θjk ∼ N (

√
ᾱjθk, (1− ᾱj)I)

9: # Compute the predictions
10: θ̂k ← Gϕ(T (tk), θ

j
k, j)

11: # Compute the loss
12: loss← ||θ̂k − θk||22
13: # Update DiT’s parameters
14: ϕi+1 ← update(loss;ϕi)
15: end for

We use diffusion models as the generative model157

and follow the main architecture of G.pt [16]158

that uses a diffusion transformer as the back-159

bone. Analogous to the optimization process160

that takes random initialization as inputs and161

outputs the trained models, the diffusion process162

takes the noise as inputs and gradually denoises163

to recover the original distributions. Previous164

works have shown the rationale of neural net-165

work diffusion [16, 15, 18]. We choose DiT as166

the backbone because it can be easily scaled up167

and is shown to have great generalization and168

expressiveness. We use signal prediction for169

the diffusion process and inherit the architecture170

of GPT-2 [8] as the transformer. The used text171

encoder is the pretrained ViT-B/32 in CLIP [17].172

Training objective. Denote the training set173

of Tina as K, where each piece of data is a174

(task description, p-Model) tuple, notated as175

(tk, θk) for task k ∈ K. We denote the CLIP176

text encoder as T , and given the task description tk, the text embedding is T (tk). The text encoder177

is frozen during training.178

Our DiT model Gϕ takes two vectors as input: the text embedding T (tk) as conditions and the noised179

p-Model parameter vector θjk, where j ∈ [J] denotes the timestep in the diffusion forward noising180

4

process. The learning objective of diffusion is to minimize the simplified variational lower bound,181

which reduces to predicting the denoised p-Model parameters:182

min
ϕ

L(ϕ) =
∑
k∈K

∑
j∈J

||θk −Gϕ(T (tk), θ
j
k, j)||

2
2, (1)

where the timestep j is embedded in DiT by frequency-based encoding [19]. The detailed training183

procedure is in Algorithm 1. We use DDPM sampling [9]; add Gaussian noise depicted by the ᾱ to184

θk and gradually denoising it.185

2.2.3 Design Details186

We elaborate the design details of Tina.187

Parameter tokenization. For a p-Model’s parameters θk, we first flatten all the parameters into188

a 1-D vector and chunk/tokenize the parameters within each layer. If the chunk size is M and the189

number of parameters in a certain layer is N , so for this layer, there will be ceil(N/M) tokens. For190

some layers smaller than M , the whole layer is a token.191

Text embedding. Assume the personalized task is a classification task that has c = |Yk| classes. The192

task description tk is an ordered list of the classes’ text descriptions, of which the simplest form is193

the class entity, e.g., "telephone" and "rabbit". The generated p-Model is expected to have the correct194

predictions in the same order with tk. In other words, we need Tina to learn the correct classifier195

orders as the text prompts, which is sequence-to-sequence modeling. Therefore, unlike TAPER,196

which averages the class embeddings into one, we make every class description as a token by CLIP197

text encoder and concatenate them in order with position encoding.198

Encoding and decoding of tokens. We use linear layers as encoders for mapping the parameter199

tokens and text embedding tokens to the hidden size of DiT. Each token has a different linear200

layer without weight sharing. The decoders are similar to encoders, which use linear layers, and201

the encoders transform the transformer’s hidden size back to the p-Model’s parameter dimension.202

Between the encoders and decoders, there are transformer attention layers akin to GPT-2.203

Data augmentation. In [16], the permutation invariance property [20, 21, 22] is utilized for data204

augmentation by randomly permuting the neurons without changing the function. However, in our205

scenario, we find this augmentation will even impede training. We hypothesize that the personalized206

models are finetuned from the same generic model, so they may lie in the same or close loss landscape207

basins; as a result, permutation augmentation will disturb network representations and impair Tina208

training. Further, we develop an effective classifier augmentation strategy to speed up Tina training209

under limited data by randomly permuting the order of classes in the task description and also210

the order of corresponding classifier vectors during training. This data augmentation improves211

sample diversity and helps the DiT better learn the description-to-classifier sequence modeling in a212

position-aware manner.213

Parameter inheritance. In [16], the authors release a pretrained checkpoint of G.pt, which is also214

DiT for parameter generation. G.pt is pretrained on large datasets of optimization checkpoints;215

though it has different conditions, designs, and scenarios from ours, we explore whether we can216

inherit some parameters from the pretrained checkpoints to speed up and boost training. Considering217

the model sizes and architectures are different, we use a strategy similar to bert2BERT [23, 24, 25]218

for inheriting parameters.219

Classification sequence padding. We study how to incorporate more personalized settings where220

diverse users request for tasks with different numbers of classes. In language models [26, 5], padding221

is used to enable sequence-to-sequence learning with different input and output lengths. Inspired222

by this, we use the padding technique to enable the description-to-classifier sequence of different223

classification lengths. Specifically, if the user’s number of classes is smaller than the maximal length,224

we pad missing classes with tokens ‘<->’ in the task description list and mask the corresponding225

classifier vectors with zero-like tensors. We denote this strategy as classification sequence padding,226

and Tina can learn to adapt to any number of classes within the maximal length.227

3 Experiments228

3.1 Experimental Setups229

Datasets and p-Models. We use three datasets to conduct experiments: Mini-ImageNet [27, 28],230

CIFAR-100 [14], and Caltech-101 [29]. Mini-ImageNet is a subset of the ImageNet dataset, primarily231

5

Table 1: Main results across different datasets and models. The best results are in bold.
Dataset Mini-ImageNet CIFAR-100 Caltech-101 Avg

p-Models. CNN ResNet CNN ResNet CNN ResNet CNN ResNet

In-distribution Personalization

Generic Model 19.76 39.32 28.72 51.24 29.14 47.95 25.87 46.17
Classifier Selection 51.74 71.49 64.83 84.01 56.07 74.75 57.55 76.75
TAPER-Mixer 52.16 65.50 67.71 75.12 58.48 77.92 59.45 72.85

Tina 54.08 74.99 68.35 86.46 58.69 78.36 60.37 79.94

Out-of-distribution Personalization

Generic Model 18.55 39.80 29.88 52.24 29.14 50.56 25.86 47.53
Classifier Selection 51.02 72.47 64.15 83.94 56.44 76.03 57.20 77.48
TAPER-Mixer 51.64 67.03 66.85 72.30 58.93 79.65 59.14 72.99

Tina 53.31 75.34 67.14 86.63 59.27 79.69 59.91 80.55

used for few-shot learning tasks. CIFAR-100 is a popular benchmark dataset for image classification232

tasks. Each class contains 600 images, divided evenly into 20 superclasses and 100 classes. Caltech-233

101: A dataset for object recognition featuring diverse images with varied resolutions and quality.234

It includes 101 categories, each containing 40 to 800 images, offering a wide range of objects and235

scenes compared to CIFAR-100 and Mini-ImageNet. For the images with different resolutions, we236

resize them into 32 × 32 for unified modeling. The personalized tasks are crafted by selecting 10237

classes out of the 100/101 total classes. If not mentioned otherwise, the number of p-Models (i.e.,238

personalized tasks) for training Tina is 1000.239

We use two architectures for personalized models: a simple CNN (dubbed as CNN) and ResNet-20240

(dubbed as ResNet). The CNN architecture follows [16], which consists of 2 layers, and the number241

of parameters is approximately 5K. We take all the parameters of CNN as the input and output of242

Tina. But for ResNet-20, the number of parameters is nearly 272k, which is too large for Tina’s243

generation. Thus, we explore partial parameter generation following [15]. We only personalize the244

classifier layers for parameter generation, nearly 640 parameters.245

For more details about data preparation and p-Models, please refer to Appendix A in the appendix.246

Compared baselines. We follow the baselines used in the original paper of train-once-for-all247

personalization [13]. As described in subsection 2.1.3, we use the generic model trained in stage248

1 as a baseline, showing the performance without any personalization. Further, we compare the249

classifier selection method described in subsection 2.1.2, which serves as a strong baseline for250

personalization [13]. The vanilla TAPER [13] requires finetuning the expert models on the target251

tasks and cannot generalize on out-of-distribution personalization where only target text descriptions252

are available. For fair comparisons, we adopt TAPER-Mixer, which adopts the mixer of TAPER for253

generating the aggregation weights, and the MLP-based mixer can generalize on unseen tasks.254

Evaluation metrics. For Table 1, we compare in-distribution personalization and out-of-distribution255

personalization as elaborated in subsection 2.1.3. For other tables and figures, we report the out-of-256

distribution personalization as p-Acc.257

Hyperparameters. The detailed hyperparameters can be found in subsection A.5 in the appendix.258

3.2 Results under Different Datasets259

In Table 1, we evaluate the performance of our proposed method, Tina, against several baseline260

methods including Generic Model, Classifier Selection, and TAPER-Mixer across various datasets261

and model architectures for the task of train-once-for-all personalization. It is found that the Generic262

Model has inadequate performance, validating the need for personalization techniques. For the263

personalization methods, the results demonstrate that Tina consistently outperforms all baseline264

methods across both in-distribution and out-of-distribution personalization scenarios. Though Tina is265

a text-to-model foundation model, it is worth noting that Tina shows intelligence of personalization266

under limited data (nearly 1000 samples). Specifically, for in-distribution personalization, Tina267

achieves significant improvements with an average score of 79.94, surpassing the next best method,268

Classifier Selection, by a margin of 3.19. Similarly, for out-of-distribution personalization, Tina leads269

with an average score of 80.55, which is a notable increase over the second-best performing method270

by 2.78. It is notable that TAPER-Mixer shows performance gains over Classifier Selection in CNN271

6

32 64 128 1024 2048
Hidden Sizes of Tina

10

20

30

40

50

60

70

p-
Ac

c

CNN-5k
CNN-14k

(a) Scaling the parameters of DiT.

0 50 100 150 200 250 300
Epochs

10

20

30

40

50

60

p-
Ac

c

Tina (from scratch)
Tina (pretrained)

(b) Parameter inheritance.

0 50 100 150 200 250 300 350 400
Epochs

10

20

30

40

50

60

70

p-
Ac

c

Tina (text-prompted)
Tina (image-prompted)

(c) Training images as prompts.

Figure 4: Tina capability analysis w.r.t. different parameterization and training schemes. (a)
Scaling the parameters of DiT in Tina. CNN-5K (14K) means the p-Model is a CNN with 5K
(14K) parameters. From 152M (hidden size 32) to 789M (hidden size 2048), scaling helps in the
emergence of intelligence. (b) Parameter inheritance from pretrained G.pt helps speed up training
in the early. (c) Training Tina with image-prompted data versus text-prompted data. The
text-prompted has faster convergence.

but has marginal results in ResNet. Also, TAPER-Mixer has inferior performance compared with272

Tina, showing the advantages of Tina as a generative model in parameter generation. TAPER-Mixer273

only learns to merge the expert models, while Tina learns to directly generate the parameters.274

3.3 In-depth Analysis of Tina275

Tina shows great potential for text-to-model generation for personalization. We have made several276

in-depth analyses to better understand the capabilities and boundaries of Tina, and we will show277

insights into how Tina learns hyper-level world knowledge as well as its limitations for future278

research. If not mentioned otherwise, we use CIFAR-100 as the dataset for analyses.279

200 450 1000 1300
Sizes of Training Data

5e
3

1.
4e

4
3.

3e
4

7.
6e

4
In

pu
t D

im
en

sio
ns

60.32 65.46 67.14 67.44

54.37 68.49 70.64 70.69

10.08 69.30 74.66 75.21

10.29 34.88 75.93 75.78 20

30

40

50

60

70

p-
Ac

c

Figure 5: Scaling the input dimensions
and training data for Tina.

Scaling studies for Tina. Scaling law was found for280

transformer-based foundation models that scaling the pa-281

rameters, data, computes can bring intelligence emergence.282

In Figure 4 (a), we scale the parameters of Tina by chang-283

ing the hidden sizes ranging from 32 (152M parameters)284

to 2048 (789M), and we test two sizes of p-Model. It is285

found that when Tina is small, it fails to generalize, espe-286

cially when the p-Model has a higher parameter dimension.287

The intelligence emerges when scaling Tina at large sizes288

(e.g., 1024 or 2048 hidden sizes), but the scaling effect289

is saturated if reaching the upper bound performance of290

personalization. We also scale the input, also the gener-291

ated, dimensions (i.e., p-Model sizes) and the training data292

in Figure 5. It is found that a larger input dimension is293

harder to learn and requires larger sizes of training data294

to converge and generalize. The generalization of Tina295

can benefit from larger training data, but it has diminishing marginal returns. Generally, larger296

p-Models, larger training samples, and larger model sizes make Tina reach higher p-Acc, and it297

demonstrates the increasing expressive power of Tina by scaling, which is consistent with previous298

DiT works [12, 16, 3]. The scaling property indicates the great potential of Tina for more complex299

and challenging text-to-model scenarios.300

Parameter inheritance. We verify whether Tina can benefit from pretrained parameters. We inherit301

the parameters from G.pt’s [16] checkpoints by the bert2BERT-like method [24]. From Figure 4 (b),302

it is found that parameter inheritance from pretrained models can help Tina to converge faster, but303

the final p-Accs are similar.304

Training images as prompts. In the original design of Tina, the texts are used for the prompts305

encoded by the CLIP text encoder. We train a Tina with image prompts using CLIP image encoder,306

and the results are in Figure 4 (c). For each class, we randomly select one single image as the prompts.307

It is found that text-prompted Tina converges faster than the image-prompted, though the final p-Accs308

are similar. This is intuitive to understand since texts are known to have higher knowledge density309

than images [30, 17], that the class text has richer knowledge representations than a single image.310

7

Zero-shot 20 80 160 200
Number of Few-shot Samples

0

10

20

30

40

50

60

70

p-
Ac

c
27.85

17.79

46.98

57.97
65.26

(a) Image as prompts.

10 8 6 4 2
Number of Personalized Classes

50

55

60

65

70

75

80

85

90

95

p-
Ac

c

63.3
68.87

74.56
80.74

91.27

(b) Different personalized classes.

50 55 60 65 70 75 80
p-Acc of class name prompt

20

30

40

50

60

p-
Ac

c
of

 d
es

cr
ip

tio
n

pr
om

pt Linear fit
Data points

(c) Descriptions as prompts.

Figure 6: Tina capability analysis w.r.t. different prompt schemes. (a) Train text-prompted Tina
and verify the zero-shot and few-shot abilities of using images as prompts. (b) The accuracies
of p-Models generated by Tina vary with different numbers of classes. Classification sequence
padding is used, and the maximal sequence length is 10. (c) Train class-name-conditioned Tina and
verify its zero-shot ability on the natural language descriptions generated by GPT-4.

Table 2: Zero-shot transfer of Tina to unseen classes. We test the generalization capability of Tina
to unseen classes that have similar textual similarity with the seen ones.

Settings 0% unseen tasks 20% unseen tasks 40% unseen tasks 60% unseen tasks 100% unseen tasks

TAPER-Mixer 60.27 51.94 42.48 31.45 0.0

Tina 62.51 55.36 49.17 42.78 30.93

Testing images as prompts. We train text-prompted Tina and verify its zero-shot and few-shot311

abilities on image prompts, and the results are in Figure 6 (a). Due to the alignment of texts and312

images in CLIP, Tina shows zero-shot ability on image prompts. By few-shot finetuning on image313

prompts, Tina can reach comparable performances to the text-prompted model. We note that the314

image-prompted ability is important in practical personalization scenarios, because some users may315

have few images and want a personalized model for those. The images are too few to train a model316

from scratch, but thanks to the generative power of Tina, we can generate a p-Model given image317

prompts by utilizing Tina’s vision-language-parameter-aligned knowledge.318

Varying the number of personalized classes. Without changing architecture, Tina can adapt to any319

personalized classes within the maximal supported length due to the padding design. In Figure 6 (b),320

we test the p-Models with different numbers of classes, generated by one Tina. The maximal classifi-321

cation length is 10. It is shown that the generated p-Models reach higher p-Accs when the number of322

classes is fewer, which is consistent with common sense that fewer classes are easier to personalize.323

How Tina understands world knowledge I: natural language descriptions as prompts. In our324

implementation of Tina, we adopt a simple prompting that uses the class names as the text prompts.325

We verify whether Tina actually learns the knowledge in the case where the prompts are replaced326

by the natural language descriptions at test time. We generate the language descriptions of classes327

with the assistance of GPT-4 [31], and we make sure that the descriptions do not include the original328

class entities. The exemplars are in Table 4 of the appendix. From Figure 6 (c), the results reveal329

that Tina has zero-shot generalization ability when the prompts are unseen language descriptions,330

though the p-Accs are lower than the ones of the class-named prompts. It shows that Tina is not331

just memorizing the class names but also generalizing and understanding the knowledge behind the332

names and the nuances inherent in the text semantics.333

How Tina understands world knowledge II: generalization to unseen classes/entities. We divide334

the CIFAR-100 dataset into two disjoint shards of classes and train a Tina on one shard, then verify its335

generalization on the unseen classes of another shard. Results in Table 2 showcase that Tina has the336

intelligence to generalize on unseen classes, while TAPER-Mixer fails when meeting 100% unseen337

classes. As a generative model, Tina can understand the hyper-level world knowledge embedded in338

model parameters as well as text semantics and generate models for predicting unseen entities.339

3.4 Ablation of Design Choices of Tina340

We make an ablation study for different design choices of Tina. The ablated designs are the ones dif-341

ferent from previous literature, such as our design of classifier augmentation, G.pt’s design of permu-342

tation augmentation [16], and TAPER’s design of merge text embedding as one [13]. The results are343

in Table 3. Our classifier augmentation can boost the performance even under small training datasets.344

8

Table 3: Ablation study for different design choices of
Tina.

Designs/Datasets Mini-Imagenet CIFAR-100 Caltech-101 Avg.

w/o classifier aug. 32.45 49.61 41.61 41.22
w/ permutation aug. 9.88 10.14 10.59 10.20
merge text embed. as one 10.04 10.35 10.78 10.39

Tina (completed) 53.31 67.14 59.27 59.91

Permutation augmentation has neg-345

ative effects on generating person-346

alized models, and we hypothesize347

that for Tina’s training data, the348

p-Models finetuned from the same349

generic model are located in a com-350

mon loss basin, where permutations351

will disturb the shared representations.352

In addition, merging the text embeddings into one will hinder the DiT from learning the sequential353

classifications, making Tina bad in generalization.354

4 Related Works355

Diffusion models. Originating from non-equilibrium thermodynamics [32, 33], diffusion models356

have evolved significantly. DDPM and DDIM pioneered forward-and-reverse processes in text-to-357

image generation [9, 34]. Guided-based diffusion models [35] surpassed GAN-based methods in358

image generation quality. Subsequent models like GLIDE [36], Imagen [37], DALL·E 2 [2], and359

stable diffusion [4] further advanced image generation and art creation. The diffusion transformer360

(DiT) [12] introduced a scaling law, with OpenAI’s Sora [3] being a notable application in text-to-361

video generation, employing DiT architecture at a billion-scale.362

Parameter generation. Learning to optimize explores neural networks learning update rules for363

others [38, 39, 40, 41]. Hypernetwork [42] is a meta learning approach that uses networks to modify364

neural network parameters, differing from our approach of mapping language space directly to365

parameter space. Hypernetworks are used in federated learning [43], few-shot learning [44], and366

model editing [45]. A concurrent work ModelGPT [46] customizes models by large language367

models and hypernetworks, while Tina uses conditional neural network diffusion for a different368

task—train-once-for-all personalization. Neural network diffusion [16, 15] is recently proposed to369

mimic optimization rules via diffusion for parameter generation, but previous works haven’t explored370

sufficient use cases of such techniques.371

For more detailed related works (e.g., the works about personalization), please refer to Appendix B.372

5 Discussions373

Limitations. Despite the merits of Tina, it has some current limitations. One bottleneck is the input374

dimension; due to our computation limits, Tina currently supports lightweight models as inputs, and375

it requires huge computation resources to fully generate large models with millions of parameters. On376

the one hand, a larger input dimension needs exponentially larger Tina parameters, so more GPUs.377

On the other hand, a larger input dimension needs more data to converge or generalize, requiring378

more compute hours. As a remedy, we tried to train a variational autoencoder (VAE) for encoding379

the p-Model parameters into a low-dimension latent space as in [15], but the VAE cannot generalize,380

suggesting more advanced techniques are needed. Another limitation is the generality of Tina, that381

one single Tina cannot generate personalized models across different sizes and different modalities;382

in the future, large-scaling pretraining for Tina may be promising to reach this goal.383

Broader impacts. Tina is the preliminary work of text-to-model generation and will have broader384

impacts on the machine learning community, especially in the field of generative AI and model person-385

alization. Though in this initial version of Tina, we only showcase its great potential in image classi-386

fication tasks, Tina is prospective in a wide range of applications and tasks, such as natural language387

processing, audio recognition, and recommender system. Also, Tina has opened more potential direc-388

tions for neural network diffusion, and we believe it can inspire more interesting works in the future.389

6 Conclusion390

In this paper, we present Tina, a text-to-model neural network diffusion model for train-once-for-all391

personalization. Tina has shown its great capability in generating personalized models from text392

prompts, and it can generalize to in-distribution as well as out-of-distribution tasks, zero-shot/few-shot393

image prompts, natural language prompts, and unseen classes. Tina also supports personalization394

under different numbers of classes. This paper explores the potential of text-to-model generative AI395

and opens new applications for neural network diffusion in end-user personalization.396

9

References397

[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,398

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are399

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.400

[2] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical401

text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,402

2022.403

[3] OpenAI. Creating video from text. https://openai.com/sora, February 15 2024.404

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-405

resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF406

conference on computer vision and pattern recognition, pages 10684–10695, 2022.407

[5] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,408

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open409

foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.410

[6] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece411

Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general412

intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.413

[7] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language414

understanding by generative pre-training.415

[8] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.416

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.417

[9] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic418

models. In International conference on machine learning, pages 8162–8171. PMLR, 2021.419

[10] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image420

diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer421

Vision, pages 3836–3847, 2023.422

[11] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu,423

Harry Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without424

text-video data. In The Eleventh International Conference on Learning Representations, 2023.425

[12] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings426

of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.427

[13] Hong-You Chen, Yandong Li, Yin Cui, Mingda Zhang, Wei-Lun Chao, and Li Zhang. Train-428

once-for-all personalization. In Proceedings of the IEEE/CVF Conference on Computer Vision429

and Pattern Recognition, pages 11818–11827, 2023.430

[14] Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report,431

University of Toronto, 2009.432

[15] Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.433

Neural network diffusion. arXiv preprint arXiv:2402.13144, 2024.434

[16] William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning435

to learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,436

2022.437

[17] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,438

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual439

models from natural language supervision. In International conference on machine learning,440

pages 8748–8763. PMLR, 2021.441

[18] Yuan Yuan, Chenyang Shao, Jingtao Ding, Depeng Jin, and Yong Li. Spatio-temporal few-shot442

learning via diffusive neural network generation. arXiv preprint arXiv:2402.11922, 2024.443

10

https://openai.com/sora

[19] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-444

thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.445

Communications of the ACM, 65(1):99–106, 2021.446

[20] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation447

invariance in linear mode connectivity of neural networks. In International Conference on448

Learning Representations, 2022.449

[21] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models450

modulo permutation symmetries. In The Eleventh International Conference on Learning451

Representations, 2023.452

[22] Zexi Li, Zhiqi Li, Jie Lin, Tao Shen, Tao Lin, and Chao Wu. Training-time neuron alignment453

through permutation subspace for improving linear mode connectivity and model fusion. arXiv454

preprint arXiv:2402.01342, 2024.455

[23] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowl-456

edge transfer. arXiv preprint arXiv:1511.05641, 2015.457

[24] Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao458

Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models.459

[25] Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su, Zhiyuan460

Liu, Peng Li, Maosong Sun, et al. Knowledge inheritance for pre-trained language models.461

In Proceedings of the 2022 Conference of the North American Chapter of the Association for462

Computational Linguistics: Human Language Technologies, pages 3921–3937, 2022.463

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of464

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,465

2018.466

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-467

scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern468

Recognition, pages 248–255, 2009.469

[28] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.470

Matching networks for one shot learning. Advances in Neural Information Processing Systems,471

2016.472

[29] Li Fei-Fei, Rob Fergus, and Pietro Perona. Caltech-101: Object categories and the localized473

features. Technical report, California Institute of Technology, 2004.474

[30] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan475

Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning476

with noisy text supervision. In International conference on machine learning, pages 4904–4916.477

PMLR, 2021.478

[31] OpenAI and the co authors. Gpt-4 technical report, 2024.479

[32] Christopher Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements:480

A master-equation approach. Physical Review E, 56(5):5018, 1997.481

[33] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-482

vised learning using nonequilibrium thermodynamics. In International conference on machine483

learning, pages 2256–2265. PMLR, 2015.484

[34] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv485

preprint arXiv:2010.02502, 2020.486

[35] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.487

Advances in neural information processing systems, 34:8780–8794, 2021.488

[36] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,489

Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing490

with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.491

11

[37] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,492

Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.493

Photorealistic text-to-image diffusion models with deep language understanding. Advances in494

neural information processing systems, 35:36479–36494, 2022.495

[38] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom496

Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by497

gradient descent. Advances in neural information processing systems, 29, 2016.498

[39] Brandon Amos. Tutorial on amortized optimization for learning to optimize over continuous499

domains. arXiv e-prints, pages arXiv–2202, 2022.500

[40] Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,501

Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile502

learned optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.503

[41] Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The504

ultimate optimizer. Advances in Neural Information Processing Systems, 35:8214–8225, 2022.505

[42] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,506

2016.507

[43] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning508

using hypernetworks. In International Conference on Machine Learning, pages 9489–9502.509

PMLR, 2021.510

[44] Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov. Hypertransformer: Model511

generation for supervised and semi-supervised few-shot learning. In International Conference512

on Machine Learning, pages 27075–27098. PMLR, 2022.513

[45] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast514

model editing at scale. In International Conference on Learning Representations, 2022.515

[46] Zihao Tang, Zheqi Lv, Shengyu Zhang, Fei Wu, and Kun Kuang. Modelgpt: Unleashing llm’s516

capabilities for tailored model generation. arXiv preprint arXiv:2402.12408, 2024.517

[47] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil518

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural519

information processing systems, 27, 2014.520

[48] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil521

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications522

of the ACM, 63(11):139–144, 2020.523

[49] Jeremy Goecks, Vahid Jalili, Laura M Heiser, and Joe W Gray. How machine learning will524

transform biomedicine. Cell, 181(1):92–101, 2020.525

[50] Jamilu Awwalu, Ali Garba Garba, Anahita Ghazvini, and Rose Atuah. Artificial intelligence in526

personalized medicine application of ai algorithms in solving personalized medicine problems.527

International Journal of Computer Theory and Engineering, 7(6):439, 2015.528

[51] Zexi Li, Feng Mao, and Chao Wu. Can we share models if sharing data is not an option?529

Patterns, 3(11), 2022.530

[52] Sang Hyun Choi, Sungmin Kang, and Young Jun Jeon. Personalized recommendation system531

based on product specification values. Expert Systems with Applications, 31(3):607–616, 2006.532

[53] Zhihua Cui, Xianghua Xu, XUE Fei, Xingjuan Cai, Yang Cao, Wensheng Zhang, and Jinjun533

Chen. Personalized recommendation system based on collaborative filtering for iot scenarios.534

IEEE Transactions on Services Computing, 13(4):685–695, 2020.535

[54] Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, and Scott A Hale. The benefits, risks and536

bounds of personalizing the alignment of large language models to individuals. Nature Machine537

Intelligence, pages 1–10, 2024.538

12

[55] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,539

Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the540

capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.541

[56] Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning542

for image classification. In International Conference on Learning Representations, 2022.543

[57] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated544

learning through personalization. In International Conference on Machine Learning, pages545

6357–6368. PMLR, 2021.546

[58] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia547

Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning548

and Systems, 2:429–450, 2020.549

[59] Lingzhi Gao, Zexi Li, Yang Lu, and Chao Wu. Fedios: Decoupling orthogonal subspaces for550

personalization in feature-skew federated learning. arXiv preprint arXiv:2311.18559, 2023.551

[60] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework552

for clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–553

19597, 2020.554

[61] Zexi Li, Jiaxun Lu, Shuang Luo, Didi Zhu, Yunfeng Shao, Yinchuan Li, Zhimeng Zhang,555

Yongheng Wang, and Chao Wu. Towards effective clustered federated learning: A peer-to-peer556

framework with adaptive neighbor matching. IEEE Transactions on Big Data, 2022.557

13

Appendix558

A Implementation Details559

A.1 Dataset Preparation560

Mini-ImageNet. The Mini-ImageNet dataset [28] is a sub-dataset of ImageNet [27], which is561

widely used in few-shot learning. It selects 100 categories from ImageNet1K. The trainset contains562

600 labeled images for each category, a total 60,000 images, and the testset contains 100 labeled563

images for each category, a total of 10,000 pieces.564

CIFAR-100. Each image in CIFAR-100 [14] has two labels: superclass and subclass. There are565

500 training images and 100 testing images per subclass. CIFAR-100 has 20 superclasses, and each566

superclass has 5 subclasses.567

Caltech-101. Caltech-101 [29] is an objects image dataset with 101 categories. Approximately 40568

to 800 images per category, most categories have around 50 images, 8677 images in total. We divide569

it into a trainset and a testset according to the ratio of 8:2.570

When creating the p-Model datasets, we strive to maintain a consistent frequency of occurrences571

for each class, while simultaneously varying the combinations of different classes in various orders.572

For each dataset, we randomly permute the order of all classes, divide them into ten classes, and573

train on the respective classes to construct p-Models. This approach allows us to generate 10 distinct574

class models for each dataset. We utilize various random seeds to control the generation of class575

combinations, ensuring we acquire sufficient p-Models. We randomly selected 150 data from the576

original training data as the out-of-distribution testset.577

For CIFAR-100, it has two classification methods: superclass and subclass. In order to increase the578

diversity and semantics of p-Model data, we use a more complex way to set up the classes included579

in each model. (1) The classes trained by each model come from different superclasses. This ensures580

a wide range of semantic variations. (2) Part of the classes trained by each model come from the581

same superclass. The selection of these classes is done randomly. (3) The classes trained by each582

model only come from two different superclasses. In the trainset and testset, we distribute these three583

division methods in quantity according to 3:2:1.584

A.2 Example of class description from GPT-4585

For the word of each class, we use GPT-4 to provide a more detailed and standardized description586

and definition. Some examples are shown in Table 4.587

Table 4: Natural language descriptions of the class names from GPT4.

class description of the class from GPT4

"boy" "a male child or young man"
"girl" "a female child or young woman"

"apple" "a round fruit with red, green, or yellow skin and a crisp, sweet flesh"
"pear" "a sweet, juicy fruit with a thin skin and a rounded base tapering to a stalk"

"orange" "a round, juicy citrus fruit with a tough, bright orange rind"

A.3 Data Preparation for Experiments of Unseen Classes588

We divide the 100 classes in CIFAR-100 evenly into two groups/shards. The classes belonging to one589

group serve as the training model data, while the classes in the other group are intentionally excluded590

from appearing during the training process. When making these divisions, we take care to distribute591

categories with similar characteristics into separate groups. For instance, we separate the apple and592

the orange, both being common fruits, into different groups. Similarly, the bear and the lion, both593

large carnivorous mammals, are divided, and the boy and the man, both representing the male gender,594

are also separated accordingly.595

A.4 Detailed Implementations of Methods596

We first train the model on the entire dataset for 50 epochs to obtain a stage-one model.597

14

Classifier Selection: Based on the stage-one model, for each classification task, we only retain the vec-598

tor representing the corresponding class on the classifier and set the vectors for all other classes to zero.599

TAPER-Mixer: We set up two base models and split the dataset into two shards based on the600

classification labels. Each base model is initialized using the parameters of the stage-one model601

and fine-tuned on one of the sharded datasets for 5 epochs. In stage 3, we use the class order of602

the p-Model in the trainset to train the mixer for 5 epochs, and during the testing phase, the mixer603

remains frozen.604

Tina: For each p-Model data, we initialize it using the parameters of the stage-one generic model as605

a starting point. At the same time, each class is sequentially reorganized as labels ranging from 0 to 9606

for training. We fine-tune the generic model for 10 epochs to obtain the p-Models. For ResNet-20, we607

only fine-tune the parameters of the classifier, while keeping the remaining network parameters frozen.608

A.5 Hyperparameters609

In all experiments, we use the same hyperparameters for training. For the model structure, we set the610

hidden size to 2048, and the number of the encoder and decoder is 1. Each encoder and decoder has611

12 layers, and each self-attention layer has 16 attention heads. For the training process, we divide612

the model parameters into chunks by layer, and the size of each chunk is 576. We set batch size 64,613

learning rate 4e−4, and the gradient clipping coefficient to 0.1.614

A.6 Environments and Resources615

All our experiments are conducted on CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHZ. We616

employ two Quadro RTX 8000 for data-parallel distributed training. When Tina generates a CNN617

neural network with 5,000 parameters, each GPU requires 20,000MB of memory, and training for618

300 epochs takes approximately 5 hours.619

B Detailed Related Works620

Diffusion models The origin of diffusion models is the study of non-equilibrium thermodynam-621

ics [32, 33]. In recent years, DDPM [9] and DDIM [34] have refined diffusion models to a higher level622

by transforming the paradigm into forward-and-reverse processes in text-to-image generation. Later623

on, guided-based diffusion models [35] found a better architecture to improve the image generation624

quality that could beat the GAN-based methods [47, 48]. Then, GLIDE [36], Imagen [37], DALL·E625

2 [2], and stable diffusion [4] emerged and flourished in the field of image generation and art creation.626

In the work of diffusion transformer (DiT) [12], the authors found that if the basic architecture of627

diffusion models is changed to transformers, the scaling law emerges, that scaling the number of628

parameters can reach the increasing quality of image generation. Based on DiT, in Feb 2024, OpenAI629

launched Sora [3], a text-to-video model that can understand and simulate the physical world in630

motion. In Sora, the DiT architecture is used and scaled to the billions level.631

Parameter generation The field of learning to optimize studies how one neural network can learn632

the update rules (gradients) for optimizing another network [38, 39, 40, 41]. Besides, the studies633

of hypernetworks [42] focus on how to directly output or modify neural networks’ parameters by a634

hypernetwork. Hypernetworks usually take models’ parameters as input and generate parameters [43,635

45], which is different from our paper, which directly maps language space into the parameter636

space. Hypernetworks were used to generate local models for federated learning [43], edge-cloud637

collaboration, few-shot learning [44], and model editing [45]. A concurrent work ModelGPT [46] also638

uses text prompts to generate customized models. However, ModelGPT didn’t target the train-once-639

for-all personalization scenario, and it uses conventional hypernetwork and meta learning methods640

while our Tina adopts novel conditional neural network diffusion. Recently, empowered by the641

strong expressiveness of diffusion models, neural network diffusion [16, 15] was proposed to mimic642

the optimization rule by diffusion for generating the model parameters. The first paper is G.pt [16],643

which uses DiT to learn to generate the model given a targeted loss or accuracy, and it mimics the644

optimization process while achieving faster inference compared with vanilla optimization. However,645

G.pt may have limited use cases; it can only generate the models for the training tasks (i.e., the646

in-distribution in our paper’s terminology), and the accuracies are upper-bounded by the accuracies647

of checkpoint models in the training datasets. p-diff [15] formally formulates the neural network648

diffusion problem and proposes to diffuse and generate the batch normalization layers for better649

accuracies, but the improvement may be marginal, and the diffusion design is not conditioned. It also650

15

meets the dilemma of G.pt, which lacks a specific scenario and use case. Recently, GPD [18] uses the651

diffusion model for few-shot learning in smart city applications, which showcases the applications of652

neural network diffusion. However, GPD takes the smart city’s knowledge graphs as prompts and653

is tailored for the specific smart city application that cannot be easily extended to other fields. Our654

Tina takes language texts as prompts, which is more flexible and can be extended to a wider range of655

applications for the personalization of user demands.656

Personalization Instead of training a generic model to provide many users with the same model657

service, personalization of deep learning models acknowledges users’ characteristics and diversity and658

learns each a customized model. Personalization techniques were introduced in medical AI [49, 50,659

51], recommendation systems [52, 53], large language models [54, 55], and especially federated learn-660

ing [56, 57]. Personalized federated learning studies how to exploit the common knowledge of users661

and then use it to explore further personalization on users’ local datasets under privacy constraints [56],662

and techniques like proximal descent [58, 57], network decoupling [56, 59], and clustering [60, 61]663

are used. Recently, the scenario of train-once-for-all personalization [13] was proposed to bridge the664

gap between edge-side and server-side personalization. Train-once-for-all personalization aims to665

utilize server-side computation and generic models for fast and effective personalized adaptation to666

meet the edge users’ demands. The original method TAPER [13] finetunes the generic model into667

several base models and learns MLP-based hypernetworks as mixers to fuse the base models into the668

personalized one given users’ task descriptions. However, the MLP mixer has limited generalization669

capability, and it cannot be applied to unseen tasks, whereas our Tina learns the text-to-model world670

knowledge and can be generalized to out-of-distribution samples, modalities, and domains.671

16

NeurIPS Paper Checklist672

1. Claims673

Question: Do the main claims made in the abstract and introduction accurately reflect the674

paper’s contributions and scope?675

Answer: [Yes]676

Justification: See the paper for details.677

Guidelines:678

• The answer NA means that the abstract and introduction do not include the claims679

made in the paper.680

• The abstract and/or introduction should clearly state the claims made, including the681

contributions made in the paper and important assumptions and limitations. A No or682

NA answer to this question will not be perceived well by the reviewers.683

• The claims made should match theoretical and experimental results, and reflect how684

much the results can be expected to generalize to other settings.685

• It is fine to include aspirational goals as motivation as long as it is clear that these goals686

are not attained by the paper.687

2. Limitations688

Question: Does the paper discuss the limitations of the work performed by the authors?689

Answer: [Yes]690

Justification: See section 5.691

Guidelines:692

• The answer NA means that the paper has no limitation while the answer No means that693

the paper has limitations, but those are not discussed in the paper.694

• The authors are encouraged to create a separate "Limitations" section in their paper.695

• The paper should point out any strong assumptions and how robust the results are to696

violations of these assumptions (e.g., independence assumptions, noiseless settings,697

model well-specification, asymptotic approximations only holding locally). The authors698

should reflect on how these assumptions might be violated in practice and what the699

implications would be.700

• The authors should reflect on the scope of the claims made, e.g., if the approach was701

only tested on a few datasets or with a few runs. In general, empirical results often702

depend on implicit assumptions, which should be articulated.703

• The authors should reflect on the factors that influence the performance of the approach.704

For example, a facial recognition algorithm may perform poorly when image resolution705

is low or images are taken in low lighting. Or a speech-to-text system might not be706

used reliably to provide closed captions for online lectures because it fails to handle707

technical jargon.708

• The authors should discuss the computational efficiency of the proposed algorithms709

and how they scale with dataset size.710

• If applicable, the authors should discuss possible limitations of their approach to711

address problems of privacy and fairness.712

• While the authors might fear that complete honesty about limitations might be used by713

reviewers as grounds for rejection, a worse outcome might be that reviewers discover714

limitations that aren’t acknowledged in the paper. The authors should use their best715

judgment and recognize that individual actions in favor of transparency play an impor-716

tant role in developing norms that preserve the integrity of the community. Reviewers717

will be specifically instructed to not penalize honesty concerning limitations.718

3. Theory Assumptions and Proofs719

Question: For each theoretical result, does the paper provide the full set of assumptions and720

a complete (and correct) proof?721

Answer: [NA]722

17

Justification: NA.723

Guidelines:724

• The answer NA means that the paper does not include theoretical results.725

• All the theorems, formulas, and proofs in the paper should be numbered and cross-726

referenced.727

• All assumptions should be clearly stated or referenced in the statement of any theorems.728

• The proofs can either appear in the main paper or the supplemental material, but if729

they appear in the supplemental material, the authors are encouraged to provide a short730

proof sketch to provide intuition.731

• Inversely, any informal proof provided in the core of the paper should be complemented732

by formal proofs provided in appendix or supplemental material.733

• Theorems and Lemmas that the proof relies upon should be properly referenced.734

4. Experimental Result Reproducibility735

Question: Does the paper fully disclose all the information needed to reproduce the main ex-736

perimental results of the paper to the extent that it affects the main claims and/or conclusions737

of the paper (regardless of whether the code and data are provided or not)?738

Answer: [Yes]739

Justification: We have provided the implementation details and the hyperparameters in740

Appendix A.741

Guidelines:742

• The answer NA means that the paper does not include experiments.743

• If the paper includes experiments, a No answer to this question will not be perceived744

well by the reviewers: Making the paper reproducible is important, regardless of745

whether the code and data are provided or not.746

• If the contribution is a dataset and/or model, the authors should describe the steps taken747

to make their results reproducible or verifiable.748

• Depending on the contribution, reproducibility can be accomplished in various ways.749

For example, if the contribution is a novel architecture, describing the architecture fully750

might suffice, or if the contribution is a specific model and empirical evaluation, it may751

be necessary to either make it possible for others to replicate the model with the same752

dataset, or provide access to the model. In general. releasing code and data is often753

one good way to accomplish this, but reproducibility can also be provided via detailed754

instructions for how to replicate the results, access to a hosted model (e.g., in the case755

of a large language model), releasing of a model checkpoint, or other means that are756

appropriate to the research performed.757

• While NeurIPS does not require releasing code, the conference does require all submis-758

sions to provide some reasonable avenue for reproducibility, which may depend on the759

nature of the contribution. For example760

(a) If the contribution is primarily a new algorithm, the paper should make it clear how761

to reproduce that algorithm.762

(b) If the contribution is primarily a new model architecture, the paper should describe763

the architecture clearly and fully.764

(c) If the contribution is a new model (e.g., a large language model), then there should765

either be a way to access this model for reproducing the results or a way to reproduce766

the model (e.g., with an open-source dataset or instructions for how to construct767

the dataset).768

(d) We recognize that reproducibility may be tricky in some cases, in which case769

authors are welcome to describe the particular way they provide for reproducibility.770

In the case of closed-source models, it may be that access to the model is limited in771

some way (e.g., to registered users), but it should be possible for other researchers772

to have some path to reproducing or verifying the results.773

5. Open access to data and code774

Question: Does the paper provide open access to the data and code, with sufficient instruc-775

tions to faithfully reproduce the main experimental results, as described in supplemental776

material?777

18

Answer: [Yes]778

Justification: The datasets we used are all public datasets that are available to anyone. We779

will release the codes upon acceptance.780

Guidelines:781

• The answer NA means that paper does not include experiments requiring code.782

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/783

public/guides/CodeSubmissionPolicy) for more details.784

• While we encourage the release of code and data, we understand that this might not be785

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not786

including code, unless this is central to the contribution (e.g., for a new open-source787

benchmark).788

• The instructions should contain the exact command and environment needed to run to789

reproduce the results. See the NeurIPS code and data submission guidelines (https:790

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.791

• The authors should provide instructions on data access and preparation, including how792

to access the raw data, preprocessed data, intermediate data, and generated data, etc.793

• The authors should provide scripts to reproduce all experimental results for the new794

proposed method and baselines. If only a subset of experiments are reproducible, they795

should state which ones are omitted from the script and why.796

• At submission time, to preserve anonymity, the authors should release anonymized797

versions (if applicable).798

• Providing as much information as possible in supplemental material (appended to the799

paper) is recommended, but including URLs to data and code is permitted.800

6. Experimental Setting/Details801

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-802

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the803

results?804

Answer: [Yes]805

Justification: We have provided the implementation details and the hyperparameters in806

Appendix A and the corresponding captions.807

Guidelines:808

• The answer NA means that the paper does not include experiments.809

• The experimental setting should be presented in the core of the paper to a level of detail810

that is necessary to appreciate the results and make sense of them.811

• The full details can be provided either with the code, in appendix, or as supplemental812

material.813

7. Experiment Statistical Significance814

Question: Does the paper report error bars suitably and correctly defined or other appropriate815

information about the statistical significance of the experiments?816

Answer: [Yes]817

Justification: We have provided experiments on several datasets and models to support the818

statistical significance.819

Guidelines:820

• The answer NA means that the paper does not include experiments.821

• The authors should answer "Yes" if the results are accompanied by error bars, confi-822

dence intervals, or statistical significance tests, at least for the experiments that support823

the main claims of the paper.824

• The factors of variability that the error bars are capturing should be clearly stated (for825

example, train/test split, initialization, random drawing of some parameter, or overall826

run with given experimental conditions).827

• The method for calculating the error bars should be explained (closed form formula,828

call to a library function, bootstrap, etc.)829

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).830

• It should be clear whether the error bar is the standard deviation or the standard error831

of the mean.832

• It is OK to report 1-sigma error bars, but one should state it. The authors should833

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis834

of Normality of errors is not verified.835

• For asymmetric distributions, the authors should be careful not to show in tables or836

figures symmetric error bars that would yield results that are out of range (e.g. negative837

error rates).838

• If error bars are reported in tables or plots, The authors should explain in the text how839

they were calculated and reference the corresponding figures or tables in the text.840

8. Experiments Compute Resources841

Question: For each experiment, does the paper provide sufficient information on the com-842

puter resources (type of compute workers, memory, time of execution) needed to reproduce843

the experiments?844

Answer: [Yes]845

Justification: See Appendix A for details.846

Guidelines:847

• The answer NA means that the paper does not include experiments.848

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,849

or cloud provider, including relevant memory and storage.850

• The paper should provide the amount of compute required for each of the individual851

experimental runs as well as estimate the total compute.852

• The paper should disclose whether the full research project required more compute853

than the experiments reported in the paper (e.g., preliminary or failed experiments that854

didn’t make it into the paper).855

9. Code Of Ethics856

Question: Does the research conducted in the paper conform, in every respect, with the857

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?858

Answer: [Yes]859

Justification: As it is.860

Guidelines:861

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.862

• If the authors answer No, they should explain the special circumstances that require a863

deviation from the Code of Ethics.864

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-865

eration due to laws or regulations in their jurisdiction).866

10. Broader Impacts867

Question: Does the paper discuss both potential positive societal impacts and negative868

societal impacts of the work performed?869

Answer: [Yes]870

Justification: See section 5.871

Guidelines:872

• The answer NA means that there is no societal impact of the work performed.873

• If the authors answer NA or No, they should explain why their work has no societal874

impact or why the paper does not address societal impact.875

• Examples of negative societal impacts include potential malicious or unintended uses876

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations877

(e.g., deployment of technologies that could make decisions that unfairly impact specific878

groups), privacy considerations, and security considerations.879

20

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied880

to particular applications, let alone deployments. However, if there is a direct path to881

any negative applications, the authors should point it out. For example, it is legitimate882

to point out that an improvement in the quality of generative models could be used to883

generate deepfakes for disinformation. On the other hand, it is not needed to point out884

that a generic algorithm for optimizing neural networks could enable people to train885

models that generate Deepfakes faster.886

• The authors should consider possible harms that could arise when the technology is887

being used as intended and functioning correctly, harms that could arise when the888

technology is being used as intended but gives incorrect results, and harms following889

from (intentional or unintentional) misuse of the technology.890

• If there are negative societal impacts, the authors could also discuss possible mitigation891

strategies (e.g., gated release of models, providing defenses in addition to attacks,892

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from893

feedback over time, improving the efficiency and accessibility of ML).894

11. Safeguards895

Question: Does the paper describe safeguards that have been put in place for responsible896

release of data or models that have a high risk for misuse (e.g., pretrained language models,897

image generators, or scraped datasets)?898

Answer: [NA]899

Justification: NA900

Guidelines:901

• The answer NA means that the paper poses no such risks.902

• Released models that have a high risk for misuse or dual-use should be released with903

necessary safeguards to allow for controlled use of the model, for example by requiring904

that users adhere to usage guidelines or restrictions to access the model or implementing905

safety filters.906

• Datasets that have been scraped from the Internet could pose safety risks. The authors907

should describe how they avoided releasing unsafe images.908

• We recognize that providing effective safeguards is challenging, and many papers do909

not require this, but we encourage authors to take this into account and make a best910

faith effort.911

12. Licenses for existing assets912

Question: Are the creators or original owners of assets (e.g., code, data, models), used in913

the paper, properly credited and are the license and terms of use explicitly mentioned and914

properly respected?915

Answer: [Yes]916

Justification: As it is.917

Guidelines:918

• The answer NA means that the paper does not use existing assets.919

• The authors should cite the original paper that produced the code package or dataset.920

• The authors should state which version of the asset is used and, if possible, include a921

URL.922

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.923

• For scraped data from a particular source (e.g., website), the copyright and terms of924

service of that source should be provided.925

• If assets are released, the license, copyright information, and terms of use in the926

package should be provided. For popular datasets, paperswithcode.com/datasets927

has curated licenses for some datasets. Their licensing guide can help determine the928

license of a dataset.929

• For existing datasets that are re-packaged, both the original license and the license of930

the derived asset (if it has changed) should be provided.931

21

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to932

the asset’s creators.933

13. New Assets934

Question: Are new assets introduced in the paper well documented and is the documentation935

provided alongside the assets?936

Answer: [NA]937

Justification: NA938

Guidelines:939

• The answer NA means that the paper does not release new assets.940

• Researchers should communicate the details of the dataset/code/model as part of their941

submissions via structured templates. This includes details about training, license,942

limitations, etc.943

• The paper should discuss whether and how consent was obtained from people whose944

asset is used.945

• At submission time, remember to anonymize your assets (if applicable). You can either946

create an anonymized URL or include an anonymized zip file.947

14. Crowdsourcing and Research with Human Subjects948

Question: For crowdsourcing experiments and research with human subjects, does the paper949

include the full text of instructions given to participants and screenshots, if applicable, as950

well as details about compensation (if any)?951

Answer: [NA]952

Justification: NA953

Guidelines:954

• The answer NA means that the paper does not involve crowdsourcing nor research with955

human subjects.956

• Including this information in the supplemental material is fine, but if the main contribu-957

tion of the paper involves human subjects, then as much detail as possible should be958

included in the main paper.959

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,960

or other labor should be paid at least the minimum wage in the country of the data961

collector.962

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human963

Subjects964

Question: Does the paper describe potential risks incurred by study participants, whether965

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)966

approvals (or an equivalent approval/review based on the requirements of your country or967

institution) were obtained?968

Answer: [NA]969

Justification: NA970

Guidelines:971

• The answer NA means that the paper does not involve crowdsourcing nor research with972

human subjects.973

• Depending on the country in which research is conducted, IRB approval (or equivalent)974

may be required for any human subjects research. If you obtained IRB approval, you975

should clearly state this in the paper.976

• We recognize that the procedures for this may vary significantly between institutions977

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the978

guidelines for their institution.979

• For initial submissions, do not include any information that would break anonymity (if980

applicable), such as the institution conducting the review.981

22

	Introduction
	Methodology
	Problem Setup
	Definition of Setup
	Strong Baselines: Classifier Selection and TAPER
	Dataset Preparation and Description

	Proposed Tina: Text-conditioned Neural Network Diffusion Model
	Framework Overview
	Architecture and Training Objective
	Design Details

	Experiments
	Experimental Setups
	Results under Different Datasets
	In-depth Analysis of Tina
	Ablation of Design Choices of Tina

	Related Works
	Discussions
	Conclusion
	Implementation Details
	Dataset Preparation
	Example of class description from GPT-4
	Data Preparation for Experiments of Unseen Classes
	Detailed Implementations of Methods
	Hyperparameters
	Environments and Resources

	Detailed Related Works

