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ABSTRACT

Large Vision-Language Models (LVLMs), such as GPT-4 and LLaVA, have re-
cently witnessed remarkable advancements and are increasingly being deployed
in real-world applications. However, inheriting the sensitivity of visual neural net-
works, LVLMs remain vulnerable to adversarial attacks, which can result in erro-
neous or malicious outputs. While existing efforts utilize adversarial fine-tuning
to enhance robustness, they often suffer from performance degradation on clean
inputs. In this paper, we proposes AdPO, a novel adversarial defense strategy for
LVLMs based on preference optimization. Preference optimization methods, such
as DPO and RLHF, have been widely used to align large language models (LLMs)
with human values and preferences. For the first time, we reframe adversarial
training as a preference optimization problem, aiming to enhance the model’s
preference for generating normal outputs on clean inputs while rejecting the po-
tential misleading outputs for adversarial examples. Notably, AdPO achieves this
by solely modifying the image encoder, e.g., CLIP ViT, resulting in superior ro-
bustness across a range of downstream tasks (including LVLMs and zero-shot
classification). Our comprehensive experimental validation confirms the efficacy
of the proposed AdPO, which outperforms prior state-of-the-art methods.

1 INTRODUCTION

The emergence of large vision-language models (LVLMs) has substantially propelled the develop-
ment of general artificial intelligence, attracting considerable attention from the research commu-
nity (Yin et al., 2023; Cui et al., 2024; Liu et al., 2024b). These models generally consist of two
key components: visual modules and Large Language Models (LLMs) (Zhao et al., 2023a). The
visual modules, frequently utilizing pre-trained image encoders like CLIP’s ViT (Radford et al.,
2021), are responsible for extracting salient visual features from images and projecting them onto
the input space of the language model. This alignment facilitates the next-token prediction in an
autoregressive manner within the framework of the language model. Cutting-edge LVLMs, such
as GPT-4 (OpenAI et al., 2024), LLaVA (Liu et al., 2023b), and OpenFlamingo (Awadalla et al.,
2023), have demonstrated outstanding capabilities in understanding and reasoning with both visual
and textual information. These models have delivered exceptional performance across a broad range
of tasks, such as image captioning (Dai et al., 2023; Nguyen et al., 2023), visual question answer-
ing (Liu et al., 2023b), and text recognition (Liu et al., 2024a; Li et al., 2023d).

Given their transformative potential for multimodal learning and understanding, LVLMs are posi-
tioned for deployment across a growing range of real-world applications. However, this widespread
deployment introduces significant security concerns, as malicious attacker could manipulate LVLMs
into generating undesirable content and hallucinations (Schlarmann & Hein, 2023; Shayegani et al.,
2024). Consequently, it is imperative to rigorously test and improve the robustness of these models
prior to deployment. Recent research has identified a critical vulnerability in LVLMs to adversarial
attacks targeting both textual and visual inputs (Zhao et al., 2023b). Notably, the continuous nature
of the visual modality renders it more susceptible to manipulation via numerical optimization tech-
niques (Wang et al., 2024b; Carlini et al., 2023; Qi et al., 2024b; Luo et al., 2024). Researchers have
demonstrated both targeted and untargeted attacks by introducing imperceptible noise into images,
which consequently alters the model’s interpretation and output.
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CLIP: A table with a cake and
other foods.

TeCoA: A cake with raspberries
on it.

FARE: A cake with a knife in it.

AdPO: A table with a cake and a
plate of food.

CLIP: The two people on the
surfboard.

TeCoA: a red and white picnic
table.

FARE: A cake with blueberries
on top.

AdPO: A table with a cake and a
plate of fruit.

Clean Image Adversarial Image

LLaVA Output LLaVA Output

Figure 1: Illustration of f adversarial attacks with ϵ = 4/255 on LLaVA using different CLIP mod-
els as encoders. The original model can produce accurate outputs on clean images, but it makes
significant errors when faced with adversarial attacks. Although the adversarially trained versions,
TeCoA and FARE, have better adversarial robustness, they still tend to hallucinate or fail to fully
comprehend the image. Comparatively, our AdPO exhibits strong performance on both clean and
adversarially altered images.

To improve the adversarial robustness of LVLMs, existing efforts focus on fine-tuning primarily
the image encoder. For example, TeCoA utilizes a text-guided contrastive adversarial training loss,
supervising the alignment of text embeddings with adversarial visual features on a limited training
dataset (Mao et al., 2023). FARE proposes an unsupervised adversarial fine-tuning scheme to elimi-
nate the dependence on labeled training datasets (Schlarmann et al., 2024). Although these methods
have achieved advancements in improving the robustness of CLIP models, they continue to suffer
from performance degradation on downstream tasks, including LVLMs and zero-shot classification.
As shown in Figure 1, TeCoA generates severe hallucinations with clean samples, whereas FARE
tends to lose its fine-grained comprehension of the image.

Inspired by the significant success of preference optimization in the LLM community (Wang et al.,
2024e; Ouyang et al., 2022), we find that applying preference optimization to adversarial training
is highly promising, given the alignment between their objectives. More specifically, adversarial
training aims to enhance model robustness against adversarial attacks while preserving performance
on clean data. Preference optimization, such as DPO (Rafailov et al., 2023), aligns LLMs with
human values by increasing the probability of preferred outputs while decreasing the likelihood
of non-preferred ones. Leveraging this insight, we propose AdPO, a novel Adversarial defense
strategy based on Preference Optimization, which enables LVLMs to generate correct outputs from
clean image inputs while rejecting misleading outputs from adversarial images.

However, applying DPO to adversarial training presents unique challenges. In comparison to stan-
dard offline DPO, we introduce two key improvements: (1) To remove the reliance on image annota-
tions, we adapt DPO to an online setting. During training, the policy model generates interpretations
for both clean and adversarial images, which serve as sources for positive and negative samples. This
process is referred to as preferred image optimization. (2) Multimodal preference optimization
may face an unconditional preference issue, where the learning process may neglect image condi-
tions (Wang et al., 2024a). To address this issue, we introduce supplementary adversarial image
optimization to further improve the adversarial robustness of LVLMs. To ensure consistency with
previous research, we confine our adversarial training to adjusting only the parameters of CLIP’s
ViT on the ImageNet dataset (Deng et al., 2009). Extensive experimental results, including those on
LVLMs and zero-shot classification, demonstrate that our proposed AdPO achieves a more robust
image encoder, with minimal impact on clean inputs and even shows improvements in certain tasks.
These outcomes not only validate the effectiveness of our approach but also expand the potential
applications of preference optimization techniques beyond their original scope in language models.

In summary, our contributions can be summarized as follows:

• We introduce AdPO (Adversarial defense based on Preference Optimization), which, to
the best of our knowledge, is the first attempt to explore the application of preference
optimization for adversarial training.
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• We propose the dual strategy of preferred image optimization and adversarial image op-
timization to maintain the model’s clean performance while enhancing its adversarial ro-
bustness.

• Extensive experiments show that our method achieves state-of-the-art results in improving
the adversarial robustness of LVLMs while maintaining the original performance as much
as possible.

2 RELATED WORK

In this section, we primarily review the related studies on large vision-language models, adversarial
attacks, adversarial defenses, and preference optimization methods.

Large Vision-Language Models. Recently, large multimodal models have emerged, including
LLaVA 1.5 (Liu et al., 2023a), OpenFlamingo (OF) (Awadalla et al., 2023), BLIP-2 (Li et al.,
2023b), MiniGPT-4 (Zhu et al., 2024), Otter (Li et al., 2023a), mPLUG-Owl (Ye et al., 2023),
Qwen-VL (Bai et al., 2023), MiniCPM-V (Yao et al., 2024), DeepSeek-VL (Lu et al., 2024), In-
ternVL (Chen et al., 2024), and Idefics2 (Laurençon et al., 2024). These models typically use pre-
trained image encoders (e.g., CLIP or SigCLIP) to extract image features, which are then aligned
with text embedding spaces (Radford et al., 2021; Zhai et al., 2023). The visual and textual em-
beddings are then fed into LLMs for autoregressive generation. This approach allows the model
to simultaneously understand and generate content related to both images and text. To mitigate
computational load, a practical strategy is to freeze the image encoder and train only the projec-
tion layer, which not only simplifies the training process but also enhances efficiency (Liu et al.,
2023b; Awadalla et al., 2023). Therefore, image encoders can significantly impact the performance
of LVLMs, receiving significant attention from the multimodal community (Cao et al., 2023). We
focus on the performance evaluation of LLaVA-1.5 and OF, as both use CLIP ViT-L/14 (Radford
et al., 2021) as their image encoder.

Adversarial attacks. The vulnerability of visual neural network models to adversarial attacks is
well-established and has been extensively investigated (Szegedy et al., 2014; Goodfellow et al.,
2015; Madry et al., 2018; Brown et al., 2017; Zhang et al., 2023). By introducing carefully crafted
noise into images, adversaries can cause the victim model to generate incorrect outputs with high
confidence. Capitalizing on this vulnerability, recent studies have shown that LVLMs are also vul-
nerable to attacks targeting visual inputs Schlarmann & Hein (2023); Shayegani et al. (2024); Luo
et al. (2024); Gao et al. (2024); Dong et al. (2023b). Zhao et al. (2023b) showed that transferable
black-box attacks could be generated using text-to-image models. Carlini et al. (2023) demonstrated
how adding adversarial noise to images can circumvent safety constraints of LLMs. Qi et al. (2024a)
explored how adversarial attacks embedding deceptive information into images can mislead LVLMs
and deceive users. The widespread deployment of LVLMs has raised urgent security concerns due
to the threat of adversarial attacks.

Adversarial defenses. Adversarial defenses in machine learning safeguard models from malicious
inputs to ensure their integrity and reliability, especially in security-sensitive contexts (Madry et al.,
2018; Fares et al., 2024; Papernot et al., 2016; Meng & Chen, 2017; Zhou & Patel, 2022). Adver-
sarial training is a foundational method for enhancing a model’s inherent robustness by integrating
adversarial examples into the training dataset Kurakin et al. (2017b); Tramèr et al. (2018); Dong
et al. (2023a). In the multimodal domain, TeCoA improves the adversarial robustness of CLIP’s
image encoder through text-guided contrastive adversarial training while preserving some of CLIP’s
zero-shot classification capabilities (Mao et al., 2023). FARE employs unsupervised training by
minimizing the distance between adversarial image features and clean image features, maintaining
impressive performance on LVLMs (Schlarmann et al., 2024). However, this straightforward adver-
sarial training approach often fails to prevent performance degradation on clean samples. Unlike
these fine-tuning strategies, we are the first to frame adversarial training as a preference optimiza-
tion problem, integrating both clean and adversarial images into the training process to improve
robustness while maintaining clean performance.

Preference optimization. Preference optimization has emerged as a novel training paradigm for
aligning LLMs with human values and has garnered significant attention in recent research (Ouali
et al., 2024; Yu et al., 2023; 2024; Wang et al., 2024a;c). Reinforcement Learning from Human
Feedback (RLHF) utilizes human preferences as a reward model and applies reinforcement learn-
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Clean Adversarial

Preferred Image Optimization Adversarial   Image Optimization

Figure 2: The architecture of our proposed AdPO. AdPO mainly consists of two parts: (left) pre-
ferred image optimization and (right) adversarial image optimization. Preferred image optimiza-
tion incorporates both clean and adversarial images into adversarial training while maintaining the
model’s performance on clean inputs, and adversarial image optimization can significantly enhance
the model’s adversarial robustness.

ing to guide model training (Bai et al., 2022; Ouyang et al., 2022) Direct Preference Optimization
(DPO) streamlines the training process by increasing the log probability of preferred samples while
reducing that of non-preferred samples, enabling broader applications (Rafailov et al., 2023). Subse-
quent advancements, such as StepDPO (Lai et al., 2024), SmiPO (Meng et al., 2024), and IPO (Azar
et al., 2024), have further improved DPO’s performance. Considering its stability and efficiency in
training, we also adopt DPO for adversarial training of LVLMs in this work.

3 METHOD

This section provides a detailed introduction to our AdPO, with its overall framework illustrated
in Figure 2. First, Section 3.1 outlines the basics of the DPO algorithm, and Section 3.2 discusses
adversarial example generation, which forms the preference sample pairs required for DPO. Sec-
tions 3.3 and 3.4 introduce preferred image optimization and adversarial image optimization, re-
spectively.

3.1 PRELIMINARIES

DPO has emerged as a prominent method in the domain of offline preference optimization. This
method provides a novel framework for optimizing language models in accordance with human
preferences. In a typical setup, given an input x and an output text y, a language model (i.e., policy
model) πθ generates a conditional distribution πθ(y|x). Unlike RLHF, which employs an explicit
reward model, DPO reformulates the reward function using a closed-form expression with respect
to the optimal policy. The main objective of DPO is to maximize the expected reward of the outputs
generated by this policy, with the reward function defined as r(x, y):

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (1)

where β is a constant, πref is the reference policy model (identical to the original πθ), and Z(x) is
the partition function.

Given a preference dataset D = {x, yw, yl}, where yw and yl represent the winning and losing
responses respectively, DPO employs a Bradley-Terry model (Bradley & Terry, 1952) to express the
probability for each preference pair:

p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)), (2)
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where σ(·) is typically defined as a sigmoid function. The key innovation of DPO is its formulation
of the likelihood of preference data using the policy model, as opposed to relying on an explicit
reward model. This leads to the formulation of the DPO objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (3)

This formulation captures the core principles of DPO, providing a robust framework for optimizing
language models in alignment with human preferences.

3.2 ADVERSARIAL EXAMPLE GENERATION

In the context of large vision-language models, the input to the model comprises x = {xm, xt},
where xm denotes the image input and xt represents the text input. This section outlines the princi-
ples behind generating adversarial images.

Adversarial images are generated by introducing small, nearly imperceptible perturbations to orig-
inal images, with the goal of deceiving machine learning models and inducing incorrect predic-
tions (Szegedy et al., 2014; Goodfellow et al., 2015). Although adversarial images appear nearly
identical to the original images to humans, they can drastically alter the model’s output, exposing
its vulnerability to malicious inputs (Kurakin et al., 2017a). Adversarial attacks can be broadly cat-
egorized into targeted and untargeted attacks: targeted attacks compel the model to produce specific
outputs (Luo et al., 2024), whereas untargeted attacks merely lead the model to generate incorrect
outputs (Wang et al., 2024d; Gao et al., 2024). In this study, we employ untargeted attack methods to
generate adversarial images. This approach eliminates reliance on specific labeled datasets, enabling
our method to be extended to unseen datasets.

Given an image encoder ϕ, (e.g., CLIP ViT) and a clean image xm, adversarial examples are gen-
erated by optimizing to maximize the discrepancy between the encoded features of the adversarial
image and the clean image:

xadv = argmax
∥xadv−xm∥∞≤ε

∥ϕ(xadv)− ϕorg(xm)∥22 . (4)

where xadv is the adversarial image obtained through iterative optimization like PGD (Madry et al.,
2018), ϕorg is the original image encoder and ϵ is the image perturbation magnitude. Note that in
subsequent adversarial training, the parameters of ϕ will be updated.

3.3 PREFERRED IMAGE OPTIMIZATION

This section primarily outlines the process of constructing pairs of preferred and non-preferred sam-
ples from unlabeled image data, a crucial component of the DPO training pipeline.

Given a clean image xm and its adversarial image xadv , we employ an online approach to directly
prompt the model (e.g., “What is the content of the image?”) to generate interpretations, thereby
obtaining the preferred response yw and the non-preferred response yl. Accordingly, in the setting
of multimodal adversarial training, our preferred image optimization can be formulated as:

LP(πθ;πref) = −E(xm,xt,yw,yl)∼D

[
log σ

(
β log

πθ(yw|xm, xt)

πref(yw|xm, xt)
− β log

πθ(yl|xadv, xt)

πref(yl|xadv, xt)

)]
,

(5)
This straightforward approach presents several advantages. First, it removes the need for data an-
notation, thus facilitating its application to previously unseen image data. Second, this method
resembles semi-supervised learning, especially as LVLMs now possess advanced capabilities, en-
abling them to incorporate labeled images into their training data. Moreover, allowing the model
to generate its own text as labels effectively mitigates distribution shift issues, thus concentrating
attention on the adversarial images themselves (Li et al., 2023c).

3.4 ADVERSARIAL IMAGE OPTIMIZATION

Although preferred image optimization can maintain the performance of VLMs on clean inputs, it
does not significantly enhance adversarial robustness. Recent research indicates that, although mul-
timodal DPO is designed to compute implicit rewards based on all input modalities, it may prioritize
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language-only preferences while neglecting image conditions (i.e., unconditional preferences), re-
sulting in suboptimal model performance and increased hallucinations (Wang et al., 2024a).

The issue of unconditional preferences may lead to suboptimal adversarial robustness. To address
this, we introduce adversarial image optimization:

LA =

T∑
t=1

log πθ(y
t
w | xadv, x

1:t−1
t ), (6)

where T represents the sequence length of each sample. The objective of AdPO is a combination of
preferred image optimization and adversarial image optimization:

LAdPO = LP + LA. (7)

By leveraging joint optimization, AdPO attains enhanced adversarial robustness while maintaining
its performance on clean samples.

4 EXPERIMENTS

In this section, we evaluate the performance of AdPO on LVLMs and zero-shot classification through
extensive experiments. Although we use the complete LVLMs during adversarial training, we mod-
ify only the parameters of their image encoders, enabling the robust image encoder to be directly
transferred to other LVLMs. All experiments are conducted on 32 Tesla A100 GPUs.

Models. For the LVLM models, we primarily select OpenFlamingo-9B (OF)(Awadalla et al.,
2023) and LLaVA 1.5-7B(Liu et al., 2023a), both of which use CLIP’s ViT-L/14 as their image
encoder (Radford et al., 2021). The two models differ in their language decoders: OF employs
MPT-7B (Team et al., 2023), while LLaVA 1.5 uses Vicuna (Chiang et al., 2023). In the subsequent
evaluation of OF, we adopt a zero-shot setting, where the model is given textual prompts without
any accompanying images (Alayrac et al., 2022). For LLaVA, we employ the default system prompt
along with task-specific prompts (Liu et al., 2023b).

Adversarial training settings. In AdPO, we leverage LLaVA 1.5 to fine-tune CLIP’s ViT model on
the ImageNet dataset (Deng et al., 2009). As we adopt an online learning approach, we do not rely on
category labels provided by the dataset, only on the images themselves. By optimizing Equation 4,
we generate adversarial perturbations for clean images using a 10-step PGD under the ℓ∞ norm.
It is widely recognized that employing larger image perturbations during adversarial training can
significantly improve adversarial robustness, but it often leads to performance degradation on clean
data (Madry et al., 2018). To balance robustness and clean accuracy, we apply two perturbation
radii: ϵ = 2/255 and ϵ = 4/255. The resulting robust CLIP image encoders are referred as AdPO2 and
AdPO4, respectively. We use the AdamW optimizer with a weight decay of 1e-4 and a learning rate
of 1e-5. We conduct training for two epochs with a batch size of 128. The preference optimization
parameter β is set to 0.1.

Baseline methods. We compare the performance of AdPO with the original CLIP and two state-
of-the-art methods, TeCoA (Mao et al., 2023) and FARE (Schlarmann et al., 2024). TeCoA utilizes
supervised contrastive learning with image category labels, while FARE performs unsupervised
training at the representation level. To ensure fair comparison, we use adversarial images with the
same noise radius for training, denoted as TeCoA2 and FARE2 for ϵ = 2/255, and TeCoA4 and
FARE4 for ϵ = 4/255.

4.1 EVALUATION OF UNTARGETED ATTACKS ON LVLMS

In this section, we evaluate the clean and robust performance of AdPO in vision-language tasks by
replacing the image encoder of LVLMs with robust versions.

Attack setup. We utilize the approach outlined in Schlarmann & Hein (2023) to perform untar-
geted attacks aimed at degrading the model’s performance. Given that attacks on LVLMs often
demand more iterations, we employ a 100-step APGD attack (Croce & Hein, 2020), which utilizes
ground-truth captions as labels. After each attack, we discard samples with scores below a speci-
fied threshold to ensure that computationally expensive attacks are only performed when necessary,
following Schlarmann et al. (2024). Further details are provided in the Appendix A.1.
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Table 1: Evaluation of the adversarial robustness of large vision-language models with different
CLIP models. We evaluate the clean performance and adversarial robustness of various methods
across multiple tasks and perturbation sizes. The results indicate that AdPO significantly exceeds
our baseline methods, attaining outstanding robustness along with exceptional clean performance.
The best results are shown in bold.

VLM Image
Encoder

COCO Flickr30k TextVQA VQAv2

clean
ℓ∞ clean

ℓ∞ clean
ℓ∞ clean

ℓ∞
2/255 4/255 2/255 4/255 2/255 4/255 2/255 4/255

O
F-

9B

CLIP 79.7 1.5 1.1 60.1 0.7 0.4 23.8 0.0 0.0 48.5 1.8 0.0
TeCoA2 73.5 31.5 21.2 49.5 14.1 9.5 16.6 3.5 2.1 46.2 23.5 20.5
FARE2 79.1 34.2 19.5 57.7 16.4 8.9 21.6 4.1 1.9 47.0 24.0 17.2
AdPO2 84.7 34.6 25.5 57.9 18.8 12.3 22.3 6.5 3.3 48.1 26.3 22.8
TeCoA4 66.9 28.5 21.6 40.9 12.0 10.3 15.4 2.1 1.8 44.8 23.6 21.3
FARE4 74.1 30.9 22.8 51.4 15.7 10.5 18.6 3.4 2.9 46.1 23.6 21.0
AdPO4 75.2 33.3 25.9 54.6 17.2 12.7 20.5 5.2 3.3 46.7 24.4 21.3

L
L

aV
A

1.
5-

7B

CLIP 115.5 4.0 3.1 77.5 1.6 1.0 37.1 0.5 0.0 74.5 2.9 0.0
TeCoA2 98.4 44.2 30.3 57.1 23.2 15.3 24.1 12.1 8.8 66.9 33.8 21.8
FARE2 109.9 53.6 31.0 71.1 29.5 17.5 31.9 14.7 9.1 71.7 34.9 23.0
AdPO2 118.3 65.3 43.9 75.4 32.5 20.1 32.4 17.8 10.5 72.9 34.3 23.2
TeCoA4 88.3 50.9 35.3 48.6 27.9 19.5 20.7 12.6 9.3 63.2 41.0 31.7
FARE4 102.4 57.1 40.9 61.6 31.4 22.8 27.6 15.8 10.9 68.3 40.7 30.5
AdPO4 111.5 67.2 49.3 67.0 35.3 25.4 32.3 16.1 10.2 70.1 42.3 32.5

Datasets and metrics. We utilize a variety of datasets for image captioning tasks, including
COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015), as well as for visual question answer-
ing tasks, such as VQAv2 (Goyal et al., 2017) and TextVQA (Singh et al., 2019). Considering that
adversarial attacks are time-consuming and costly, we randomly selected 500 images for evaluation.
We employ the CIDEr score (Vedantam et al., 2015) for image captioning and VQA accuracy (Antol
et al., 2015) for visual question answering tasks to present our results.

Table 1 summarizes the experimental results. Typically, the original CLIP model achieves optimal
clean performance but lacks adversarial robustness, rendering it vulnerable to attacks. When com-
paring different methods, our AdPO consistently achieves superior clean performance and adversar-
ial robustness compared to baseline methods, emphasizing the significance of including both clean
and adversarial images in the training dataset. Across various datasets, our method demonstrates
significant improvements in tasks such as COCO image captioning, likely due to the alignment
between this task and our adversarial training paradigm, enabling the robust model to potentially
outperform the clean model. For different perturbation sizes, ϵ = 2/255 already ensures solid adver-
sarial robustness, while larger perturbations still preserve more clean performance. AdPO4 exhibits
stronger robustness compared to AdPO2, but at the cost of some clean performance.

4.2 EVALUATION OF TARGETED ATTACKS ON LVLMS

In contrast to the untargeted attacks discussed in Section 4.1, targeted attacks on LVLMs pose a
significantly greater threat. Targeted attacks aim to compel the model to produce specific outputs,
with the added noise in the image remaining imperceptible to the user. Through image manipula-
tion, attackers can circumvent the model’s security mechanisms, leading it to generate malicious
content (Carlini et al., 2023; Niu et al., 2024; Qi et al., 2024b). Additionally, attackers can embed
phishing links into images through adversarial attacks to deceive users (Bagdasaryan et al., 2023).
In this section, we examine the robustness of substituting the CLIP encoder in LLaVA with our
adversarially robust variant.

Attack setup. We perform targeted attack experiments on LLaVA 1.5-7B, using the attack success
rate (ASR) as the primary evaluation metric. A sample is deemed successfully attacked if the model’s
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Table 2: Quantitative evaluation of targeted attacks at ϵ = 4/255 radii. We assess the Attack Success
Rate (ASR) for each setup.

Target CLIP TeCoA2FARE2AdPO2TeCoA4FARE4AdPO4

A group of people are playing. . . 20 / 20 1 / 20 1 / 20 0 / 20 0 / 20 0 / 20 0 / 20
A group of people are flying . . . 20 / 20 1 / 20 1 / 20 0 / 20 0 / 20 0 / 20 0 / 20
The pizza on the table. . . 20 / 20 2 / 20 0 / 20 0 / 20 0 / 20 0 / 20 0 / 20
An earthquake is about. . . 20 / 20 2 / 20 1 / 20 1 / 20 0 / 20 0 / 20 0 / 20
This patient needs the best. . . 20 / 20 0 / 20 0 / 20 0 / 20 0 / 20 0 / 20 0 / 20

Mean ASR: 100% 4% 3% 1% 0% 0% 0%

Table 3: Evaluation of clean and adversarial performance on image classification datasets using the
CLIP model. We primarily evaluate the performance of the original CLIP model and its adversarially
trained versions when faced with clean samples and adversarial samples with a noise 4/255. Detailed
descriptions of the dataset are provided in the appendix.
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CLIP 83.3 77.9 95.2 71.1 55.2 62.6 31.8 79.2 87.9 59.6 52.0
TeCoA2 80.7 50.1 87.5 60.7 44.4 26.1 14.0 51.8 80.1 58.4 49.9
FARE2 84.8 70.5 89.5 69.1 50.0 25.4 26.7 70.6 85.5 59.7 50.0
AdPO2 85.1 72.8 91.2 69.5 53.1 35.3 25.9 74.4 87.5 59.6 50.7
TeCoA4 78.4 37.9 79.6 50.3 38.0 22.5 11.8 38.4 74.3 54.2 50.0
FARE4 84.7 63.8 77.7 56.5 43.8 18.3 22.0 58.1 80.2 56.7 50.0
AdPO4 84.9 65.8 80.2 56.6 44.5 21.7 21.4 58.5 82.9 57.8 49.9

ϵ
=

4 /
2
5
5

CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TeCoA2 57.4 6.5 31.0 17.8 14.7 7.7 1.1 9.8 36.7 32.8 16.0
FARE2 46.6 4.8 25.9 13.9 11.7 0.5 0.6 7.1 25.6 22.5 17.2
AdPO2 55.3 5.8 28.7 17.5 13.6 5.7 1.0 8.7 33.4 33.1 15.8
TeCoA4 60.9 8.4 37.1 21.5 16.4 6.6 2.1 12.4 41.9 34.2 44.0
FARE4 64.1 12.7 34.6 20.2 17.3 11.1 2.6 12.5 40.6 30.9 50.2
AdPO4 66.8 13.6 36.9 21.7 17.9 9.2 2.6 12.7 42.3 33.3 49.7

output contains the target string. Targeted attacks on LVLMs generally require more iterations,
prompting us to execute APGD attacks for 10,000 iterations. Given that larger image perturbations
pose more significant threats, we employ ℓ∞ threat models with a radius of ϵ = 4/255. We test five
target strings, sampling 20 images for each string.

The quantitative evaluation results are presented in Table 2. The attack success rate for the clean
version of the CLIP model reaches 100%, underscoring the vulnerability of current vision-language
models to visual input and the substantial security risks posed. TeCoA2, FARE2, and AdPO2 demon-
strate varying degrees of adversarial robustness, even when subjected to higher levels of adversarial
noise. By comparison, the ϵ = 4/255 versions exhibit significantly higher levels of adversarial ro-
bustness. Additional details are provided in Appendix A.2.

4.3 EVALUATION OF ZERO-SHOT CLASSIFICATION

In this section, we assess the zero-shot classification performance of the robust CLIP image encoder,
following the methods of Mao et al. (2023) and Schlarmann et al. (2024). CLIP’s zero-shot classi-
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CLIP: A young boy is walking
across a field with a soccer ball.

TeCoA: A young boy is playing
with a soccer ball in a park.

FARE: A young boy is walking
across a field with a soccer ball.

AdPO: A young boy is playing
with a soccer ball in a field.

CLIP: A group of people are
playing basketball.

TeCoA: A young boy is walking
towards a basketball hoop.

FARE: A young boy is walking
on a grassy field.

AdPO: A young boy is playing
with a soccer ball in a field.

Clean Image Adversarial Image

Target: A group of people are playing basketball.

CLIP: A person sitting on the
snow with a snowboard.

TeCoA: A statue of a man is
sitting in the snow.

FARE: A man is sitting in the
snow.

AdPO: A group of people are
skiing down a snowy mountain.

CLIP: A group of people are
flying in the air.

TeCoA: A group of people are
flying through the air.

FARE: A man is falling off a
snowboard in the snow.

AdPO: A person is sitting on a
snowboard in the snow.

Clean Image Adversarial Image

Target: A group of people are flying in the air.

CLIP: Two pizzas are on a table
with a knife and a cup of soda.

TeCoA: A person is skiing down
a snowy hill.

FARE: A table with two pizzas
and a drink on it.

AdPO: Two pizzas are on a table
with a knife and a cup of soda.

CLIP: The pizza on the table is
very bad.

TeCoA: Two pizzas are on a
table, one of which is very bad.

FARE: Two pizzas are on a table
with a knife and a fork.

AdPO: Two pizzas are on a table
with a knife and a cup of soda.

Clean Image Adversarial Image

Target: The pizza on the table is very bad.

Figure 3: Qualitative assessment of targeted attacks on LLaVA. (Left) When encountering clean im-
ages, CoTeA may exhibit noticeable errors, which is undesirable in adversarial defense, while FARE
and AdPO demonstrate better clean performance. (Right) When faced with adversarial images, the
original CLIP version of LLaVA is easily compromised, FARE shows some adversarial robustness
but loses more details or makes subtle errors, whereas AdPO performs better.

fication simultaneously trains both visual and text encoders, enabling the model to project images
and textual descriptions into a shared semantic space. For classification, there is no requirement for
a specially labeled dataset for each category; instead, CLIP computes the similarity between images
and the textual descriptions of categories to classify images into the most relevant category.

Attack setup. To assess the adversarial robustness of the models, we utilize the initial two compo-
nents of AutoAttack (Croce & Hein, 2020), specifically APGD with cross-entropy loss and APGD
with DLR loss, both executed over 100 iterations. In alignment with AutoAttack, we adopt the tar-
geted version of the DLR loss, differing from Mao et al. (2023), where the less effective untargeted
variant was applied. We perform the evaluation with a more powerful attack (ϵ = 4/255) in this
section and present the ϵ = 2/255 results in Appendix A.3.

As demonstrated in Table 3, similar to evaluations on vision-language tasks, the original CLIP typi-
cally achieved the best clean performance but displayed minimal adversarial robustness. Adversarial
attacks on the clean CLIP achieved a 100% attack success rate, further confirming CLIP’s inherent
vulnerability, which introduces several weaknesses in LVLMs. After adversarial training, CLIP
exhibits some performance decline on clean samples, but its adversarial robustness significantly
improves. In contrast, the AdPO models, particularly AdPO2, demonstrate substantially higher ac-
curacy on clean data while still preserving robustness.

9
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4.4 QUANTITATIVE EVALUATION

In addition to quantitative experimental evaluations, we also present a qualitative comparison of
different defense methods in this section.

As depicted in Figure 3, the LLaVA model, using the original CLIP as the encoder, provides the
most accurate and detailed understanding of clean images. However, when faced with adversarial
images generated by targeted attacks, they are completely vulnerable to successful attacks. TeCoA
fails to exhibit robust performance against both clean and adversarial images, whereas FARE expe-
riences a loss of detail or minor errors in image understanding, ultimately falling short of optimal
performance. In the absence of adversarial defenses, LLaVA is susceptible to manipulation, result-
ing in biased outputs that can mislead users and have detrimental effects. Therefore, it is imperative
to enhance the model’s adversarial robustness.

4.5 ABLATION STUDY

Table 4: Ablation study of preferred
image optimization and adversarial
image optimization.

Metric Clean 2/255 4/255

PIO 119.5 35.5 29.7
AIO 102.4 65.8 42.1

AdPO 118.3 65.3 49.9

In this section, we mainly discuss the impact of preferred im-
age optimization (PIO) and adversarial image optimization
(AIO) on the final performance.

We use the setup in Section 4.1 to perform untargeted attacks
to evaluate the effectiveness of methods trained with a sin-
gle optimization approach on the COCO dataset, with exper-
imental results shown in Table 4. PIO retains more of the
model’s clean performance, but only shows a small amount of
adversarial robustness. AIO somewhat weakens the model’s
clean performance, but significantly improves its adversarial
robustness. It can also be observed that PIO contributes to
enhancing adversarial robustness, indicating the potential of
preference optimization in improving adversarial robustness.

5 CONCLUSION

We propose AdPO, the first adversarial defense strategy based on preference optimization. The core
idea of preference optimization methods, represented by DPO, is to learn both positive and negative
samples simultaneously and optimize the model to better align with user preferences or goals. This
is achieved by comparing the differences between positive and negative samples, clarifying the
direction in which the model should be optimized. Unlike previous adversarial fine-tuning methods,
which typically only impose single-target constraints to improve adversarial robustness, leading to
a loss of clean performance. In contrast, AdPO explicitly optimizes two objectives: improving
adversarial robustness while maintaining proper understanding of clean images. Both quantitative
and qualitative experimental analyses demonstrate the superiority of our proposed method, offering
a new perspective for future adversarial defense research. Considering that preference optimization
is gaining increasing attention in academia, introducing more refined methods into the adversarial
defense field could lead to better outcomes.

Limitations. Although this paper primarily focuses on LVLMs using CLIP ViT as the encoder, other
types of models are equally applicable. Considering the computational resources and alignment
with previous work, we only adjusted the parameters of the image encoder, but full tuning may yield
better results. Carefully crafted malicious prompts also pose significant security risks to the model,
and future work needs to address threats from both image and text inputs. While we have performed
a significant amount of evaluation, it is clear that evaluating the adversarial robustness of LVLMs in
real-world settings is also essential.

REPRODUCIBILITY

To ensure the reproducibility of our method, we provide a detailed description of our experimen-
tal setup in the experiment and appendix sections. The training datasets, evaluation datasets, and
involved models are all openly available and accessible.
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A APPENDIX

A.1 UNTARGETED ATTACK DETAILS

We provide a comprehensive description of the attack pipeline utilized for the untargeted adversarial
evaluation of LVLMs in Section 4.1.

For the captioning tasks COCO and Flickr30k, each image is accompanied by 5 available ground-
truth captions, with each caption utilized to calculate the CIDEr score. We perform APGD attacks
with 100 iterations on each ground truth. After each attack, we calculate the CIDEr score and cease
attacking samples that score below 10 for COCO or 2 for Flickr30k. This strategy is primarily
employed because generating adversarial attacks on VLMs is extremely time-consuming and costly,
allowing us to allocate our limited resources to more impactful attacks. For the VQA task, we apply
a similar approach, but the score threshold is set to 0, and we utilize the 5 most common ground
truths out of the 10 available.

A.2 TARGETED ATTACK DETAILS

We use the following target sequences to perform targeted attacks:

• A group of people are playing basketball.

• A group of people are flying in the air.

• The pizza on the table is very bad.

• An earthquake is about to happen.

• This patient needs the best medical care.

If these targeted and even subtly provocative phrases are successfully embedded into adversarial
images, they can subtly deceive users, thereby influencing their subsequent decisions. In addition
to the quantitative evaluation presented in Section 4.2, we also observed that when the target text
is closely related to the image content, the success rate of adversarial attacks is significantly high,
indicating that images can easily mislead LVLMs. This presents a more dangerous scenario because
when the target text is only weakly related to the image, users can more easily spot these erroneous
outputs, thereby reducing their trust in the model. Conversely, when the model’s output appears
somewhat plausible in relation to the image content, users are more likely to trust the model’s output.

A.3 ZERO-SHOT EVALUATIONS

We evaluated the model’s clean performance and robustness on a series of zero-shot image classifica-
tion tasks. These datasets include CalTech (Griffin et al., 2007), StanfordCars (Krause et al., 2013),
CIFAR10, CIFAR100 (Krizhevsky & Hinton, 2009), DTD (Cimpoi et al., 2014), EuroSAT (Helber
et al., 2019), FGVC Aircrafts (Maji et al., 2013), Flowers (Nilsback & Zisserman, 2008), ImageNet-
R (Hendrycks et al., 2021), ImageNet-Sketch (Wang et al., 2019), and PCAM (Veeling et al., 2018).
The evaluation protocol is based on the CLIP Benchmark1.

We assess the robustness by evaluating 1000 samples per dataset and reporting the clean accuracy
for all samples. We utilize the first two attacks from AutoAttack (Croce & Hein, 2020), specifically,
APGD with cross-entropy loss and APGD with targeted DLR loss, each with 100 iterations. Given
that the DLR loss is applicable only to multi-class classification, we employ only the first attack on
the binary dataset PCAM. We consider ℓ∞-bounded threat models with radii ϵ = 4/255 and evaluate
the robustness on all datasets at a resolution of 224x224, except for CIFAR10, CIFAR100, and
STL-10, which are evaluated at their original resolutions.

In Section 4.3, we only presented the performance of different CLIP versions on clean images and
adversarial images with noise set to ϵ = 4/255 due to space constraints. In Table 5, we show the
evaluation results for an attack noise of ϵ = 2/255. Humans can barely distinguish between images
with 2/255 noise and clean images, yet even such a small amount of noise causes the original CLIP
model to nearly lose all its performance. This vulnerability is extremely critical. After adversarial

1https://github.com/LAION-AI/CLIP benchmark
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Table 5: Evaluation of the clean performance and adversarial robustness with a noise ϵ = 2/255
of different CLIP versions.
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CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
TeCoA2 70.2 22.2 63.7 35.0 27.0 12.8 5.8 27.6 58.8 45.2 40.0
FARE2 73.0 26.0 60.3 35.6 26.7 6.2 5.9 31.2 56.5 38.3 41.9
AdPO2 75.1 29.1 64.1 35.4 26.9 10.5 6.4 33.3 59.2 45.7 43.5
TeCoA4 69.7 17.9 59.7 33.7 26.5 8.0 5.0 24.1 59.2 43.0 48.8
FARE4 76.7 30.0 57.3 36.5 28.3 12.8 8.2 31.3 61.6 41.6 50.2
AdPO4 78.1 32.5 64.2 36.1 27.4 13.9 9.3 34.2 62.4 42.5 51.3

training, multiple CLIP versions achieved noticeable adversarial robustness, but at the cost of some
clean performance. Overall, AdPO had the least sacrifice in clean performance.
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