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Abstract

This paper presents a new conformal method for
generating simultaneous forecasting bands guar-
anteed to cover the entire path of a new ran-
dom trajectory with sufficiently high probability.
Prompted by the need for dependable uncertainty
estimates in motion planning applications where
the behavior of diverse objects may be more or
less unpredictable, we blend different techniques
from online conformal prediction of single and
multiple time series, as well as ideas for address-
ing heteroscedasticity in regression. This solution
is both principled, providing precise finite-sample
guarantees, and effective, often leading to more
informative predictions than prior methods.

1. Introduction

Time series forecasting is a crucial problem with numerous
applications in science and engineering. Many machine
learning algorithms, including deep neural networks, have
been developed to address this task, but they are typically
designed to produce point predictions and struggle to quan-
tify uncertainty. This limitation is especially problematic
in domains involving intrinsic unpredictability, such as hu-
man behavior, and in high-stakes situations like autonomous
driving (Lindemann et al., 2023; Lekeufack et al., 2023) or
wildfire forecasting (Xu et al., 2022; 2023a).

A popular framework for endowing any model with reliable
uncertainty estimates is that of conformal prediction (Vovk
et al., 2005; Lei et al., 2018a). The idea is to observe and
quantify the model’s predictive performance on a calibra-
tion data set, independent of the training sample. If those
data are sampled from the test population, the calibration
performance is representative of the performance at test
time. Thus, it becomes possible, with suitable algorithms, to
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convert any model’s point predictions into intervals (or sets)
with guaranteed coverage properties for future observations.

Conformal prediction typically hinges on exchangeability—
an assumption less stringent than the requirement for cali-
bration and test data to be independent and identically dis-
tributed. Under data exchangeability, conformal prediction
can provide reliable statistical safeguards for any predic-
tive model. Its flexibility enables applications across many
tasks, including regression (Lei & Wasserman, 2014; Ro-
mano et al., 2019; Sesia & Romano, 2021), classification
(Lei et al., 2013; Sadinle et al., 2019; Podkopaev & Ramdas,
2021), outlier detection (Bates et al., 2023; Marandon et al.,
2024; Liang et al., 2024), and time series forecasting (Xu
& Xie, 2021; Stankeviciute et al., 2021; Xu & Xie, 2023b;
Ajroldi et al., 2023). This paper focuses on the last topic.

Conformal methods for time series tend to fall into one of
two categories: multi-series and single-series. Methods in
the former category aim to predict a new trajectory by lever-
aging other jointly exchangeable trajectories from the same
population (Stankeviciute et al., 2021; Lindemann et al.,
2023; Lekeufack et al., 2023). In the single-series setting,
the aim shifts to forecasting future values based on historical
observations from a fixed series, typically avoiding strict
exchangeability assumptions (Gibbs & Candes, 2021; 2022;
Angelopoulos et al., 2024). This paper draws inspiration
from both areas and addresses a remaining limitation of
current methods for multi-series forecasting.

The challenge addressed in this paper is that of data
heterogeneity—distinct time series with different levels of
unpredictability. For instance, in motion planning, fore-
casting the paths of pedestrians may be complicated by
the relatively erratic behavior of some individuals, such as
small children or intoxicated adults. This variability aligns
with the classical issue of heteroscedasticity. The latter has
recently gained some recognition within the conformal pre-
diction literature, particularly for regression (Romano et al.,
2019) and classification (Romano et al., 2020b; Einbinder
et al., 2022). In this paper, we address heteroscedasticity
within the more complex setting of trajectory forecasting.

Related Work

The challenge of conformal inference for non-exchangeable
data is receiving significant attention, both from more gen-
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eral perspectives (Tibshirani et al., 2019; Barber et al., 2023;
Qiu et al., 2023) and in the context of time-series forecasting.
An important line of research has focused on forecasting
a single series, including recent works inspired by Gibbs
& Candes (2021) such as Gibbs & Candes (2022); Bastani
et al. (2022); Zaffran et al. (2022); Feldman et al. (2023);
Dicxit et al. (2023); Angelopoulos et al. (2024); Bhatnagar
et al. (2023). Further, other approaches that combine confor-
mal prediction with single-series forecasting include those
of Chernozhukov et al. (2018); Xu & Xie (2021; 2023a;b);
Sousa et al. (2022); Auer et al. (2023); Xu et al. (2023b).
The present paper builds on this extensive body of work,
drawing particular inspiration from Gibbs & Candes (2021).
However, our approach is distinct in its pursuit of stronger
simultaneous coverage guarantees, a goal justified by mo-
tion planning applications, for example, but not achievable
within the constraints of single-series forecasting.

Conformal prediction in multi-series forecasting has so far
received relatively less attention. Lin et al. (2022) explored a
somewhat related yet distinct problem. Their work focused
on ensuring different types of “longitudinal” and “cross-
sectional” coverage, which is a different goal compared to
our objective of simultaneously forecasting an entire new
trajectory. We conduct direct comparisons between our
method and those of Stankeviciute et al. (2021) and Yu et al.
(2023); Cleaveland et al. (2024). These address problems
akin to ours but adopt different approaches and do not fo-
cus on heteroscedasticity. Specifically, Stankeviciute et al.
(2021) implemented a Bonferroni correction, which is often
very conservative, while Yu et al. (2023), Cleaveland et al.
(2024), and Sun & Yu (2023) used a technique more aligned
with ours but lacking in adaptability to heteroscedastic con-
ditions.

2. Background and Motivation
2.1. Problem Statement and Notation

We consider a data set comprising n observations of arrays
of length (T'+1), namely D := {Y (1) ... Y™}, Fori ¢
[n] := {1,...,n}, the array Y = (Y? v, . y))
represents 1"+ 1 observations of some d-dimensional vector
v = (thzl), ., YDy € RY, measured at distinct time
steps t € {0,... ,T}.’ We will assume throughout the pa-
per that the n trajectories are sampled exchangeably from
some arbitrary and unknown distribution P. However, it
is worth emphasizing that we make no assumptions about
the potentially complex time dependence with each series
(YO(Z), Yl(l), . ,Yq(f)). Intuitively, our goal is to leverage the
data in D to construct an informative prediction band for
the trajectory of a new series Y ("t1) which is assumed to
be also sampled exchangeably from the same distribution.

For simplicity, we focus on one-step-ahead forecasting,

which means that we want to construct a prediction band
for Y ("1 one step at a time. That is, we imagine that the

initial position Yo(nﬂ) is given and then wait to observe

Yt(ff_ Y before predicting Yt("H), for each ¢ € [T]. This
perspective is often useful, for example in motion planning
applications, but it is of course not the only possible one.
Fortunately, though, our solution for the one-step-ahead
problem can easily be extended to multiple-step-ahead fore-
casting, as explained in Appendix A6, or even one-shot
forecasting of an entire trajectory.

Let C(Y D) .= (C (YD), ..., Cp(Y (1)) repre-
sent the output prediction band, where each C’t(Y(”+1)) C
R< is a prediction region for the vector ¥, that may
depend on past observations YS(nH) for s < ¢, as well as
on the data in D. As we develop a method to construct
C (Y (™+1) one goal is to ensure the following notion of
simultaneous marginal coverage:

P Y, e Gy ™), vie[T]] >1-a. (1)

Simply put, the entire trajectory should lie within the band
with probability at least 1 — «, for some chosen level o €
(0,1). This property is called marginal because it treats both
Y ("+1) and the data in D as random samples from P.

2.2. Benefits and Limitations of Marginal Coverage

Marginal coverage is not only convenient, since it is achiev-
able under quite realistic assumptions, but also useful. For
example, in motion planning, prediction bands with simul-
taneous marginal coverage can help autonomous vehicles
decide on a path that is unlikely to collide with another vehi-
cle or pedestrian at any point in time. However, the marginal
nature of Equation (1) is not always fully satisfactory, par-
ticularly because it may obscure the adverse impacts of
heterogeneity across trajectories, as explained next.

Imagine forecasting the movement of pedestrians crossing a
street at night. Suppose that 90% of them are sober, walking
in highly predictable patterns, while the remaining 10% are
intoxicated. See Figure 1 for a visualization of this scenario.
It is clear that uncertainty estimation is of paramount con-
cern while forecasting the harder-to-predict drunk trajecto-
ries. Addressing this issue is crucial, for example, to ensure
that autonomous vehicles navigate such environments with
the necessary level of caution. However, not all prediction
bands with marginal coverage are equally useful in this con-
text. For example, 90% marginal coverage could be easily
attained even by a trivial algorithm that provides valid pre-
diction bands only for trajectories of the “easy” type. This
thought experiment shows that despite their general theoret-
ical guarantees, conformal prediction methods still require
careful design to provide informative uncertainty estimates,
particularly in the case of heterogeneous data.
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Figure 1. One-dimensional representations of 10 pedestrian trajec-
tories, one of which is intrinsically less predictable.

The aforementioned limitations of marginal coverage have
been acknowledged before. While achieving stronger theo-
retical guarantees in finite samples is generally unfeasible
(Vovk, 2012; Barber et al., 2021a), some approaches practi-
cally tend to work better in this regard than others. In partic-
ular, methods have been developed for regression (Romano
et al., 2019; Izbicki et al., 2020), classification (Romano
et al., 2020b; Cauchois et al., 2021; Einbinder et al., 2022),
and sketching (Sesia et al., 2023) to seek approximate con-
ditional coverage guarantees stronger than (1).

2.3. Towards Approximate Conditional Coverage

The goal in this paper is to construct prediction bands that
are valid not only for a large fraction of all trajectories but
also with high probability for distinct “types” of trajectory.
In our street crossing example, this means we would like to
have valid coverage not only marginally but also conditional
on some relevant features of the pedestrian. For example,
one may want CtD o approximately satisfy

P [Yf"“) € G Y DY vt | o(Y D) > 1-a, (2)

where ¢ could represent the indicator of whether Y (*+1)
corresponds to an intoxicated pedestrian.

While there exist algorithms providing coverage condi-
tional on a limited set of discrete features (Romano et al.,
2020a), our challenge exceeds the capabilities of available
approaches. One issue is that the relevant features might
not be directly observable. For example, an autonomous
vehicle might only detect a pedestrian’s movements in real
time, lacking broader contextual information about that per-
son, such as knowing whether they are intoxicated or sober.
Therefore, our problem requires an innovative approach.

2.4. Preview of Main Contributions

We introduce a novel approach for constructing prediction
bands for (multi-dimensional) trajectories, called Confor-
malized Adaptive Forecaster for Heterogeneous Trajectories
(CAFHT). This method guarantees simultaneous marginal
coverage as defined in (1) and is shown to achieve superior

conditional coverage in practice compared to existing meth-
ods, as indicated by (2). A key feature of CAFHT is that it
does not require pre-specified labels of intrinsic difficulty
but rather it automatically adjusts the width of its prediction
bands to each new trajectory in an online manner. This
adaptability is derived from the capabilities of Adaptive
Conformal Inference (ACI) (Gibbs & Candes, 2021), which
dynamically adjusts the prediction intervals to reflect the
ease or challenge of predicting subsequent steps in a given
trajectory. Additionally, our method inherits from ACI the
ability to produce prediction bands that are generally valid
even for worst-case trajectories, provided these trajectories
are of sufficient length (Gibbs & Candes, 2021).

Figure 2 offers a glimpse into the effectiveness of CAFHT
applied to the pedestrian trajectories from Figure 1. Our
method’s advantage over state-of-the-art techniques (Stanke-
viciute et al., 2021; Yu et al., 2023) lies in its ability to auto-
matically generate narrower bands for easier trajectories and
wider ones for harder paths. As shown through extensive
experiments, this leads to more useful uncertainty estimates
with higher conditional coverage. In contrast, existing meth-
ods struggle to accommodate heterogeneity, often resulting
in uniform prediction bands for all trajectories.
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Figure 2. Conformal forecasting bands constructed using different
methods, for the heterogeneous pedestrian trajectories from Fig-
ure 1. All methods guarantee simultaneous marginal coverage at
the 90% level. Our method (CAFHT) can automatically adapt to
the unpredictability of each trajectory. Here, the CFRNN bands so
wide as to be uninformative, spanning from -1 to +1.

In the next section, we explain how our approach integrates
traditional split-conformal inference with online conformal
prediction (Gibbs & Candes, 2021; 2022; Angelopoulos
et al., 2024). Originally designed for single-series forecast-
ing, these methods are adapted in our setting to construct
flexible prediction bands that automatically adjust to the
varying unpredictability of each trajectory. For clarity, we
begin by describing an implementation of our method based
on ACI (Gibbs & Candes, 2021), though other methods
could also be accommodated, including the conformal PID
approach from Angelopoulos et al. (2024) (discussed further
in Section 3.7). It is crucial to note that all implementations
of CAFHT are designed to provide the same guarantee of
simultaneous marginal coverage and the same capability to
accommodate heteroscedasticity.
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3. Methodology
3.1. Training a Black-Box Forecasting Model

The preliminary step in our CAFHT method consists of ran-
domly partitioning the data set D into two distinct subsets
of trajectories, Diin and Deyy. The subset Dy 1s used to
train a forecasting model . This model could be almost any-
thing, including a long short-term memory network (LSTM)
(Hochreiter & Schmidhuber, 1997; Alahi et al., 2016), a
transformer network (Nayakanti et al., 2022; Zhou et al.,
2023), or a traditional autoregressive moving average model
(Wei et al., 2023). Our only assumption regarding ¢ is that
it is able to generate point predictions for future steps based
on partial observations from a new time series.

In this paper, we choose an LSTM model for demonstration
and focus on one-step-ahead predictions. While the ability
of CAFHT to guarantee simultaneous marginal coverage
does not depend on the forecasting accuracy of g, more
accurate models generally tend to yield more informative
conformal predictions (Lei et al., 2018b).

3.2. Initializing the Adaptive Prediction Bands

After training the forecaster g on the data in Dy, our
method will convert its one-step-ahead point predictions for
any new trajectory Y into suitable prediction bands. This is
achieved by applying the ACI algorithm of Gibbs & Candes
(2021). For simplicity, we begin by focusing on the special
case of one-dimensional trajectories (d = 1). An extension
of our solution to higher-dimensional trajectories is deferred
to Section 3.6.

ACI was designed to generate one-step-ahead forecasts for a
single one-dimensional time series, without requiring a pre-
trained forecaster §. In the single-series framework, Gibbs
& Candes (2021) suggested training § in an online manner.
In our setting, where we have access to multiple trajectories
from the same population, it is logical to pre-train it. In
any case, pre-training does not exclude the potential for
further online updates of § with each subsequent one-step-
ahead prediction. However, to simplify the notation, our
discussion now focuses on a static model.

A review of ACI (Gibbs & Candes, 2021) can be found in
Appendix Al. Here, we briefly highlight two critical aspects
of that algorithm. Note that the main ideas of our method
can also be straightforwardly applied in combinations with
other variations of the ACI method, as shown in Section 3.7.

Firstly, the ACI algorithm involves a “learning rate” param-
eter v > 0, controlling the adaptability of the prediction
bands to the evolving time series. The adjustment mech-
anism operates as follows: at each time ¢, ACI modifies
the width of the upcoming prediction interval for Y (t+1),
If the previous interval failed to encompass Y (®) | the next

interval is expanded; conversely, if it was sufficient, the next
interval is narrowed. Thus, larger values of  result in more
substantial adjustments at each time step. In contrast, lower
values of -y generally lead to “smoother” prediction bands.

Secondly, the width of the ACI prediction band is also in-
fluenced by a parameter « € (0, 1), which represents the
nominal level of the method. The design of the ACI al-
gorithm aims to ensure that, over an extended period, the
generated prediction bands will accurately contain the true
value of Y; approximately a 1 — « fraction of the time.
Consequently, a smaller « leads to broader bands.

Within our context, ACI is useful to transform the point
predictions of § into uncertainty-aware prediction bands,
but it is not satisfactory on its own. Firstly, it is not always
clear how to choose a good learning rate. Secondly, the ACI
prediction bands lack finite-sample guarantees. Specifically,
they do not guarantee simultaneous marginal coverage (1).
Our method overcomes these limitations as follows.

3.3. Calibrating the Adaptive Prediction Bands

We now discuss how to calibrate the ACI prediction bands
discussed in the previous section to achieve simultaneous
marginal coverage (1). For simplicity, we begin by taking
the learning rate parameter v as fixed. We will then discuss
later how to optimize the choice of v in a data-driven way.

Let CACH(Y () ) = [(ACY(Y () ~), aACH(Y () ~)] denote
the prediction band constructed by ACI, with learning rate v
and level aacr € (0, 1), for each calibration trajectory i €
De.a. Note that this band is constructed one step at a time,
based on the point predictions of § at each step ¢ € [T] and
past observations of YS(Z) for all s < ¢; see Appendix Al for
further details on ACI. We will refer to the cross-sectional
prediction interval identified by this band at time ¢ € [T'] as
O?CI(Y(Z) ’ ’Y) = [@?CI(Y(Z) ’ ’Y)v a?CI(Y(i)7 7)]

Our method will transform these ACI bands, which can
only achieve a weaker notion of asymptotic average cov-
erage because they do not leverage any exchangeability,
into simultaneous prediction bands satisfying (2). For each
it € D.a, CAFHT evaluates a conformity score é;(7):

te[T) +

{Y;(i) _ Ay @), ,Y)] +}}’

3

€(7y) = max{ max{ [E?CI(Y@)W) _ Y;(i)} ’

where [z]1 := max(0, z) for any « € R. Intuitively, & ()
measures the largest margin by which CAC(Y () ~) should
be expanded in both directions to simultaneously cover the
entire trajectory Y () from ¢t = 1to ¢t = 7. This is in-
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spired by the method of Romano et al. (2019) for quantile
regression, although one difference is that their scores may
be negative. Other choices of conformity scores are also
possible in our context, however, as discussed in Section 3.5.

Let Q(1 —av, ) denote the [(1— ) (1+ |Dey|)]-th smallest
value of €;(y) among i € D.,. CAFHT constructs a pre-
diction band C'(Y(”+1), 7) for Y ("+1) one step at a time,
as follows. Let CACY(Y ("+1) ~) denote the ACI prediction
interval for Yt(nﬂ) attime ¢ € [T)]. (Recall this depends on
g and Y."*Y for all s < t.) Then, define the interval

ét(Y(n+1)7 'Y) = E?CI(Y(TH—”’ ’Y) - Q(l - Q, 7)7

ap Y y) + QL — a, 7).
“@

Our prediction band C/(Y (1) ~) for one-step-ahead fore-
casting is then obtained by concatenating the intervals

in (4) for all ¢ € [T]. More compactly, we can write
C(Y ™), 4) = CA(Y "+ y) £ Q(1 — a, ).

The next result establishes finite-sample simultaneous cov-
erage guarantees for this method.

Theorem 1. Assume that the calibration trajectories in D,y
are exchangeable with Y "*tV). Then, for any o € (0, 1),
the prediction band output by CAFHT, applied with fixed
parameters o, aact, and v, satisfies (1).

The proof of Theorem 1 is relatively simple and can be found
in Appendix A2. We remark that this guarantee holds at the
desired level o regardless of the value of the ACI parameter
aaci- However, it is typically intuitive to set apact = a. A
notable advantage of this choice is that it leaves us with the
challenge of tuning only one ACI parameter, .

Further, it is important to note that CAFHT can only expand
the ACI prediction bands, since its conformity scores are
non-negative. Thus, our method retains the ACI guarantee
of asymptotic average coverage at level 1 — « (Gibbs &
Candes, 2021), almost surely for any trajectory Y (*+1):

1 ) 2 a.s.
lim 7 Z]I[Yt ¢ Cl (Y (D) )] = . (5)

T—o0

See Appendix Al for details about how ACI achieves (5).

3.4. Data-Driven Parameter Selection

The ability of the ACI algorithm to produce informative
prediction bands can sometimes be sensitive to the choice of
the learning rate vy (Gibbs & Candes, 2021; Angelopoulos
et al., 2024). This leads to a question: how can we select ¥
in a data-driven manner? In our scenario, which involves

multiple relevant trajectories from the same population, ad-
dressing this tuning challenge is somewhat simpler than in
the original single-series context for which the ACI algo-
rithm was designed. Nonetheless, careful consideration is
still required in the tuning process of v, as we discuss next.

As a naive approach, one may feel tempted to apply the
CAFHT method described above using different learning
rates, with the idea of then cherry-picking the value of v
leading to the most appealing prediction bands. Unsur-
prisingly, however, such an unprincipled approach would
invalidate the coverage guarantee because it breaks the ex-
changeability between the test trajectory and the calibration
data. This issue is closely related to problems of conformal
prediction after model selection previously studied by Yang
& Kuchibhotla (2021) and Liang et al. (2023). Therefore,
we propose two alternative solutions inspired by their works.

The simplest approach to explain involves an additional data
split. Let us randomly partition D, into two subsets of
trajectories, DY, and D2,. The trajectories in DL can be
utilized to select a good choice of v in a data-driven way.
In particular, we seek the value of « leading to the most
informative prediction bands—a goal that can be quantified
by minimizing the average width of our prediction bands
produced for the trajectories in DL;. Then, the calibration
procedure described in Section 3.3 will be applied using
only the data in Dfal instead of the full D.,. The fact that
the selection of v does not depend on the calibration tra-
jectories in D2 means that +y can be essentially regarded
as fixed, and therefore our output bands enjoy the marginal
simultaneous coverage guarantee of Theorem 1. This ver-
sion of our CAFHT method is outlined in Algorithm 1. The
parameter tuning module of this procedure is summarized

by Algorithm Al in Appendix A3.

Alternatively, it is also possible to carry out the selection of
4 in a rigorous way without splitting D.,;. However, this
would require replacing the empirical quantile Q(l —a,9)
in the CAFHT method with a more conservative quantity
Q(1 — o, %), where the value of o/ < « depends on the
number L of candidate parameter values considered. We

refer to Appendix A4 for further details.

Our method employs a grid search to optimize the ACI
hyper-parameters, a standard practice for hyper-parameter
tuning. It is important to note that the more computation-
ally demanding components of CAFHT, such as training
the models and selecting ~ via grid search, are conducted
offline and require completion only once. After these pre-
liminary steps, the real-time component of CAFHT, which
constructs prediction bands for new test trajectories, is fast
and efficient.
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Algorithm 1 CAFHT
1: Input: A pre-trained forecaster § producing one-step-
ahead predictions; calibration trajectories De,y; the ini-

tial position Y™™ of a test trajectory ¥ ("+1); the
desired nominal level o € (0, 1); a grid of candidate
learning rates {v1,...,vL}.
Randomly split D, into DY, and DZ;.
Select a learning rate 4 € {71,...,7L}, applying Al-
gorithm A1 using the trajectory data in D).
Construct CACY(Y () 4) using ACI, for i € D2,.
Evaluate ¢;(¥) using (3), for i € D2,.
Compute the empirical quantile Q(1 — o, 4).
for ¢ € [T] do
Compute CACY(Y (»+1) 4 with ACI, using the past
of the trajectory (YO("H), Yl(”H), e Yt(_”fl)).
9:  Compute a prediction interval C’t(Y(7’+1), 4) for the
next step, using (4).
10:  Observe the next step of the trajectory,
11: end for
12: Output: An online prediction band C(Y ("+1)),

A

Y;(n—&-l)'

3.5. CAFHT with Multiplicative Scores

A potential shortcoming of Algorithm 1 is that it can only
add a constant margin of error to the prediction band con-
structed by the ACI algorithm. While straightforward, this
approach may not be always optimal. In many cases, it
would seem more natural to utilize a multiplicative error.
The rationale behind this is intuitive: trajectories that are
inherently more unpredictable, resulting in wider ACI pre-
diction bands, may necessitate larger margins of error to
ensure valid simultaneous coverage. This concept can be
seamlessly integrated into the CAFHT method by replacing
the conformity scores initially outlined in (3) with these:

~ [ ®,) - v)
COERE T e o)

b

VO apy @) }}
|CANY @), )] '
(6)
Then, the counterpart of Equation (4) becomes
C’(Y(n+1),’y) — CAVACI(Y(TLJFl)”y)
+Q(1—a,y) - [CANY D )],
where Q(1 — a,7) is the [(1 — a)(1 4 |Dea|)]-th smallest
value in {&;(7), 7 € Dea}

At this point, it is easy to prove that the prediction bands
obtained produced by CAFHT with these multiplicative con-

formity scores still enjoy the same marginal simultaneous
coverage guarantee established by Theorem 1.

We refer to Figures A27-A28 in Appendix A5.4 for em-
pirical illustrations and comparisons of prediction bands
generated with multiplicative and additive scores; see also
Table A29 for a summary of their corresponding empirical
quantiles Q(l —a,9).

3.6. Extension to Multi-Dimensional Trajectories

The problem of forecasting trajectories with d > 1 (e.g.,
a two-dimensional walk), can be addressed with an intu-
itive extension of CAFHT. In fact, ACI extends naturally to
the multidimensional case and the first component of our
method that requires some special care is the computation
of the empirical quantile Q(1 — «,4). Yet, even this ob-
stacle can be overcome quite easily. Consider evaluating a
vector-valued version of the additive scores from (3):

te(T) +

v ﬁﬁ?(w,wh}}
@)

€ij(v) = max{ max{ [@?(Y“)ﬂ) - th(;)} 7

for each dimension j € [d]. Then, we can recover a one-
dimensional problem prior to computing Q(1 — a, %) by
taking (for example) the maximum value of &;;(7); i.e.,
€°(7) = max;je(q &;(7). Ultimately, each Cy (Y ("+1) )
is obtained by applying (4) with Q(l — «, %) defined as the
[(1 = @)(1 4+ |Deal)]-th smallest value of €°(~y).

We conclude this section by remarking that this general
idea could also be implemented using the multiplicative
conformity scores described in Section 3.5, as well as by
using different dimension reduction functions in (3). For
example, one may consider replacing the infinity-norm in (3)
with an ¢ norm, leading to a “spherical” margin of error
around the ACI prediction bands instead of a “square” one.

3.7. Leveraging Conformal PID Prediction Bands

CAFHT is not heavily reliant on the specific mechanics of
ACI. The crucial aspect of ACI is its capability to transform
black-box point forecasts into prediction bands that approx-
imately mirror the unpredictability of each trajectory. Thus,
our method can integrate with any variation of ACIL.

Some of our demonstrations in Appendix A5 include an
alternative implementation of CAFHT that employs the
conformal PID algorithm of Angelopoulos et al. (2024)
instead of ACI. To minimize computational demands, our
demonstrations will primarily utilize the quantile tracking
feature of the original conformal PID method. This simpli-
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fied version of conformal PID is influenced only by a single
hyper-parameter—a learning rate -y, similar to ACI.

3.8. Direct Comparison to ACI

CAFHT utilizes ACI as an internal component and is de-
signed to leverage several exchangeable trajectories to con-
struct prediction bands for a new trajectory sampled from the
same population, while guaranteeing simultaneous marginal
coverage as defined in (1). In contrast, ACI handles a single
(arbitrary) trajectory and focuses on a different notion of
asymptotic average coverage, which allows for temporary
deviations of the true trajectory from the output prediction
band. This crucial distinction between CAFHT and ACI is
highlighted by the numerical experiments detailed in Fig-
ures A25-A26 in Appendix AS5.3.

4. Numerical Experiments
4.1. Setup and Benchmarks

This section demonstrates the empirical performance of our
method. We focus on applying CAFHT with multiplicative
scores, based on the ACI algorithm, and tuning the learning
rate through data splitting. Additional results pertaining to
different implementations of CAFHT are in Appendix AS.
In all experiments, the candidate values for the ACI learning
rate parameter y range from 0.001 to 0.1 at increments of
0.01, and from 0.2 to 0.9 at increments of 0.1.

The CAFHT method is compared with two benchmark ap-
proaches that also provide simultaneous marginal cover-
age (1). The first one is the Conformal Forecasting Recur-
rent Neural Network (CFRNN) approach of Stankeviciute
et al. (2021), which relies on a Bonferroni correction for
multiple testing. In particular, the CFRNN method produces
a prediction band satisfying (1) for a trajectory of length T’
by separately computing 7' conformal prediction intervals
at level /T, one for each time step, each obtained using
regression techniques typical to the regression setting. An
advantage of this approach is that it is conceptually intuitive,
but it can become quite conservative if 7' is large.

The second benchmark is the Normalized Conformal Tra-
jectory Predictor (NCTP) of Yu et al. (2023). This method
is closer to ours but utilizes different scores and does not
leverage ACI to adapt to heterogeneity. In short, NCTP
directly takes as input a forecaster g providing one-step-
ahead point predictions Yt(l) and evaluates the scores €; =
maxe (7] (V") = YY) /o, } for each i € Deay, where o
are suitable data-driven normalization constants. This ap-
proach is similar to that of Cleaveland et al. (2024), which
deviates only in the computation of the oy constants, and it
tends to work quite well if the trajectories are homogeneous.

While there exist other methods, such as CopulaCPTS (Sun

& Yu, 2023), which can achieve simultaneous marginal cov-
erage as defined in (1), they, like NCTP, lack adaptability to
heteroscedastic conditions, and are thus expected to perform
similarly under such conditions. For clarity and concise-
ness, we focus on CFRNN and NCTP as the benchmarks
in our primary experiments. Additional experiments involv-
ing CopulaCPTS, detailed in Appendix AS5.6, demonstrate
performance comparable to NCTP, as anticipated.

For all methods, the underlying forecasting model is a recur-
rent neural network with 4 stacked LSTM layers followed
by a linear layer. The learning rate is set equal to 0.001, for
an AdamW optimizer with weight decay le-6. The models
are trained for a total of 50 epochs, so that the mean squared
error loss loss approximately converges.

Prior to the beginning of our analyses, all trajectories will
be pre-processed with a batch normalization step based on
Dtrain, so that all values lie within the interval [—1, 1]. This
is useful to ensure a numerically stable learning process and
more easily interpretable performance measures.

In all experiments, we evaluate the performance of the pre-
diction bands in terms of their simultaneous marginal cover-
age (i.e., the proportion of test trajectories entirely contained
within the prediction bands), the average width (over all
times ¢ € [T] and all test trajectories, which have a maxi-
mum value of 2 after standardizing our data to fall within
the range [—1,1]), and the simultaneous coverage condi-
tional on a trajectory being “hard-to-predict”, as made more
precise in the next subsection.

It is crucial to note that while we, as experiment designers,
are aware of the “difficulty label” for each trajectory, the
methods used in this study do not have access to this infor-
mation. Therefore, achieving high simultaneous conditional
coverage is inherently challenging. Although not theoret-
ically guaranteed to exceed any specific threshold, higher
values of this measure are preferable for practical purposes.

4.2. Synthetic Trajectories

We begin by considering univariate (d = 1) synthetic trajec-
tories generated from an autoregressive (AR) model, X; =
0.9X; 1 +0.1X; 5 —0.2X; 3+ ¢, where ¢, ~ N(0,07),
for all t € [T] with "= 100. Similar to Stankeviciute et al.
(2021), we consider two noise profiles: a dynamic profile
in which o7 is increasing with time, and a static profile in
which o7 is constant. The results based on the dynamic
profile are presented here, while the others are discussed in
Appendix AS5. To make the problem more interesting, we
ensure that some trajectories are intrinsically more unpre-
dictable than the others. Specifically, in the dynamic noise
setting, we set of = t-k, with £ = 10, for a fractiond = 0.1
of the trajectories, while o7 = ¢ for the remaining ones.

Figure 3 summarizes the performance of the three methods
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Figure 3. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
total number of training and calibration trajectories (of which 25% are utilized for calibration). All methods achieve 90% simultaneous
marginal coverage. Our method (CAFHT) leads to more informative bands with lower average width and higher conditional coverage.
The error bars indicate 2 standard errors. Note that the CFRNN bands here are so wide as to be uninformative.

as a function of the number of trajectories in D, which is
varied between 200 and 10,000. The results are averaged
over 500 test trajectories and 100 independent experiments.
See Table Al in Appendix A5 for standard errors. In each
case, 75% of the trajectories are used for training and the
remaining 25% for calibration. Our method utilizes 50% of
the calibration trajectories to select the ACI learning rate .
All experiments target 90% simultaneous marginal coverage,
with additional results for higher coverage levels presented
in Appendix AS5.5.

All methods attain 90% simultaneous marginal coverage,
aligning with theoretical predictions. Notably, CAFHT
yields the most informative bands, characterized by the
narrowest average width and higher conditional coverage
compared to NCTP. This can be explained by the fact that
NCTP is not designed to account for the varying noise lev-
els inherent in different trajectories. Consequently, NCTP
generates less adaptive bands, too wide for the easier tra-
jectories and too narrow for the harder ones. CAFHT also
surpasses CFRNN; while CFRNN seems to attain the high-
est conditional coverage, it generates very wide bands that
are practically uninformative for all trajectories. This is due
to its rigid approach to handling time dependencies via a
Bonferroni correction.

Figure 4 summarizes the results of similar experiments in-
vestigating the performances of different methods as a func-
tion of the prediction horizon 7', which is varied between 5
and 100; see Table A2 in Appendix A5 for the correspond-
ing standard errors. Here, the number of trajectories in D
is fixed equal to 2000. The results highlight how CFRNN
becomes more conservative as 7' increases. By contrast,
NCTP produces relatively narrower bands but also achieves
the lowest conditional coverage. Meanwhile, our CAFHT
method again yields the most informative prediction bands,
with low average width and high conditional coverage.

Appendix A5 describes additional experimental results that
are qualitatively consistent with the main findings. These
experiments investigate the effects of the data dimensions

(Figure A1 and Table A3), of the proportion of hard trajecto-
ries (Figure A2 and Table A4), and evaluate the robustness
of different methods against distribution shifts (Figure A3
and Table A5). Additionally, these experiments are repli-
cated using synthetic data from an AR model with a static
noise profile; see Figures A4—A8 and Tables A6—-A10.

Furthermore, we conducted several experiments to inves-
tigate the performance of various implementations of our
method. Figures A9—A13 and Tables A11-A15 focus on
comparing alternative model selection approaches while ap-
plying the multiplicative conformity scores defined in (6).
Figures A14-A18 and Tables A16—A20 summarize similar
experiments based on the additive scores defined in (3).

4.3. Pedestrian Trajectories

We now apply the three methods to forecast pedestrian tra-
jectories generated from the ORCA simulator (Van den Berg
et al., 2008), which follow nonlinear dynamics and are in-
trinsically harder to predict than the synthetic trajectories
discussed before. The data include 2-dimensional position
measurements for 1,291 pedestrians, tracked over T' = 20
time steps. To make the problem more challenging, we intro-
duce dynamic noise to the trajectories of 10% of randomly
selected pedestrians, making their paths more unpredictable.
Figure 1 plots ten representative trajectories.

All trajectories are normalized as in the previous section, and
we train the same LSTM for 50 epochs. In each experiment,
the training and calibration sets use 1000 randomly chosen
trajectories, and the test set consists of the remaining 291
trajectories. All results are averaged over 100 repetitions.

Figure 5 investigates the effect of varying the noise level,
setting o7 o< t-noise level (varied from 1.5 to 5) for the hard
trajectories and o7 o< ¢ for the easy ones. Again, all methods
attain 90% simultaneous marginal coverage, but CAFHT
produces the most informative bands, with relatively narrow
width and higher conditional coverage compared to NCTP.
Meanwhile, CFRNN leads to very conservative bands, as
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Figure 4. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
prediction horizon. Other details are as in Figure 3. For large prediction horizon, the CFRNN bands so wide as to be uninformative.

Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 1.00 2.00
0.75 0.75 1.50 Method
CFRNN
0.50 0.50 1.00
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Noise level for hard samples

Figure 5. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level controlling the intrinsic unpredictability of the more difficult trajectories. Note that the CFRNN bands so wide

as to be uninformative.

in the previous section. See Table A21 in Appendix A5 for
further details.

Additional numerical experiments are summarized in Ap-
pendix AS. Figure A19 and Table A22 investigate the effect
of having a larger fraction of hard trajectories. Figure A20
and Table A23 compare the performances of different meth-
ods as a function of the sample size used for training and
calibration. Figures A21-A24 and Tables A24-A27 per-
form a comparative analysis of different implementations
of our methods under varying noise levels, using both multi-
plicative and additive conformity scores.

5. Discussion

This work opens several directions for future research. On
the theoretical side, one may want to understand the condi-
tions under which our method can asymptotically achieve
optimal prediction bands in the limit of large sample sizes,
potentially drawing inspiration from Lei et al. (2018b) and
Sesia & Candes (2020). Moreover, there are several po-
tential ways to further enhance our method and address
some of its remaining limitations. For example, it could be
adapted to provide even stronger types of coverage guaran-
tees beyond those considered in this paper by conditioning
on the calibration data or on some other observable fea-
tures. Another possible direction is to study how to best
reduce the algorithmic randomness caused by data split-

ting (Vovk, 2015), possibly using cross-conformal methods
(Barber et al., 2021b) or E-value approaches (Bashari et al.,
2024). Additionally, our method could be further improved
by incorporating time dependency into the ACI learning rate
or by relaxing the exchangeability assumption by leverag-
ing weighted conformal inference ideas (Tibshirani et al.,
2019). Lastly, it would be especially interesting to apply
this method in real-world motion planning scenarios.

Software implementing the algorithms and data experi-
ments are available online at https://github.com/
Fionaz3696/CAFHT.git.
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Al. Further Details on the ACI Algorithm
Al.1. Background on ACI

In this section, we briefly review some relevant components of the adaptive conformal inference (ACI) method introduced
by Gibbs & Candes (2021) in the context of forecasting a single time series. The goal of ACI is to construct prediction
bands in an online setting, while accounting for possible changes in the data distribution across different times. Specifically,
ACI is designed to create prediction bands with a long-term average coverage guarantee. Intuitively, this guarantee means
that, for an indefinitely long time series, a sufficiently large proportion of the series should be contained within the output
band. This objective is notably distinct from the one investigated in our paper. However, since our method builds upon ACI,
it can be useful to recall some relevant technical details of the latter method.

In the online learning setting considered by Gibbs & Candes (2021), one observes covariate-response pairs {(X;, ;) }ren C
R? x R in a sequential fashion. At each time step ¢ € N, the goal is to form a prediction set C, for Y; using the previously
observed data { (X, Y, )}1<,<¢—1 as well as the new covariates X,. Given a target coverage level o € (0, 1), the constructed
prediction set should guarantee that, over long time, at least 100(1 — )% of the time Y; lies within the set.

Recall that standard split-conformal prediction methods require a calibration dataset Doy C {(X,,Y7) }1<r<¢—1 thatis
independent of the data used to fit the regression model. The standard approach involves constructing a prediction set as
Ci(a) = {y: S(X;,y) < Q(1 — )}, where S(X, ) is a score that measures how well y conforms with the prediction
of the fitted model. For example, if we denote the fitted model as g, a classical example of scoring function would be
S(X¢,y) = |§(X;) — y|. Then, in general, the score S(X;, y) is compared to a suitable empirical quantile, Q(1 — &), of the
analogous scores evaluated on the calibration data: Q(1 — ) = inf{s : (|Dea| " 2 (X, vo)eDw L{S(X,, v <st) =2 1 —al.
If the observations taken at different times are not exchangeable with one another, however, standard conformal prediction
algorithms cannot achieve valid coverage. This is where ACI comes into play.

The core concept of ACT involves dynamically updating the functions g, S(-), and Q() at each time step, utilizing newly
acquired data. Concurrently, ACI modifies the nominal miscoverage target level a; of its conformal predictor for each
time increment. The purpose of adjusting the « level at each time step is to calibrate future predictions to be more or
less conservative depending on their empirical performance in covering past values of the time series. For instance, if a
prediction band is found to be excessively broad, it will be narrowed in subsequent steps, and the opposite applies if it’s too
narrow. This strategy enables ACI to continuously adapt to potential dependencies and distribution changes within the time
series, maintaining relevance and accuracy in an online context. Specifically, ACI employs the following a-update rule:

a1 = oy + (o —erry),

where R
o, — 4 b Y ¢.CfCI(ozt), 7
0, otherwise.

and CA%ay) = {y : S¢(X1,y) < Q¢(1 — o) }. Equivalently,
CPMay) = (629, @) = [6(X2) — Qu(1 — ), §(Xe) + Qe(1 — au)].

The hyperparameter v > 0 controls the magnitude of each update step. Intuitively, a larger v means that ACI can rapidly
adjust to observed changes in the data distribution. However, this may come at the expense of increased instability in
the prediction bands. Consequently, the ideal value of ~y tends to be specific to the application at hand, requiring careful
consideration to balance responsiveness and stability. This is why our CAFHT method involves a data-driven parameter
tuning component.

The main theoretical finding established by Gibbs & Candes (2021) is that ACI always attains valid long-term average
coverage. Notably, this result is achieved without the necessity for any assumptions regarding the distribution of the unique
time series in question. More precisely, with probability one,

1 & max(ai,1 —a1) + v
L1l—a
‘T ;_1 erry — | < T ,
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which implies
T
. — a.s.
lim 77! E err; = o.
T—o00 e}

This result is not essential for proving our simultaneous marginal coverage guarantee, but it offers an intuitive rationale
for our methodology. Indeed, the capacity of ACI to adaptively encompass the inherent variability in each time series is
key to our method’s enhanced conditional coverage compared to other conformal prediction approaches for multi-series
forecasting. Further, our method inherits the same long-term average coverage property of ACI because it can only expand
the prediction bands of the latter.

In this paper, we implement ACI without re-training the forecasting model § at each step. This approach is viable due to our
access to additional “training” time series data from the same population, and it aids in diminishing the computational cost
of our numerical experiments. Nonetheless, our methodology is flexible enough to incorporate ACI with periodic re-training,
aligning with the practices suggested by Gibbs & Candes (2021) and the very recent related conformal PID method of
Angelopoulos et al. (2024).

A1.2. Warm Starts

As originally designed, ACI primarily aimed at achieving asymptotic coverage in the limit of a very long trajectory,
sometimes tolerating very narrow prediction intervals in the initial time steps. However, we have observed that this behavior
can negatively impact the performance of our method in finite-horizon scenarios. To address this issue, we introduce in
this paper a simple warm-start approach for ACI. This involves incorporating artificial conformity scores at the start of
each trajectory. These scores are generated as uniform random noise, with values falling within the range of observed
residuals in the training dataset. Consequently, ACI typically begins with a wider interval for its first forecast. Importantly,
this modification does not affect the long-term asymptotic properties of ACI when applied to a single trajectory, nor does
it impact our guarantee of finite-sample simultaneous marginal coverage. However, it often results in more informative
(narrower) prediction bands.

The solution described above is applied in our experiments using 5 warm-start scores, denoted as €_y, . . ., €, and setting the
initial value of av_4 equal to 0.1. A similar warm-start approach is also utilized when we apply the conformal PID algorithm
of Angelopoulos et al. (2024) instead of ACI. However, for the algorithm the warm start simply consists of setting the initial
quantile g equal to the (1 — «)-th quantile evaluated on the empirical distribution of scores computed using the training set.

A2. Proof of Theorem 1

Proof of Theorem 1. The proof follows directly from the exchangeability of the conformity scores, as it is often the case for
split-conformal prediction methods. Denote ¢, 1 () the conformity score of the test trajectory Y (“+1) evaluated using the
ACI prediction band constructed with step size «y. For any fixed o and v > 0, we have that Y;("H) € C’t(nH)Vt € [T if and
only if &,41(y) < Q(1 — a, ), where Q(1 — v, ) is the [(1 — a)(1 + | Dear)]-th smallest value of & () for all i € Dey.
Since the test trajectory is exchangeable with Dy, its score €, 11(7y) is also exchangeable with {é;(7), ¢ € Dca}- Then by
Lemma I in Romano et al. (2019), it follows that P(Y," ™" € ¢{" "Vt € [T]) = P(énsr(7) < Q1 =, 7)) > 1—a. O
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A3. Algorithms

Algorithm A1 Model selection component of CAFHT

1

P RN AR

Input: A pre-trained forecaster § producing one-step-ahead predictions; calibration trajectories D ; a grid of candidate
learning rates {v1,...,7vL}-
for ¢ € [L] do

Construct CACY(Y () ~,) using ACI, for i € DL,.
Evaluate ¢;(v,) using (3), fori € DL,
Compute Q(1 — a, ), the (1 — a)(1 + 1/|DL,|)-th quantile of {&;(y¢),i € DL, }.
Construct C(Y' ) ~,) = (CL(Y D ~,), ..., Cp(Y D) ~,)) using (4) fori € D,
end for
Pick # such that,
4 := arg min AvgWidth(C(Y ), ~,)). (A8)
Le[L]

Output: Selected learning rate parameter 7.

Algorithm A2 CAFHT - multiplicative scores

1:

\S]

— =
S N 2 e AR U

Input: A pre-trained forecaster § producing one-step-ahead predictions; calibration trajectories De,; the initial position

YO(nH) of a test trajectory Y ("*1); the desired nominal level o € (0, 1); a grid of candidate learning rates {71,--,7}

Randomly split D, into DY, and DZ.

Select a learning rate 4 € {71, ...,7r}, applying Algorithm A3 using the trajectory data in DL,.

Construct CACY(Y () 4) using ACI, for i € D2,.

Evaluate ¢;(¥) using (6), for i € D2,.

Compute the empirical quantile Q(1 — o, 4).

for ¢t € [T] do
Compute CACY(Y ("+1) 4 with ACI, using the past of the test trajectory (Y()(nH)7 Yl(n+1), e Yt(,"f_l)).
Compute a prediction interval C, (Y (»+1) 4) for the next step, using the multiplicative version of (4).
Observe the next step of the trajectory, Yt("H).

end for

. Output: An online prediction band C(Y (" +1)),

Algorithm A3 Model selection component of CAFHT - multiplicative scores

1:

Input: A pre-trained forecaster § producing one-step-ahead predictions; calibration trajectories DL ; a grid of candidate
learning rates {v1,...,v¢}-
for ¢ € [L] do

Construct CACY(Y () ~,) using ACI, for i € DL,.

Evaluate ¢;(y,) using (6), fori € D!

cal*
Compute Q(1 — a, 7). the (1 — a)(1 + 1/[Dly )-th quanile of {¢(70), € DL}
Construct C(Y'® ) = (C1 (YD ~,), ..., Cp(Y D ~,)) for i € DL, using the multiplicative version of (4).
end for
Pick 4 such that,
4 := arg min AvgWidth(C(Y ) ~,)). (A9)
Le[L]

Output: Selected learning rate parameter 7.
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Ad4. Parameter Tuning for CAFHT Without Data Splitting

Here, we outline an alternate implementation of CAFHT which, in contrast to the primary method described in Section 3.4,
obviates the need for additional subdivision of the calibration data in D, for selecting an optimal value of the ACI learning
rate parameter 7. In essence, this version of CAFHT employs the same calibration dataset D, for both choosing 4 and
calibrating the conformal margin of error via Q(1 — o/, 4). It does so by using a judiciously selected o/ < « to compensate
for the selection step. Enabled by the theoretical results of Yang & Kuchibhotla (2021) and Liang et al. (2023), this method
is outlined below by Algorithms A4—AS5 using additive conformity scores, and by Algorithms A6—A7 using multiplicative
conformity scores.

In the following, we will assume that the goal is for CAFHT to select a good 4 from a list of L candidate parameter values,
Y1, - -+» YL, for some fixed integer L > 1.

Using the DKW inequality, Yang & Kuchibhotla (2021) proves that, when calibrating at the nominal level «, a conformal
prediction set C'("*1) constructed after using the same calibration set Dy to select the best model among L candidates may
have an inflated coverage rate in the following form:

A log(2L)/2 L
P(y ("D ¢ (D)) > <1 + ) (1= q) — Y108(2L)/2+c(L) (A10)
‘,Dcal| \/ |Dcal‘
where ¢(L) is a constant that is generally smaller than 1/3 and can be computed explicitly,
2Le~ log(2L)
o(L) = V2Le .
V0og(2L) + /log(2L) + 4/m
This justifies applying CAFHT, without data splitting, using Q(1 — a7 instead of Q(1 — a,4), where
1-— log(2L)/2 L
awazl_ia—l—err’ err = 08(2L)/2 + < )
1+ 1/|Dea] /[ Deal|
A further refinement of this approach was proposed by Liang et al. (2023), which suggested instead using
of = max{all\/[arkova O‘]/)KW}7 (Al 1)

where o, 18 computed as follows. By combining the results of Vovk (2012) with Markov’s inequality, Liang et al.
(2023) proved the following inequality in the same context of (A10):

Bt ¢ Gy > 11 (blL Dol +1— z,z) (1= 1/b), (A12)

where I=1(z;|Dea| + 1 — 1,1) is the inverse Beta cumulative distribution function with [ = [a(|Dea| + 1)/, and b > 1 is
any fixed constant. Therefore, the desired value of ay,,,., can be calculated by inverting (A12) numerically, with the choice
of b = 100 recommended by Liang et al. (2023). In particular, we generate a grid of & candidates, evaluate the Markov
lower bounds associated with each &, and then return the largest possible & such that its Markov bound is greater than 1 — .

A potential advantage of the bound in (A12) relative to (A10) is that the [y/log(2L)/2 + ¢(L)]/+/|Deal| term in the latter
does not depend on «. That makes (A10) sometimes too conservative when « is small; see Appendix A1.2 in Liang et al.
(2023). However, neither bound always dominates the other, hence why we adaptively follow the tighter one using (A11).

The performance of CAFHT applied without data splitting, relying instead on the theoretical correction for parameter tuning
described above, is investigated empirically in Appendix AS.
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Algorithm A4 CAFHT (theory)

1:

—_ =
Iy AN O AR AN i

Input: A pre-trained forecaster g producing one-step-ahead predictions; calibration trajectories De,; the initial position
YO("H) of a test trajectory Y ("1); the desired nominal level o € (0, 1); a grid of candidate learning rates {71, ...,vr}.

Select a learning rate 4 € {v1,...,7L}, applying Algorithm A5 using the trajectory data in Deyy.
Construct CAY(Y (), 4) using ACL, for i € Dey.
Evaluate €; (%) using (6), for i € De,;.
Compute the empirical quantile Q(1 — o/, 4), where o is defined in (A11).
for¢ € [T] do
Compute CA1(Y ("*+1)_ %) with ACI, using the past of the test trajectory (V"™ v, ™) y,(F0).
Compute a prediction interval Cy (Y (**1), 4) for the next step, using (4) with Q(1 — o, 4).
Observe the next step of the trajectory, Y;(nﬂ).
end for
Output: An online prediction band C/(Y ("+1)),

Algorithm AS Model selection component of CAFHT (theory)

1

=)

Input: A pre-trained forecaster § producing one-step-ahead predictions; calibration trajectories De,; a grid of candidate
learning rates {~1,...,vL}.
for ¢ € [L] do
Construct CAY(Y () ~,) using ACI, for i € Dy
Evaluate €;(y¢) using (3), for i € De,.
Compute Q(1 — o/, ), the (1 — a’)(1 4 1/|Dea|)-th smallest value of {&;(7¢),i € Dea}, where o is defined
in (A11).
Construct C(Y' ) ~y) = (CL(Y D ~p), ..., Cp(Y D ~,)) using (4) for i € Deq.
end for
Pick 4 such that,
4 := arg min AvgWidth(C(Y ) ~,)). (A13)
Le[L)

Output: Selected learning rate parameter 7.

Algorithm A6 CAFHT (theory) - multiplicative scores

1:

—_— =
TReY 2 R kL

Input: A pre-trained forecaster g producing one-step-ahead predictions; calibration trajectories D, ; the initial position

YO(nH) of a test trajectory Y (1) the desired nominal level o € (0,1); a grid of candidate learning rates {71, ...,vr}.

Select a learning rate 4 € {v1,...,7r}, applying Algorithm A7 using the trajectory data in D,

Construct CACY(Y () 3) using ACI, for i € Dey.

Evaluate €;() using the multiplicative version of (4), for i € Dqy.

Compute the empirical quantile Q(1 — o/, %), where o is defined in (A11).

fort € [T] do
Compute CA1(Y (1) 4) with ACI, using the past of the test trajectory (Y. "™ y,("*1  y,(m¥1)
Compute C;(Y (»*1) 4) for the next step, using the multiplicative version of (4) with Q(1 — o/, %).
Observe the next step of the trajectory, }/'t("+1).

end for

Output: An online prediction band C'(Y (1)),
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Algorithm A7 Model selection component of CAFHT (theory) - multiplicative scores
1: Input: A pre-trained forecaster § producing one-step-ahead predictions; calibration trajectories D,y; a grid of candidate

learning rates {v1,...,v5}-
2: for ¢ € [L] do
3: Construct CAY(Y () ~,) using ACI, for i € Dey.
4:  Evaluate é;(vy,) using the multiplicative version of (4), for i € Dc,.
5:  Compute Q(1 — o, ), the (1 — o/)(1 + 1/|Dea)-th quantile of {&;(7¢),i € Dea}, where o is defined in (A11).
6:  Construct C(Y D 4p) = (CL(Y D, ~p),...,Cr(Y D, ~,)) for i € Dey.
7: end for
8: Pick 4 such that,
4 := arg min AvgWidth(C(Y ) ~,)). (Al4)
Le[L]

9: Output: Selected learning rate parameter 4.
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AS. Additional Experimental Results
AS.1. Synthetic Data
AS5.1.1. MAIN RESULTS — COMPARING CAFHT 10 CFRNN AND NCTP

AR data with dynamic noise profile. Firstly, we investigate the performance of the three methods considered in this paper,
namely CAFHT, CFRNN, and NCTP, using synthetic data from an AR model with dynamic noise profile. The default
settings of the experiments are as described in Section 4, but this appendix contains more detailed results.

Figure 3 and Table A1l report on the average performance on simulated heterogeneous trajectories of prediction bands
constructed by different methods as a function of the total number of training and calibration trajectories. The number of
trajectories is varied between 200 and 10,000. All methods achieve 90% simultaneous marginal coverage. As discussed
earlier in Section 4, these results show that our method (CAFHT) leads to more informative bands with lower average width
and higher conditional coverage.

Figure 4 and Table A2 show the performance of prediction bands constructed by different methods, as a function of the
prediction horizon, which is varied between 5 and 100. As the prediction horizon increases, the CFRNN method becomes
more and more conservative, while the CAFHT method can consistently produce small predicting bands while maintaining
relatively high conditional coverage.

Figure A1 and Table A3 report on the performance of all methods as a function of the dimensionality of the trajectories,
which is varied between 1 and 10. Again, the results show that the CAFHT method leads to more informative bands with
lower average width and higher conditional coverage.

Figure A2 and Table A4 report on the performances of these methods as a function of the proportion ¢ € [0, 1] of hard
trajectories in the population. We assess these results at § values of 0.1, 0.2, and 0.5. It is observed that when the dataset
contains a small number of hard-to-predict trajectories, the CAFHT method achieves superior conditional coverage and
yields a narrower prediction band compared to the NCTP method. As the fraction of difficult-to-predict trajectories increases,
the performance of NCTP improves (there would be no heterogeneity issue if all trajectories were “hard to predict”).
Nonetheless, the CAFHT method consistently produces the narrowest, and thereby the most informative, prediction bands
across the range of § values considered.

Finally, Figure A3 and Table AS investigate the robustness of all methods to distribution shifts. To this end, we kept the
proportion of difficult-to-predict trajectories at 0.1 in both the training and calibration datasets, but varied this proportion in
the test dataset, altering ¢ from 0.2 to 0.9 in the test set. Under these circumstances, as the calibration set and test set are
not exchangeable, no method can ensure marginal coverage at the intended 90% level. However, as shown in Figure A3
and Table AS, CAFHT, in practice, tends to achieve higher marginal coverage compared to NCTP. This is consistent with
the fact that CAFHT typically leads to higher conditional coverage in the absence of distribution shifts (Einbinder et al.,
2022). Additionally, the increasing width of the CAFHT prediction bands as the strength of the distribution shift grows
demonstrates its enhanced ability to accurately measure predictive uncertainty.

Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 1.00 2.00
0.751 0.75 1.50 Method
CFRNN
0.501 0.50 1.00
NCTP
0.251 0.25 0.50 CAFHT
0.00+ 0.00 0.00
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Data dimensionality

Figure Al. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
data dimensionality. See Table A3 for more detailed results and standard errors.
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Table Al. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.
See the corresponding plot in Figure 3.

Simultaneous coverage

Sample size ~ Method Average width  Conditional-hard ~ Conditional-easy =~ Marginal

200
200 CFRNN  2.000 (0.000)  0.939 (0.007) 1.000 (0.000) 0.994 (0.001)
200 NCTP 0.687 (0.035)  0.260 (0.024) 0.992 (0.002) 0.919 (0.004)
200 CAFHT 0202 (0.003)  0.704 (0.017) 0.944 (0.005) 0.920 (0.005)
500
500 CFRNN  2.000 (0.000)  0.969 (0.005) 1.000 (0.000) 0.997 (0.000)
500 NCTP 0.467 (0.021)  0.196 (0.019) 0.994 (0.002) 0.916 (0.003)
500 CAFHT  0.182(0.002)  0.682 (0.016) 0.934 (0.003) 0.910 (0.004)
1000
1000 CFRNN  2.000(0.000)  0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
1000 NCTP 0.343 (0.018)  0.093 (0.012) 0.992 (0.001) 0.901 (0.003)
1000 CAFHT  0.174(0.001)  0.679 (0.012) 0.934 (0.003) 0.908 (0.003)
2000
2000 CFRNN  2.000 (0.000)  0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
2000 NCTP 0.308 (0.014)  0.060 (0.008) 0.996 (0.001) 0.903 (0.002)
2000 CAFHT  0.163 (0.001)  0.656 (0.010) 0.926 (0.002) 0.899 (0.003)
5000
5000 CFRNN  2.000 (0.000)  0.998 (0.001) 1.000 (0.000) 1.000 (0.000)
5000 NCTP 0.244 (0.013)  0.033 (0.006) 0.997 (0.001) 0.900 (0.002)
5000 CAFHT  0.158 (0.001)  0.655 (0.007) 0.925 (0.002) 0.899 (0.002)
10000
10000 CFRNN  2.000 (0.000)  0.997 (0.002) 1.000 (0.000) 1.000 (0.000)
10000  NCTP 0.239 (0.033)  0.041 (0.015) 0.997 (0.001) 0.903 (0.003)
10000 CAFHT  0.151(0.002)  0.675 (0.022) 0.931 (0.004) 0.906 (0.005)

Table A2. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See corresponding plot in Figure 4.

Simultaneous coverage

Prediction horizon ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

5
5 CERNN 0484 (0.007)  0.408 (0.009) 1.000 (0.000) 0.942 (0.001)
5 NCTP 0242 (0.011)  0.067 (0.009) 0.996 (0.001) 0.904 (0.002)
5 CAFHT  0.247(0.005)  0.136 (0.011) 0.985 (0.001) 0.902 (0.003)
15
15 CFRNN  0.548(0.007)  0.632(0.011) 1.000 (0.000) 0.964 (0.001)
15 NCTP 0.277 (0.014)  0.067 (0.009) 0.995 (0.001) 0.903 (0.002)
15 CAFHT  0227(0.003)  0.249 (0.012) 0.976 (0.001) 0.904 (0.002)
25
25 CFRNN  2.000 (0.000)  0.998 (0.001) 1.000 (0.000) 1.000 (0.000)
25 NCTP 0.286 (0.014)  0.064 (0.008) 0.997 (0.001) 0.906 (0.002)
25 CAFHT  0212(0.002)  0.396(0.014) 0.957 (0.002) 0.902 (0.003)
50
50 CFRNN  2.000 (0.000)  0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
50 NCTP 0.293 (0.015)  0.068 (0.010) 0.997 (0.001) 0.906 (0.002)
50 CAFHT  0.192(0.002)  0.548 (0.015) 0.939 (0.002) 0.901 (0.002)
100
100 CFRNN  2.000 (0.000)  0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
100  NCTP 0.308 (0.014)  0.060 (0.008) 0.996 (0.001) 0.903 (0.002)
100 CAFHT  0.163(0.001)  0.656 (0.010) 0.926 (0.002) 0.899 (0.003)
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Table A3. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in
Figure Al.

Simultaneous coverage

Data dimensionality ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

1
1 CFRNN  2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
1 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)
1 CAFHT 0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)
2
2 CFRNN  2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
2 NCTP 0.338 (0.015) 0.064 (0.008) 0.996 (0.001) 0.905 (0.002)
2 CAFHT  0.172(0.001) 0.630 (0.009) 0.930 (0.002) 0.901 (0.002)
3
3 CFRNN  2.000 (0.000) 0.993 (0.002) 1.000 (0.000) 0.999 (0.000)
3 NCTP 0.349 (0.016) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
3 CAFHT 0.179 (0.001) 0.624 (0.012) 0.930 (0.002) 0.900 (0.002)
5
5 CFRNN  2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
5 NCTP 0.378 (0.017) 0.066 (0.008) 0.996 (0.001) 0.904 (0.002)
5 CAFHT  0.188(0.001) 0.619 (0.015) 0.931 (0.002) 0.900 (0.002)
10
10 CFRNN  2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
10  NCTP 0.410 (0.020) 0.057 (0.008) 0.996 (0.001) 0.903 (0.002)
10  CAFHT 0.199 (0.001) 0.580 (0.013) 0.936 (0.002) 0.901 (0.003)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00+ 1.00 2.00
0.751 075 1.50 Method
0.50 0.50 1.00 CFRNN
' ' ' NCTP
0.251 0.25 0.50 CAFHT
0.00 0.00 0.00
0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

Proportion of hard samples (all data)

Figure A2. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
proportion of hard-to-predict trajectories. See Table A4 for more detailed results and standard errors.

Table A4. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the
corresponding plot in Figure A2.

Simultaneous coverage

Proportion of
hard samples Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

(all data)

0.1
0.1 CFRNN  2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
0.1 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)
0.1 CAFHT  0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)

0.2
0.2 CFRNN  2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 0.999 (0.000)
0.2  NCTP 0.473 (0.004) 0.502 (0.008) 1.000 (0.000) 0.900 (0.002)
0.2 CAFHT  0.203 (0.001) 0.710 (0.007) 0.944 (0.002) 0.897 (0.003)

0.5
0.5 CFRNN  2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)
0.5 NCTP 0.512 (0.004) 0.799 (0.004) 1.000 (0.000) 0.899 (0.002)
0.5 CAFHT  0.331(0.002) 0.827 (0.005) 0.978 (0.001) 0.903 (0.003)
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Simultaneous marginal coverage Average width
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Figure A3. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A5 for more detailed
results and standard errors.

Table A5. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher
marginal coverage. See the corresponding plot in Figure A3.

Proportion of hard samples (test data) ~ Method Length Marginal coverage
0.2

0.2 CFRNN  2.000(0.000)  0.999 (0.000)
02 NCTP 0.300 (0.016)  0.808 (0.003)
0.2 CAFHT  0.207(0.002)  0.877 (0.003)

0.3

0.3 CFRNN  2.000(0.000)  0.998 (0.000)

03 NCTP 0.315(0.017)  0.716 (0.004)

0.3 CAFHT  0.250(0.002)  0.849 (0.004)
0.4

04 CFRNN  2.000(0.000)  0.997 (0.000)

04 NCTP 0.315(0.016)  0.622 (0.004)

04 CAFHT  0.291(0.003)  0.824 (0.004)
0.5

0.5 CFRNN  2.000(0.000)  0.996 (0.000)

0.5 NCTP 0.316 (0.016)  0.530 (0.005)

0.5 CAFHT  0.334(0.003)  0.795 (0.004)
0.6

0.6 CFRNN  2.000(0.000)  0.996 (0.001)

0.6 NCTP 0.321 (0.016)  0.436 (0.006)

0.6 CAFHT  0.378(0.003)  0.772(0.004)
0.7

07 CFRNN  2.000(0.000)  0.994 (0.001)

07 NCTP 0.310 (0.016)  0.341 (0.006)

07 CAFHT  0.422(0.003)  0.743 (0.005)
0.8

0.8 CFRNN  2.000(0.000)  0.994 (0.001)

0.8 NCTP 0.306 (0.017)  0.249 (0.008)

0.8 CAFHT  0.457(0.004)  0.715 (0.005)
0.9

0.9 CFRNN  2.000(0.000)  0.994 (0.001)
09 NCTP 0.301 (0.016)  0.152 (0.007)
0.9 CAFHT  0.500(0.004)  0.692 (0.006)
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AR data with static noise profile. Next, we present the results based on data generated from the AR model with the static

noise profile.

Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 1.00 2.00
0.751 0.75 1.50 Method
CFRNN
0.50 0.50 1.00
NCTP
0.251 0.25 0.50 CAFHT
0.00 0.00 0.00

200 500 10002000 500010000

200 500 1000 2000 500010000
Sample size

200

500 1000 2000 500010000

Figure A4. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
total number of training and calibration trajectories. See Table A6 for more detailed results and standard errors.

Table A6. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

See the corresponding plot in Figure A4.

Sample size ~ Method

Simultaneous coverage

Average width  Conditional-hard

Conditional-easy ~ Marginal

200
200 CFRNN 2.000 (0.000) 0.945 (0.006) 1.000 (0.000) 0.994 (0.001)
200 NCTP 0.927 (0.048) 0.251 (0.024) 0.990 (0.002) 0.916 (0.004)
200 CAFHT  0.311(0.010) 0.434 (0.025) 0.968 (0.005) 0.914 (0.006)
500
500  CFRNN 2.000 (0.000) 0.972 (0.004) 1.000 (0.000) 0.997 (0.000)
500  NCTP 0.666 (0.031) 0.200 (0.020) 0.995 (0.002) 0.917 (0.003)
500 CAFHT 0.243 (0.005) 0.326 (0.017) 0.974 (0.003) 0.910 (0.004)
1000
1000 CFRNN  2.000 (0.000) 0.986 (0.002) 1.000 (0.000) 0.999 (0.000)
1000 NCTP 0.466 (0.030) 0.084 (0.011) 0.994 (0.001) 0.902 (0.002)
1000 CAFHT 0.227 (0.003) 0.289 (0.012) 0.976 (0.002) 0.906 (0.003)
2000
2000  CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
2000  NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
2000  CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
5000
5000 CFRNN  2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)
5000  NCTP 0.322 (0.024) 0.034 (0.006) 0.996 (0.001) 0.901 (0.002)
5000  CAFHT 0.194 (0.002) 0.263 (0.008) 0.973 (0.001) 0.902 (0.002)
10000
10000  CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
10000  NCTP 0.299 (0.089) 0.044 (0.023) 0.997 (0.002) 0.907 (0.005)
10000  CAFHT  0.180 (0.005) 0.270 (0.037) 0.966 (0.004) 0.901 (0.006)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 1.00 2.00
0.75 0.75 1.50 Method
0.50 0.50 1.00 CFRNN
' ’ ’ NCTP
0.25 0.25 0.50 CAFHT
0.00 0.00 0.00
5 15 25 50 100 5 15 25 50 100 5 15 25 50 100

Prediction horizon

Figure A5. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
prediction horizon. See Table A7 for more detailed results and standard errors.

23



Conformalized Adaptive Forecasting of Heterogeneous Trajectories

Table A7. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See corresponding plot in

Figure AS.

Simultaneous coverage

Prediction horizon ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
5
5 CFRNN 0.504 (0.009) 0.414 (0.010) 1.000 (0.000) 0.942 (0.001)
5 NCTP 0.246 (0.012) 0.067 (0.009) 0.996 (0.001) 0.904 (0.002)
5 CAFHT 0.260 (0.006) 0.110 (0.011) 0.987 (0.001) 0.901 (0.002)
15
15 CFRNN  0.688 (0.008) 0.624 (0.010) 1.000 (0.000) 0.963 (0.001)
15 NCTP 0.331 (0.018)  0.064 (0.008) 0.996 (0.001) 0.904 (0.002)
15 CAFHT 0.256 (0.004) 0.125 (0.011) 0.987 (0.001) 0.902 (0.002)
25
25 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
25 NCTP 0.368 (0.020) 0.067 (0.009) 0.996 (0.001) 0.905 (0.002)
25 CAFHT 0.241 (0.003) 0.144 (0.008) 0.984 (0.001) 0.902 (0.002)
50
50 CFRNN  2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
50  NCTP 0.390 (0.023) 0.061 (0.008) 0.996 (0.001) 0.904 (0.002)
50 CAFHT 0.218 (0.002) 0.198 (0.010) 0.978 (0.002) 0.901 (0.002)
100
100 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
100 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
100 CAFHT  0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.001 1.00 2.00
0.751 0.75 1.50
0.50 0.50 1.00
0.25 0.25 0.50
0.00+ i 0.001_, . i 10001 i i
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Data dimensionality

Method
CFRNN
NCTP
CAFHT

Figure A6. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
data dimensionality. See Table A8 for more detailed results and standard errors.

Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.004 1.00 2.00
0.754 0.75 1.50
0.501 0.50 1.00
0.251 0.25 0.50
0.004 0.00 0.00

0.1 0.2 0.5

0.1 0.2 0.5
Proportion of hard samples (all data)

0.1

0.2

0.5

Method
CFRNN
NCTP
CAFHT

Figure A7. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
proportion of hard-to-predict trajectories. See Table A9 for more detailed results and standard errors.
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Table AS. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in
Figure A6.

Simultaneous coverage

Data dimensionality ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

1
1 CFRNN  2.000(0.000)  0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
I NCTP 0.435(0.024)  0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
1 CAFHT  0.204(0.002)  0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
2
2 CFRNN  2.000(0.000)  0.994 (0.001) 1.000 (0.000) 0.999 (0.000)
2 NCTP 0.475(0.027)  0.059 (0.007) 0.996 (0.001) 0.903 (0.002)
2 CAFHT  0.210(0.002)  0.195 (0.009) 0.981 (0.001) 0.904 (0.002)
3
3 CFRNN  2.000(0.000)  0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
3 NCTP 0.495 (0.028)  0.068 (0.009) 0.996 (0.001) 0.904 (0.002)
3 CAFHT  0219(0.003)  0.160 (0.011) 0.982 (0.001) 0.900 (0.002)
5
5 CFRNN  2.000(0.000)  0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
5 NCTP 0.529 (0.032)  0.066 (0.009) 0.997 (0.001) 0.906 (0.002)
5 CAFHT  0.234(0.003)  0.152(0.013) 0.985 (0.002) 0.903 (0.002)
10
10 CFRNN  2.000(0.000)  0.994 (0.001) 1.000 (0.000) 0.999 (0.000)
10 NCTP 0.615(0.038)  0.061 (0.008) 0.997 (0.001) 0.904 (0.002)
10 CAFHT  0.267(0.003)  0.212(0.015) 0.978 (0.002) 0.902 (0.003)

Table A9. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the
corresponding plot in Figure A7.

Simultaneous coverage

Proportion of
hard samples Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

(all data)
0.1
0.1  CFRNN  2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
0.1  NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
0.1  CAFHT  0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
0.2
0.2  CFRNN  2.000 (0.000) 0.996 (0.001) 1.000 (0.000) 0.999 (0.000)
0.2 NCTP 0.720 (0.006) 0.496 (0.008) 1.000 (0.000) 0.898 (0.002)
0.2  CAFHT  0.335(0.005) 0.527 (0.011) 0.993 (0.001) 0.900 (0.003)
0.5
0.5 CFRNN  2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)
0.5 NCTP 0.776 (0.005) 0.803 (0.003) 1.000 (0.000) 0.901 (0.002)
0.5 CAFHT 0.770 (0.007) 0.808 (0.004) 0.992 (0.001) 0.900 (0.002)
Simultaneous marginal coverage Average width
1.00 2.00
0.75 150 Method
0.50 CFRNN
' 1.00 NCTP
0.25 CAFHT
0.50
0.00
0.2 03 04 05 06 0.7 08 09 0.2 03 04 05 0.6 0.7 0.8 09

Proportion of hard samples (test data)
Figure A8. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A10 for detailed
results and standard errors.
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Table A10. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher
marginal coverage. See the corresponding plot in Figure A8.

Proportion of hard samples (test data) ~ Method Length Marginal coverage
0.2

0.2 CFRNN  2.000 (0.000)  0.999 (0.000)
0.2  NCTP 0.437 (0.028)  0.811 (0.003)
0.2 CAFHT  0.284(0.003)  0.832(0.003)

0.3

03 CFRNN  2.000(0.000)  0.998 (0.000)

03 NCTP 0.419 (0.027)  0.715 (0.004)

0.3 CAFHT 0359 (0.004)  0.762 (0.004)
0.4

04 CFRNN  2.000(0.000)  0.998 (0.000)

04 NCTP 0.432(0.026)  0.619 (0.004)

04 CAFHT  0.438(0.005)  0.689 (0.004)
0.5

0.5 CFRNN  2.000(0.000)  0.997 (0.000)

0.5 NCTP 0.431(0.027)  0.526 (0.005)

0.5 CAFHT 0517 (0.006)  0.624 (0.005)
0.6

0.6 CFRNN  2.000(0.000)  0.996 (0.001)

0.6 NCTP 0.451 (0.028)  0.438 (0.006)

0.6 CAFHT  0.598 (0.007)  0.552(0.005)
0.7

07 CFRNN  2.000(0.000)  0.996 (0.001)

07 NCTP 0.436 (0.027)  0.340 (0.006)

0.7 CAFHT  0.671(0.008)  0.481 (0.006)
0.8

0.8 CFRNN  2.000(0.000)  0.996 (0.001)

0.8 NCTP 0.437 (0.027)  0.252 (0.007)

0.8 CAFHT  0.746 (0.009)  0.414 (0.006)
0.9

0.9 CFRNN  2.000(0.000)  0.995 (0.001)
09 NCTP 0.432(0.027)  0.157 (0.007)
0.9 CAFHT  0.828(0.010)  0.343 (0.007)
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AS5.1.2. SUPPLEMENTARY RESULTS — COMPARING DIFFERENT VERSIONS OF CAFHT

In this subsection, we add different versions of CAFHT into comparison. We will separately analyze the CAFHT prediction
bands constructed using multiplicative conformity scores (6) and those constructed using additive conformity scores (3).
The conclusions from the results evaluated using synthetic data with the dynamic profile and with the static profile are very
similar. To save space, we only demonstrate the results using data with the static profile.

We consider the following implementations of CAFHT:

L]

CAFHT: the main method. It is the CAFHT method based on the ACI prediction band using the data splitting strategy;
see Algorithm A2.

CAFHT - PID: the CAFHT method based on the conformal PID prediction band using the data splitting strategy. It can
be implemented simply by substituting CA" to C*™P in Algorithm A2 wherever possible.

CAFHT (theory): the CAFHT method based on the ACI prediction band after correcting the theoretical coverage; see
Appendix A4 and Algorithm A6.

CAFHT (theory) - PID: the CAFHT method based on the conformal PID prediction band after correcting the theoretical
coverage. It can be implemented simply by substituting CA! to C*'® in Algorithm A6 wherever possible.

CAFHT — MULTIPLICATIVE SCORES
The results of CAFHT with multiplicative conformity scores (6) are first presented.

Similar to what we have observed from the results in subsection A5.1.1, CAFHT outperforms the benchmark methods
(CFRNN and NCTP) across all configurations we considered. Generally, CAFHT produces narrower, more informative
bands with higher conditional coverage. Among the different versions of CAFHT, the prediction bands generated using the
theoretical correction approach (outlined in A4) tend to be more conservative compared to those from the data-splitting
approach. Additionally, in our experiments, the performance of prediction bands constructed by CAFHT with ACI is
empirically similar to those created using PID.

Simultaneous marginal coverage Simultaneous conditional coverage Average width Method
1.00{ & : 1.00 2.00 etho
“““““““““ T (""" "-""TTTTTmmmmTmes CFRNN

0.75 0.75 1.50 NCTP
0.50 0.50 1.00 CAFHT
CAFHT - PID
0.25 0.25 0.50
% ~- CAFHT (theory)

0.00 0.00 0.00 - CAFHT (theory) - PID
200 500 1000 2000 500010000 200 500 1000 2000 500010000 200 500 1000 2000 500010000
Sample size

Figure A9. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the
total number of training and calibration trajectories. See Table A11 for detailed results and standard errors.

Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 - 1.00 2.00 Method
____________________________________________ CFRNN
0.75 0.75 1.50 NCTP
0.50 0.50 —4———6 | 1.00 CAFHT
0.25 0.25 0.50 CAFHT - PID
—~ CAFHT (theory)
0.00 0.00 0.00 -~ CAFHT (theory) - PID
5 15 25 50 100 5 15 25 50 100 5 15 25 50 100

Prediction horizon

Figure A10. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the prediction horizon. See Table A12 for detailed results and standard errors.
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Table A11. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.
See corresponding plot in Figure A9.

Simultaneous coverage

Sample size Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
200
200 CFRNN 2.000 (0.000) 0.945 (0.006) 1.000 (0.000) 0.994 (0.001)
200  NCTP 0.927 (0.048) 0.251 (0.024) 0.990 (0.002) 0.916 (0.004)
200 CAFHT 0.311 (0.010) 0.434 (0.025) 0.968 (0.005) 0.914 (0.006)
200  CAFHT - PID 0.390 (0.022) 0.361 (0.027) 0.978 (0.004) 0.916 (0.006)
200  CAFHT (theory) 0.365 (0.009) 0.616 (0.016) 0.993 (0.001) 0.955 (0.002)
200 CAFHT (theory) - PID 0.525 (0.014) 0.700 (0.018) 0.998 (0.001) 0.968 (0.002)
500
500  CFRNN 2.000 (0.000) 0.972 (0.004) 1.000 (0.000) 0.997 (0.000)
500 NCTP 0.666 (0.031) 0.200 (0.020) 0.995 (0.002) 0.917 (0.003)
500 CAFHT 0.243 (0.005) 0.326 (0.017) 0.974 (0.003) 0.910 (0.004)
500  CAFHT - PID 0.335(0.021) 0.237 (0.022) 0.983 (0.003) 0.910 (0.004)
500 CAFHT (theory) 0.358 (0.006) 0.717 (0.012) 0.997 (0.001) 0.970 (0.001)
500  CAFHT (theory) - PID  0.495 (0.009) 0.779 (0.013) 1.000 (0.000) 0.978 (0.001)
1000
1000  CFRNN 2.000 (0.000) 0.986 (0.002) 1.000 (0.000) 0.999 (0.000)
1000  NCTP 0.466 (0.030) 0.084 (0.011) 0.994 (0.001) 0.902 (0.002)
1000  CAFHT 0.227 (0.003) 0.289 (0.012) 0.976 (0.002) 0.906 (0.003)
1000 CAFHT - PID 0.303 (0.018) 0.149 (0.014) 0.988 (0.002) 0.903 (0.003)
1000  CAFHT (theory) 0.290 (0.004) 0.571 (0.013) 0.994 (0.001) 0.951 (0.002)
1000  CAFHT (theory) - PID  0.371 (0.007) 0.595 (0.014) 0.999 (0.000) 0.958 (0.002)
2000
2000  CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
2000  NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
2000 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
2000  CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)
2000  CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)
2000  CAFHT (theory) - PID  0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)
5000
5000  CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)
5000  NCTP 0.322 (0.024) 0.034 (0.006) 0.996 (0.001) 0.901 (0.002)
5000  CAFHT 0.194 (0.002) 0.263 (0.008) 0.973 (0.001) 0.902 (0.002)
5000  CAFHT - PID 0.233 (0.015) 0.085 (0.009) 0.990 (0.001) 0.900 (0.002)
5000  CAFHT (theory) 0.217 (0.002) 0.409 (0.008) 0.991 (0.001) 0.933 (0.001)
5000  CAFHT (theory) - PID  0.231 (0.003) 0.351 (0.010) 0.998 (0.000) 0.934 (0.001)
10000
10000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
10000 NCTP 0.299 (0.089) 0.044 (0.023) 0.997 (0.002) 0.907 (0.005)
10000  CAFHT 0.180 (0.005) 0.270 (0.037) 0.966 (0.004) 0.901 (0.006)
10000  CAFHT - PID 0.140 (0.016) 0.076 (0.039) 0.989 (0.004) 0.903 (0.005)
10000  CAFHT (theory) 0.196 (0.005) 0.376 (0.033) 0.985 (0.002) 0.927 (0.006)
10000 CAFHT (theory) - PID 0.200 (0.008) 0.307 (0.045) 0.994 (0.001) 0.930 (0.004)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 1.00 2.00 Method
"""""""""""""""""""""" CFRNN
0.75 0.75 1.50 NCTP
0.50 0.50] o————t———a——=R——"—3 | 1.00 CAFHT
0.25 0.25 0.50 —— CAFHT - PID
8 5 > —~ CAFHT (theory)
0.00 0.00 0.00 -4~ CAFHT (theory) - PID
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Data dimensionality

Figure Al1l. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the data dimensionality. See Table A13 for detailed results and standard errors.
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Table A12. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in
Figure A10.

Simultaneous coverage

Prediction horizon =~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
5
5  CFRNN 0.504 (0.009) 0.414 (0.010) 1.000 (0.000) 0.942 (0.001)
5 NCTP 0.246 (0.012) 0.067 (0.009) 0.996 (0.001) 0.904 (0.002)
5 CAFHT 0.260 (0.006) 0.110 (0.011) 0.987 (0.001) 0.901 (0.002)
5  CAFHT - PID 0.190 (0.008) 0.098 (0.011) 0.991 (0.001) 0.903 (0.002)
5  CAFHT (theory) 0.406 (0.007) 0.444 (0.012) 0.998 (0.000) 0.944 (0.002)
5 CAFHT (theory) - PID  0.309 (0.005) 0.503 (0.014) 0.996 (0.001) 0.947 (0.002)
15
15 CFRNN 0.688 (0.008) 0.624 (0.010) 1.000 (0.000) 0.963 (0.001)
15  NCTP 0.331 (0.018) 0.064 (0.008) 0.996 (0.001) 0.904 (0.002)
15  CAFHT 0.256 (0.004) 0.125 (0.011) 0.987 (0.001) 0.902 (0.002)
15  CAFHT - PID 0.235 (0.014) 0.125 (0.012) 0.987 (0.002) 0.902 (0.003)
15 CAFHT (theory) 0.359 (0.005) 0.442 (0.012) 0.998 (0.000) 0.944 (0.001)
15  CAFHT (theory) - PID  0.304 (0.006) 0.483 (0.012) 0.999 (0.000) 0.948 (0.002)
25
25 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
25  NCTP 0.368 (0.020) 0.067 (0.009) 0.996 (0.001) 0.905 (0.002)
25  CAFHT 0.241 (0.003) 0.144 (0.008) 0.984 (0.001) 0.902 (0.002)
25  CAFHT - PID 0.247 (0.015) 0.129 (0.013) 0.987 (0.002) 0.903 (0.003)
25  CAFHT (theory) 0.321 (0.004) 0.442 (0.012) 0.998 (0.000) 0.944 (0.002)
25 CAFHT (theory) - PID 0.302 (0.005) 0.487 (0.011) 0.999 (0.000) 0.949 (0.001)
50
50  CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
50 NCTP 0.390 (0.023) 0.061 (0.008) 0.996 (0.001) 0.904 (0.002)
50  CAFHT 0.218 (0.002) 0.198 (0.010) 0.978 (0.002) 0.901 (0.002)
50  CAFHT - PID 0.260 (0.017) 0.117 (0.014) 0.991 (0.001) 0.905 (0.003)
50  CAFHT (theory) 0.274 (0.003) 0.456 (0.011) 0.996 (0.000) 0.943 (0.002)
50  CAFHT (theory) - PID  0.296 (0.005) 0.494 (0.011) 0.998 (0.000) 0.949 (0.002)
100
100 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
100 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
100 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
100  CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)
100 CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)
100 CAFHT (theory) - PID  0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
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Figure A12. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the proportion of hard-to-predict trajectories. See Table A14 for detailed results and standard errors.
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Figure A13. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A15 for detailed
results and standard errors.
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Table A13. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in
Figure A11.

Simultaneous coverage

Data dimensionality =~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
1
1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
1 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
1 CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)
1 CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)
1 CAFHT (theory) - PID  0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)
2
2 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)
2 NCTP 0.475 (0.027) 0.059 (0.007) 0.996 (0.001) 0.903 (0.002)
2 CAFHT 0.210 (0.002) 0.195 (0.009) 0.981 (0.001) 0.904 (0.002)
2 CAFHT - PID 0.283 (0.017) 0.110 (0.010) 0.988 (0.001) 0.902 (0.002)
2 CAFHT (theory) 0.253 (0.002) 0.485 (0.012) 0.993 (0.001) 0.943 (0.001)
2 CAFHT (theory) - PID  0.297 (0.004) 0.495 (0.012) 0.999 (0.000) 0.949 (0.001)
3
3 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
3 NCTP 0.495 (0.028) 0.068 (0.009) 0.996 (0.001) 0.904 (0.002)
3 CAFHT 0.219 (0.003) 0.160 (0.011) 0.982 (0.001) 0.900 (0.002)
3 CAFHT - PID 0.297 (0.018) 0.115 (0.012) 0.988 (0.001) 0.902 (0.002)
3 CAFHT (theory) 0.260 (0.003) 0.491 (0.012) 0.990 (0.001) 0.941 (0.001)
3 CAFHT (theory) - PID  0.312 (0.004) 0.470 (0.011) 1.000 (0.000) 0.947 (0.001)
5
5  CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
5 NCTP 0.529 (0.032) 0.066 (0.009) 0.997 (0.001) 0.906 (0.002)
5  CAFHT 0.234 (0.003) 0.152 (0.013) 0.985 (0.002) 0.903 (0.002)
5  CAFHT - PID 0.323 (0.021) 0.093 (0.010) 0.991 (0.001) 0.903 (0.002)
5 CAFHT (theory) 0.271 (0.003) 0.522 (0.011) 0.992 (0.001) 0.946 (0.002)
5 CAFHT (theory) - PID  0.360 (0.004) 0.486 (0.012) 1.000 (0.000) 0.949 (0.002)
10
10 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)
10  NCTP 0.615 (0.038) 0.061 (0.008) 0.997 (0.001) 0.904 (0.002)
10  CAFHT 0.267 (0.003) 0.212 (0.015) 0.978 (0.002) 0.902 (0.003)
10  CAFHT - PID 0.372 (0.023) 0.076 (0.011) 0.993 (0.001) 0.902 (0.002)
10 CAFHT (theory) 0.303 (0.003) 0.498 (0.009) 0.995 (0.001) 0.946 (0.001)
10 CAFHT (theory) - PID  0.428 (0.003) 0.463 (0.012) 1.000 (0.000) 0.947 (0.001)

Table A 14. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the
corresponding plot in Figure A12.

Simultaneous coverage

Proportion of

hard samples Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
(all data)

0.1
0.1  CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
0.1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
0.1  CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
0.1 CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)
0.1 CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)
0.1  CAFHT (theory) - PID  0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)

0.2
0.2  CFRNN 2.000 (0.000) 0.996 (0.001) 1.000 (0.000) 0.999 (0.000)
0.2 NCTP 0.720 (0.006) 0.496 (0.008) 1.000 (0.000) 0.898 (0.002)
0.2  CAFHT 0.335 (0.005) 0.527 (0.011) 0.993 (0.001) 0.900 (0.003)
0.2  CAFHT - PID 0.388 (0.005) 0.528 (0.010) 0.993 (0.001) 0.899 (0.002)
0.2 CAFHT (theory) 0.404 (0.005) 0.721 (0.007) 0.996 (0.001) 0.940 (0.001)
0.2 CAFHT (theory) - PID  0.498 (0.005) 0.733 (0.007) 0.999 (0.000) 0.946 (0.001)

0.5
0.5 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)
0.5 NCTP 0.776 (0.005) 0.803 (0.003) 1.000 (0.000) 0.901 (0.002)
0.5  CAFHT 0.770 (0.007) 0.808 (0.004) 0.992 (0.001) 0.900 (0.002)
0.5  CAFHT - PID 0.694 (0.005) 0.796 (0.004) 1.000 (0.000) 0.898 (0.002)
0.5  CAFHT (theory) 0.858 (0.007) 0.880 (0.003) 0.998 (0.000) 0.939 (0.001)
0.5  CAFHT (theory) - PID  0.741 (0.005) 0.878 (0.003) 1.000 (0.000) 0.939 (0.002)
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Table A15. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher
marginal coverage. See the corresponding plot in Figure A13.

Proportion of hard samples (test data) ~ Method Length Marginal coverage
0.2
0.2  CFRNN 2.000 (0.000)  0.999 (0.000)
02  NCTP 0.437 (0.028)  0.811 (0.003)
0.2  CAFHT 0.284 (0.003)  0.832(0.003)
0.2  CAFHT - PID 0.316 (0.018)  0.816 (0.003)
0.2 CAFHT (theory) 0.342 (0.005)  0.896 (0.002)
0.2 CAFHT (theory) - PID ~ 0.411 (0.008)  0.896 (0.003)
0.3
0.3  CFRNN 2.000 (0.000)  0.998 (0.000)
03  NCTP 0.419 (0.027)  0.715 (0.004)
0.3  CAFHT 0.359 (0.004)  0.762 (0.004)
0.3 CAFHT - PID 0.353 (0.017)  0.728 (0.004)
0.3  CAFHT (theory) 0.434 (0.006)  0.844 (0.003)
0.3  CAFHT (theory) - PID  0.521(0.010)  0.842 (0.003)
0.4
04  CFRNN 2.000 (0.000)  0.998 (0.000)
04  NCTP 0.432(0.026)  0.619 (0.004)
0.4  CAFHT 0.438 (0.005)  0.689 (0.004)
04  CAFHT - PID 0.402 (0.017)  0.640 (0.005)
0.4  CAFHT (theory) 0.532 (0.007)  0.794 (0.003)
0.4  CAFHT (theory) - PID  0.639 (0.011)  0.788 (0.004)
0.5
0.5 CFRNN 2.000 (0.000)  0.997 (0.000)
0.5 NCTP 0.431 (0.027)  0.526 (0.005)
0.5  CAFHT 0.517 (0.006)  0.624 (0.005)
0.5  CAFHT - PID 0.448 (0.017)  0.552 (0.006)
0.5  CAFHT (theory) 0.628 (0.009)  0.746 (0.004)
0.5  CAFHT (theory) - PID  0.764 (0.013)  0.743 (0.005)
0.6
0.6 CFRNN 2.000 (0.000)  0.996 (0.001)
0.6  NCTP 0.451 (0.028)  0.438 (0.006)
0.6  CAFHT 0.598 (0.007)  0.552 (0.005)
0.6 CAFHT - PID 0.499 (0.020)  0.469 (0.007)
0.6 CAFHT (theory) 0.730 (0.011)  0.696 (0.005)
0.6  CAFHT (theory) - PID  0.883 (0.016)  0.693 (0.006)
0.7
0.7 CFRNN 2.000 (0.000)  0.996 (0.001)
0.7  NCTP 0.436 (0.027)  0.340 (0.006)
0.7  CAFHT 0.671 (0.008)  0.481 (0.006)
0.7  CAFHT - PID 0.531(0.022)  0.376 (0.008)
0.7  CAFHT (theory) 0.819 (0.012)  0.644 (0.005)
0.7 CAFHT (theory) - PID  0.996 (0.019)  0.640 (0.007)
0.8
0.8 CFRNN 2.000 (0.000)  0.996 (0.001)
0.8  NCTP 0.437 (0.027)  0.252 (0.007)
0.8  CAFHT 0.746 (0.009)  0.414 (0.006)
0.8 CAFHT - PID 0.574 (0.023)  0.292 (0.008)
0.8  CAFHT (theory) 0.911 (0.013)  0.597 (0.005)
0.8  CAFHT (theory) - PID  1.094 (0.020)  0.589 (0.008)
0.9
09 CFRNN 2.000 (0.000)  0.995 (0.001)
0.9  NCTP 0.432(0.027)  0.157 (0.007)
0.9  CAFHT 0.828 (0.010)  0.343 (0.007)
0.9  CAFHT - PID 0.606 (0.027)  0.205 (0.010)
0.9  CAFHT (theory) 1.006 (0.014)  0.548 (0.006)

0.9  CAFHT (theory) - PID  1.218(0.023)  0.537 (0.009)
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CAFHT — ADDITIVE SCORES

Finally, the results of CAFHT with additive conformity scores (3) are presented.

Simultaneous marginal coverage Simultaneous conditional coverage Average width Method

1.00 : 1.00 2.00 etho

I CFRNN
0.75 0.75 1.50 NCTP
0.50 0.50 1.00 CAFHT

CAFHT - PID
0.25 0.25 050 Fm———_
2 —~ CAFHT (theory)
0.00 0.00 0.00 -4~ CAFHT (theory) - PID
200 500 1000 2000 500010000 200 500 1000 2000 500010000 200 500 1000 2000 500010000
Sample size

Figure A14. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. See Table A16 for detailed results and standard errors.

Table A16. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.
See the corresponding plot in Figure A14.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal
200
200 CFRNN 2.000 (0.000) 0.945 (0.006) 1.000 (0.000) 0.994 (0.001)
200 NCTP 0.927 (0.048) 0.251 (0.024) 0.990 (0.002) 0.916 (0.004)
200 CAFHT 0.388 (0.018) 0.290 (0.030) 0.982 (0.004) 0.913 (0.006)
200  CAFHT - PID 0.466 (0.026) 0.326 (0.031) 0.980 (0.004) 0.915 (0.006)
200  CAFHT (theory) 0.576 (0.015) 0.621 (0.023) 1.000 (0.000) 0.963 (0.002)
200  CAFHT (theory) - PID  0.614 (0.016) 0.620 (0.024) 1.000 (0.000) 0.962 (0.002)
500
500  CFRNN 2.000 (0.000) 0.972 (0.004) 1.000 (0.000) 0.997 (0.000)
500 NCTP 0.666 (0.031) 0.200 (0.020) 0.995 (0.002) 0.917 (0.003)
500 CAFHT 0.323 (0.013) 0.195 (0.023) 0.988 (0.003) 0.911 (0.004)
500  CAFHT - PID 0.399 (0.024) 0.190 (0.022) 0.988 (0.003) 0.910 (0.004)
500  CAFHT (theory) 0.572 (0.008) 0.762 (0.016) 1.000 (0.000) 0.977 (0.002)
500  CAFHT (theory) - PID  0.600 (0.009) 0.753 (0.015) 1.000 (0.000) 0.976 (0.001)
1000
1000 CFRNN 2.000 (0.000) 0.986 (0.002) 1.000 (0.000) 0.999 (0.000)
1000 NCTP 0.466 (0.030) 0.084 (0.011) 0.994 (0.001) 0.902 (0.002)
1000 CAFHT 0.289 (0.010) 0.115 (0.015) 0.993 (0.001) 0.904 (0.003)
1000  CAFHT - PID 0.362 (0.021) 0.119 (0.015) 0.993 (0.001) 0.904 (0.003)
1000  CAFHT (theory) 0.460 (0.006) 0.557 (0.015) 1.000 (0.000) 0.955 (0.002)
1000  CAFHT (theory) - PID  0.481 (0.006) 0.559 (0.013) 1.000 (0.000) 0.955 (0.002)
2000
2000 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
2000 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
2000 CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)
2000  CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)
2000  CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)
2000  CAFHT (theory) - PID  0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)
5000
5000 CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)
5000  NCTP 0.322 (0.024) 0.034 (0.006) 0.996 (0.001) 0.901 (0.002)
5000 CAFHT 0.214 (0.007) 0.035 (0.006) 0.994 (0.001) 0.899 (0.002)
5000  CAFHT - PID 0.260 (0.017) 0.040 (0.006) 0.994 (0.001) 0.899 (0.002)
5000  CAFHT (theory) 0.348 (0.003) 0.308 (0.008) 1.000 (0.000) 0.931 (0.001)
5000  CAFHT (theory) - PID  0.354 (0.003) 0.313 (0.009) 1.000 (0.000) 0.932 (0.001)
10000
10000  CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
10000  NCTP 0.299 (0.089) 0.044 (0.023) 0.997 (0.002) 0.907 (0.005)
10000 CAFHT 0.176 (0.023) 0.030 (0.025) 0.994 (0.002) 0.903 (0.004)
10000  CAFHT - PID 0.154 (0.026) 0.025 (0.023) 0.997 (0.001) 0.905 (0.005)
10000  CAFHT (theory) 0.315 (0.005) 0.296 (0.016) 1.000 (0.000) 0.933 (0.004)
10000  CAFHT (theory) - PID  0.319 (0.007) 0.284 (0.042) 1.000 (0.000) 0.932 (0.005)
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Figure A15. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the prediction horizon. See Table A17 for detailed results and standard errors.

Table A17. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in
Figure A15.

Simultaneous coverage

Prediction horizon Method Average width Conditional-hard Conditional-easy Marginal
5
5  CFRNN 0.504 (0.009) 0.414 (0.010) 1.000 (0.000) 0.942 (0.001)
5 NCTP 0.246 (0.012) 0.067 (0.009) 0.996 (0.001) 0.904 (0.002)
5  CAFHT 0.237 (0.008) 0.073 (0.009) 0.993 (0.001) 0.902 (0.002)
5  CAFHT - PID 0.195 (0.008) 0.096 (0.010) 0.990 (0.001) 0.902 (0.002)
5  CAFHT (theory) 0.436 (0.008) 0.463 (0.012) 1.000 (0.000) 0.947 (0.002)
5  CAFHT (theory) - PID  0.348 (0.008) 0.477 (0.012) 1.000 (0.000) 0.948 (0.002)
15
15 CFRNN 0.688 (0.008) 0.624 (0.010) 1.000 (0.000) 0.963 (0.001)
15  NCTP 0.331 (0.018) 0.064 (0.008) 0.996 (0.001) 0.904 (0.002)
15  CAFHT 0.263 (0.008) 0.084 (0.010) 0.992 (0.001) 0.902 (0.002)
15  CAFHT - PID 0.239 (0.014) 0.106 (0.010) 0.988 (0.002) 0.901 (0.002)
15 CAFHT (theory) 0.429 (0.006) 0.446 (0.012) 1.000 (0.000) 0.945 (0.001)
15 CAFHT (theory) - PID  0.333 (0.006) 0.460 (0.012) 1.000 (0.000) 0.947 (0.002)
25
25 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
25  NCTP 0.368 (0.020) 0.067 (0.009) 0.996 (0.001) 0.905 (0.002)
25  CAFHT 0.259 (0.008) 0.078 (0.010) 0.991 (0.001) 0.902 (0.002)
25  CAFHT - PID 0.253 (0.016) 0.115 (0.011) 0.989 (0.002) 0.904 (0.003)
25  CAFHT (theory) 0.409 (0.005) 0.430 (0.013) 1.000 (0.000) 0.944 (0.002)
25  CAFHT (theory) - PID  0.337 (0.006) 0.468 (0.013) 1.000 (0.000) 0.948 (0.002)
50
50  CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
50 NCTP 0.390 (0.023) 0.061 (0.008) 0.996 (0.001) 0.904 (0.002)
50 CAFHT 0.247 (0.008) 0.070 (0.010) 0.993 (0.001) 0.902 (0.002)
50  CAFHT - PID 0.279 (0.019) 0.092 (0.014) 0.993 (0.001) 0.904 (0.003)
50 CAFHT (theory) 0.389 (0.004) 0.424 (0.013) 1.000 (0.000) 0.943 (0.002)
50  CAFHT (theory) - PID  0.368 (0.005) 0.450 (0.012) 1.000 (0.000) 0.946 (0.002)
100
100 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
100  NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
100 CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)
100 CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)
100 CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)
100  CAFHT (theory) - PID  0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)
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Figure A16. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the data dimensionality. See Table A18 for detailed results and standard errors.
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Table A18. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in
Figure A16.

Simultaneous coverage

Data dimensionality =~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
1
1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
1 CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)
1 CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)
1 CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)
1 CAFHT (theory) - PID  0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)
2
2 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)
2 NCTP 0.475 (0.027) 0.059 (0.007) 0.996 (0.001) 0.903 (0.002)
2 CAFHT 0.247 (0.008) 0.067 (0.009) 0.993 (0.001) 0.902 (0.002)
2 CAFHT - PID 0.317 (0.020) 0.077 (0.011) 0.993 (0.001) 0.902 (0.002)
2 CAFHT (theory) 0.386 (0.003) 0.413 (0.011) 1.000 (0.000) 0.942 (0.001)
2 CAFHT (theory) - PID  0.392 (0.003) 0.440 (0.010) 1.000 (0.000) 0.945 (0.001)
3
3 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
3 NCTP 0.495 (0.028) 0.068 (0.009) 0.996 (0.001) 0.904 (0.002)
3 CAFHT 0.254 (0.008) 0.073 (0.010) 0.992 (0.001) 0.901 (0.002)
3 CAFHT - PID 0.323 (0.021) 0.073 (0.010) 0.993 (0.001) 0.902 (0.002)
3 CAFHT (theory) 0.390 (0.004) 0.412 (0.013) 1.000 (0.000) 0.942 (0.002)
3 CAFHT (theory) - PID  0.392 (0.004) 0.441 (0.012) 1.000 (0.000) 0.944 (0.002)
5
5  CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
5  NCTP 0.529 (0.032) 0.066 (0.009) 0.997 (0.001) 0.906 (0.002)
5  CAFHT 0.267 (0.009) 0.084 (0.012) 0.993 (0.001) 0.904 (0.002)
5  CAFHT-PID 0.346 (0.024) 0.072 (0.010) 0.993 (0.001) 0.903 (0.002)
5  CAFHT (theory) 0.401 (0.004) 0.428 (0.012) 1.000 (0.000) 0.944 (0.001)
5  CAFHT (theory) - PID  0.411 (0.004) 0.449 (0.012) 1.000 (0.000) 0.946 (0.002)
10
10 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)
10 NCTP 0.615 (0.038) 0.061 (0.008) 0.997 (0.001) 0.904 (0.002)
10  CAFHT 0.295 (0.009) 0.076 (0.011) 0.993 (0.001) 0.902 (0.002)
10  CAFHT - PID 0.389 (0.027) 0.078 (0.011) 0.994 (0.001) 0.903 (0.002)
10 CAFHT (theory) 0.435 (0.004) 0.425 (0.011) 1.000 (0.000) 0.943 (0.001)
10 CAFHT (theory) - PID  0.469 (0.004) 0.435 (0.011) 1.000 (0.000) 0.944 (0.001)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
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""""""""""" CFRNN
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Figure A17. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the proportion of hard-to-predict trajectories. See Table A19 for detailed results and standard errors.
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Figure A18. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A20 for detailed
results and standard errors.
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Table A19. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the
corresponding plot in Figure A17.

Simultaneous coverage

Proportion of

hard samples ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
(all data)

0.1
0.1  CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
0.1  NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)
0.1  CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)
0.1  CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)
0.1  CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)
0.1 CAFHT (theory) - PID 0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)

0.2
0.2  CFRNN 2.000 (0.000) 0.996 (0.001) 1.000 (0.000) 0.999 (0.000)
0.2 NCTP 0.720 (0.006) 0.496 (0.008) 1.000 (0.000) 0.898 (0.002)
0.2  CAFHT 0.435 (0.004) 0.496 (0.010) 1.000 (0.000) 0.899 (0.002)
0.2  CAFHT - PID 0.453 (0.004) 0.488 (0.010) 1.000 (0.000) 0.897 (0.002)
0.2  CAFHT (theory) 0.497 (0.004)  0.712 (0.007) 1.000 (0.000) 0.942 (0.001)
0.2 CAFHT (theory) - PID  0.522 (0.004) 0.718 (0.006) 1.000 (0.000) 0.943 (0.001)

0.5
0.5 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)
0.5 NCTP 0.776 (0.005) 0.803 (0.003) 1.000 (0.000) 0.901 (0.002)
0.5  CAFHT 0.614 (0.004) 0.805 (0.005) 1.000 (0.000) 0.902 (0.002)
0.5  CAFHT - PID 0.657 (0.005) 0.803 (0.004) 1.000 (0.000) 0.901 (0.002)
0.5  CAFHT (theory) 0.659 (0.005) 0.888 (0.003) 1.000 (0.000) 0.944 (0.002)
0.5  CAFHT (theory) - PID  0.701 (0.005) 0.883 (0.003) 1.000 (0.000) 0.941 (0.002)
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Table A20. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional
shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher
marginal coverage. See the corresponding plot in Figure A18.

Proportion of hard samples (test data) ~ Method Length Marginal coverage
0.2
0.2  CFRNN 2.000 (0.000)  0.999 (0.000)
02  NCTP 0.437 (0.028)  0.811 (0.003)
0.2  CAFHT 0.289 (0.010)  0.809 (0.003)
0.2  CAFHT - PID 0.333(0.021)  0.810 (0.004)
0.2 CAFHT (theory) 0.438 (0.005)  0.886 (0.002)
0.2 CAFHT (theory) - PID  0.453 (0.005)  0.887 (0.003)
0.3
0.3  CFRNN 2.000 (0.000)  0.998 (0.000)
03  NCTP 0.419 (0.027)  0.715 (0.004)
0.3  CAFHT 0.324 (0.010)  0.717 (0.004)
0.3  CAFHT - PID 0.352 (0.020)  0.717 (0.005)
0.3  CAFHT (theory) 0.478 (0.005)  0.829 (0.003)
0.3  CAFHT (theory) - PID  0.492 (0.005)  0.829 (0.004)
0.4
04  CFRNN 2.000 (0.000)  0.998 (0.000)
04  NCTP 0.432(0.026)  0.619 (0.004)
0.4  CAFHT 0.369 (0.010)  0.624 (0.005)
04  CAFHT - PID 0.382(0.019)  0.622 (0.005)
0.4  CAFHT (theory) 0.524 (0.005)  0.773 (0.004)
0.4  CAFHT (theory) - PID  0.537 (0.005)  0.770 (0.004)
0.5
0.5 CFRNN 2.000 (0.000)  0.997 (0.000)
0.5 NCTP 0.431 (0.027)  0.526 (0.005)
0.5 CAFHT 0.417 (0.011)  0.532 (0.006)
0.5  CAFHT - PID 0.414 (0.018)  0.531 (0.006)
0.5  CAFHT (theory) 0.568 (0.005)  0.719 (0.005)
0.5  CAFHT (theory) - PID  0.581 (0.006)  0.718 (0.005)
0.6
0.6 CFRNN 2.000 (0.000)  0.996 (0.001)
0.6  NCTP 0.451 (0.028)  0.438 (0.006)
0.6 CAFHT 0.460 (0.012)  0.446 (0.008)
0.6 CAFHT - PID 0.441 (0.020)  0.444 (0.008)
0.6 CAFHT (theory) 0.616 (0.006)  0.665 (0.006)
0.6  CAFHT (theory) - PID  0.627 (0.006)  0.663 (0.007)
0.7
0.7 CFRNN 2.000 (0.000)  0.996 (0.001)
0.7  NCTP 0.436 (0.027)  0.340 (0.006)
0.7  CAFHT 0.497 (0.012)  0.347 (0.008)
0.7  CAFHT - PID 0.459 (0.020)  0.343 (0.008)
0.7  CAFHT (theory) 0.655 (0.007)  0.605 (0.007)
0.7 CAFHT (theory) - PID  0.667 (0.007)  0.607 (0.007)
0.8
0.8 CFRNN 2.000 (0.000)  0.996 (0.001)
0.8  NCTP 0.437 (0.027)  0.252 (0.007)
0.8  CAFHT 0.533(0.012)  0.255 (0.009)
0.8 CAFHT - PID 0.484 (0.020)  0.253 (0.009)
0.8  CAFHT (theory) 0.697 (0.007)  0.553 (0.008)
0.8  CAFHT (theory) - PID  0.709 (0.007)  0.553 (0.009)
0.9
09 CFRNN 2.000 (0.000)  0.995 (0.001)
0.9  NCTP 0.432(0.027)  0.157 (0.007)
0.9  CAFHT 0.578 (0.013)  0.168 (0.010)
0.9  CAFHT - PID 0.508 (0.022)  0.168 (0.011)
0.9  CAFHT (theory) 0.742 (0.007)  0.496 (0.009)

0.9  CAFHT (theory) - PID  0.754 (0.007)  0.493 (0.010)
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A5.2. Pedestrian Data

In this subsection, we present the experimental results of the pedestrian data described in 4. Recall that we preprocess the
dataset by adding heteroskedasticity such that 10% of the data are designed to be hard-to-predict by adding a random noise
follows N (0, 07), where 07 o t - noise level. The easy-to-predict data are added a random noise with o7 o t. By default,
10% of the trajectories are set to be hard-to-predict.

Similar to the previous section, we first demonstrate the main result by using the CAFHT method with ACI and multiplicative
scores as the main method to be compared with the benchmark methods CFRNN and NCTP. The results after adding the
dynamic noise profile to the data are presented here for demonstrative purposes.

A5.2.1. MAIN RESULTS — COMPARING CFRNN, NCTP, AND THE MAIN IMPLEMENTATION OF CAFHT

Figure 5 and Table A21 show the average performance on pedestrian heterogeneous trajectories of prediction bands
constructed by different methods, as a function of the noise level. The noise level is varied from 1.5 to 5. All methods
achieve 90% simultaneous marginal coverage. Our method (CAFHT) leads to more informative bands with lower average
width and higher conditional coverage.

The results of another experiment in which 20% of the trajectories are hard-to-predict are presented in Figure A19 and
Table A22. Again, we observe that even though a larger percentage of hard trajectories on the pedestrian data can increase
the empirical conditional coverage of all methods, CAFHT maintains clear advantages relative to the baselines.

Additionally, Figure A20 and Table A23 present results for varying numbers of trajectories in the training and calibration
sets, from 200 to 1000, with the noise level set at 3 and the percentage of hard trajectories set to 10%. Again, CAFHT
outperforms the other benchmarks.

Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 1.00 2.00
0.75 0.75 1.50 Method
CFRNN
0.50 0.50 1.00
NCTP
0.25 0.25 0.50 CAFHT
0.00 0.00 0.00
15 20 25 30 35 40 45 50 15 20 25 3.0 35 40 45 50 15 20 25 3.0 35 4.0 45 50

Noise level for hard samples

Figure A19. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level. 20% of the trajectories are set to be hard-to-predict.
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Figure A20. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the total number of training and calibration trajectories.
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Table A21. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. 10% of the trajectories are
set to be hard-to-predict. See the corresponding plot in Figure 5.

Coverage

Noise level for hard samples ~ Method Length Marginal Conditional-easy ~ Conditional-hard
1

1.0 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

1.0 NCTP 0.172 (0.001)  0.898 (0.003)  0.898 (0.003) 0.901 (0.006)

1.0 CAFHT  0.201(0.001)  0.902(0.003)  0.901 (0.003) 0.912 (0.005)
15

1.5 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

1.5 NCTP 0.185(0.002)  0.902 (0.003)  0.941 (0.002) 0.561 (0.011)

1.5 CAFHT  0.208 (0.001)  0.903 (0.003)  0.918 (0.003) 0.776 (0.009)
2

2.0 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

2.0 NCTP 0.204 (0.002)  0.903 (0.002)  0.973 (0.002) 0.296 (0.012)

2.0 CAFHT 0216 (0.001)  0.903 (0.003)  0.932(0.002) 0.649 (0.011)
2.5

2.5 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

2.5 NCTP 0.224 (0.003)  0.900 (0.003)  0.984 (0.001) 0.171 (0.011)

2.5 CAFHT  0.225(0.001)  0.904 (0.003)  0.944 (0.002) 0.556 (0.013)
3

3.0 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

3.0 NCTP 0.247 (0.004)  0.900 (0.003)  0.989 (0.001) 0.125 (0.012)

3.0 CAFHT  0.232(0.001)  0.903(0.003)  0.949 (0.002) 0.492 (0.013)
3.5

3.5 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

3.5 NCTP 0.270 (0.005)  0.900 (0.002)  0.992 (0.001) 0.097 (0.011)

3.5 CAFHT  0.239(0.002)  0.903(0.003)  0.955(0.002) 0.445 (0.014)
4

40 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

40 NCTP 0.295 (0.007)  0.900 (0.002)  0.993 (0.001) 0.089 (0.011)

40 CAFHT  0.244(0.002)  0.902 (0.003)  0.958 (0.002) 0.411 (0.014)
4.5

45 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

45 NCTP 0.318 (0.008)  0.900 (0.002)  0.993 (0.001) 0.088 (0.011)

45 CAFHT  0.250(0.002)  0.901 (0.003)  0.961 (0.002) 0.383 (0.014)
5

5.0 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

50 NCTP 0.341 (0.010)  0.900 (0.002)  0.993 (0.001) 0.092 (0.012)

50 CAFHT  0.257(0.002)  0.901(0.003)  0.963 (0.002) 0.364 (0.014)
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Table A22. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. 20% of the trajectories are
set to be hard-to-predict. See the corresponding plot in Figure A19.

Coverage
Noise level for hard samples ~ Method Length Marginal Conditional-easy ~ Conditional-hard
1.5
. CFRNN  2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

1.5 NCTP 0.197 (0.002)  0.902 (0.003)  0.963 (0.002) 0.654 (0.010)

1.5 CAFHT  0.214(0.001)  0.902(0.003)  0.930 (0.003) 0.790 (0.007)
2

2.0 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

20 NCTP 0.239 (0.002)  0.905 (0.003)  0.992 (0.001) 0.552 (0.010)

20 CAFHT  0.228 (0.001)  0.897 (0.003)  0.948 (0.002) 0.695 (0.009)
2.5

2.5 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

2.5 NCTP 0.289 (0.002)  0.905 (0.002)  0.998 (0.000) 0.529 (0.011)

2.5 CAFHT  0.243 (0.001)  0.901 (0.003)  0.963 (0.002) 0.651 (0.010)
3

3.0 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

3.0 NCTP 0.341 (0.003)  0.906 (0.002)  0.999 (0.000) 0.527 (0.011)

3.0 CAFHT  0.258 (0.002)  0.899 (0.003)  0.969 (0.002) 0.620 (0.010)
35

3.5 CFRNN  2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

35 NCTP 0.392 (0.003)  0.905 (0.002)  0.999 (0.000) 0.521 (0.011)

35 CAFHT  0.274(0.002)  0.905(0.003)  0.977 (0.001) 0.615 (0.011)
4

40 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

40  NCTP 0.442 (0.004)  0.905 (0.002)  0.999 (0.000) 0.522 (0.011)

40 CAFHT  0.286(0.002)  0.903(0.003)  0.979 (0.002) 0.596 (0.011)
4.5

45 CFRNN  2.000(0.000)  1.000(0.000)  1.000 (0.000) 1.000 (0.000)

45 NCTP 0.490 (0.004)  0.905 (0.002)  1.000 (0.000) 0.520 (0.011)

45 CAFHT  0.298 (0.002)  0.902(0.003)  0.982(0.001) 0.579 (0.012)
5

5.0 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)

50 NCTP 0.537 (0.004)  0.905 (0.002)  1.000 (0.000) 0.522 (0.011)

5.0 CAFHT  0.307 (0.002)  0.901 (0.003)  0.984 (0.001) 0.562 (0.012)

Table A23. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as
a function of the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher
conditional coverage. See the corresponding plot in Figure A20.

Coverage
Sample size ~ Method Length Marginal Conditional-easy ~ Conditional-hard
200
200 CFRNN  2.000(0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
200 NCTP 0.388 (0.009)  0.919 (0.004)  0.986 (0.002) 0.335(0.023)
200 CAFHT 0.321 (0.006) 0.961 (0.004) 0.979 (0.003) 0.810 (0.018)
500
500 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
500  NCTP 0.308 (0.006)  0.912(0.003)  0.989 (0.001) 0.241 (0.017)
500 CAFHT  0.249(0.002)  0.921(0.004)  0.961 (0.003) 0.572 (0.016)
1000
1000 CFRNN  2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
1000  NCTP 0.247 (0.004)  0.900 (0.003)  0.989 (0.001) 0.125 (0.012)
1000 CAFHT 0.236 (0.002) 0.911 (0.003) 0.955 (0.002) 0.523 (0.014)
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A5.2.2. SUPPLEMENTARY RESULTS — COMPARING DIFFERENT CAFHT IMPLEMENTATIONS
CAFHT - MULTIPLICATIVE SCORES

The results of CAFHT with multiplicative conformity scores (6) are first presented in Figures A21-A22 and Tables A24-A25.
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Figure A21. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the total number of training and calibration trajectories.

Table A24. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as
a function of the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher
conditional coverage. See the corresponding plot in Figure A21.

Coverage
Sample size ~ Method Length Marginal Conditional-easy ~ Conditional-hard
200
200 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
200 NCTP 0.388 (0.009)  0.919 (0.004)  0.986 (0.002) 0.335 (0.023)
200 CAFHT 0.321 (0.006) 0.961 (0.004) 0.979 (0.003) 0.810 (0.018)
200 CAFHT - PID 0.266 (0.005) 0.956 (0.005) 0.980 (0.003) 0.741 (0.022)
200 CAFHT (theory) 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
200 CAFHT (theory) - PID 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
500
500 CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
500  NCTP 0.308 (0.006)  0.912(0.003)  0.989 (0.001) 0.241 (0.017)
500 CAFHT 0.249 (0.002) 0.921 (0.004) 0.961 (0.003) 0.572 (0.016)
500 CAFHT - PID 0.213 (0.003) 0.925 (0.004) 0.965 (0.003) 0.580 (0.018)
500 CAFHT (theory) 0.338 (0.004) 0.987 (0.001) 0.995 (0.001) 0.911 (0.008)
500  CAFHT (theory) - PID  0.284 (0.004)  0.989 (0.001)  0.998 (0.000) 0.910 (0.008)
1000
1000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
1000  NCTP 0.247 (0.004) 0.900 (0.003) 0.989 (0.001) 0.125 (0.012)
1000 CAFHT 0.236 (0.002) 0.911 (0.003) 0.955 (0.002) 0.523 (0.014)
1000 CAFHT - PID 0.194 (0.001) 0.912 (0.003) 0.956 (0.002) 0.527 (0.017)
1000  CAFHT (theory) 0.272 (0.001)  0.962 (0.002)  0.986 (0.001) 0.751 (0.010)
1000 CAFHT (theory) - PID 0.222 (0.001) 0.964 (0.001) 0.987 (0.001) 0.765 (0.009)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
Method
CFRNN
NCTP
0.50 0.50 1.00 CAFHT
CAFHT - PID
0.25 0.25 0.50 N -6~ CAFHT (theory)
0.00 0.00 0.00 - i -~ CAFHT (theory) - PID
15 20 25 3.0354.04.5.0 15 20 25 3.0 354.04.5.0 15 20 25 3.0354.04.5.0

Noise level for hard samples

Figure A22. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level.
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Table A25. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot
in Figure A22.

Coverage
Noise level for hard samples Method Length Marginal Conditional-easy Conditional-hard
1
1.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
1.0 NCTP 0.172 (0.001)  0.898 (0.003)  0.898 (0.003) 0.901 (0.006)
1.0 CAFHT 0.201 (0.001)  0.902 (0.003)  0.901 (0.003) 0.912 (0.005)
1.0 CAFHT - PID 0.159 (0.001)  0.906 (0.003)  0.906 (0.003) 0.909 (0.005)
1.0 CAFHT (theory) 0.226 (0.001)  0.955(0.002)  0.955 (0.002) 0.959 (0.004)
1.0 CAFHT (theory) - PID  0.174 (0.001)  0.957 (0.002)  0.956 (0.002) 0.960 (0.004)
1.5
1.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
1.5 NCTP 0.185(0.002)  0.902 (0.003)  0.941 (0.002) 0.561 (0.011)
1.5 CAFHT 0.208 (0.001)  0.903 (0.003)  0.918 (0.003) 0.776 (0.009)
1.5 CAFHT - PID 0.168 (0.001)  0.909 (0.003)  0.927 (0.003) 0.754 (0.011)
1.5  CAFHT (theory) 0.235(0.001)  0.956 (0.002)  0.964 (0.001) 0.884 (0.006)
1.5  CAFHT (theory) - PID  0.184 (0.001)  0.956 (0.002)  0.967 (0.001) 0.858 (0.008)
2
2.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
20 NCTP 0.204 (0.002)  0.903 (0.002)  0.973 (0.002) 0.296 (0.012)
2.0 CAFHT 0.216 (0.001)  0.903 (0.003)  0.932 (0.002) 0.649 (0.011)
2.0  CAFHT - PID 0.175 (0.001) ~ 0.909 (0.003)  0.940 (0.002) 0.638 (0.015)
2.0  CAFHT (theory) 0.245(0.001)  0.957 (0.002)  0.974 (0.001) 0.805 (0.008)
2.0  CAFHT (theory) - PID  0.197 (0.001)  0.949 (0.010)  0.965 (0.010) 0.807 (0.014)
2.5
2.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
2.5 NCTP 0.224 (0.003)  0.900 (0.003)  0.984 (0.001) 0.171 (0.011)
2.5  CAFHT 0.225(0.001)  0.904 (0.003)  0.944 (0.002) 0.556 (0.013)
2.5 CAFHT - PID 0.183 (0.001)  0.905 (0.003)  0.944 (0.003) 0.563 (0.018)
2.5  CAFHT (theory) 0.257 (0.001)  0.958 (0.002)  0.981 (0.001) 0.759 (0.009)
2.5  CAFHT (theory) - PID  0.208 (0.001)  0.960 (0.001)  0.980 (0.001) 0.791 (0.008)
3
3.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
3.0 NCTP 0.247 (0.004)  0.900 (0.003)  0.989 (0.001) 0.125 (0.012)
3.0 CAFHT 0.232(0.001)  0.903 (0.003)  0.949 (0.002) 0.492 (0.013)
3.0 CAFHT-PID 0.193 (0.002)  0.905 (0.003)  0.953 (0.003) 0.485 (0.018)
3.0 CAFHT (theory) 0.268 (0.001)  0.958 (0.002)  0.984 (0.001) 0.733 (0.010)
3.0  CAFHT (theory) - PID  0.218 (0.001)  0.960 (0.001)  0.985 (0.001) 0.741 (0.009)
35
3.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
35 NCTP 0.270 (0.005)  0.900 (0.002)  0.992 (0.001) 0.097 (0.011)
3.5 CAFHT 0.239(0.002)  0.903 (0.003)  0.955 (0.002) 0.445 (0.014)
3.5 CAFHT - PID 0.204 (0.003)  0.908 (0.003)  0.963 (0.002) 0.429 (0.019)
3.5  CAFHT (theory) 0.278 (0.001)  0.959 (0.002)  0.987 (0.001) 0.717 (0.011)
3.5  CAFHT (theory) - PID  0.230 (0.001)  0.960 (0.001)  0.988 (0.001) 0.718 (0.010)
4
40 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
40 NCTP 0.295 (0.007)  0.900 (0.002)  0.993 (0.001) 0.089 (0.011)
40 CAFHT 0.244 (0.002)  0.902 (0.003)  0.958 (0.002) 0.411 (0.014)
4.0 CAFHT-PID 0.218 (0.004)  0.907 (0.003)  0.968 (0.002) 0.371 (0.019)
4.0  CAFHT (theory) 0.286 (0.002)  0.958 (0.002)  0.988 (0.001) 0.694 (0.012)
4.0  CAFHT (theory) - PID  0.242(0.001)  0.960 (0.002)  0.991 (0.001) 0.692 (0.011)
4.5
45  CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
45 NCTP 0.318 (0.008)  0.900 (0.002)  0.993 (0.001) 0.088 (0.011)
4.5  CAFHT 0.250 (0.002)  0.901 (0.003)  0.961 (0.002) 0.383 (0.014)
4.5 CAFHT - PID 0.229 (0.005)  0.902 (0.003)  0.970 (0.003) 0.309 (0.016)
4.5  CAFHT (theory) 0.295 (0.002)  0.958 (0.002)  0.990 (0.001) 0.677 (0.012)
4.5  CAFHT (theory) - PID  0.254 (0.002)  0.960 (0.002)  0.991 (0.001) 0.689 (0.013)
5
5.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
50 NCTP 0.341 (0.010)  0.900 (0.002)  0.993 (0.001) 0.092 (0.012)
5.0 CAFHT 0.257 (0.002)  0.901 (0.003)  0.963 (0.002) 0.364 (0.014)
5.0 CAFHT - PID 0.244 (0.007)  0.904 (0.003)  0.974 (0.002) 0.293 (0.017)
5.0  CAFHT (theory) 0.303 (0.002)  0.957 (0.002)  0.991 (0.001) 0.663 (0.011)
5.0  CAFHT (theory) - PID  0.266 (0.002)  0.958 (0.002)  0.993 (0.001) 0.656 (0.013)

CAFHT — ADDITIVE SCORES

The results of CAFHT with additive conformity scores (3) are presented in Figures A23—A24 and Tables A26-A27.
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Simultaneous marginal coverage Simultaneous conditional coverage Average width
2.00 Method
150 CFRNN
NCTP
1.00 CAFHT
CAFHT - PID
025 025 0:50 -~ CAFHT (theory)
0.00 0.00 0.00 -~ CAFHT (theory) - PID
200 500 1000 200 500 1000 200 500 1000

Sample size

Figure A23. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the total number of training and calibration trajectories.

Table A26. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as
a function of the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher
conditional coverage. See the corresponding plot in Figure A23.

Coverage
Sample size Method Length Marginal Conditional-easy Conditional-hard
200
200  CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
200 NCTP 0.388 (0.009)  0.919 (0.004)  0.986 (0.002) 0.335 (0.023)
200  CAFHT 0.348 (0.009)  0.964 (0.003)  0.994 (0.001) 0.700 (0.024)
200  CAFHT - PID 0.278 (0.008)  0.961 (0.004)  0.991 (0.002) 0.699 (0.025)
200  CAFHT (theory) 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
200  CAFHT (theory) - PID  2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
500
500  CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
500 NCTP 0.308 (0.006)  0.912(0.003)  0.989 (0.001) 0.241 (0.017)
500  CAFHT 0.246 (0.003)  0.919 (0.004)  0.982 (0.002) 0.366 (0.019)
500 CAFHT - PID 0.198 (0.002) 0.920 (0.004) 0.977 (0.002) 0.418 (0.018)
500  CAFHT (theory) 0.383 (0.005)  0.988 (0.001) 1.000 (0.000) 0.886 (0.010)
500  CAFHT (theory) - PID  0.304 (0.005)  0.987 (0.001)  1.000 (0.000) 0.876 (0.011)
1000
1000  CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
1000  NCTP 0.247 (0.004)  0.900 (0.003)  0.989 (0.001) 0.125 (0.012)
1000 CAFHT 0.228 (0.002)  0.912 (0.003)  0.983 (0.002) 0.296 (0.015)
1000 CAFHT - PID 0.185 (0.001) 0.911 (0.003) 0.974 (0.002) 0.357 (0.015)
1000  CAFHT (theory) 0.287 (0.002)  0.964 (0.002)  0.999 (0.000) 0.658 (0.013)
1000  CAFHT (theory) - PID  0.225(0.002)  0.959 (0.002)  0.994 (0.001) 0.645 (0.013)
Simultaneous marginal coverage Simultaneous conditional coverage Average width
1.00 1.00 2.00 Method
0.75 0.75 1.50 CFRNN
NCTP
0.50 0.50 1.00 CAFHT
CAFHT - PID
0.25 0.25 0.50 - ~ CAFHT (theory)
0.00 0.00 0.00 N -~ CAFHT (theory) - PID
15 20 25 3.0 354.04.5.0 15 20 25 3.0 354.045%5.0 15 20 25 3.0 354.045.0

Noise level for hard samples

Figure A24. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level.
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Table A27. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot
in Figure A24.

Coverage
Noise level for hard samples ~ Method Length Marginal Conditional-easy ~ Conditional-hard
1
1.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
1.0  NCTP 0.172 (0.001)  0.898 (0.003)  0.898 (0.003) 0.901 (0.006)
1.0 CAFHT 0.180 (0.001)  0.907 (0.003)  0.907 (0.004) 0.907 (0.005)
1.0  CAFHT - PID 0.141 (0.001) ~ 0.901 (0.003)  0.901 (0.003) 0.901 (0.006)
1.0 CAFHT (theory) 0.197 (0.001)  0.958 (0.002)  0.958 (0.002) 0.961 (0.003)
1.0 CAFHT (theory) - PID  0.158 (0.001)  0.955(0.002)  0.954 (0.002) 0.957 (0.004)
15
1.5 CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
1.5 NCTP 0.185(0.002)  0.902 (0.003)  0.941 (0.002) 0.561 (0.011)
1.5  CAFHT 0.188 (0.001)  0.908 (0.003)  0.934 (0.003) 0.681 (0.010)
1.5  CAFHT - PID 0.150 (0.001) ~ 0.903 (0.003)  0.926 (0.003) 0.703 (0.010)
1.5  CAFHT (theory) 0.208 (0.001)  0.960 (0.002)  0.975 (0.001) 0.827 (0.007)
1.5  CAFHT (theory) - PID  0.167 (0.001)  0.953 (0.002)  0.967 (0.001) 0.840 (0.007)
2
2.0 CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
2.0 NCTP 0.204 (0.002)  0.903 (0.002)  0.973 (0.002) 0.296 (0.012)
2.0  CAFHT 0.199 (0.001)  0.906 (0.003)  0.957 (0.002) 0.463 (0.011)
2.0  CAFHT - PID 0.160 (0.001)  0.904 (0.003)  0.946 (0.002) 0.535 (0.012)
2.0  CAFHT (theory) 0.228 (0.001)  0.961 (0.002)  0.990 (0.001) 0.702 (0.011)
2.0  CAFHT (theory)-PID  0.182(0.001)  0.955(0.002)  0.980 (0.001) 0.737 (0.010)
2.5
2.5 CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
2.5 NCTP 0.224 (0.003)  0.900 (0.003)  0.984 (0.001) 0.171 (0.011)
2.5  CAFHT 0.209 (0.001)  0.904 (0.003)  0.971 (0.002) 0.323 (0.013)
2.5  CAFHT - PID 0.170 (0.001)  0.901 (0.003)  0.959 (0.002) 0.397 (0.012)
2.5  CAFHT (theory) 0.254 (0.002)  0.961 (0.002)  0.996 (0.000) 0.645 (0.012)
2.5  CAFHT (theory) - PID  0.200 (0.001)  0.956 (0.002)  0.988 (0.001) 0.673 (0.010)
3
3.0 CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
3.0 NCTP 0.247 (0.004)  0.900 (0.003)  0.989 (0.001) 0.125 (0.012)
3.0 CAFHT 0.222 (0.002)  0.907 (0.003)  0.981 (0.002) 0.259 (0.014)
3.0 CAFHT - PID 0.180 (0.001)  0.902 (0.003)  0.969 (0.002) 0.320 (0.014)
3.0  CAFHT (theory) 0.280 (0.002)  0.960 (0.002)  0.999 (0.000) 0.621 (0.013)
3.0  CAFHT (theory) - PID  0.219 (0.001)  0.955(0.002)  0.993 (0.001) 0.615 (0.013)
35
3.5 CFRNN 2.000 (0.000)  1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
35 NCTP 0.270 (0.005)  0.900 (0.002)  0.992 (0.001) 0.097 (0.011)
3.5 CAFHT 0.233(0.002)  0.905 (0.003)  0.985 (0.002) 0.214 (0.014)
3.5 CAFHT - PID 0.191 (0.002)  0.902 (0.003)  0.975 (0.002) 0.271 (0.015)
3.5  CAFHT (theory) 0.305 (0.003)  0.959 (0.002)  0.999 (0.000) 0.605 (0.014)
3.5  CAFHT (theory) - PID  0.240 (0.002)  0.956 (0.002)  0.996 (0.001) 0.608 (0.013)
4
40  CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
40 NCTP 0.295 (0.007)  0.900 (0.002)  0.993 (0.001) 0.089 (0.011)
40  CAFHT 0.246 (0.003)  0.904 (0.003)  0.986 (0.002) 0.188 (0.015)
40 CAFHT - PID 0.203 (0.003)  0.904 (0.003)  0.981 (0.002) 0.233 (0.015)
4.0  CAFHT (theory) 0.326 (0.003)  0.958 (0.002) 1.000 (0.000) 0.587 (0.015)
4.0  CAFHT (theory) - PID  0.261 (0.002)  0.958 (0.002)  0.998 (0.000) 0.603 (0.013)
4.5
45  CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
45 NCTP 0.318 (0.008)  0.900 (0.002)  0.993 (0.001) 0.088 (0.011)
45  CAFHT 0.255 (0.004)  0.904 (0.003)  0.988 (0.002) 0.171 (0.016)
4.5  CAFHT - PID 0.213 (0.004)  0.901 (0.003)  0.982 (0.002) 0.192 (0.015)
4.5  CAFHT (theory) 0.351 (0.003)  0.958 (0.002) 1.000 (0.000) 0.588 (0.014)
4.5  CAFHT (theory) - PID  0.283 (0.002)  0.959 (0.002)  0.999 (0.000) 0.606 (0.014)
5
5.0 CFRNN 2.000 (0.000)  1.000 (0.000)  1.000 (0.000) 1.000 (0.000)
5.0 NCTP 0.341 (0.010)  0.900 (0.002)  0.993 (0.001) 0.092 (0.012)
5.0 CAFHT 0.269 (0.004)  0.904 (0.003)  0.989 (0.002) 0.168 (0.017)
5.0 CAFHT - PID 0.224 (0.004)  0.899 (0.003)  0.983 (0.002) 0.169 (0.016)
5.0  CAFHT (theory) 0.373 (0.003)  0.957 (0.002)  1.000 (0.000) 0.580 (0.014)
5.0  CAFHT (theory) - PID  0.304 (0.003)  0.958 (0.002)  0.999 (0.000) 0.596 (0.015)
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A5.3. Comparing ACI and CAFHT

As previously explained, the objectives of CAFHT and ACI are very different. CAFHT leverages information from multiple
exchangeable trajectories to construct prediction bands for a trajectories from the same population, ensuring simultaneous
coverage as per Equation (1). By contrast, ACI constructs an online prediction band for a single trajectory, aiming to achieve
long-term average coverage.

Consider a motion planning scenario: CAFHT’s objective is to maintain most vehicles within their predicted zones
throughout a specified period, ensuring a high probability of reaching their destinations without incident. On the other hand,
ACI aims for asymptotic average coverage, which tolerates frequent, albeit temporary, deviations from the predicted path
for each vehicle. In practical terms, this means each vehicle might exit and re-enter the ACI-predicted region numerous
times, spending about 90% of the time within the prediction band on average. If exiting these regions could lead to severe
accidents, CAFHT’s approach would ensure that 90% (or any pre-specified percentage) of vehicles safely arrive at their
destinations, whereas ACI’s approach could potentially result in none of the vehicles reaching their destinations safely.

This concept is demonstrated in Figure A25, which contrasts the prediction bands created using ACI and CAFHT for two
pedestrian trajectories. The figure clearly shows that ACI does not fully encompass the trajectories, thus failing to meet our
objective of achieving simultaneous coverage.

Easy-to—predict Hard-to—predict

0.8

Method

ACI
CAFHT

Value

-- Predicted
— Real

(Normalized) position

0 5 10 15 0 5 10 15
Time
Figure A25. Forecasting bands constructed using ACI and CAFHT, for the heterogeneous pedestrian trajectories. Red circles indicate
scenarios where the real values exceed ACI prediction bands.

Figure A26 and Table A28 provide additional insight, reporting on experiments that replicate the analysis from Figure 3 but
include results from ACI. Unlike CAFHT and the two other benchmark methods, ACI is unable to meet the simultaneous
marginal coverage guarantee.

Simultaneous marginal coverage Simultaneous conditional coverage Average width

1.00 1.00 2.00

"""""""""""""""""""""""" Method
0.75 0.75 1.50 CERNN
0.50 0.50 1.00 NCTP
0.25 0.25 0.50 CAFHT

—— ACI
0.00 0.00 0.00
200 500 1000 2000 500010000 200 500 1000 2000 500010000 200 500 1000 2000 500010000
Sample size

Figure A26. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories.
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Table A28. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a
function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot
in Figure A26.

Simultaneous coverage

Sample size ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

200
200 CFRNN  2.000 (0.000)  0.939 (0.007) 1.000 (0.000) 0.994 (0.001)
200 NCTP 0.687 (0.035)  0.260 (0.024) 0.992 (0.002) 0.919 (0.004)
200 CAFHT  0.202 (0.003)  0.704 (0.017) 0.944 (0.005) 0.920 (0.005)
200 ACI 0.073 (0.001)  0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
500
500 CFRNN  2.000 (0.000)  0.969 (0.005) 1.000 (0.000) 0.997 (0.000)
500 NCTP 0.467 (0.021)  0.196 (0.019) 0.994 (0.002) 0.916 (0.003)
500 CAFHT  0.182(0.002)  0.682(0.016) 0.934 (0.003) 0.910 (0.004)
500  ACI 0.069 (0.001)  0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
1000
1000 CFRNN  2.000(0.000)  0.992 (0.002) 1.000 (0.000) 0.999 (0.000)
1000  NCTP 0.343(0.018)  0.093 (0.012) 0.992 (0.001) 0.901 (0.003)
1000 CAFHT  0.174 (0.001)  0.679 (0.012) 0.934 (0.003) 0.908 (0.003)
1000 ACI 0.065 (0.001)  0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
2000
2000 CFRNN  2.000 (0.000)  0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
2000 NCTP 0.308 (0.014)  0.060 (0.008) 0.996 (0.001) 0.903 (0.002)
2000 CAFHT  0.163 (0.001)  0.656(0.010) 0.926 (0.002) 0.899 (0.003)
2000  ACI 0.063 (0.000)  0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
5000
5000 CFRNN  2.000 (0.000)  0.998 (0.001) 1.000 (0.000) 1.000 (0.000)
5000 NCTP 0.244 (0.013)  0.033 (0.006) 0.997 (0.001) 0.900 (0.002)
5000 CAFHT  0.158 (0.001)  0.655 (0.007) 0.925 (0.002) 0.899 (0.002)
5000  ACI 0.059 (0.000)  0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
10000
10000 CFRNN  2.000(0.000)  0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
10000  NCTP 0.235(0.011)  0.026 (0.004) 0.998 (0.000) 0.900 (0.001)
10000 CAFHT  0.152(0.001)  0.680 (0.007) 0.928 (0.001) 0.903 (0.002)
10000 ACI 0.057 (0.000)  0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

AS5.4. Comparing the Multiplicative Scores and the Additive Scores

The CAFHT prediction bands are constructed in two stages: initially, the underlying ACI bands are established, followed
by adding a conformalized correction term. When corrections employ the additive nonconformity scores specified in
Equation (A20), the heterogeneity of the trajectories is managed exclusively via the ACI bands. In contrast, using the
multiplicative scores from Equation (A23) allows both components to adapt to heteroscedasticity, though the primary
adjustment is through ACIL.

More precisely, multiplicative scores impose proportionally wider margins of error on broader ACI intervals than on narrower
ones. Hence, while adjusting for heteroscedasticity is chiefly the responsibility of ACI, the use of multiplicative scores arises
from the recognition that ACI residuals might still display heteroscedastic traits. In such instances, multiplicative scores are
better suited to capturing this variability than their additive counterparts.

As shown in Figure A27, additive scores impose a constant correction term (the empirical quantile Q) on ACl intervals. In
comparison, multiplicative scores adjust the ACI bands by a non-constant amount (the empirical quantile ) multiplied by
the size of the ACI bands).

In line with established conformal inference methodologies, we prefer to delegate the more complex “adaptability” func-
tions to the underlying machine learning model (in this case, the forecaster integrated with ACI). The next phase of
conformalization simply involves a clear, straightforward adjustment to secure the simultaneous marginal coverage guar-
antee. Nonetheless, future developments might introduce more intricate scoring designs, potentially enhancing empirical
performance but at the expense of simplicity in the methodology.

Figure A28 presents a side-by-side comparison of CAFHT using multiplicative scores, CAFHT using additive scores, NCTP,
and CFRNN for two example heterogeneous pedestrian trajectories. The plot demonstrates CAFHT, with both scoring
approaches, effectively manages heterogeneity, though the multiplicative scores offer superior adaptability. In contrast,
NCTP and CFRNN do not adjust to heterogeneity. The empirical quantile Q for this experiment is recorded in Table A29.
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Figure A27. Forecasting bands constructed using ACI and CAFHT, for the heterogeneous pedestrian trajectories. Red circles indicate
scenarios where the real values exceed ACI prediction bands.
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Figure A28. Forecasting bands constructed using different methods for the heterogeneous pedestrian trajectories.

Table A29. Empirical quantiles obtained from each method in Figure A28.

Method  Empirical quantile Q Remark

CFRNN 00 Q = oo for every time step.

NCTP 05268 Q 19 multiplied with the standard error at each ti_rn§ step
before adding or subtracting from the point prediction.
Qis multiplied with the width of the ACI bands at each
time step before adding or subtracting from the ACI bands.
CAFHT - additive ~ 0.2058 Q is directly added or subtracted from the ACI bands.

CAFHT - multiplicative ~ 0.5883

AS.S. Prediction Bands at Higher Coverage Levels

This section presents the results of additional experiments conducted using oo = 0.05 and o = 0.01, seeking simultaneous
coverage at the 95% level and the 99% level respectively. We continue to use the main implementation of the CAFHT
method, which utilizes multiplicative scores based on the ACI algorithm and optimizes the learning rate through data
splitting.

When higher coverage levels are employed, it is necessary to increase the number of samples in the calibration data to ensure
that the adjusted empirical quantile level (1 — a)(1 — 1/|Dcy|) remains below 1. In our experiments, we cap the adjusted
level at 1 whenever it exceeds this value.

EXPERIMENTS WITH 95% COVERAGE LEVEL

Figure A29 shows that all methods achieve 95% simultaneous marginal coverage. Our method (CAFHT) leads to more
informative bands with lower average width and higher conditional coverage.
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Figure A29. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories (25% are randomly assigned to calibration set). The target simultaneous marginal
coverage level is 95%. See Table A30 for detailed results and standard errors.

Table A30. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.
Target simultaneous marginal coverage level is 95%. See corresponding plot in Figure A29.

Simultaneous coverage

Sample size ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

200
200 CFRNN  2.000 (0.000)  0.940 (0.006) 1.000 (0.000) 0.994 (0.001)
200 NCTP 1.129 (0.026)  0.770 (0.018) 1.000 (0.000) 0.978 (0.002)
200 CAFHT  0.255(0.003)  0.816 (0.013) 0.978 (0.003) 0.962 (0.003)
500
500 CFRNN  2.000 (0.000)  0.976 (0.003) 1.000 (0.000) 0.998 (0.000)
500 NCTP 0.676 (0.010)  0.602 (0.018) 1.000 (0.000) 0.961 (0.002)
500 CAFHT  0.221(0.002)  0.748 (0.013) 0.972 (0.002) 0.949 (0.003)
1000
1000 CFRNN  2.000(0.000)  0.985 (0.002) 1.000 (0.000) 0.999 (0.000)
1000 NCTP 0.577 (0.007)  0.568 (0.014) 1.000 (0.000) 0.956 (0.002)
1000 CAFHT  0.209(0.002)  0.745 (0.010) 0.973 (0.002) 0.950 (0.002)
2000
2000 CFRNN  2.000 (0.000)  0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
2000 NCTP 0.516 (0.005)  0.511 (0.012) 1.000 (0.000) 0.950 (0.001)
2000 CAFHT 0203 (0.001)  0.749 (0.009) 0.976 (0.001) 0.953 (0.002)
5000
5000 CFRNN  2.000 (0.000)  0.998 (0.001) 1.000 (0.000) 1.000 (0.000)
5000 NCTP 0.460 (0.003)  0.496 (0.009) 1.000 (0.000) 0.949 (0.001)
5000 CAFHT  0.191(0.001)  0.729 (0.008) 0.974 (0.001) 0.949 (0.001)
10000
10000 CFRNN  2.000 (0.000)  0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
10000  NCTP 0.433 (0.004)  0.513 (0.007) 1.000 (0.000) 0.951 (0.001)
10000 CAFHT  0.187 (0.001)  0.729 (0.007) 0.974 (0.001) 0.949 (0.001)

EXPERIMENTS WITH 99% COVERAGE LEVEL

When seeking a 99% coverage level, using a relatively small sample size will result in the adjusted level being very close to,
or equal to, 1, mapping the empirical quantile Q to infinity. Consequently, as depicted in Figure A30, NCTP and CAFHT
generate regions that span the entire space [—1, 1] when the sample size is small. CAFHT requires slightly more calibration
samples than NCTP to produce practically useful prediction regions when employing a data-splitting strategy. When the
prediction bands are practically useful, CAFHT tends to produce narrower and thus more informative results compared to
NCTP while maintaining similarly high conditional coverage.
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Figure A30. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. Target simultaneous marginal coverage level is 99%. See Table A31 for detailed
results and standard errors.

Table A31. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.
Target simultaneous marginal coverage level is 99%. See corresponding plot in Figure A30.

Simultaneous coverage

Sample size ~ Method Average width  Conditional-hard ~ Conditional-easy =~ Marginal

200
200 CFRNN  2.000 (0.000)  0.940 (0.006) 1.000 (0.000) 0.994 (0.001)
200 NCTP 2.000 (0.000)  0.940 (0.006) 1.000 (0.000) 0.994 (0.001)
200 CAFHT  2.000(0.000)  0.940 (0.006) 1.000 (0.000) 0.994 (0.001)
500
500 CFRNN  2.000 (0.000)  0.976 (0.003) 1.000 (0.000) 0.998 (0.000)
500 NCTP 2.000 (0.000)  0.976 (0.003) 1.000 (0.000) 0.998 (0.000)
500 CAFHT  2.000 (0.000)  0.976 (0.003) 1.000 (0.000) 0.998 (0.000)
1000
1000 CFRNN  2.000(0.000)  0.985 (0.002) 1.000 (0.000) 0.999 (0.000)
1000  NCTP 0.846 (0.013)  0.950 (0.005) 1.000 (0.000) 0.995 (0.000)
1000 CAFHT  2.000 (0.000)  0.985 (0.002) 1.000 (0.000) 0.999 (0.000)
2000
2000 CFRNN  2.000 (0.000)  0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
2000 NCTP 0.673 (0.008)  0.912 (0.005) 1.000 (0.000) 0.991 (0.001)
2000 CAFHT  0.325(0.003)  0.914 (0.007) 1.000 (0.000) 0.991 (0.001)
5000
5000 CFRNN  2.000 (0.000)  0.998 (0.001) 1.000 (0.000) 1.000 (0.000)
5000 NCTP 0.591(0.005)  0.911 (0.004) 1.000 (0.000) 0.991 (0.000)
5000 CAFHT  0.300(0.002)  0.907 (0.005) 1.000 (0.000) 0.990 (0.001)
10000
10000 CFRNN  2.000 (0.000)  0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
10000  NCTP 0.548 (0.005)  0.906 (0.005) 1.000 (0.000) 0.991 (0.000)
10000 CAFHT  0.293(0.001)  0.901 (0.005) 1.000 (0.000) 0.990 (0.001)

AS5.6. Comparisons with CopulaCPTS

For completeness, this subsection presents empirical results that compare our CAFHT method with CopulaCPTS (Sun
& Yu, 2023), which uses the copula of prediction residuals across the entire horizon. Similar to NCTP, CopulaCPTS
struggles with adaptability under heteroscedastic conditions and is thus expected to achieve conditional coverage akin to
that of NCTP. We conducted these comparisons using synthetic AR data with dynamic profiles. The CopulaCPTS method
is considered suitable only for situations with ample calibration data, as noted by Sun & Yu (2023). Accordingly, we
performed experiments with large datasets of 5,000 and 10,000 trajectories, designating 25% randomly for calibration and
the remainder for training. The findings were validated against an additional 100 independently generated test trajectories.

The results, displayed in Figures A31-A32 and Tables A32—A33, confirm the anticipated outcomes. CopulaCPTS delivers
results comparable to NCTP, while CAFHT surpasses the CopulaCPTS baseline by producing narrower prediction bands
and achieving higher conditional coverage.
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Figure A31. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the prediction horizon. See Table A32 for detailed results and standard errors.

Table A32. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function
of prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See corresponding plot in
Figure A31.

Simultaneous coverage

Prediction horizon ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
5
5  CFRNN 0.417 (0.006) 0.357 (0.010) 1.000 (0.000) 0.936 (0.001)
5 NCTP 0.185 (0.009)  0.033 (0.005) 0.996 (0.001) 0.901 (0.002)
5  CopulaCPTS  0.277 (0.006) 0.076 (0.009) 0.997 (0.001) 0.906 (0.002)
5  CAFHT 0.223 (0.004) 0.108 (0.009) 0.987 (0.001) 0.900 (0.002)
15
15  CFRNN 0.420 (0.005) 0.442 (0.009) 1.000 (0.000) 0.943 (0.001)
15 NCTP 0.197 (0.012) 0.027 (0.005) 0.996 (0.001) 0.898 (0.002)
15  CopulaCPTS  0.287 (0.005) 0.043 (0.006) 0.998 (0.001) 0.901 (0.002)
15 CAFHT 0.210 (0.002) 0.217 (0.009) 0.977 (0.001) 0.900 (0.002)
25
25  CFRNN 0.434 (0.005) 0.507 (0.010) 1.000 (0.000) 0.950 (0.001)
25  NCTP 0.218 (0.013) 0.034 (0.006) 0.996 (0.001) 0.898 (0.002)
25  CopulaCPTS  0.282 (0.006) 0.028 (0.006) 0.997 (0.001) 0.898 (0.002)
25  CAFHT 0.206 (0.001)  0.356 (0.010) 0.959 (0.002) 0.897 (0.002)
50
50  CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)
50  NCTP 0.236 (0.013) 0.036 (0.007) 0.997 (0.001) 0.905 (0.001)
50  CopulaCPTS  0.261 (0.007) 0.017 (0.004) 0.993 (0.001) 0.900 (0.002)
50 CAFHT 0.183 (0.001) 0.554 (0.013) 0.941 (0.002) 0.904 (0.002)
100
100 CFRNN 2.000 (0.000) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000)
100 NCTP 0.229 (0.013) 0.030 (0.006) 0.996 (0.001) 0.899 (0.002)
100 CopulaCPTS  0.218 (0.008) 0.003 (0.002) 0.991 (0.001) 0.892 (0.002)
100  CAFHT 0.156 (0.001) 0.676 (0.010) 0.927 (0.002) 0.902 (0.002)
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Figure A32. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the proportion of hard-to-predict trajectories. See Table A33 for detailed results and standard errors.
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Table A33. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See
corresponding plot in Figure A32.

Simultaneous coverage

Proportion of hard samples (all data) ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
0.1
0.1  CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
0.1  NCTP 0.226 (0.011) 0.023 (0.004) 0.999 (0.000) 0.901 (0.001)
0.1  CopulaCPTS  0.239 (0.007) 0.007 (0.002) 0.995 (0.001) 0.896 (0.002)
0.1 CAFHT 0.151 (0.001) 0.665 (0.007) 0.927 (0.001) 0.900 (0.002)
0.2
0.2  CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
0.2  NCTP 0.415 (0.003) 0.515 (0.006) 1.000 (0.000) 0.903 (0.002)
0.2 CopulaCPTS  0.409 (0.003) 0.429 (0.006) 1.000 (0.000) 0.885 (0.002)
0.2  CAFHT 0.189 (0.001)  0.727 (0.005) 0.945 (0.001) 0.902 (0.002)
0.5
0.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
0.5 NCTP 0.457 (0.003) 0.804 (0.003) 1.000 (0.000) 0.902 (0.002)
0.5  CopulaCPTS  0.436 (0.003) 0.756 (0.003) 1.000 (0.000) 0.878 (0.002)
0.5  CAFHT 0.305 (0.002) 0.830 (0.003) 0.972 (0.001) 0.901 (0.002)
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A6. Extension to Multi-Step Forecasting

This section extends CAFHT to the multiple-step-ahead forecasting setting. Similar to section 2.1, consider a data set
containing n observations of trajectories of length T’ + 1, namely D := {Y' (V) ..., Y™} Fori € [n] := {1,...,n}, the
array Y = (Y ... Y{") represents T + 1 observations of some d-dimensional vector " = (V%) ... v}y ¢ R<,
measured at distinct time steps ¢ € {0, ..., T+ 1}. Let g denote a trainable trajectory predictor that can make H —stéps—ahead
forecasts.

Consider a new trajectory Y ("*1) sampled exchangeably with D. Given the initial position YO("H), at every time ¢ for ¢ €

{1,..., T}, the real value Y, ™) is revealed, and we aim to construct prediction regions (C1(Y ("+1) . . CH(y(n+D))
for (Yt(ffl), cee Y;(fjll)) using the predictions (fft(ffl), cee ﬁfﬁll)) made by §.

Let C’[ (Y (1)) represent the 7-th-step-ahead prediction band for Yt(fj b output at time ¢ from the CAFHT method. We
aim to achieve the marginal simultaneous coverage, similar to Equation (1):

P [y;f:D e Cr(YmHD)y vt e [T), Vr € [H]} >1—a. (A15)

Similar to the one-step-ahead setting, we first initialize the adaptive prediction bands by extending the original ACI method
to leverage the information of multi-step-ahead forecasting and to construct a multi-step-ahead prediction band. After that,
we will calibrate the initialized adaptive bands and perform data-driven parameter selection.

A6.1. Multi-Step-Ahead ACI

In this section, we explain how to extend the original one-step-ahead ACI to produce multi-steps-ahead prediction regions.
Although this approach is intuitive, it may be possible to improve it in the future.

Consider a similar online setting as in Gibbs & Candes (2021), where one observes covariate-response pairs {(X;, ;) }ren C
R? x R in the sequential order. Denote the fitted model that can make H steps ahead predictions as §. At each time step ,
assume that we observe pairs up until {(X;,Y;)} and make H steps ahead forecasts (}A/;erh RN YH g ) for the future values
(Yit1,...,Yerm) using §. To construct the prediction regions for (Yiy1, ..., Yz+m), consider running H many ACI in
parallel using the lagged nonconformity scores proposed by Dixit et al. (2023).

First, to construct the prediction region for a single time step Y; . in the future for any 7 € [H|, we compute the lagged
nonconformity score, defined as: A
ST(Xey) = lly = g(Xo)ll = [ly = Y. (A16)

Intuitively, this measures the distance between y and the prediction for Y; . made at the current time. Then, the standard
split conformal prediction approach to construct the prediction region for Y3, at miscoverage level o would become
C7(a) ={y: S7(Xe,y) < Q(1—a)}, where Q(1—a) = inf{s : (|Dea| ™' X2 x, v,)epe LisT_, (X, 1 ¥i)<s}) = 1—al.
To incorporate the core idea of ACI to continuously adapt the potential distribution changes within the time series, we run
the following modified c-update rule:
iy =of +7(a—erry), (A17)
where .
. L it G5 (e,
err; = .
0, otherwise.

Above, 7" denotes the step size, which can be different for each 7, and CA'tA_Ci’T (a]_4) is the prediction region constructed
for Y; at 7 steps ago as C- "7 (a7 ) = {y : ST (Xi—r,y) < Qi—-(1 — a;_1)}. Equivalently,

5 (A18)

CRM (o) = [0 ) = V7 = Qeer (1= 1), Y+ Qrer (1 — 1))

The prediction region of Yy ;- is then formed by:

C'?CI’T(QZ+1) = [Y;T — Qt(l — O£t+1), Y/;T + Qt(l - at+1)}' (Alg)
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To construct multiple steps ahead prediction regions of (Y;41, ..., Y;4g) at time ¢, we run the above procedure for every
7 € [H], and form the prediction regions (C7"! (1), CfCI’H(aﬂl)); see Algorithm AS.

Algorithm A8 Multi-step-ahead ACI
1: Input: A pre-trained forecaster § producing H -step-ahead predictions; current time ¢; time trajectory with observed

past values (Y7,...,Y;_1).
Observe the true value at current time Y.
Make H-step-ahead predictions (Yiy1,. .., Yiis) for (Yigt, ..., Yien).
for 7 € [H] do

Evaluate err] using Equation (A18).

Update aj  ; using Equation (A17).

T

Construct prediction region CA’f CI’T(oz75 1) for Yy, - using Equation (A19).
end for . .
Output: Online multi-steps-ahead prediction regions (C;"" (o} T1)re s o CI’H(ag_l)).

R AN A Tl

A6.2. Calibrating the Adaptive Prediction Bands

In the previous section, we discussed how to form multiple steps ahead prediction regions using ACI at every time ¢. We
now proceed to calibrate these regions to achieve simultaneous coverage guarantee (A15). For simplicity, we start by taking
the learning rate 47 as fixed and constant for all 7 € [H].

Different from the one-step-ahead setting, with multi-step-ahead ACI, at every time ¢ we can construct H prediction regions
for the following H values. As we move on to observe the next trajectory value, we can update the future prediction regions
using the more recent information. In fact, at every ¢, we will have H — 1 different prediction regions, separately constructed
from H — 1, H — 2,...,1 steps ago, denoted as CA';{C}’{H, e C’ff{l To perform calibration, we need to summarize the

information obtained from those into a single region, which we will explain next.

For any 7 € [H], let C2ET(Y () ~) = [(257 (YD) ), 427 (Y )] denote the prediction band for Y; constructed at 7
steps ago with learning rate . For each calibration trajectory i € D.,;, CAFHT evaluates the nonconformity score é;(~)
using the following equation:

&(7) ;== max {max{ {max {éfEL*T(Y“),y)} —Yt(i)} , {Yt(i) — min {afEL’T(Y“),y)}} }} (A20)
+ +

te{1,...,T} TE[H] TE[H]

Intuitively, é;(y) measures the maximum absolute distance of Y; from the prediction regions constructed at different
‘1 ~ACLH AACL 1

historical time steps C,_p;*,...,C,_".

The remaining components of our method then follow the same logic as the one-step-ahead CAFHT. Let Q(l — «,7y) denote

the [(1 — &) (1 + | Dcal|) ]-th smallest value of €;(y) among i € Dg,. At every time step ¢ € [T'], CAFHT constructs H-steps

ahead prediction bands C7 (Y ("*1) ~) V7 € [H] using the following equation:

CrY ™D ) = [T (Y D) ) — Q(1 — o, ), 4T (Y T ) + Q(1 — e, y) |- (A21)

The next result establishes finite-sample simultaneous coverage guarantees for this method.

Theorem Al. Assume that the calibration trajectories in D,y are exchangeable with Y "tV Then, for any o € (0,1), the
prediction band output by the multi-step-ahead CAFHT, applied with fixed parameters o, aact, and 7, satisfies (A15).

Proof. The proof is very similar to the proof of Theorem 1, and it follows directly from the exchangeability of the conformity
scores. Denote ¢, 41 (7) the conformity score of the test trajectory Y (“*1) evaluated using Equation (A20). For any fixed

a and v > 0, we have that Y,V e C7 (Y ("1 ~) vr € [H] Vt € [T if and only if ¢,41(7) < Q(1 — a,7), where

Q(1 —a,v)isthe [(1 — a)(1 + |Deal|)]-th smallest value of é;(«y) for all ¢ € Dy . Since the test trajectory is exchangeable
with Deyy, its score é,.1(7) is also exchangeable with {é;(y),? € Dca}. Then by Lemma 1 in Romano et al. (2019), it

follows that P(Y,""V) € C7 (Y ("+1) ~) vr € [H] ¥t € [T]) = P(én1(7) < Q1 —a, 7)) > 1 —a. O
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A6.3. Data-Driven Parameter Selection

Similar to the one-step-ahead CAFHT, we can choose the step size parameter « in a data-driven way. For simplicity, we
start by selecting among a grid of candidate {1, ...,z }, but assuming that the step size stays the same for every time step
T € [H]. Later in the experiments, we discuss using alternative options, such as setting v decaying as 7 increases, which is
more intuitive in practice as predictions made longer steps ahead are usually less reliable than the predictions made more
recently.

Algorithm A9 Model selection component of multi-steps-ahead CAFHT

1: Input: A pre-trained forecaster § producing H-step-ahead predictions; calibration trajectories D ; a grid of candidate
learning rates {v1,...,vL}.
2: for ¢ € [L] do
3: Construct C;"7(Y') ~,) Vt € [T],V7 € [H] using Algorithm A8, for i € D,
4:  Evaluate ¢;(7¢) using (A20), fori € DL,
5. Compute Q(1 — v, 7y¢), the (1 — a)(1 4 1/|DL |)-th quantile of {&;(,),7 € DL,}.
6:  Construct C7 (YD) ~,) Vr € [H]Vt € [H] using (A21) fori € DL,.
7: end for
8: Pick 4 such that,
4 := arg min AvgWidth({CT (Y, v¢) }repr)re(m)- (A22)

Le(L]

9: Output: Selected learning rate parameter 4.

Algorithm A10 Multi-step-ahead CAFHT

1: Input: A pre-trained forecaster § producing multi-step-ahead predictions; calibration trajectories D.,; the initial
(n+1)
)

position Y/ of a test trajectory Y ("*1); the desired nominal level a € (0,1); a grid of candidate learning rates

{v,h

Randomly split D,y into DL, and D2,.

Select a learning rate 4 € {71,..., v}, applying Algorithm A1 using the trajectory data in DL,

Construct CAY(Y () 4) using ACI, for i € D2,

Evaluate ¢;(¥) using (A20), fori € D2.

Compute the empirical quantile Q(l —a,9).

for¢ € [T] do
Observe the current step Y,
Compute V7 (Y (1) 4) V1 € [H] with the multi-step-ahead ACI stated in Algorithm A8, using the past of the
test trajectory (Y, . v, TY).

10:  Compute prediction bands C’[ (Y (1) 3) V7 € [H] for the next H steps, using (A21).

11: end for

12: Output: Online prediction bands C/(Y ("+1)),

(n+1)

W RN

A6.4. Multi-step-ahead CAFHT using Multiplicative Scores

Similar to the one-step-ahead cases, we can utilize a multiplicative score for the multi-step-ahead settings. This can be
simply accomplished by replacing the nonconformity scores defined in (A20) with these:

[T (Y@, 5) = v, D =S (y )]
€&(y) == max max{ max - + max - + . (A23)

te{l.. T} reli] | (CST(Y @,y | reln) G (Y @, )]
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Figure A33. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the steps-ahead parameter H utilized by the forecaster. Other details are as in Table A34.

and the counterpart of Equation (A21) becomes

Cry ™) ) = |57y ) ) — Q1 — a,y) - |CPOT (YD), 9),
(A24)
AT D ) 4 Q1 — e, y) - [CRT(Y D )]

A6.5. Numerical Experiments

We utilize the same synthetic settings as in Section 4, but modify the LSTM models so that they can make multiple steps
ahead of predictions. Again, we choose the ACI-based multiplicative scores as the main CAFHT method.

Figure A33 summarizes the performance of the three methods as a function of the number of steps ahead predictions made
by the forecaster, which is varied from 1 to 5. When number of steps is equal to 1, we recover the one-step-ahead CAFHT
results. In each case, 75% of the trajectories are used for training and the remaining 25% for calibration. Our method utilizes
50% of the calibration trajectories to select the ACI learning rate . The results are averaged over 500 test trajectories and
100 independent experiments.

As we can see, all methods attain 90% simultaneous coverage as defined in (A15). However, our method yields the most
efficient results in terms of obtaining the smallest size of the prediction band and higher conditional coverage than the NCTP
benchmark. See Table A34 for standard errors.

Table A34. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.
See the corresponding plot in Figure A33.

Simultaneous coverage

Number of steps ahead ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal
1

1 CFRNN  2.000(0.000)  0.995 (0.001) 1.000 (0.000) 1.000 (0.000)
1 NCTP 0.308 (0.014)  0.060 (0.008) 0.996 (0.001) 0.903 (0.002)
1 CAFHT  0.163(0.001)  0.656 (0.010) 0.926 (0.002) 0.899 (0.003)
3
3 CFRNN  2.000(0.000)  0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
3 NCTP 0.475(0.022)  0.071 (0.008) 0.996 (0.001) 0.906 (0.002)
3 CAFHT 0208 (0.002)  0.572(0.010) 0.938 (0.002) 0.902 (0.002)
5
5 CFRNN  2.000(0.000)  0.995 (0.001) 1.000 (0.000) 0.999 (0.000)
5 NCTP 0.534(0.025)  0.083 (0.010) 0.997 (0.001) 0.907 (0.002)
5 CAFHT  0.233(0.002)  0.589 (0.012) 0.936 (0.002) 0.902 (0.002)

In another experiment, the steps-ahead parameter is fixed as I = 3, and the total number of trajectories in the training and
calibration sets are varied from 200 to 2000. Again, our method yields the most informative bands.
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Figure A34. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the number of trajectories in the training and calibration sets, made by the 3-steps-ahead forecaster. Other details are as in Table A35.

Table A35. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of
the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.
See the corresponding plot in Figure A34.

Simultaneous coverage

Sample size ~ Method Average width ~ Conditional-hard ~ Conditional-easy =~ Marginal

200
200 CFRNN  2.000 (0.000)  0.932 (0.008) 1.000 (0.000) 0.993 (0.001)
200 NCTP 1.012 (0.040)  0.284 (0.025) 0.997 (0.001) 0.925 (0.003)
200 CAFHT 0261 (0.004)  0.623 (0.022) 0.942 (0.006) 0.909 (0.007)
500
500 CFRNN  2.000 (0.000)  0.979 (0.003) 1.000 (0.000) 0.998 (0.000)
500 NCTP 0.705 (0.030)  0.219 (0.021) 0.995 (0.002) 0.917 (0.003)
500 CAFHT 0233 (0.002)  0.578 (0.016) 0.942 (0.003) 0.906 (0.004)
1000
1000 CFRNN  2.000(0.000)  0.986 (0.002) 1.000 (0.000) 0.999 (0.000)
1000 NCTP 0.512(0.027)  0.086 (0.012) 0.995 (0.001) 0.906 (0.002)
1000 CAFHT 0216 (0.002)  0.561 (0.015) 0.937 (0.003) 0.900 (0.003)
2000
2000 CFRNN  2.000 (0.000)  0.993 (0.001) 1.000 (0.000) 0.999 (0.000)
2000 NCTP 0.475 (0.022)  0.071 (0.008) 0.996 (0.001) 0.906 (0.002)
2000 CAFHT  0.208 (0.002)  0.572(0.010) 0.938 (0.002) 0.902 (0.002)
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