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ABSTRACT

Despite excellent performance of deep neural networks (DNNs) in image classi-
fication, detection, and prediction, characterizing how DNNs make a given deci-
sion remains an open problem, resulting in a number of interpretability methods.
Post-hoc interpretability methods primarily aim to quantify the importance of in-
put features with respect to the class probabilities. However, due to the lack of
ground truth and the existence of interpretability methods with diverse operating
characteristics, evaluating these methods is a crucial challenge. A popular ap-
proach to evaluate interpretability methods is to perturb input features deemed
important for a given prediction and observe the decrease in accuracy. However,
perturbation itself may introduce artifacts. We propose a method for estimating
the impact of such artifacts on the fidelity estimation by utilizing model accuracy
curves from perturbing input features according to the Most Import First (MIF)
and Least Import First (LIF) orders. Using the ResNet-50 trained on the Ima-
geNet, we demonstrate the proposed fidelity estimation of four popular post-hoc
interpretability methods.

1 INTRODUCTION

Deep learning has recently demonstrated state-of-the-art performance in computer vision tasks.
However, their decision (detection, classification, and prediction) is difficult to interpret and ex-
plain. One of the major approaches to interpretability is to quantify the importance of input features
with respect to the model’s prediction. However, rigorous evaluation of those feature importance
estimators is problematic due to the complexity of DNNs and the lack of ground truth. Here, we
investigate challenges arising from a perturbation-based evaluation and estimate the fidelity of im-
portance estimators using the Most Import First (MIF) and the Least Import First (LIF) perturbation
curves.

In DNNs, back-propagation and its variations are often used to quantify importance scores of input
features, which are also called saliency maps and pixel attribution (Baehrens et al., 2010; Simonyan
et al., 2014). Developments of importance estimators are often justified with human-centered ar-
guments (Kim et al., 2019; Springenberg et al., 2015), such as regions of interest (ROI) (Saporta
et al., 2022; Brocki et al., 2022) and sparsity (Chalasani et al., 2020). An objective evaluation of
interpretability methods is therefore very desirable. One of the most established approaches is to
mask input features with high importance scores and to measure the degradation of prediction accu-
racy of the model (Samek et al., 2016; Zeiler & Fergus, 2014). However, in such perturbation-based
evaluation approaches, it has been unclear whether the observed accuracy degradation stems from
information removal or perturbation artifacts. Unnatural perturbations introduce artifacts such that
the test set consisted of perturbed images deviates substantially from the training set and is therefore
out-of-distribution (Dabkowski & Gal, 2017; Nalisnick et al., 2018; Qiu et al., 2021).

In this study we are focusing on disentangling the sources of decrease of model accuracy. To quantify
the influence that artifacts have on the decrease of model accuracy, we conduct a series of computa-
tional experiments, based on measuring the change in model accuracy after feature perturbation in
the Most Import First (MIF) or the Least Import First (LIF) order.
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2 METHODS

For a given importance estimator, accuracy curves are calculated by first perturbing images Xi by
blurring them (appendix A.1.1) according to corresponding masks Mi(Xi)(n), which are obtained
by ranking the input pixels according to their estimated importance scores and selecting a fraction
n of either MIF or LIF pixels (appendix A.1.2). The resulting perturbed images are fed to the
model and then the model accuracy is measured(Samek et al., 2016). We quantify the MIF and
LIF accuracy curves by the areas above the respective curves up to a fraction n of perturbed pixels,
which are denoted by F (n) and U(n) (Illustrated in fig. S4, and algorithm 1).

We assume that F (n) consists of two components namely the accuracy decrease due to information
removal FI(n) and due to artifacts FA(n), the same is assumed for U(n). We propose to estimate
FA(n) by

FA(n) ≤ δ(n) = U(n) + F s(n)− Us(n) (1)

where the superscript s indicates that the images X have not been perturbed according to the corre-
sponding masks M(X) but instead using M(X′), where X′ are randomly chosen images. We thus
compute two sets of accuracy curves, one using corresponding masks M(X) to obtain U and the
other using M(X′) obtain F s − Us.

The idea behind using random images is that in the expression ∆ = F s−Us = F s
I +F s

A−Us
I −Us

A
we can assume F s

I ≈ Us
I since the masks M(X′) do not contain meaningful information about the

importance of pixels in M(X). If we furthermore make the natural assumption that, when averaged
over all considered images, the strength of artifacts is not affected by perturbing X with M(X′)
instead of M(X) it follows that F s

A ≈ FA, U
s
A ≈ UA and we obtain ∆ ≈ FA − UA. Solving this

for UA and substituting in UA ≤ U one arrives at eq. (1), which implies together with FA ≤ F that
FI , the relevant quantity to compare importance estimators, is in the interval

F − δ ≤ FI ≤ F. (2)

For more details on this derivation see appendix A.1.3.

Figure 1: Diagram of the proposed fidelity evaluation method.

We applied the proposed meth-
ods to four importance esti-
mators, namely vanilla gradi-
ent (VG) (Baehrens et al., 2010;
Simonyan et al., 2014), In-
tegrated Gradient (IG) (Sun-
dararajan et al., 2017), Smooth-
grad (SG) (Smilkov et al., 2017),
and Squared SmoothGrad (SQ-
SG) (Hooker et al., 2019). See
details in A.1.4.

3 RESULTS AND CONCLUSIONS

Table 1: Fidelity of importance esti-
mators measured by F for n = 0.2

ESTIMATOR F × 102 δ × 102

VG 3.8 0.4
IG 4.8 0.3
SG 6.0 0.2
SQ-SG 5.7 0.2
RANDOM 2.1 0.8

The final results for the fidelity of importance estimators are
given in table 1 for n = 0.2 and in table S1 for n = 0.4. The
central result is that the measurement errors δ due to pertur-
bation artifacts are small enough so that a meaningful ranking
of importance estimators can be established. At n = 0.4 the
bulk of the model accuracy is already gone except for the ran-
dom estimator (table S1); nonetheless, the results agree with
fidelity estimation with n = 0.2.

Comparing the estimated intervals for FI using equation 2 and
the results from table 1, it can be seen that in both cases all
estimators outperform a random ranking. The SG estimator
performs the best. In the case of n = 0.4, performance of SG
is on par with that of SQ-SG within the measurement uncer-
tainty. This ranking aligns with human intuition since SG and SQ-SG appear to focus most closely
on the object of interest (figure S1).
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A APPENDIX

A.1 SUPPLEMENTARY METHODS

A.1.1 PERTURBATION METHOD

We investigate how different perturbation methods affect model accuracy. Perturbing parts of im-
ages may introduce artifacts and create samples in evaluation that are not in the original distribution
(Dabkowski & Gal, 2017; Nalisnick et al., 2018; Qiu et al., 2021). However, the impact of pertur-
bation was rarely measured directly. In order to empirically disentangle the removal of information
and introduction of artifacts, we run an experiment to quantify perturbation artifacts.

The pre-trained Tensorflow-Keras implementation of ResNet-50 (He et al., 2016), with an input
dimension of 224× 224 pixels is used with the ImageNet validation dataset (Deng et al., 2009). For
each sample Xi, we apply the following perturbation method:

• Blur(σ): replaces pixel values with the corresponding values obtained by blurring the im-
age with a Gaussian filter with radius σ.

The perturbed image Pi is obtained from the original image Xi as follows

Pi = Xi ⊙Mi +Ai ⊙ (1−Mi), (3)

where ⊙ is the element-wise multiplication and Ai is an alternative image obtained through one of
the perturbation methods. Mi is a mask with the same dimensions as Xi with value 0 for pixels
to be replaced and 1 for pixels to be left invariant. When clear in context, the superscript i for the
sample is omitted.

When considering an importance estimator, the mask Mi(n) is obtained by ranking the features
(e.g., input pixels) according to their estimated importance scores Ii,j and selecting a fraction n of
features in either the Most Import First (MIF) or Least Import First (LIF) order. These masks are
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used to construct accuracy curves (see the next subsection) with an increasing amount of perturbed
features.

When choosing a perturbation method, one faces a trade-off between effectively removing informa-
tion and introducing artifacts. This can be clearly demonstrated for the blurring method. A slight
blurring of an image (with a small σ) will introduce almost no artifacts but at the same time barely
removes any information. Increasing the radius σ of the Gaussian filter will remove more informa-
tion but is also more likely to create artifacts. With a very large σ, a blurred image resembles a
constant colored image. In order to select σ, we applied blurring with different radii of a Gaussian
filter on the ImageNet samples and measured the model accuracy fig. S3 and with the minimum re-
quirement that the accuracy should drop to zero when the images are completely blurred we choose
σ = 14.

A.1.2 QUANTIFICATION OF MIF AND LIF ACCURACY CURVES

Accuracy curves after feature perturbation for an image Xi are obtained by first masking an increas-
ing fraction n of input pixels according to Mi(n) in either MIF or LIF order, and then measuring
the resulting model accuracy (Samek et al., 2016). This is equivalent to plotting a with N = 1.0
in algorithm 1 with Ii sorted in either a descending order (MIF) or an ascending order (LIF). See
examples in figs. 1 and S4. The mask Mi(n) depends on the importance estimator under evaluation.
For a given importance estimator, we create MIF and LIF curves for all samples in the validation set
which was held out during training (Xi for i = 1, . . . , V ). We quantify the MIF and LIF accuracy
curves by the areas above the respective curves up to a fraction n of perturbed pixels, which are
denoted by F p,e(n) and Up,e(n) (illustrated in fig. S4), where p denotes the perturbation method
and e the importance estimator.

Algorithm 1 Fidelity Estimation from MIF and LIF accuracy curves
Input: DNN f(X); n maximum fraction of perturbed pixels;

Samples Xi
W×H×C ; Importance scores IiW×H (i = 1, . . . , V )

for n′ ← 0 to n with a set increment of the sequence
for i← 0 to V

Mi(n′) = 1W×H×C

ki ← sort(flatten(Ii))
(i.e. sort in descending order for MIF or ascending order for LIF)
for j ← 0 to WH

if j < n′WH then
x, y ← pixel position of ki

j

Mi(n′)x,y ← 0

Pi = Xi ⊙Mi(n′) +Ai ⊙ (1−Mi(n′))
Apply DNN f(Pi), save classifications in o(n′)

Calculate the model accuracy using o(n′), a(n′) =
# Correct Predictions
# Total Predictions

F = Area above the MIF accuracy curve traced by a
U = Area above the LIF accuracy curve traced by a

(e.g., visualized in fig. S4)

Note that O is a matrix of DNN classifications, where o(n′) is a vector of length V consisted of
predicted classes for samples with n′ perturbation level. a is a vector of model accuracies at varying
levels perturbation (n′), which are plotted as MIF/LIF accuracy curves.

We decompose F and U as follows

F p,e(n) = F p,e
I (n) + F p,e

A (n)

Up,e(n) = Up,e
I (n) + Up,e

A (n),

where the subscript I refers to the information removal component (FI and UI ) and the subscript A
refers to the perturbation artifact component (FA and UA). When clear in context, n, e, or p may
be omitted for brevity. The components FA and UA, by definition, capture any decrease in model
accuracy that is not due to the removal of information relevant to the model. In general, only F and
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U can be directly measured, and the decomposition into the information and artifact contribution is
in general unknown. Details on obtaining F and U are provided in algorithm 1. This decomposition
is motivated by the fact that even the masking of non-informative pixels can lead to a drastic decrease
in accuracy (Fong & Vedaldi, 2017), which is also leveraged in adversarial attacks (Kurakin et al.,
2018).

We assume that an information removal is non-negative, FI ≥ 0 and UI ≥ 0, such that

FA ≤ F

UA ≤ U. (4)

A.1.3 ESTIMATION OF PERTURBATION ARTIFACTS

The decomposition of F into FA and FI is unknown and our goal is to estimate it. Consider the
following expression for a certain proportion of perturbed features n and a given perturbation method
p,

∆e = F e − Ue

= F e
A + F e

I − Ue
A − Ue

I , (5)

where e can be any importance estimator.

To demonstrate the basic idea of our method of obtaining an estimate for FA, let us consider the
case where M(X) is obtained from randomly assigned importance scores. Since the order in which
pixels are masked is completely random we can assume that F r

I = Ur
I from which it follows that

∆r = F r
A − Ur

A, (6)

where the superscript r indicates random ranking of pixels. Solving equation 6 for Ur
A and using

equation 4, we find

F r
A ≤ ∆r + Ur. (7)

Since the quantities on the right hand side can readily be determined, this provides for us an upper
bound for F r

A.

While the artifact contribution for a random baseline can be easier to analyze, we are interested in
F e
A, where F e

I ̸= Ue
I . Since the cancellation of F e

I and Ue
I in the expression for ∆e is crucial, the

proposition 6 can not be applied to a meaningful importance estimator. To remedy this situation, we
perform an experiment in which we are perturbing images X with a non-informative mask Ms(X′).
Ms(X′) is a mask that belongs to a randomly chosen X′ ̸= X and is further shifted horizontally and
vertically by random amounts between 10 and 100 pixels. Shifting removes a bias in the ImageNet
dataset in which labeled objects tends to be in the center. Thus, we can expect that the importance
ranking in Ms(X′) is random and F s,e

I ≈ Us,e
I , where the superscript s in FI and UI indicates that

Ms(X′) have been used.

We now define a new delta

∆̃e = F s,e − Us,SQ−SG, (8)

where SQ − SG refers to squared SmoothGrad. We choose Us,SQ−SG because USQ−SG is the
smallest value among the considered importance estimators (figure S2, right side), which allows us
to constrain our estimate of the strength of perturbation artifacts (F e

A) more strongly, see eq. (10)
below. Using F s,e

I ≈ Us,SQ−SG
I , we can write equation 8 approximately as

∆̃e ≈ F s,e
A − Us,SQ−SG

A

≈ F e
A − USQ−SG

A , (9)

where in the second line we have assumed that F s,e
A ≈ F e

A and Us,SQ−SG
A ≈ USQ−SG

A . The
rationale behind this assumption is that the introduced artifacts are not specific to the image as
compared to, for example, the adversarial artifacts found in (Szegedy et al., 2013) which are obtained
through optimization. We, therefore, expect that any artifact-inducing patterns present in the masks
M(X) are, on average, preserved when using Ms(X′) instead.
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Solving equation 9 for USQ−SG
A and substituting in equation 4, with e = SQ − SG, we finally

obtain

F e
A ≤ max(∆̃e, 0) + USQ−SG, (10)

where we additionally ignore negative ∆̃e to obtain a more conservative estimate. The minimum
estimate for the bound on F e

A is, therefore, USQ−SG, which would be the exact upper bound for F e
A

if the strength of artifacts depended solely on n. This is because in that case, F e
A(n) = USQ−SG

A (n)

and from equation 4, one finds F e
A ≤ USQ−SG. With the additional term ∆̃e equation 10 we

estimate variations between F e
A(n) and USQ−SG

A (n) that arise due to the particular distribution of
perturbed pixels when masking MIF or LIF and for different estimators.

The estimated upper limit equation 10 is understood as a systematic measurement error

δe(n) = USQ−SG(n) + max(∆̃e(n), 0) (11)

that can reduce the measured fidelity due to artifacts. Thus, we estimate F e
I , which is the relevant

quantity to compare importance estimators, to be in the interval

F e − δe ≤ F e
I ≤ F e. (12)

A.1.4 IMPORTANCE ESTIMATORS

We apply the proposed method of calculating fidelity and estimating artifacts to four importance
estimators. The estimators under comparison are:

• Vanilla gradient (VG) (Baehrens et al., 2010; Simonyan et al., 2014): Gradients of the
class score Sc

1 with respect to input pixels x

e =
∂Sc

∂x

• Integrated gradient (IG) (Sundararajan et al., 2017): Average over gradients obtained
from inputs interpolated between a reference input x′ and x

e =
(
x− x0

)
×

m∑
k=1

∂Sc

(
x0 + k

m

(
x− x0

))
∂x

× 1

m
,

where x′ is chosen to be a black image and m = 25.
• Smoothgrad (SG) (Smilkov et al., 2017): Average over gradients obtained from inputs

with injected noise

e =
1

n

n∑
1

ê
(
x+N

(
0, σ2

))
,

where N
(
0, σ2

)
represents Gaussian noise with standard deviation σ, ê is obtained using

vanilla gradient and n = 15.
• Squared SmoothGrad (SQ-SG) (Hooker et al., 2019): Variant of SmoothGrad that

squares ê before averaging

e =
1

n

n∑
1

ê
(
x+N

(
0, σ2

))2
.

IG has been introduced to overcome the issue of VG possibly ignoring important features if the
gradients flatten at the input. This effect could lead VG to focus on irrelevant features and might be
a cause for noisy saliency maps. SG also tackles the problem of noisy saliency maps by averaging
VG over a set of inputs with added noise which, interestingly, leads to more focused saliency maps.

All described methods create three-dimensional saliency maps and to obtain two-dimensional ones,
we sum up the absolute value of the color channels.

1The class score Sc is the activation of the neuron in the prediction vector that corresponds to the class c
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B SUPPLEMENTARY FIGURES AND TABLES

The systematic error and the fidelity are functions of n, and one has to decide which value to choose.
We are going to evaluate the fidelity using n = 0.2 and n = 0.4, using four importance estimators.
At n = 0.4 the bulk of the model accuracy is already gone except for the random estimator. From
figure S2 one can see that beyond n = 0.4, U starts to grow considerably which would lead to very
large measurement errors. The final results for the fidelity of importance estimators are given in
table 1 for n = 0.2 and in table S1 for n = 0.4. The central result is that the measurement errors
due to perturbation artifacts are small enough so that a meaningful ranking of importance estimators
can be established.

Comparing the estimated intervals for FI using equation 12 and the results from table 1, it can be
seen that in both cases all estimators outperform a random ranking. The SG estimator performs
the best. In the case of n = 0.4, performance of SG is on par with that of SQ-SG within the
measurement uncertainty. This ranking aligns with human intuition since SG and SQ-SG appear to
focus most closely on the object of interest (figure S1).

Figure S1: Examples for masks M obtained using different importance estimators. For n = 0.2,
20% of pixels are perturbed in MIF or LIF orders. See the section A.1.4 for definitions of the
importance estimators.
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Figure S2: Comparison of decrease in model accuracy when pixels are masked in MIF (left) or
LIF (right) order, according to different importance estimators (same color labels). The ResNet-50
trained on the ImageNet validation dataset are used to obtain the prediction and accuracy (Section
A.1.1).

Figure S3: Average model accuracy of ResNet-50 on the ImageNet, with an increasing strength
(radii σ) of blurring used for the whole input images.
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Figure S4: Comparison of decrease in model accuracy over the fraction of masked pixels when MIF
(left) or LIF (right) pixels are perturbed using different methods. The ranking of the importance
of the pixels is according to the squared SmoothGrad estimator. Area F (n) and U(n) quantify the
accumulated decrease in model accuracy when some fraction n of MIF and LIF pixels is perturbed,
respectively. In blue, F (0.3) and U(0.3) are shown.
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Table S1: Fidelity of importance estimators measured by F for n = 0.4 with a systematic error δ
determined by the right-hand side of equation 10 and using blur as perturbation method.

ESTIMATOR F × 102 δ × 102

VG 12.6 1.7
IG 14.8 1.6
SG 17.3 1.0
SQ-SG 16.8 1.0
RANDOM 8.1 3.0
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