
Gradient-free Decoder Inversion
in Latent Diffusion Models

Seongmin Hong1 Suh Yoon Jeon1 Kyeonghyun Lee1

Ernest K. Ryu2,∗ Se Young Chun1,3,∗

1Dept. of Electrical and Computer Engineering, 3INMC & IPAI, Seoul National University
2Dept. of Mathematics, University of California, Los Angeles

{smhongok, euniejeon, litiphysics, sychun}@snu.ac.kr, eryu@math.ucla.edu
Project page: https://smhongok.github.io/dec-inv.html

Abstract

In latent diffusion models (LDMs), denoising diffusion process efficiently takes
place on latent space whose dimension is lower than that of pixel space. Decoder
is typically used to transform the representation in latent space to that in pixel
space. While a decoder is assumed to have an encoder as an accurate inverse, exact
encoder-decoder pair rarely exists in practice even though applications often require
precise inversion of decoder. In other words, encoder is not the left-inverse but the
right-inverse of the decoder; decoder inversion seeks the left-inverse. Prior works
for decoder inversion in LDMs employed gradient descent inspired by inversions of
generative adversarial networks. However, gradient-based methods require larger
GPU memory and longer computation time for larger latent space. For example,
recent video LDMs can generate more than 16 frames, but GPUs with 24 GB
memory can only perform gradient-based decoder inversion for 4 frames. Here,
we propose an efficient gradient-free decoder inversion for LDMs, which can be
applied to diverse latent models. Theoretical convergence property of our proposed
inversion has been investigated not only for the forward step method, but also for the
inertial Krasnoselskii-Mann (KM) iterations under mild assumption on cocoercivity
that is satisfied by recent LDMs. Our proposed gradient-free method with Adam
optimizer and learning rate scheduling significantly reduced computation time and
memory usage over prior gradient-based methods and enabled efficient computation
in applications such as noise-space watermarking and background-preserving image
editing while achieving comparable error levels.

1 Introduction

Deep generative models have been actively investigated over the past decade across numerous
modalities such as image [12, 41, 42, 37, 11, 35, 38], video [5, 4, 47, 52, 45, 46], audio [18, 21, 22]
and molecular structure [17, 13]. They can sample new data points from the distribution of the
training set, can model priors to solve regression problems, and can be used for applications like
editing, retrieval, and density estimation. Representative classes of deep generative models include
generative adversarial networks (GANs), variational autoencoders (VAEs), normalizing flows (NFs),
and diffusion models (DMs). They used to be known not to simultaneously satisfy the three key
requirements: (i) high-quality samples, (ii) diversity, and (iii) fast sampling, also referred to as the
generative learning trilemma [50]. However, recent DMs such as Rectified Flow [23], Adversarial
Diffusion Distillation [40] and Consistency models [43] require just one step for sampling. Thus,

∗Co-corresponding authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://smhongok.github.io/dec-inv.html

Table 1: Comparison of deep generative models. DMs have overcome the generative learning
trilemma [50], but they still lack invertibility compared to other models. In particular, LDMs have
necessitated additional decoder inversion that has traditionally been addressed through memory-
intensive and time-consuming gradient-based optimization methods. Here, we propose a method for
efficiently (i.e., gradient-free) ensuring invertibility in LDM.

Generative learning trillema [50]
High-quality

samples Diversity Fast
sampling

How to achieve
invertibility?

GAN ! % ! Optimization / learning-based GAN inversion

NF % ! ! Naturally exact inversion

DM ! ! %(’21) →!(’24)
Diffusion: Solving ODE backward

(LDM) Decoder: Optimization-based inversion

DMs have overcome the trilemma and the old problem of slow sampling in recent DMs is no longer a
concern as shown in the last row of Table 1. As a result, DMs have become one of the most prominent
deep generative models, especially for image and video. However, there are still remaining challenges
for DMs such as achieving invertibility, which is well-supported by other models (see Table 1).

Achieving invertibility for deep generative models has been an important topic. In GANs, prior works
proposed GAN inversion techniques [49] (i.e., to find the latent vector z that generated the image) and
their applications such as real image editing [1]. NFs are naturally invertible deep generative models
by construction with related interesting applications [17]. There have also been attempts to achieve
and utilize invertibility for DMs. The most popular one is the naïve DDIM inversion that reverses the
sampling process of DDIM’s deterministic denoising [41], i.e., adding the estimated noise. While the
naïve DDIM inversion enables image editing, it is known to be somewhat inaccurate for seeking the
true latent [14], for watermarking [48] and for background-preserving image editing [32]. To better
ensure the exactness of the inversion, several prior works [44, 51, 31, 14, 10] have proposed more
tailored algorithms than the naïve DDIM inversion.

The use of latents in DMs has made ensuring invertibility more difficult. Latent diffusion models
(LDMs) were proposed to move the diffusion denoising process from the pixel space to the (low-
dimensional) latent space, thus efficiently generating high-quality and large-scale samples [37]. This
issue may be critical since many recent popular DMs operate in latent space [37, 47, 52, 27, 40, 45, 5].
However, latents are usually lossy compression of pixels, making one-to-one mapping between the
latent and pixel spaces very challenging. Thus, the accuracy of inversion in LDMs is typically lower
than that in pixel-space [44, 31, 14], requiring additional efforts to compensate for it as illustrated
in Figure 1b. One could naïvely employ a gradient-based GAN inversion method to the decoder of
LDMs, but it required very large GPU memory and computation time [14], especially for large-scale
LDMs. Moreover, recent video LDMs [5, 4, 47, 52, 45, 46] generate dozens of frames at once,
making gradient-based GAN inversion infeasible in a single GPU.

In this work, we aim to achieve better invertibility in LDM as shown in Table 1. Specifically, we
propose decoder inversion to overcome the difficulty of ensuring invertibility in LDM due to the
inexact encoder-decoder pair. The proposed decoder inversion is gradient-free, which is faster and
more memory-efficient than the gradient-based methods suggested in GAN inversion. Section 3
describes the motivation and analysis of our decoder inversion, including the theoretical convergence
guarantee under mild assumption not only for the vanilla forward step method, but also for the
inertial Krasnoselskii-Mann (KM) iterations. The assumption for our theorems is also validated by
showing experimental convergence to the ground truth as well as the effectiveness of momentum.
Section 4 described how to refine our algorithm by integrating popular optimization techniques such as
Adam [16] and learning rate scheduling as practical extensions of our gradient-free decoder inversion,
demonstrating that our method works well on various latest LDMs compared to existing gradient-
based methods. Lastly, Section 5 showcases interesting applications (noise space watermarking and
background-preserving image editing) where our proposed gradient-free decoder inversion can be
effectively utilized. The contributions of this work are:

2

Diffusion
zT

(Noise)
z0 D x

(Image)

LDM
Pixel-space DM

zT
(Noise)

z0
(Image)

(a) LDM vs Pixel-space DM

≈

Our contribution

NF

VAE
Learning-based
GAN inversion

Pixel-space DM
Opt.-based GAN inversion

LDM

Inversion
Error

Inversion
Runtime

1-step grad-free Iterative grad-based

(b) Invertibility of generative models

Figure 1: (a) The difference between LDM and pixel-space DM lies in the use of the decoder (D). (b)
This difference has caused the performance gap in exact inversions. Pixel-space DMs and gradient-
based GAN inversion methods are located on the right side due to iterative gradient back-propagations.
If gradient-based decoder inversions are used, which are computationally intensive, LDM is located
on the rightmost side to address the lossiness of latents. Our proposed gradient-free decoder inversion
method allows us to efficiently handle the transformation between latent and pixel spaces.

• proposing a gradient-free decoder inversion algorithm to achieve better invertibility in diverse
latest LDMs. Our method has the following advantages with experimental evidences:

– Fast: up to 5× faster, 1.89 s vs 9.51 s to achieve -16.4 dB (Fig. 3c and Tab. S1c)
– Accurate: up to 2.3 dB lower, -21.37 dB vs -19.06 dB in 25.1 s (Fig. 3b and Tab. S1b)
– Memory-efficient: up to 89% can be saved, 7.13 GB vs 64.7 GB (Fig. 3b)
– Precision-flexible: 16-bit vs 32-bit (Fig. 3)

• theoretically guaranteeing the convergence to the ground truth not only for the vanilla
forward step method, but also for the inertial KM iterations,

• showcasing that our proposed gradient-free decoder inversion can be used in interesting
applications.

2 Backgrounds

2.1 Latent diffusion models (LDMs)

Stable Diffusion 2.1 [37] is a widely known open-source text-to-image generation model. LaVie [47]
is a text-conditioned video generation model, which can generate consecutive frames per inference.
InstaFlow [24] is a one-step text-to-image generation model that can generate images whose quality
is as good as Stable Diffusion. These three LDMs will be used in all the experiments of our work.

Exact inversion of accelerated DMs. Another factor that makes the exact inversion of DMs
difficult, besides the use of latents, is acceleration. Due to the use of high-order ODE solvers, the
exact inversion of DPM-Solvers [25, 26] is not as straightforward as in DDIM. Exact inversion
algorithms for some DPM-Solvers have been proposed [14], but obtaining the exact inverses for other
accelerated DMs [23, 40, 43, 24] has not been explored.

2.2 Optimization-based GAN inversion

For a target image x, existing optimization-based GAN inversion methods typically perform the
following optimization with respect to a latent vector z (usually assumed to lie on a simple distribution
such as N (0, 1)):

min
z

ℓ(x,G(z)), (1)

where ℓ is a distance metric and G is the generator part of GAN [49]. Most works solve Eq. (1)
through backpropagation with an optimizer. For optimizers, Adam [16] is employed in [1], and

3

L-BFGS [20] is employed in [54]. Some more recent works optimized the transformed latent feature
w, which can be defined as w = MLP(z), in StyleGAN [15].

To exploit the prior knowledge that z lies on the range space of an encoder, prior works often perform
the following two methods:

(A) The output of the encoder E is used as an initial point of the optimization process.

(B) The domain-guided encoder is used to regularize the latent code within the semantic domain
of the generator. For example, min

z
∥x− G(z)∥2 + λreg∥z − E(G(z))∥2.

Since we already have the encoder, we employ (A), too. On the other hand, we will utilize the encoder
in a novel way over (B).

2.3 Gradient-based decoder inversion in LDMs

Recent works [14] performed the same as Eq. (1) (hence they are iterative as illustrated in Figure 1b)
for the decoder inversion:

min
z0

ℓ(x,D(z0)), (2)

with a gradient-based method. For simplicity, we omit the subscript by setting z0 = z. The vanilla
gradient descent algorithm can be expressed as follows:

zk+1 = zk − ρ∇zℓ(x,D(zk)). (3)

Advancements in backpropagation algorithms and libraries have made the computation of ∇zD(zk)
more efficient, but it still requires a significant amount of GPU memory usage and lengthy runtime
compared to inference. As the size of generated outputs of recent LDMs continues to increase, the
computation of ∇zD(zk) through backpropagation is getting more and more burdensome.

3 Gradient-free decoder inversion in LDMs

In this work, as an alternative method to Eq. (3), we propose the following decoder inversion method,
which is a form of the forward step method [39]:

zk+1 = zk − ρ(E(D(zk))− E(x)), (4)

where the initial latent vector estimate z0 = E(x) that is the same as (A) in Section 2.2.

3.1 Motivation

The definition of the decoder inversion problem for the given image x is as follows:

find
z∈RF

x = D(z). (5)

Since directly dealing with Eq. (5) is impractical, we relax it as solving the following problem:

find
z∈RF

E(x) = E(D(z)). (6)

The following Remark 1 demonstrates that solving Eq. (6) is easier than solving Eq. (5).

Remark 1 (Eq. (6) is easier than Eq. (5)). {z|x = D(z)} ⊂ {z|E(x) = E(D(z))}.

Remark 1 is true because x = D(z) ⇒ E(x) = E(D(z)). Equation (6) is equivalent to the following:

find
z∈RF

z = z − ρ(E(D(z))− E(x)), ∀ρ ∈ R ∩ {0}C (7)

where Eq. (7) refers to finding a fixed point of an operation I − ρ(E(D(·))− E(x)) whose another
form is Eq. (4), the forward step method.

4

3.2 Convergence analysis on forward step method

Here, we demonstrate that our method converges to a fixed-point under reasonable conditions.
Furthermore, although we solved an easier problem represented by Eq. (6) rather than directly solving
Eq. (5), we show that our proposed method surprisingly finds the true solution of Eq. (6).
Theorem 1 (Convergence of the forward step method). Let β > 0, 0 < ρ < 2β, and x ∈ RN .
Assume T (·) = E ◦ D(·)− E(x) is continuous. Consider the iteration

zk+1 = zk − ρT zk for k = 0, 1, . . . (8)

Assume z⋆ is a zero of T (i.e., T z⋆ = 0) and

⟨T zk, zk − z⋆⟩ ≥ β∥T zk∥22 for k = 0, 1, . . . (9)

Then, T zk → 0. If, furthermore, zk → z∞, then z∞ is a zero of T (i.e., T z∞ = 0).

Proof outline. Equation (9) makes ∥zk+1 − z⋆∥22 ≤ ∥zk − z⋆∥22 − ρ(2β − ρ)∥T zk∥22. Then, sum
for k = 0, . . . ,∞.

Theorem 1 assumes that Eq. (9) holds, which is refered as β-cocoercivity. The assumption makes
sense because we expect ED ≃ I. In fact, for linear autoencoders, it is proven by Baldi and Hornik
[3] that ED = I as the following Remark 2:
Remark 2 (ED = I in linear autoencoders). Let x ∈ RN be a random vector such that E[xx⊺] =
Σ ∈ RN×N . Assume Σ has distinct positive eigenvalues. Consider the optimization problem

min
D∈RN×F ,E∈RF×N

Ex ∥x−DEx∥22.

Then, ED = I (identity matrix).

I is 1-cocoercive, which suggests that our assumption is reasonable. In Section 3.4, we further
demonstrate that the assumption is reasonable experimentally and zk actually converges well.

3.3 Convergence analysis on momentum for acceleration

Momentum is widely used in optimization to keep the optimization process going in the right
direction, even when gradients are noisy or the landscape is flat. Among many momentum algorithms,
we employ the inertial Krasnoselskii-Mann (KM) iteration [19, 28, 29] and analyze it since the
convergence is guaranteed with some assumptions [29]. The inertial KM iteration in our setting can
be defined as follows:

yk = zk + α(zk − zk−1) (10)

zk+1 = yk − 2λβT yk, (11)

where T (·) = E ◦ D(·)− E(x), 0 < α < 1, β > 0, and λ > 0.

We now present Theorem 2, ensuring that the inertial KM iterations converge. While the formulation
and assumptions differ from [29], the theorem and its proof heavily rely on it.
Theorem 2 (Convergence of the inertial KM iterations). Let 0 < α < 1, β > 0, λ > 0 and x ∈ RN .
Assume T (·) = E ◦ D(·)− E(x) is continuous. Let (zk,yk) satisfy (10) and (11). Assume z⋆ is a
zero of T (i.e., T z⋆ = 0) and the following holds:

⟨T yk,yk − z⋆⟩ ≥ β∥T yk∥22 for k = 0, 1, . . . (12)

If
λ(1− α+ 2α2) < (1− α)2, (13)

then the followings are true:

(A)
∑

k≥1 ∥zk+1 − 2zk + zk−1∥2,
∑

k≥1 ∥zk − zk−1∥2and
∑

k≥1 ∥T yk∥2 converge.

(B) There is a constant M > 0 such that min1≤k≤n ∥T yk∥2 ≤ M∥z1−z⋆∥2

n .

(C) limk→∞ ∥zk − z⋆∥ exists.

5

(D) (yk) and (zk) have the same limit points.

Here, similar to Theorem 1, the convergence of (zk) is guaranteed for a learning rate (i.e., 2λβ)
smaller than some upper bound. However, unlike Theorem 1, this upper bound is determined not
only by cocoercivity (i.e., β), but also by the inertial parameter (i.e., α).

3.4 Validation of the assumption

In Theorems 1 and 2, we utilized the assumption that T (·) = E ◦ D(·)− E(x) is β-cocoercive for
the (yk, zk) and z⋆. In this section, we experimentally investigate whether this assumption holds for
the actual (zk) and z∞ obtained in the experiments of Section 4, i.e.,

⟨EDz∞ − EDzk, z∞ − zk⟩
∥EDz∞ − EDzk∥22

≥ β > 0. (14)

Equations (9) and (12) are equivalent to Eq. (14) if z⋆ = z∞ and zk = yk. By (C) and (D) of
Theorem 2, if Eq. (14) holds while zk → z⋆, then the convergence was due to Eq. (14).

We conducted decoder inversion experiments in various recent LDMs such as Stable Diffusion
2.1 [37], LaVie [47], and InstaFlow [24]. With or without momentum, the learning rate ρ was fixed
at 0.001. For inertial KM iterations, α was set to 0.9. Figure 2 illustrates the mink of cocoercivity
(14), convergence of the algorithm (∥z100 − z∞∥2), and final NMSE (∥z∞ − z⋆∥22/∥z⋆∥22) for 100
instances in each scenario. The observations and the resulting insights are as follows, and they support
the validity of our assumptions and theorems.

1. Our assumption on cocoercivity is reasonable: most of the instances showed
⟨EDz∞−EDzk,z∞−zk⟩

∥EDz∞−EDzk∥2
2

> 0 for all k.

2. The better the convergence, the more cocoercive it is: the fitted functions (red lines) have
negative slopes.

3. Converging instances closely approximate the ground truth: the points at the bottom are
darker.

0.0 0.5
min cocoercivity (zk vs z)

1

2

3

||z
10

0
z

|| 2

20

10

NM
SE

 (d
B)

(a) SD 2.1 [37], vanilla FSM

0.00 0.25 0.50
min cocoercivity (zk vs z)

2.5

5.0

7.5

10.0

||z
10

0 -
 z

|| 2

21

14

NM
SE

 (d
B)

(b) LaVie [47], vanilla FSM

0.0 0.5
min cocoercivity (zk vs z)

1

2

3

||z
10

0
z

|| 2

18

8

NM
SE

 (d
B)

(c) InstaFlow [24], vanilla FSM

0.5 0.0 0.5
min cocoercivity (zk vs z)

5

10

15

||z
10

0
z

|| 2

20

9

NM
SE

 (d
B)

(d) SD 2.1 [37], inertial KM iter.

0.0 0.5
min cocoercivity (zk vs z)

20

30

40

50

60

||z
10

0 -
 z

|| 2

21

11

NM
SE

 (d
B)

(e) LaVie [47], inertial KM iter.

0.0 0.5
min cocoercivity (zk vs z)

5

10

15

20

25

||z
10

0
z

|| 2

19

8

NM
SE

 (d
B)

(f) InstaFlow [24], inertial KM iter.

Figure 2: The six subfigures represent the relationship between cocoercivity and convergence for
3 models × 2 algorithms (vanilla forward step method and inertial KM iteration). The x-axis
represents the values of mink∈[0,100]

⟨EDz∞−EDzk,z∞−zk⟩
∥EDz∞−EDzk∥2

2
, which informs whether the optimization

path satisfies the assumptions of Theorems 1 and 2, while the y-axis represents the convergence (i.e.,
∥z100 − z∞∥2). The red line shows the linear function fitted by least squares. We set z∞ = z300.

6

4 Experiments with practical optimization techniques

Adam optimizer. In Section 3, we proved that our proposed forward step method (Theorem 1)
and inertial KM iterations (Theorem 2) converge. Moreover, we experimentally showed that the
assumptions of the theorems hold for most instances and demonstrated their convergence as predicted
(Fig. 2). However, it is generally believed that using the Adam optimizer [16] is preferable in many
optimization problems. In this section, although we cannot prove convergence as in Theorems 1
and 2, we empirically demonstrate that using the Adam optimizer can achieve a good runtime and
memory usage compared to conventional gradient-based methods.

(Optional) Learning rate scheduling. Following common beliefs and a prior work which solves
the same problem [14], one can also use a cosine learning rate scheduler with warm-up steps. Similar
to [14], the first 1/10 of the steps are warm-up steps, followed by the application of cosine annealing.
After 8/10 of the total steps have passed (as the learning rate has sufficiently decreased), it is kept
constant for the rest of steps.

0 10 20 30
−25

−20

−15

Runtime for decoder inversion (sec)N
oi

se
re

co
n.

N
M

S
E

(d
B

) Grad-based
32-bit

Grad-free
32-bit

Grad-free
16-bit

We seek
bottom & left

Pareto
inefficient 8.8332-bitGrad-based

3.8132-bit
Grad-free (ours)

3.1516-bit

0 2 4 6 8 10
Peak memory usage (GB)

(a) Stable Diffusion 2.1 [37].

0 40 80 120
−23

−20

−17

Runtime for decoder inversion (sec)N
oi

se
re

co
n.

N
M

S
E

(d
B

) Grad-based
32-bit

Grad-free
32-bit

Grad-free
16-bit

We seek
bottom & left

Pareto
inefficient 64.732-bitGrad-based

11.732
Grad-free (ours)

7.1316

0 10 20 30 40 50 60 70
Peak memory usage (GB)

(b) LaVie, a video diffusion model [47]

0 10 20 30 40
−20

−18

−16

We seek methods
bottom & leftRuntime for decoder inversion (sec)N
oi

se
re

co
n.

N
M

S
E

(d
B

) Grad-based
32-bit

Grad-free
32-bit

Grad-free
16-bit

We seek
bottom & left

Pareto
inefficient 8.3832-bitGrad-based

3.2932-bit
Grad-free (ours)

2.6216-bit

0 2 4 6 8 10
Peak memory usage (GB)

(c) InstaFlow, one-step image generating model [24].

Figure 3: Our gradient-free decoder inversion has a way shorter runtime than the gradient-based
decoder inversion, and drastically reduces the GPU memory usage, on (a) SD2.1 [37], (b) LaVie [47],
and (c) InstaFlow [24]. Note that 16-bit gradient-based approach is unimplementable, due to the
underflow problem. Each point represents a different hyperparameter setting (e.g., the total number
of iterations, learning rate, learning rate scheduling); by collecting experimental results from such
diverse settings, the Pareto frontier can be obtained fairly without manipulation.

7

Results. Figure 3 shows the average NMSE and peak memory usage when performing decoder
inversion using practical techniques (i.e., Adam and learning rate scheduling) in three different
LDMs. While the gradient-based method required much runtime and GPU memory to achieve a
certain accuracy, our approach achieves good accuracy in much less runtime and memory usage. One
advantage of our proposed method is that it enables all operations to be performed in 16-bit through
gradient-free methods, which would typically be infeasible with gradient-based approaches [30]. As
a result, for video LDMs where large vectors need to be estimated (Fig. 3b), memory usages can be
significantly reduced by almost 9 times.

5 Applications

5.1 Tree-rings watermarking for image generation

In this section, we show an interesting application of our gradient-free decoder inversion. Wen et al.
[48] proposed tree-rings watermarking, which is an invisible and robust method for protecting the
copyright of diffusion-generated images. Watermark is embedded into the Fourier transform of zT ,
and detected by inversion (i.e., estimating zT from x). Hong et al. [14] went beyond watermark
detection to attempt watermark classification, which makes the problem more difficult; the inversion
should be even more accurate. In the following scenarios with two image generation LDMs, we
experimentally show that our decoder inversion can efficiently perform watermark classification.

Watermark classification in SD 2.1. Since watermark classification requires higher accuracy than
detection, iterative diffusion inversion algorithms was used such as the backward Euler instead of
the naïve DDIM inversion. However, it is reported that iterative algorithms become unstable when
the classifier-free guidance is large [31, 14]. So even for watermark classification, the naïve DDIM
inversion should be used for now. In this case, one promising option for improving the performance
of watermark classification is decoder inversion.

Watermark classification in InstaFlow. One-step models such as InstaFlow [24] generate z0
directly from zT . Therefore, rather than the naïve DDIM inversion, the backward Euler method[14]
should be used to obtain zT from z0. In this case, z0 is very sensitive to zT , so zT should be
estimated accurately by decoder inversion.

Results. Table 2 shows the accuracy, peak memory usage and runtime of classifying three tree-rings
watermarks using different decoder inversion algorithms. Our decoder inversion method achieves
watermark classification performance comparable to a gradient-based method while significantly
reducing runtime and peak memory usage. See the appendix for the details.

Table 2: Our gradient-free decoder inversion method achieves the tree-rings watermark [48] classi-
fication performance comparable to a gradient-based method while significantly reducing memory
usage and runtime, in two different scenarios.

LDM Encoder Gradient-based [14] Gradient-free (ours)

SD2.1 [37]
Accuracy 186/300 207/300 202/300
Peak memory (GB) 5.71 11.4 6.35
Runtime (s) 5.66 38.0 22.9

InstaFlow [24]
Accuracy 149/300 227/300 227/300
Peak memory (GB) 2.93 8.84 3.15
Runtime (s) 3.55 35.9 13.6

5.2 Background-preserving image editing

Background-preserving editing, to manipulate an image based on a new condition while preserving
background from the original image, requires the entire generating latent trajectory. When it is
unknown, it must be recovered via inversion [32]. We empirically demonstrate that our algorithm
enhances the background-preserving image editing, without the need for the original latents. Figure 4

8

shows the qualitative results of applying our algorithm to the experiment. To compare accuracy
at similar execution times, we adjusted the number of iterations to match the execution time. At
comparable execution times, our grad-free method better preserves the background and achieves a
lower NMSE.

Method # iter

Runtime
Edited Error map (×5) Edited Error map (×5)

Oracle
[32] -

Grad-
based

50
15.7s

Grad-free

32bit

(Ours)

100
17.7s

Grad-free

16bit

(Ours)

200
19.3s

Grad-
based

30
9.31s

Grad-free

32bit

(Ours)

50
8.53s

Grad-free

16bit

(Ours)

100
9.56s

Figure 4: Our grad-free methods enables the background-preserving image editing, where the original
trajectory (zt) is unknown. The first row (Oracle) shows the result with using the original trajectory.
The latter cases estimate the trajectory with inversion methods. Our grad-free method demonstrates
better performance compared to the grad-based method at a similar runtime.

6 Discussion

6.1 Does the β-cocoercivity hold also when using Adam? Yes.

0 1
min cocoercivity (zk vs z)

5

10

15

||z
50

z
|| 2

29

11

NM
SE

 (d
B)

(a) Stable Diffusion 2.1 [37]

0.0 0.5
min cocoercivity (zk vs z)

10

20

30

40

||z
50

 -
z

|| 2

21

12

NM
SE

 (d
B)

(b) LaVie [47]

0.0 0.5
min cocoercivity (zk vs z)

5

10

||z
50

z
|| 2

27

8

NM
SE

 (d
B)

(c) InstaFlow [24]

Figure 5: The assumptions also hold for Adam in many cases, as similar in Fig. 2. The x-axis
represents the values of min

k∈[0,50]

⟨EDz∞−EDzk,z∞−zk⟩
∥EDz∞−EDzk∥2

2
, which informs whether the optimization path

satisfies the assumptions of Theorems 1 and 2, while the y-axis represents the convergence (i.e.,
∥z50 − z∞∥2). The red line shows the linear function fitted by least squares. Note that z∞ was
approximated by z300.

Although it is challenging to provide a proof regarding convergence for algorithms using Adam
and learning rate scheduling (those used in Section 4 and Fig. 3c), we can rather test if (zk) satisfy
cocoercivity (9), as in Fig. 2. Figure 5 depicts the plot of Fig. 2 under the conditions of the experiments

9

in Section 4, specifically with 16-bit precision and 50 iterations (as Adam converges faster than
others). In the cases of Figs. S3b and S3c, cocoercivity is well satisfied, and even in Fig. S3a, many
instances meet the cocoercivity requirement. Additionally, as in Fig. 2, the fitted functions have
a negative slope. These findings show that our analysis can help explain some aspects of Adam’s
convergence.

6.2 Why this method has not been proposed in GAN inversion studies

Some may wonder why this gradient-free approach (replacing gradient descent of Eq. (3) with a
forward step method of Eq. (4) using the encoder) has not been proposed in numerous GAN inversion
studies. Here, we provide Table 3 to explain the reasons. The first reason is that GAN inversion
cannot use the encoder from off-the-shelf [49]. It is because networks commonly used in GAN
inversion, such as StyleGAN [1], were not born with an encoder even though there are some GAN
methods that are inherently an autoencoder such as VQGAN [9] that was born with an encoder. Thus
many GAN inversion works needed to train the encoder [33, 8, 34, 53, 6, 36, 7, 2], while we can use
the encoder without any finetuning. The second reason is that the memory requirement was small in
GAN inversion, as the size of the generated images was small. Even a standard GPU on a PC was
capable of running gradient-based algorithms, so there was not much need for lighter algorithms than
gradient-based methods. On the contrary, due to the increasing size of images/videos generated by
recent LDMs, performing decoder inversion with gradient-based algorithms requires huge memory.
Another reason is that many networks for GAN inversion operate in full precision (32 bits), making
it easier to employ gradient-based methods here. Meanwhile, many recent LDMs often infer in
half-precision (16 bits) to enhance efficiency, making gradient-based methods challenging [30].

Table 3: Why has a gradient-free method not been proposed for GAN inversion?

GAN inversion Decoder inversion in LDMs

Encoder usage Limited Very easy
Memory requirement Small Large (e.g., video generation)
Inference precision Full (32-bit) Half (16-bit)

7 Conclusion

In this work, we proposed gradient-free decoder inversion methods for LDMs. The vanilla forward
step method and its extension with momentum were shown to guarantee convergence, and the
assumptions and theorems were validated for various LDMs. We experimentally showed that a
practical algorithm significantly reduced runtime and memory usage compared to existing gradient-
based methods.

Limitations Existing gradient-based method is more accurate than our method if sufficient runtime
and GPU memory are available. In applications such as image editing, where the accuracy of latent
reconstruction may not be critically important such as background preservation, decoder inversion is
often unnecessary in most settings (i.e., using the encoder is just OK).

Broader impacts This study could positively impact the protection of copyright for LDM’s outputs.
One day, even if a new neural network architecture is invented and diffusion is no longer used,
our method can still be efficiently utilized to improve the accuracy of decoder inversion as long as
transformations between latent and pixel-space are required.

10

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government(MSIT) [NO.2021-0-01343, Artificial
Intelligence Graduate School Program (Seoul National University)] and National Research Foundation
of Korea (NRF) grants funded by the Korea government (MSIT) (NRF-2022R1A4A1030579, NRF-
2022M3C1A309202211). The authors acknowledged the financial support from the BK21 FOUR
program of the Education and Research Program for Future ICT Pioneers, Seoul National University.

References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2StyleGAN: How to embed images into the stylegan

latent space? In ICCV, 2019.

[2] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. HyperStyle: Stylegan inversion
with hypernetworks for real image editing. In CVPR, 2022.

[3] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural networks, 2(1):53–58, 1989.

[4] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz,
Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video
diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[5] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In CVPR,
2023.

[6] Lucy Chai, Jonas Wulff, and Phillip Isola. Using latent space regression to analyze and leverage composi-
tionality in gans. ICLR, 2021.

[7] Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, and Richard Zhang. Ensembling with deep
generative views. In CVPR, 2021.

[8] Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial network.
IEEE transactions on neural networks and learning systems, 30(7):1967–1974, 2018.

[9] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In CVPR, 2021.

[10] Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. ReNoise: Real
image inversion through iterative noising. arXiv preprint arXiv:2403.14602, 2024.

[11] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications, 2021.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.

[13] Seongmin Hong and Se Young Chun. Neural diffeomorphic non-uniform b-spline flows. In AAAI, 2023.

[14] Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact inversion
of dpm-solvers. arXiv preprint arXiv:2311.18387, 2023.

[15] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In CVPR, 2019.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[17] Jonas Köhler, Andreas Krämer, and Frank Noé. Smooth normalizing flows. NeurIPS, 2021.

[18] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A versatile diffusion
model for audio synthesis. In ICLR, 2021.

[19] Mark Aleksandrovich Krasnosel’skii. Two remarks on the method of successive approximations. Uspekhi
matematicheskikh nauk, 10(1):123–127, 1955.

[20] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

11

[21] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In ICML, 2023.

[22] Haohe Liu, Qiao Tian, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Yuping Wang, Wenwu Wang,
Yuxuan Wang, and Mark D Plumbley. AudioLDM 2: Learning holistic audio generation with self-
supervised pretraining. arXiv preprint arXiv:2308.05734, 2023.

[23] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

[24] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. InstaFlow: One step is enough for high-quality
diffusion-based text-to-image generation. In ICLR, 2023.

[25] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A fast ODE
solver for diffusion probabilistic model sampling in around 10 steps. NeurIPS, 2022.

[26] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++: Fast solver
for guided sampling of diffusion probabilistic models. arXiv:2211.01095, 2022.

[27] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthesizing
high-resolution images with few-step inference, 2023.

[28] W Robert Mann. Mean value methods in iteration. Proceedings of the American Mathematical Society, 4
(3):506–510, 1953.

[29] Juan José Maulén, Ignacio Fierro, and Juan Peypouquet. Inertial Krasnoselskii-Mann Iterations. Set-Valued
and Variational Analysis, 32(2):10, 2024.

[30] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

[31] Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing with
accelerated iterative diffusion inversion. In ICCV, 2023.

[32] Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-Elor, and Daniel Cohen-Or. Localizing object-
level shape variations with text-to-image diffusion models. In ICCV, 2023.

[33] Guim Perarnau, Joost Van De Weijer, Bogdan Raducanu, and Jose M Álvarez. Invertible conditional GANs
for image editing. arXiv preprint arXiv:1611.06355, 2016.

[34] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent autoencoders. In
CVPR, 2020.

[35] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with CLIP latents. arXiv:2204.06125, 2022.

[36] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel
Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation. In CVPR, 2021.

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022.

[38] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-
Booth: Fine tuning text-to-image diffusion models for subject-driven generation. In CVPR, 2023.

[39] Ernest K Ryu and Wotao Yin. Large-scale convex optimization: algorithms & analyses via monotone
operators. Cambridge University Press, 2022.

[40] Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion distillation.
arXiv preprint arXiv:2311.17042, 2023.

[41] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR, 2021.

[42] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. NeurIPS,
2020.

[43] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

12

[44] Bram Wallace, Akash Gokul, and Nikhil Naik. EDICT: Exact Diffusion Inversion via Coupled Transfor-
mations. In CVPR, pages 22532–22541, 2023.

[45] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Modelscope
text-to-video technical report. arXiv preprint arXiv:2308.06571, 2023.

[46] Xiang Wang, Shiwei Zhang, Han Zhang, Yu Liu, Yingya Zhang, Changxin Gao, and Nong Sang. Vide-
oLCM: Video latent consistency model. arXiv preprint arXiv:2312.09109, 2023.

[47] Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He,
Jiashuo Yu, Peiqing Yang, et al. LaVie: High-quality video generation with cascaded latent diffusion
models. arXiv preprint arXiv:2309.15103, 2023.

[48] Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-Ring Watermarks: Fingerprints
for diffusion images that are invisible and robust. arXiv:2305.20030, 2023.

[49] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. GAN Inversion:
A survey. IEEE TPAMI, 45(3):3121–3138, 2022.

[50] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with denoising
diffusion GANs. In ICLR, 2021.

[51] Guoqiang Zhang, Jonathan P Lewis, and W Bastiaan Kleijn. Exact diffusion inversion via bi-directional
integration approximation. arXiv:2307.10829, 2023.

[52] Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo: Efficient
video generation with latent diffusion models. arXiv preprint arXiv:2211.11018, 2022.

[53] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain GAN inversion for real image editing. In
ECCV, 2020.

[54] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipulation on
the natural image manifold. In ECCV, 2016.

13

A Appendix

A.1 Proofs

Throughout the paper and appendix, both the inner product and the norm are l2.

A.1.1 Proof of Theorem 1

Proof of Theorem 1.

∥zk+1 − z⋆∥22 = ∥zk − z⋆ − ρT zk∥22
= ∥zk − z⋆∥22 − 2ρ⟨T zk, zk − z⋆⟩+ ρ2∥T zk∥22
≤ ∥zk − z⋆∥22 − ρ(2β − ρ)∥T zk∥22

(S1)

Sum both sides from k = 0, . . . ,∞

ρ(2β − ρ)

∞∑
k=0

∥T zk∥22 ≤ ∥z0 − z⋆∥22 < ∞ ⇒ ∥T zk∥22 → 0 ⇒ T zk → 0. (S2)

Finally, if zk → z∞, then T z∞ = 0 by continuity.

A.1.2 Lemma 1 for Theorem 2

For simplicity, we set

ν = (λ−1 − 1), (S3)

δk = ν(1− α)∥zk − zk−1∥2, (S4)

∆k(z⋆) = ∥zk − z⋆∥2 − ∥zk−1 − z⋆∥2, ∆1(z⋆) = 0 (S5)

Ck(z⋆) = ∥zk − z⋆∥2 − α∥zk−1 − z⋆∥2 + δk, C1(z⋆) = ∥z1 − z⋆∥2. (S6)

Before we prove, we need the following lemma.

Lemma S1. Let β > 0, 0 < ρ < 2β, and x ∈ RN . Assume T (·) = E ◦ D(·)− E(x) is continuous.
Assume T (·) = E ◦ D(·)− E(x) is continuous. Let (zk,yk) satisfy (10) and (11). Assume z⋆ is a
zero of T (i.e., T z⋆ = 0) and Eq. (12) holds. Then, for k = 1, 2, . . . ,

∆k+1(z⋆)+δk+1+να∥zk+1−2zk+zk−1∥2 ≤ α∆k(z⋆)+[α(1+α)+να(1−α)]∥zk−zk−1∥2.
(S7)

Proof of Lemma S1. Let ρ = 2λβ. From Eq. (11),

∥zk+1 − z⋆∥2 = ∥yk − z⋆∥2 + ρ2∥T yk∥2 − 2ρ⟨yk − z⋆, T yk⟩. (S8)

Applying Eq. (12) on Eq. (S8), we have

∥zk+1 − z⋆∥2 ≤ ∥yk − z⋆∥2 − ρ(2β − ρ)∥T yk∥2. (S9)

From Eq. (10),

∥yk − z⋆∥2 = ∥(1 + α)(zk − z⋆)− α(zk−1 − z⋆)∥2

= (1 + α)∥zk − z⋆∥2 + α(1 + α)∥zk − zk−1∥2 − α∥zk−1 − z⋆∥2.
(S10)

Combining Eq. (S9) and Eq. (S10),

∥zk+1−z⋆∥ ≤ (1+α)∥zk−z⋆∥2+α(1+α)∥zk−zk−1∥2−α∥zk−1−z⋆∥2−ρ(2β−ρ)∥T yk∥2.
(S11)

Using Eq. (S4), we can simplify Eq. (S11) as follows:

∆k+1(z⋆) ≤ α∆k(z⋆) + α(1 + α)∥zk − zk−1∥2 − ρ(2β − ρ)∥T yk∥2. (S12)

14

On the other hand, by Eq. (10) and Eq. (11), we have

ρ2∥T yk∥2 = ∥zk+1 − yk∥2

= ∥zk+1 − zk − α(zk − zk−1)∥2

= ∥(1− α)(zk+1 − zk) + α(zk+1 − 2zk + zk−1)∥2

= (1− α)∥zk+1 − zk∥2 − α(1− α)∥zk − zk−1∥2 + α∥zk+1 − 2zk + zk−1∥2.
(S13)

Let’s multiply ν = (2β − ρ)/ρ to Eq. (S13). Then

ρ(2β − ρ)∥T yk∥2 = δk+1 − να(1− α)∥zk − zk−1∥2 + να∥zk+1 − 2zk + zk−1∥2 (S14)

Finally, subtracting Eq. (S14) from Eq. (S12), we obtain Eq. (S7).

A.1.3 Proof of Theorem 2

Proof of Theorem 2. We firstly show that
(
Ck(z⋆)

)
k

is nonincreasing and nonnegative, thus
lim
k→∞

Ck(z⋆) exists. By Eq. (13), there exists ϵ > 0 such that

α(1 + α) + να(1− α) ≤ ν(1− α)− ϵ. (S15)

Combining Eq. (S7) and Eq. (S15), we have

∆k+1(z⋆) + δk+1 + να∥zk+1 − 2zk + zk−1∥2

≤ α∆k(z⋆) + [α(1 + α) + να(1− α)]∥zk − zk−1∥2

≤ α∆k(z⋆) + [ν(1− α)− ϵ]∥zk − zk−1∥2

= α∆k(z⋆) + δk − ϵ∥zk − zk−1∥2.

(S16)

From Eq. (S6) and Eq. (S5),

Ck+1(z⋆)− Ck(z⋆) = ∆k+1(z⋆)− α(∥zk − z⋆∥2 − ∥zk−1 − z⋆∥2) + δk+1 − δk

= ∆k+1(z⋆) + δk+1 − α∆k(z⋆)− δk.
(S17)

By Eq. (S16) and Eq. (S17), we have

Ck+1(z⋆) + να∥zk+1 − 2zk + zk−1∥2 + ϵ∥zk − zk−1∥2 ≤ Ck(z⋆), (S18)

which shows
(
Ck(z⋆)

)
k

is nonincreasing. To prove it is nonnegative, suppose Ck1(z⋆) < 0 for
some k1 ≥ 1. Since it is nonincreasing, from Eq. (S6),

∥zk − z⋆∥2 − α∥zk−1 − z⋆∥2 ≤ Ck(z⋆) ≤ Ck1(z⋆) < 0 (S19)

for all k ≥ k1. That is, ∥zk − z⋆∥2 ≤ ∥zk−1 − z⋆∥2 + Ck1(z⋆), hence

0 ≤ ∥zk − z⋆∥2 ≤ ∥zk−1 − z⋆∥2 + Ck1(z⋆) ≤ · · · ≤ ∥zk1 − z⋆∥2 + (k − k1)C
k1(z⋆) (S20)

for all k ≥ k1, and this is a contradiction as the right hand of Eq. (S20) diverges to −∞ as k → ∞.
Therefore,

(
Ck(z⋆)

)
k

is nonincreasing and nonnegative, thus lim
k→∞

Ck(z⋆) exists.

Now we begin showing (A). By the findings so far and Eq. (S18) and since ϵ > 0,
∑

k≥1 ∥zk+1 −
2zk+zk−1∥2 and

∑
k≥1 ∥zk−zk−1∥2 converge. Since

∑
k≥1 ∥zk−zk−1∥2 converges,

∑
k≥1 δ

k =∑
k≥1 ν(1− α)∥zk − zk−1∥2 also converges. Using Eq. (S13) and an identity ∥a− b∥2 ≤ 2∥a∥2 +

2∥b∥2, we have

ρ2∥T yk∥2 = (1 + α)∥zk+1 − zk∥2 + α(1 + α)∥zk − zk−1∥2. (S21)

Summing Eq. (S18) over k ≥ 1, we have

ϵ
∑
k≥1

∥zk − zk−1∥2 ≤ C1(z⋆) = ∥z1 − z⋆∥2. (S22)

15

Using the summation of Eq. (S21) and Eq. (S22), we have

n min
1≤k≤n

∥T yk∥2 ≤
∑
k≥1

∥T yk∥2 ≤ (1 + α)2

ϵρ2
∥z1 − z⋆∥2, (S23)

which shows that
∑

k≥1 ∥T yk∥2 converges, and proves (B).

Now we prove (C). From Eq. (S16), we have

∆k+1(z⋆) ≤ α∆k(z⋆) + δk. (S24)

Let [·]+ denotes the positive part. From Eq. (S24),

(1− α)[∆k+1(z⋆)]+ + α[∆k+1(z⋆)]+ ≤ α[∆k(z⋆)]+ + δk. (S25)

Applying summation for k ≥ 1, we have

(1− α)
∑
k≥1

[∆k+1(z⋆)]+ ≤ α[∆1(z⋆)]+ +
∑
k≥1

δk =
∑
k≥1

δk < ∞. (S26)

Let hk = ∥zk − z⋆∥2 −
∑k

j=1[∆
j(z⋆)]+. Then hk+1 − hk = ∆k+1(z⋆) − [∆k+1(z⋆)]+ ≤ 0 so

(hk) is nonincreasing. Since
∑

k≥1[∆
k+1(z⋆)]+ is finite, limk→∞ ∥zk − z⋆∥ = limk→∞ hk exists.

Finally, we now prove (D). By (A), limk→∞ ∥T yk∥ = limk→∞ ∥zk − zk−1∥ = 0. By Eq. (10) and
(11), (yk) and (zk) have the same limit points.

A.2 Experiment details and more results

A.2.1 Decoder inversion in LDMs

Hong et al. [14] successfully employed the gradient-based method in their experiments and completed
hyperparameter tuning. Their tailored method may work well in their setting, so we used the code
from Hong et al. [14]’s official repository2 to perform decoder inversion on 100 images generated
under the same settings (prompt, classifier-free guidance, random seed). This makes our comparison
fair. Table S1 shows the settings, NMSE, number of iterations, runtime, and memory usage of the
experiments. Although all the values in Table S1 are actually displayed in Fig. 3, Table S1 provides
additional information, including on which specific settings correspond to the points in Fig. 3.

Gradient-based method For the gradient-based method (for comparision), we used Adam [16]
with l2-loss. When optionally using a cosine learning rate scheduler, 1/10 of the total steps were
warm-up steps (i.e., the learning rate increased linearly). Note that this setting is the same to [14].
In [14], the learning rate was 0.1 with 100 iterations, but it showed long runtimes. Thus, we set the
iterations to 20, 30, 50, and 100. We could observe that reducing the number of iterations decreases
the effectiveness of learning rate scheduling. Therefore, we additionally conducted experiments with
a fixed learning rate of 0.01, and found that it performed better with a smaller number of iterations.
As shown in Tables S1a and S1c, when comparing the ‘0.1 scheduled’ and ‘0.01 fixed’ rows under
‘Grad-based 32-bit’, the fixed learning rate outperforms at 20 and 30 iterations, whereas the scheduled
learning rate outperforms at 50 and 100 iterations. By comparing existing methods under various
hyperparameter settings, we can more reliably establish the Pareto frontier of these methods, ensuring
the fairness of our comparisons.

Other details For Stable Diffusion 2.1 and InstaFlow, we used prompts from https://
huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts. For LaVie, prompts
were generated by ChatGPT, given the examples used in [47]. The classifier-free guidance was 3.0 in
Stable Diffusion 2.1, 7.5 in LaVie, and 1.0 in InstaFlow. For LaVie, we found that 200 iterations for
the gradient-free method is too long, so we adjusted the learning rate scheduling as if there were only
100 iterations (fixing the learning rate after 100 iterations).

2https://github.com/smhongok/inv-DM

16

https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts

Table S1: We can further improve the reconstruction quality, by using a cosine learning rate scheduler
with warm-up steps (if the number of iterations or the runtime is predetermined). We conducted
experiments of the decoder inversion in various LDMs, with all other conditions being the same to
that in Fig. 3, but using a relatively scheduled learning rate at each iteration. ± represents the 95%
confidence interval.

(a) Stable Diffusion 2.1

Method Bits LR NMSE (dB) // # iter. / Runtime Memory

Grad-based 32 0.1 -15.92 ± 0.44 -17.84 ± 0.55 -20.69 ± 0.73 -24.82 ± 1.08 8.83 GB
scheduled 20 / 6.11 s 30 / 9.31 s 50 / 15.7 s 100a / 31.7 s

Grad-based 32 0.01 -18.61 ± 0.49 -19.51 ± 0.55 -20.93 ± 0.67 -23.00 ± 0.85 8.83 GB
fixed 20 / 6.29 s 30 / 9.37 s 50 / 16.0 s 100 / 32.8 s

Grad-free
(ours) 32 0.01 -19.39 ± 0.54 -20.84 ± 0.66 -21.71 ± 0.77 -21.85 ± 0.82 3.81 GB

scheduled 20 / 3.34 s 50 / 8.53 s 100 / 17.7 s 200 / 34.5 s

Grad-free
(ours) 16 0.01 -18.74 ± 0.48 -20.82 ± 0.66 -21.72 ± 0.77 -21.86 ± 0.82 3.15 GB

scheduled 20 / 1.91 s 50 / 4.90 s 100 / 9.56 s 200 / 19.3 s

aThis setting is the same as the setting in [14].

(b) LaVie

Method Bits LR NMSE (dB) // # iter. / Runtime Memory

Grad-based 32 0.1 -17.35 ± 0.45 -18.12 ± 0.49 -19.58 ± 0.59 -22.20 ± 0.81 64.7 GB
scheduled 20 / 24.86 s 30 / 37.07 s 50 / 61.37 s 100 / 122.31 s

Grad-based 32 0.01 -19.06 ± 0.43 -19.68 ± 0.48 -20.66 ± 0.57 -22.14 ± 0.71 64.7 GB
fixed 20 / 25.11 s 30 / 37.11 s 50 / 61.67 s 100 / 122.46 s

Grad-free
(ours) 32 0.01 -20.21 ± 0.43 -21.42 ± 0.54 -21.58 ± 0.62 -21.21 ± 0.58 11.7 GB

scheduled 20 / 12.96 s 50 / 32.17 s 100 / 64.25 s 200 / 128.34 s

Grad-free
(ours) 16 0.01 -19.86 ± 0.42 -21.37 ± 0.55 -21.52 ± 0.63 -21.14 ± 0.58 7.13 GB

scheduled 20 / 8.59 s 50 / 21.19 s 100 / 42.28 s 200 / 83.45 s

(c) InstaFlow

Method bits LR NMSE (dB) // # iter. / Runtime Memory

Grad-based 32 0.1 -15.67 ± 0.48 -16.22 ± 0.53 -17.26 ± 0.62 -19.15 ± 0.78 8.38 GB
scheduled 20 / 6.29 s 30 / 9.55 s 50 / 16.12 s 100 / 32.54 s

Grad-based 32 0.01 -15.94 ± 0.48 -16.40 ± 0.52 -17.14 ± 0.59 -18.33 ± 0.70 8.38 GB
fixed 20 / 6.30 s 30 / 9.51 s 50 / 15.92 s 100 / 32.14 s

Grad-free
(ours) 32 0.01 -16.55 ± 0.53 -17.46 ± 0.63 -17.76 ± 0.68 -17.81 ± 0.70 3.2 GB

scheduled 20 / 3.17 s 50 / 8.34 s 100 / 16.90 s 200 / 34.21 s

Grad-free
(ours) 16 0.01 -16.38 ± 0.51 -17.46 ± 0.63 -17.76 ± 0.68 -17.82 ± 0.71 2.62 GB

scheduled 20 / 1.89 s 50 / 4.93 s 100 / 9.99 s 200 / 20.04 s

A.2.2 Watermark detection

For both scenarios, the number of steps was 100 and the learning rate was scheduled for both gradient-
based and gradient-free methods. The maximum learning rate was 0.1 for grad-based methods and

17

0.01 for Grad-free methods, which is consistent with the experiments in Section 4. All experiments
were conducted in 32-bit.

For Stable Diffusion 2.1, through decoder inversion, we obtain z0 from x, and perform naïve DDIM
inversion for 50 steps to obtain zT from z0. Except for employing the naïve DDIM inversion due
to the use of a large classifier-free guidance of 7.5 and resulting stability issues, the experimental
settings are the same as those of [14]. For InstaFlow, the backward Euler (Algorithm 1 of [14]) with
100 iterations is applied for seeking zT from z0.

Figure S1 shows the confusion matrices for the experiments of Table 2 in the main paper. In Figure S2,
we also present the qualitative results of applying our algorithm to the watermark classification
experiment. Our grad-free method enables precise reconstruction, while reducing the runtime
compared to the grad-based method.

1 2 3

1
2
3

54 14 32
27 47 26
12 3 85

Predicted

A
ct

ua
l

Encoder

1 2 3

1
2
3

47 24 29
17 66 17
4 2 94

Predicted

A
ct

ua
l

Grad-based

1 2 3

1
2
3

52 17 31
18 57 25
5 2 93

Predicted

A
ct

ua
l

0
20
40
60
80
100

Grad-free (ours)

(a) Stable Diffusion 2.1. Accuracy: 186/300, 207/300, 202/300

1 2 3

1
2
3

29 36 35
1 36 63
0 16 84

Predicted

A
ct

ua
l

Encoder

1 2 3

1
2
3

31 55 14
1 96 3
0 0 100

Predicted

A
ct

ua
l

Grad-based

1 2 3

1
2
3

30 60 10
1 97 2
0 0 100

Predicted

A
ct

ua
l

0
20
40
60
80
100

Grad-free (ours)

(b) InstaFlow. Accuracy: 149/300, 227/300, 227/300

Figure S1: Confusion matrices for watermark classification on LDMs. Ours is better than the encoder
and works as well as the grad-based method [14].

Embedded
watermark Generated Encoder

(Recon. / Error)
Grad

(Recon. / Error)
Grad(short)

(Recon. / Error)
Grad-free 16bit (ours)

(Recon. / Error)
iter, Runtime -, - 200, 64.4s 100, 32.0s 200, 35.0s

NMAE = 0.17 NMAE = 0.15 NMAE = 0.16 NMAE = 0.14

NMAE = 0.18 NMAE = 0.15 NMAE = 0.16 NMAE = 0.16

NMAE = 0.20 NMAE = 0.17 NMAE = 0.18 NMAE = 0.18

Figure S2: Qualitative result on the watermarking classification experiment [14]. Our grad-free
decoder inversion aids in the accurate reconstruction of Tree-ring watermarking [48]. Specifically, it
either reduces the processing time compared to the grad-based (column 3 vs 5) or achieves better
accuracy within the same runtime (column 4 vs 5).

18

Table S2: Ablation studies on optimizer and learning rate scheduling. Adam showed the best result
compared to vanilla and KM iterations method. The learning scheduling we used showed consistently
good performance across all intervals.

(a) Ablation study on optimizer

NMSE (dB)

Method \ # iter. 20 30 50 100

Vanilla -16.87 ± 0.38 -17.42 ± 0.41 -18.21 ± 0.46 -19.35 ± 0.54
KM iterations -18.99 ± 0.53 -20.72 ± 0.73 -21.46 ± 0.96 -20.91 ± 1.20
Adam (orig.) -19.39 ± 0.54 -20.84 ± 0.66 -21.71 ± 0.77 -21.85 ± 0.82

(b) Ablation study on learning rate scheduling

Method NMSE (dB)

20 50 100 200

lr=0.01 (fixed) -20.05 ± 0.58 -21.07 ± 0.70 -21.22 ± 0.74 -20.61 ± 0.79
lr=0.002 (fixed) -17.85 ± 0.43 -19.28 ± 0.53 -20.59 ± 0.64 -21.57 ± 0.74

lr scheduled (orig.) -19.39 ± 0.54 -20.84 ± 0.66 -21.71 ± 0.77 -21.85 ± 0.82

A.2.3 Ablation Studies

We conducted an ablation study on each optimizer and learning rate scheduling, in SD2.1(32bit).
Table S2a shows the result of only changing the optimizer while keeping all other conditions the
same. In Table S2b, we observed what happens when using a fixed learning rate instead of applying
learning rate scheduling with Adam. When using a fixed learning rate, we found that with a large
learning rate (lr=0.01), the performance was poor when the number of iterations was high, and with
a small learning rate (lr=0.002), the performance was poor when the number of iterations was low.
In contrast, the scheduled learning rate we used showed consistent performance across all intervals
regardless of the number of iterations.

A.2.4 Analysis on the grad-based method

In Figure S3, we present the instance-wise cocoercivity, convergence, and accuracy for the gradient-
based method, similar to Figure 2 and Figure 5. Similar to the results observed with the gradient-free
method, the gradient-based method showed that most instances satisfied cocoercivity, and better
convergence often led to higher accuracy. However, it was observed that cocoercivity and convergence
are not significantly correlated. In other words, the correlation between cocoercivity and convergence
is not a general characteristic, but a unique feature we discovered in our gradient-free method.

A.3 Supplementary explanation

Figure 1b Normalizing flows (NFs) are born with its analytic invertibility, hence located at the
bottom left. VAEs and learning-based GAN inversion methods have corresponding encoders, so they
have short computation time but come with some inversion error. Some special structured DMs [44]
are also located here.

A.4 Computational resources

For running Stable Diffusion 2.1, one NVIDIA GeForce RTX 3090 Ti was used. The RAM size of
the GPU was 24 GB. Note that most of the computation was conducted on GPU. For CPU, one 11th
Gen Intel(R) Core(TM) i9-11900KF @ 3.50GHz was used. For running LaVie, one NVIDIA A100
SXM4 80GB and AMD EPYC 7742 64-Core Processor were used. For InstaFlow, one NVIDIA
GeForce RTX 3090 GPU with one 12th Gen Intel(R) Core(TM) 17-12700K @ 3.60GHz was used.

19

0.5 0.0 0.5
min cocoercivity (zk vs z)

10

20

30

||z
50

z
|| 2

29

11

NM
SE

 (d
B)

(a) Stable Diffusion 2.1

0.5 0.0 0.5
min cocoercivity (zk vs z)

20

40

60

80

||z
50

 -
z

|| 2

31

15

NM
SE

 (d
B)

(b) LaVie

0.0 0.5
min cocoercivity (zk vs z)

2.5

5.0

7.5

||z
50

z
|| 2

29

8

NM
SE

 (d
B)

(c) InstaFlow

Figure S3: Analysis on the grad-based method. x-axis: min
k∈[0,50]

⟨EDz∞−EDzk,z∞−zk⟩
∥EDz∞−EDzk∥2

2
, y-axis: conver-

gence (i.e., ∥z50 − z∞∥2). The red line shows the linear function fitted by least squares. Note that
z∞ was approximated by z300. Better convergence and accuracy were observed, but no relationship
with cocoercivity was found.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

21

Justification: This paper provides Theorems 1,2 and their corresponding proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper provides sufficient information that can reproduce the results of the
main experiment in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22

Answer: [Yes]
Justification: This paper provides code to reproduce the experimental results in Sections 4
and 5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper provides the details of the experiments sufficiently.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: This paper reports error bars (95% confidence interval) for the main experiment
(Figure 3).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Peak memory usages and time of executions are main concerns of this paper.
This paper also provide information on computer resources in Section A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, this paper does.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses societal impacts in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

24

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper explicitly mentioned and properly respected the assets used in this
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

25

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code of the supplementary material has its document README.md.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve such crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve such crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Backgrounds
	Latent diffusion models (LDMs)
	Optimization-based GAN inversion
	Gradient-based decoder inversion in LDMs

	Gradient-free decoder inversion in LDMs
	Motivation
	Convergence analysis on forward step method
	Convergence analysis on momentum for acceleration
	Validation of the assumption

	Experiments with practical optimization techniques
	Applications
	Tree-rings watermarking for image generation
	Background-preserving image editing

	Discussion
	Does the -cocoercivity hold also when using Adam? Yes.
	Why this method has not been proposed in GAN inversion studies

	Conclusion
	Appendix
	Proofs
	Proof of thm:1
	Lemma 1 for Theorem 2
	Proof of thm:2

	Experiment details and more results
	Decoder inversion in LDMs
	Watermark detection
	Ablation Studies
	Analysis on the grad-based method

	Supplementary explanation
	Computational resources

