
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON DIFFERENTIALLY PRIVATE STRING DISTANCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Given a database of bit strings A1, . . . , Am ∈ {0, 1}n, a fundamental data structure
task is to estimate the distances between a given query B ∈ {0, 1}n with all the
strings in the database. In addition, one might further want to ensure the integrity of
the database by releasing these distance statistics in a secure manner. In this work,
we propose differentially private (DP) data structures for this type of tasks, with a
focus on Hamming and edit distance. On top of the strong privacy guarantees, our
data structures are also time- and space-efficient. In particular, our data structure is
ϵ-DP against any sequence of queries of arbitrary length, and for any query B such
that the maximum distance to any string in the database is at most k, we output m
distance estimates. Moreover,

• For Hamming distance, our data structure answers any query in Õ(mk +
n) time and each estimate deviates from the true distance by at most
Õ(k/eϵ/ log k);

• For edit distance, our data structure answers any query in Õ(mk2+n) time and
each estimate deviates from the true distance by at most Õ(k/eϵ/(log k logn)).

For moderate k, both data structures support sublinear query operations. We obtain
these results via a novel adaptation of the randomized response technique as a bit
flipping procedure, applied to the sketched strings.

1 INTRODUCTION

Estimating string distances is one of the most fundamental problems in computer science and
information theory, with rich applications in high-dimensional geometry, computational biology and
machine learning. The problem could be generically formulated as follows: given a collection of
strings A1, . . . , Am ∈ Σn where Σ is the alphabet, the goal is to design a data structure to preprocess
these strings such that when a query B ∈ Σn is given, the data structure needs to quickly output
estimates of ∥Ai−B∥ for all i ∈ [m], where ∥ · ∥ is the distance of interest. Assuming the symbols in
Σ can allow constant time access and operations, a naı̈ve implementation would be to simply compute
all the distances between Ai’s and B, which would require O(mn) time. Designing data structures
with o(mn) query time has been the driving research direction in string distance estimations. To
make the discussion concrete, in this work we will focus on binary alphabet (Σ = {0, 1}) and for
distance, we will study Hamming and edit distance. Hamming distance (Hamming, 1950) is one
of the most natural distance measurements for binary strings, with its deep root in error detecting
and correction for codes. It finds large array of applications in database similarity searches (Indyk
& Motwani, 1998; Charikar, 2002; Norouzi et al., 2012) and clustering algorithms (Huang, 1997;
Huang & Ng, 1999).

Compared to Hamming distance, edit distance or the Levenshtein distance (Levenshtein, 1966) could
be viewed as a more robust distance measurement for strings: it counts the minimum number of
operations (including insertion, deletion and substitution) to transform from Ai to B. To see the
robustness compared to Hamming distance, consider Ai = (01)n and B = (10)n, the Hamming
distance between these two strings is n, but Ai could be easily transformed to B by deleting the first
bit and adding a 0 to the end, yielding an edit distance of 2. Due to its flexibility, edit distance is
particularly useful for sequence alignment in computational biology (Wang et al., 2015; Young et al.,
2021; Berger et al., 2021), measuring text similarity (Navarro, 2001; Sidorov et al., 2015) and natural
language processing, speech recognition (Fiscus et al., 2006; Droppo & Acero, 2010) and time series
analysis (Marteau, 2009; Gold & Sharir, 2018).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In addition to data structures with fast query times, another important consideration is to ensure the
database is secure. Consider the scenario where the database consists of private medical data of m
patients, where each of the Ai is the characteristic vector of n different symptoms. A malicious
adversary might attempt to count the number of symptoms each patient has by querying 0n, or
detecting whether patient i has symptom j by querying ej and 0n where ej is the j-th standard basis
in Rn. It is hence crucial to curate a private scheme so that the adversary cannot distinguish the case
whether the patient has symptom j or not. This notion of privacy has been precisely captured by
differential privacy (Dwork, 2006; Dwork et al., 2006), which states that for neighboring databases1,
the output distribution of the data structure query should be close with high probability, hence any
adversary cannot distinguishable between the two cases.

Motivated by both privacy and efficiency concerns, we ask the following natural question:

Is it possible to design a data structures to estimate Hamming and edit distance, that are both
differentially private, and time/space-efficient?

We provide an affirmative answer to the above question, with the main results summarized in the
following two theorems. We will use Dham(A,B) to denote the Hamming distance between A and
B, and Dedit(A,B) to denote the edit distance between A and B. We also say a data structure is
ϵ-DP if it provides ϵ-DP outputs against any sequence of queries, of arbitrary length.
Theorem 1.1. Let A1, . . . , Am ∈ {0, 1}n be a database, k ∈ [n] and ϵ > 0, β ∈ (0, 1), then there
exists a randomized algorithm with the following guarantees:

• The data structure is ϵ-DP;

• It perprocesses A1, . . . , Am in time Õ(mn) time2;

• It consumes Õ(mk) space;

• Given any query B ∈ {0, 1}n such that maxi∈[m] Dham(Ai, B) ≤ k, it outputs m estimates
z1, . . . , zm with |zi −Dham(Ai, B)| ≤ Õ(k/eϵ/ log k) for all i ∈ [m] in time Õ(mk + n),
and it succeeds with probability at least 1− β.

Theorem 1.2. Let A1, . . . , Am ∈ {0, 1}n be a database, k ∈ [n] and ϵ > 0, β ∈ (0, 1), then there
exists a randomized algorithm with the following guarantees:

• The data structure is ϵ-DP;

• It perprocesses A1, . . . , Am in time Õ(mn) time;

• It consumes Õ(mn) space;

• Given any query B ∈ {0, 1}n such that maxi∈[m] Dedit(Ai, B) ≤ k, it outputs m estimates
z1, . . . , zm with |zi−Dedit(Ai, B)| ≤ Õ(k/eϵ/(log k logn)) for all i ∈ [m] in time Õ(mk2+
n), and it succeeds with probability at least 1− β.

Before diving into the details, we would like to make several remarks regarding our data structure
results. Note that instead of solving the exact Hamming distance and edit distance problem, we
impose the assumption that the query B has the property that for any i ∈ [m], ∥Ai −B∥ ≤ k. Such
an assumption might seem restrictive at its first glance, but under the standard complexity assumption
Strong Exponential Time Hypothesis (SETH) (Impagliazzo & Paturi, 2001; Impagliazzo et al.,
2001), it is known that there is no O(n2−o(1)) time algorithm exists for exact or even approximate
edit distance (Belazzougui & Zhang, 2016; Chakraborty et al., 2016a;b; Naumovitz et al., 2017;
Rubinstein et al., 2019; Rubinstein & Song, 2020; Goldenberg et al., 2020; Jin et al., 2021; Boroujeni
et al., 2021; Kociumaka et al., 2021; Bhattacharya & Kouckỳ, 2023; Kouckỳ & Saks, 2024). It
is therefore natural to impose assumptions that the query is “near” to the database in pursuit of
faster algorithms (Ukkonen, 1985; Myers, 1986; Landau & Vishkin, 1988; Goldenberg et al., 2019;

1In our case, we say two database D1 and D2 are neighboring if there exists one i ∈ [n] such that D1(Ai)
and D2(Ai) differs by one bit.

2Throughout the paper, we will use Õ(·) to suppress polylogarithmic factors in m,n, k and 1/β.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Kociumaka & Saha, 2020; Goldenberg et al., 2023). In fact, assuming SETH, O(n+ k2) runtime for
edit distance when m = 1 is optimal up to sub-polynomial factors (Goldenberg et al., 2023). Thus,
in this paper, we consider the setting where maxi∈[m] ∥Ai − B∥ ≤ k for both Hamming and edit
distance and show how to craft private and efficient mechanisms for this class of distance problems.

Regarding privacy guarantees, one might consider the following simple augmentation to any fast
data structure for Hamming distance: compute the distance estimate via the data structure, and add
Laplace noise to it. Since changing one coordinate of the database would lead to the Hamming
distance change by at most 1, Laplace mechanism would properly handle this case. However, our
goal is to release a differentially private data structure that is robust against potentially infinitely
many queries, and a simple output perturbation won’t be sufficient as an adversary could simply
query with the same B, average them to reduce the variance and obtain a relatively accurate estimate
of the de-noised output. To address this issue, we consider the differentially private function release
communication model (Hall et al., 2013), where the curator releases an ϵ-DP description of a function
ê(·) that is ϵ-DP without seeing any query in advance. The client can then use ê(·) to compute ê(B)
for any query B. This strong guarantee ensures that the client could feed infinitely many queries to
ê(·) without compromising the privacy of the database.

2 RELATED WORK

Differential Privacy. Differential privacy is a ubiquitous notion for protecting the privacy of
database. Dwork et al. (2006) first introduced this concept, which characterizes a class of algorithms
such that when inputs are two neighboring datasets, with high probability the output distributions are
similar. Differential privacy has a wide range of applications in general machine learning (Chaud-
huri & Monteleoni, 2008; Williams & McSherry, 2010; Jayaraman & Evans, 2019; Triastcyn &
Faltings, 2020), training deep neural networks (Abadi et al., 2016; Bagdasaryan et al., 2019), com-
puter vision (Zhu et al., 2020; Luo et al., 2021; Torkzadehmahani et al., 2019), natural language
processing (Yue et al., 2021; Weggenmann & Kerschbaum, 2018), large language models (Gao et al.,
2023; Yu et al., 2022), label protect (Yang et al., 2022), multiple data release (Wu et al., 2022),
federated learning (Sun et al., 2023; Song et al., 2023a) and peer review (Ding et al., 2022). In
recent years, differential privacy has been playing an important role for data structure design, both in
making these data structures robust against adaptive adversary (Beimel et al., 2022; Hassidim et al.,
2022; Song et al., 2023b; Cherapanamjeri et al., 2023) and in the function release communication
model (Hall et al., 2013; Huang & Roth, 2014; Wang et al., 2016; Aldà & Rubinstein, 2017; Coleman
& Shrivastava, 2021; Wagner et al., 2023; Backurs et al., 2024).

Hamming Distance and Edit Distance. Given bit strings A and B, many distance measurements
have been proposed that capture various characteristics of bit strings. Hamming distance was first
studied by Hamming (Hamming, 1950) in the context of error correction for codes. From an
algorithmic perspective, Hamming distance is mostly studied in the context of approximate nearest-
neighbor search and locality-sensitive hashing (Indyk & Motwani, 1998; Charikar, 2002). When it
is known that the query B has the property Dham(A,B) ≤ k, Porat & Lipsky (2007) shows how
to construct a sketch of size Õ(k) in Õ(n) time, and with high probability, these sketches preserve
Hamming distance. Edit distance, proposed by Levenshtein (Levenshtein, 1966), is a more robust
notion of distance between bit strings. It has applications in computational biology (Wang et al.,
2015; Young et al., 2021; Berger et al., 2021), text similarity (Navarro, 2001; Sidorov et al., 2015) and
speech recognition (Fiscus et al., 2006; Droppo & Acero, 2010). From a computational perspective,
it is known that under the Strong Exponential Time Hypothesis (SETH), no algorithm can solve edit
distance in O(n2−o(1)) time, even its approximate variants (Belazzougui & Zhang, 2016; Chakraborty
et al., 2016a;b; Naumovitz et al., 2017; Rubinstein et al., 2019; Rubinstein & Song, 2020; Goldenberg
et al., 2020; Jin et al., 2021; Boroujeni et al., 2021; Kociumaka et al., 2021; Bhattacharya & Kouckỳ,
2023; Kouckỳ & Saks, 2024). Hence, various assumptions have been imposed to enable more
efficient algorithm design. The most related assumption to us is that Dedit(A,B) ≤ k, and in this
regime various algorithms have been proposed (Ukkonen, 1985; Myers, 1986; Landau & Vishkin,
1988; Goldenberg et al., 2019; Kociumaka & Saha, 2020; Goldenberg et al., 2023). Under SETH,
it has been shown that the optimal dependence on n and k is O(n + k2), up to sub-polynomial
factors (Goldenberg et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARY

Let E be an event, we use 1[E] to denote the indicator variable if E is true. Given two length-n bit
strings A and B, we use Dham(A,B) to denote

∑n
i=1 1[Ai = Bi]. We use Dedit(A,B) to denote

the edit distance between A and B, i.e., the minimum number of operations to transform A to B
where the allowed operations are insertion, deletion and substitution. We use ⊕ to denote the XOR
operation. For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use Pr[·], E[·]
and Var[·] to denote probability, expectation and variance respectively.

3.1 CONCENTRATION BOUNDS

We will mainly use two concentration inequalities in this paper.
Lemma 3.1 (Chebyshev’s Inequality). Let X be a random variable with 0 < Var[X] <∞. For any
real number t > 0,

Pr[|X − E[X]| > t] ≤ Var[X]

t2
.

Lemma 3.2 (Hoeffding’s Inequality). Let X1, . . . , Xn with ai ≤ Xi ≤ bi almost surely. Let
Sn =

∑n
i=1 Xi, then for any real number t > 0,

Pr[|Sn − E[Sn]| > t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

).

3.2 DIFFERENTIAL PRIVACY

Differential privacy (DP) is the key privacy measure we will be trying to craft our algorithm to possess
it. In this paper, we will solely focus on pure DP (ϵ-DP).
Definition 3.3 (ϵ-Differential Privacy). We say an algorithm A is ϵ-differentially private (ϵ-DP) if for
any two neighboring databases D1 and D2 and any subsets of possible outputs S, we have

Pr[A(D1) ∈ S] ≤ eϵ · Pr[A(D2) ∈ S],

where the probability is taken over the randomness of A.

Since we will be designing data structures, we will work with the function release communication
model (Hall et al., 2013) where the goal is to release a function that is ϵ-DP against any sequence of
queries of arbitrary length.
Definition 3.4 (ϵ-DP Data Structure). We say a data structure A is ϵ-DP, if A is ϵ-DP against any
sequence of queries of arbitrary length. In other words, the curator will release an ϵ-DP description
of a function ê(·) without seeing any query in advance.

Finally, we will be utilizing the post-processing property of ϵ-DP.
Lemma 3.5 (Post-Processing). Let A be ϵ-DP, then for any deterministic or randomized function g
that only depends on the output of A, g ◦ A is also ϵ-DP.

4 DIFFERENTIALLY PRIVATE HAMMING DISTANCE DATA STRUCTURE

To start off, we introduce our data structure for differentially private Hamming distance. In particular,
we will adapt a data structure due to Porat & Lipsky (2007): this data structure computes a sketch of
length Õ(k) bit string to both the database and query, then with high probability, one could retrieve
the Hamming distance from these sketches. Since the resulting sketch is also a bit string, a natural
idea is to inject Laplace noise on each coordinate of the sketch. Since for two neighboring databases,
only one coordinate would change, we could add Laplace noise of scale 1/ϵ to achieve ϵ-DP. However,
this approach has a critical issue: one could show that with high probability, the magnitude of each
noise is roughly O(ϵ−1 log k), aggregating the k coordinates of the sketch, this leads to a total error
of O(ϵ−1k log k). To decrease this error to O(1), one would have to choose ϵ = k log k, which is too
large for most applications.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Instead of Laplace noises, we present a novel scheme that flips each bit of the sketch with certain
probability. Our main contribution is to show that this simple scheme, while produces a biased
estimator, the error is only O(e−ϵ/ log kk). Let t = log k/ϵ, we see that the Laplace mechanism has
an error of O(t−1k) and our error is only O(e−tk), which is exponentially small! In what follows,
we will describe a data structure when the database is only one string A and with constant success
probability, and we will discuss how to extend it to m bit strings, and how to boost the success
probability to 1− β for any β > 0. We summarize the main result below.

Theorem 4.1. Given a string A of length n. There exists an ϵ-DP data structure DPHAMMINGDIS-
TANCE (Algorithm 1), with the following operations

• INIT(A ∈ {0, 1}n): It takes a string A as input. This procedure takes O(n log k+ k log3 k)
time.

• QUERY(B ∈ {0, 1}n): for any B with z := Dham(A,B) ≤ k, QUERY(B) outputs a value
z̃ such that |z̃ − z| = Õ(k/eϵ/ log k) with probability 0.99, and the result is ϵ-DP. This
procedure takes O(n log k + k log3 k) time.

Algorithm 1 Differential Private Hamming Distance Query

1: data structure DPHAMMINGDISTANCE ▷ Theorem 4.1
2: members
3: M1,M2,M3 ∈ N+

4: h(x) : [2n]→ [M2] ▷ h and g are public random hash function
5: g(x, i) : [2n]× [M1]→ [M3]
6: Si,j,c ∈ {0, 1}M1×M2×M3 for all i ∈ [M1], j ∈ [M2], c ∈ [M3] ▷ S represents the sketch
7: end members
8:
9: procedure ENCODE(A ∈ {0, 1}n, n) ▷ Lemma 4.2

10: S∗
i,j,c ← 0 for all i, j, c

11: for p ∈ [n] do
12: for i ∈ [M1] do
13: j ← h(2(p− 1) +Ap)
14: c← g(2(p− 1) +Ap, i)
15: S∗

i,j,c ← S∗
i,j,c ⊕ 1

16: end for
17: end for
18: return S∗

19: end procedure
20:
21: procedure INIT(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ

′ ∈ R+) ▷ Lemma 4.3
22: M1 ← 10 log k
23: M2 ← 2k
24: M3 ← 400 log2 k
25: S ← ENCODE(A,n)

26: Flip each Si,j,c with independent probability 1/(1 + eϵ
′/(2M1))

27: end procedure
28:
29: procedure QUERY(B ∈ {0, 1}n) ▷ Lemma 4.7
30: SB ←ENCODE(B,n)

31: return 0.5 ·
∑M2

j=1 maxi∈[M1](
∑M3

c=1 |Si,j,c − SB
i,j,c|)

32: end procedure
33: end data structure

To achieve the results above, we set parameters M1 = O(log k),M2 = O(k),M3 = O(log2 k) in
Algorithm 1.

We divide the proof of Theorem 4.1 into the following subsections:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 TIME COMPLEXITY

Note that both the initializing and query run ENCODE (Algorithm 1) exactly once, we show that the
running time of ENCODE is O(n log k).
Lemma 4.2. Given M1 = O(log k), the running time of ENCODE (Algorithm 1) is O(n log k).

Proof. In ENCODE, for each character in the input string, the algorithm iterate M1 times. Therefore
the total time complexity is O(n ·M1) = O(n log k).

4.2 PRIVACY GUARANTEE

Next we prove our data structure is ϵ-DP.
Lemma 4.3. Let A and A′ be two strings that differ on only one position. Let A(A) and A(A′) be
the output of INIT (Algorithm 1) given A and A′. For any output S, we have:

Pr[A(A) = S] ≤ eϵ · Pr[A(A′) = S].

Due to space limitation, we defer the proof to Appendix A.

4.3 UTILITY GUARANTEE

The utility analysis is much more involved than privacy and runtime analysis. We defer the proofs to
the appendix, while stating key lemmas.

We first consider the distance between sketches of A and B without the random flipping process.
Let E(A), E(B) be ENCODE(A) and ENCODE(B). We prove with probability 0.99, Dham(A,B) =

0.5 ·
∑M2

j=1 maxi∈[M1](
∑M3

c=1 |E(A)i,j,c − E(B)i,j,c|). Before we present the error guarantee, we
will first introduce two technical lemmas. If we let T = {p ⊆ [n] | Ap ̸= Bp} denote the set of “bad”
coordinates, then for each coordinate in the sketch, it only contains a few bad coordinates.
Lemma 4.4. Define set T := {p ∈ [n] | Ap ̸= Bp}. Define set Tj := {p ⊆ T | h(p) = j}. When
M2 = 2k, with probability 0.99, for all j ∈ [M2], we have |Tj | ≤ 10 log k, i.e.,

Pr[∀j ∈ [M2], | |Tj | ≤ 10 log k] ≥ 0.99.

The next lemma shows that with high probability, the second level hashing g will hash bad coordinates
to distinct buckets.
Lemma 4.5. When M1 = 10 log k,M2 = 2k,M3 = 400 log2 k, with probability 0.98, for all
j ∈ [M2], there is at least one i ∈ [M1], such that all values in {g(2(p − 1) + Ap, i) | p ∈
Tj}

⋃
{g(2(p− 1) +Bp, i) | p ∈ Tj} are distinct.

With these two lemmas in hand, we are in the position to prove the error bound before the random bit
flipping process.
Lemma 4.6. Let E(A), E(B) be the output of ENCODE(A) and ENCODE(B). With probability
0.98, Dham(A,B) = 0.5 ·

∑M2

j=1 maxi∈[M1](
∑M3

c=1 |E(A)i,j,c − E(B)i,j,c|).

Our final result provides utility guarantees for Algorithm 1.
Lemma 4.7. Let z be Dham(A,B), z̃ be the output of QUERY(B)(Algorithm 1). With probability
0.98, |z − z̃| ≤ O(k log3 k/eϵ/ log k).

Proof. From Lemma 4.6, we know with probability 0.98, when ϵ→∞ (i.e. without the random flip
process), the output of QUERY(B) (Algorithm 1) equals the exact hamming distance.

We view the random flip process as random variables. Let random variables Ri,j,c be 1 with
probability 1/(1 + eϵ/M1), or 0 with probability 1− 1/(1 + eϵ/M1). So we have

|z̃ − z| =
M2∑
j=1

max
i∈[M1]

(

M3∑
c=1

Ri,j,c)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

≤
M2∑
j=1

M1∑
i=1

(

M3∑
c=1

Ri,j,c),

where the second step follows from maxi ≤
∑

i when all the summands are non-negative.

Therefore, the expectation of z̃ − z is:
E[|z̃ − z|] = M1M2M3 · E[Ri,j,c]

= k log3 k · 1

(1 + eϵ/ log k)

≤ O(
k log3 k

eϵ/ log k
),

where the last step follows from simple algebra. The variance of z̃ − z is:
Var[|z̃ − z|] = M1M2M3 · Var[Ri,j,c]

= k log3 k · 1

(1 + eϵ/ log k)
· (1− 1

(1 + eϵ/ log k)
).

Using Chebyshev’s inequality (Lemma 3.1), we have

Pr[|z̃ − z| ≥ O(
k log3 k

eϵ/ log k
)] ≤ 0.01.

Thus we complete the proof.

Remark 4.8. We will show how to generalize Theorem 4.1 to m bit strings, and how to boost the
success probability to 1− β. To boost the success probability, we note that individual data structure
succeeds with probability 0.99, we could take log(1/β) independent copies of the data structure, and
query all of them. By a standard Chernoff bound argument, with probability at least 1− β, at least
3/4 fraction of these data structures would output the correct answer, hence what we could do is
to take the median of these answers. These operations blow up both INIT and QUERY by a factor
of log(1/β) in its runtime. Generalizing for a database of m strings is relatively straightforward:
we will run the INIT procedure to A1, . . . , Am, this would take O(mn log k +mk log3 k) time. For
each query, note we only need to ENCODE the query once, and we can subsequently compute the
Hamming distance from the sketch for m sketched database strings, therefore the total time for query
is O(n log k + mk log3 k). It is important to note that as long as k log3 k < n, the query time is
sublinear. Finally, we could use the success probability boosting technique described before, that uses
log(m/β) data structures to account for a union bound over the success of all distance estimates.

5 DIFFERENTIALLY PRIVATE EDIT DISTANCE DATA STRUCTURE

Our algorithm for edit distance follows from the dynamic programming method introduced by
Ukkonen (1985); Landau et al. (1998); Landau & Vishkin (1988); Myers (1986). We note that a
key procedure in these algorithms is a subroutine to estimate longest common prefix (LCP) between
two strings A and B and their substrings. We design an ϵ-DP data structure for LCP based on our
ϵ-DP Hamming distance data structure. Due to space limitation, we defer the details of the DP-LCP
data structure to Appendix B. In the following discussion, we will assume access to a DP-LCP data
structure with the following guarantees:
Theorem 5.1. Given a string A of length n. There exists an ϵ-DP data structure DPLCP (Algorithm 3
and Algorithm 4) supporting the following operations

• INIT(A ∈ {0, 1}n): It preprocesses an input string A. This procedure takes O(n(log k +
log log n)) time.

• INITQUERY(B ∈ {0, 1}n): It preprocesses an input query string B. This procedure take
O(n(log k + log log n)) time.

• QUERY(i, j): Let w be the longest common prefix of A[i : n] and B[j : n] and w̃ be
the output of QUERY(i, j), With probability 1 − 1/(300k2), we have: 1). w̃ ≥ w; 2).
E[Dham(A[i : i+w̃], B[j : j+w̃])] ≤ O((log k+log log n)/eϵ/(log k logn)). This procedure
takes O(log2 n(log k + log log n)) time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We will be basing our edit distance data structure on the following result, which achieves the optimal
dependence on n and k assuming SETH:
Lemma 5.2. (Landau et al., 1998) Given two strings A and B of length n. If the edit distance
between A and B is no more than k, there is an algorithm which computes the edit distance between
A and B in time O(k2 + n).

We start from a naı̈ve dynamic programming approach. Define D(i, j) to be the edit distance
between string A[1 : i] and B[1 : j]. We could try to match A[i] and B[j] by inserting, deleting and
substituting, which yields the following recurrence:

D(i, j) = min

{
D(i− 1, j) + 1 if i > 0;
D(i− 1, j − 1) + 1 if j > 0;
D(i− 1, j − 1) + 1[A[i] ̸= B[j]] if i, j > 0.

The edit distance between A and B is then captured by D(n, n). When k < n, for all D(i, j) such
that |i − j| > k, because the length difference between A[1 : i] and B[1 : j] is greater than k,
D(i, j) > k. Since the final answer D(n, n) ≤ k, those positions with |i − j| > k won’t affect
D(n, n). Therefore, we only need to consider the set {D(i, j) : |i− j| ≤ k}.
For d ∈ [−k, k], r ∈ [0, k], we define F (r, d) = maxi{i : D(i, i + d) = r} and let LCP(i, j)
denote the length of the longest common prefix of A[i : n] and B[j : n]. The algorithm of Landau
et al. (1998) defines EXTEND(r, d) := F (r, d) + LCP(F (r, d), F (r, d) + d). We have

F (r, d) = max

{ EXTEND(r − 1, d) + 1 if r − 1 ≥ 0;
EXTEND(r − 1, d− 1) if d− 1 ≥ −k, r − 1 ≥ 0;
EXTEND(r − 1, d+ 1) + 1 if d+ 1, r + 1 ≤ k.

The edit distance between A and B equals minr{r : F (r, 0) = n}.
To implement LCP, Landau et al. (1998) uses a suffix tree data structure with initialization time O(n)
and query time O(1), thus the total time complexity is O(k2 + n). In place of their suffix tree data
structure, we use our DP-LCP data structure (Theorem 5.1). This leads to Algorithm 2.
Theorem 5.3. Given a string A of length n. There exists an ϵ-DP data structure DPEDITDISTANCE
(Algorithm 2) supporting the following operations:

• INIT(A ∈ {0, 1}n): It preprocesses an input string A. This procedure takes O(n(log k +
log log n)) time.

• QUERY(B ∈ {0, 1}n): For any query string B with w := Dedit(A,B) ≤ k, QUERY

outputs a value w̃ such that |w − w̃| ≤ Õ(k/eϵ/(log k logn)) with probability 0.99. This
procedure takes O(n(log k + log log n) + k2 log2 n(log k + log log n)) = Õ(k2 + n) time.

Again, we divide the proof into runtime, privacy and utility.

5.1 TIME COMPLEXITY

We prove the time complexity of INIT and QUERY respectively.
Lemma 5.4. The running time of INIT (Algorithm 2) is O(n(log k + log log n)).

Proof. The INIT runs DPLCP.INIT. From Theorem 5.1, the init time is O(n(log k+log log n)).

Lemma 5.5. QUERY (Algorithm 2) runs in time O((n+ k2 log n)(log k + log log n)).

Proof. The QUERY runs DPLCP.QUERYINIT once and DPLCP.QUERY k2 times. From Theo-
rem 5.1, the query time is O(n(log k + log log n) + k2 log2 n(log k + log log n)).

5.2 PRIVACY GUARANTEE

Lemma 5.6. The data structure DPEDITDISTANCE (Algorithm 2) is ϵ-DP.

Proof. The data structure only stores a DPLCP(Algorithm 3, 4). From Theorem 5.1 and the post-
processing property (Lemma 3.5), it is ϵ-DP.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 Differential Private Edit Distance

1: data structure DPEDITDISTANCE ▷ Theorem 5.3
2: procedure INIT(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ ∈ R) ▷ Lemma 5.4
3: DPLCP.INIT(A,n, k, ϵ) ▷ Algorithm 3
4: end procedure
5:
6: procedure EXTEND(F, i, j)
7: return F (i, j) + DPLCP.QUERY(F (i, j), F (i, j) + j) ▷ Algorithm 4
8: end procedure
9:

10: procedure QUERY(B,n, k) ▷ Lemma 5.5 and 5.8
11: DPLCP.QUERYINIT(B,n, k) ▷ Algorithm 3
12: F0,0 ← 0
13: for i from 1 to k do
14: for j ∈ [−k, k] do
15: Fi,j ← max(Fi,j , EXTEND(i− 1, j)) ▷ Algorithm 4
16: if j − 1 ≥ −k then
17: Fi,j ← max(Fi,j , EXTEND(i− 1, j − 1)) ▷ Algorithm 4
18: end if
19: if j + 1 ≤ k then
20: Fi,j ← max(Fi,j , EXTEND(i− 1, j + 1)) ▷ Algorithm 4
21: end if
22: end for
23: if Fi,0 = n then
24: return i
25: end if
26: end for
27: end procedure
28: end data structure

5.3 UTILITY GUARANTEE

Before analyzing the error of the output of QUERY (Algorithm 2), we first introduce a lemma:

Lemma 5.7. Let A,B be two strings. Let LCP(i, d) be the length of the true longest common prefix
of A[i : n] and B[i+ d : n]. For i1 ≤ i2, d ∈ [−k, k], we have i1 + LCP(i1, d) ≤ i2 + LCP(i2, d).

Proof. Let w1 = LCP(i1, d), w2 = LCP(i2, d). Then for j ∈ [i1, i1 + w1 − 1], A[j] = B[j + d].
On the other side, w2 is the length of the longest common prefix for A[i2 : n] and B[i2 + d : n]. So
A[i2 + w2] ̸= B[i2 + w2 + d]. Therefore, (i2 + w2) /∈ [i1, i1 + w1 − 1]. Since i2 + w2 ≥ i2 ≥ i1,
we have i2 + w2 ≥ i1 + w1.

Lemma 5.8. Let r̃ be the output of QUERY (Algorithm 2), r be the true edit distance Dedit(A,B).
With probability 0.99, we have |r − r̃| ≤ O(k(log k + log log n)/(1 + eϵ/(log k logn))).

Proof. We divide the proof into two parts. In part one, we prove that with probability 0.99, r̃ ≤ r. In
part two, we prove that with probability 0.99, r̃ ≥ r −O(k(log k + log log n)/(1 + eϵ/(log k logn))).
In Theorem 5.1, with probability 1 − 1/(300k2), DPLCP.QUERY satisfies two conditions. Our
following discussion supposes all DPLCP.QUERY satisfies the two conditions. There are 3k2 LCP
queries, by union bound, the probability is at least 0.99.

Part I. Suppose without differential privacy guarantee(using original LCP function instead of
our DPLCP data structure), the dynamic programming method outputs the true edit distance. We
define F ′

i,j as the dynamic programming array F without privacy guarantee, EXTEND’(i, j) be the
result of EXTEND(i, j) without privacy guarantee. Then we prove that for all i ∈ [0, k], j ∈ [−k, k],
Fi,j ≥ F ′

i,j holds true.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We prove the statement above by math induction on i. For i = 0, F (0, 0) = F ′(0, 0) = 0. Suppose
for i− 1, F (i− 1, j) ≥ F ′(i− 1, j), then for i,

F (i, j) = max

{ EXTEND(i− 1, j) + 1 if i− 1 ≥ 0;
EXTEND(i− 1, j − 1) if j − 1 ≥ −k, i− 1 ≥ 0;
EXTEND(i− 1, j + 1) + 1 if j + 1, i+ 1 ≤ k, i− 1 ≥ 0.

For EXTEND(i− 1, j), we have

EXTEND(i− 1, j) =F (i− 1, j) + DPLCP.QUERY(F (i− 1, j), F (i− 1, j) + j)

≥ F (i− 1, j) + LCP(F (i− 1, j), F (i− 1, j) + j)

≥ F ′(i− 1, j) + LCP(F ′(i− 1, j), F ′(i− 1, j) + j)

= EXTEND’(i− 1, j)

The second step is because in QUERY (Theorem 5.1), w̃ ≥ w. The third step follows from F (i −
1, j) ≥ F ′(i − 1, j) and Lemma 5.7. Thus, F (i, j) = maxj2∈[j,j−1,j+1]{EXTEND(i, j2)} ≥
maxj2∈[j,j−1,j+1]{EXTEND’(i, j2)} = F ′(i, j). Since r̃ = min{r̃ : F (r̃, 0) = n}, r = min{r :
F ′(r, 0) = n}, we have F (r, 0) ≥ F ′(r, 0) = n. Therefore r̃ ≤ r.

Part II. Let G(L,R, j) := Dedit(A[L : R], B[L+ j, R+ j]). In this part, we prove that the edit
distance G(1, Fi,j , j) ≤ i · (1 +O((log k + log log n)/(1 + eϵ/(log k logn)))) by induction on i.

For i = 0, F0,0 = 0. The statement holds true. Suppose for i− 1, G(1, Fi−1,j , j) ≤ (i− 1) · (1 +
O((log k + log log n)/(1 + eϵ/(log k logn)))), then we prove this holds for i.

Because F (i, j) = maxj2∈[j,j−1,j+1]{EXTEND(i, j2)}, there is some j2 ∈ {j, j − 1, j +
1} such that Fi,j = Fi−1,j2 + DPLCP.QUERY(Fi−1,j2 , Fi−1,j2 + j2). Let Q :=
DPLCP.QUERY(Fi−1,j2 , Fi−1,j2 + j2). Therefore

G(1, Fi,j , j) ≤G(1, Fi−1,j2 +Q, j2) + 1

≤ G(1, Fi−1,j2 , j2) +G(Fi−1,j2 , Fi−1,j2 +Q, j2) + 1

≤ G(1, Fi−1,j2 , j2) + 1 +O((log k + log log n)/(1 + eϵ/(log k logn)))

≤ i · (1 +O((log k + log log n)/(1 + eϵ/(log k logn))))

The third step follows from Theorem 5.1, and the fourth step follows from the induction hypothesis.
Therefore, r = G(1, Fr̃,0, 0) ≤ r̃ · (1 + O((log k + log log n)/(1 + eϵ/(log k logn)))) and the proof
is completed.

Remark 5.9. To the best of our knowledge, this is the first edit distance algorithm, based on noisy
LCP implementations. In particular, we prove a structural result: if the LCP has query (additive) error
δ, then we could implement an edit distance data structure with (additive) error O(kδ). Compared to
standard relative error approximation, additive error approximation for edit distance is relatively less
explored (see e.g., Bringmann et al. (2022) for using additive approximation to solve gap edit distance
problem). We hope this structural result sheds light on additive error edit distance algorithms.

6 CONCLUSION

We study the differentially private Hamming distance and edit distance data structure problem in the
function release communication model. This type of data structures are ϵ-DP against any sequence of
queries of arbitrary length. For Hamming distance, our data structure has query time Õ(mk + n)

and error Õ(k/eϵ/ log k). For edit distance, our data structure has query time Õ(mk2 + n) and
error Õ(k/eϵ/(log k logn)). While the runtime of our data structures (especially edit distance) is
nearly-optimal, it is interesting to design data structures with better utility in this model.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Francesco Aldà and Benjamin I.P. Rubinstein. The bernstein mechanism: function release under
differential privacy. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
AAAI’17, pp. 1705–1711. AAAI Press, 2017.

Arturs Backurs, Zinan Lin, Sepideh Mahabadi, Sandeep Silwal, and Jakub Tarnawski. Efficiently
computing similarities to private datasets. In The Twelfth International Conference on Learning
Representations, 2024.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has disparate
impact on model accuracy. Advances in Neural Information Processing Systems (NeurIPS), 32:
15479–15488, 2019.

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri
Stemmer. Dynamic algorithms against an adaptive adversary: Generic constructions and lower
bounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp.
1671–1684, 2022.

Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document exchange.
In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 51–60.
IEEE, 2016.

Bonnie Berger, Michael S. Waterman, and Yun William Yu. Levenshtein distance, sequence compari-
son and biological database search. IEEE Transactions on Information Theory, 2021.

Sudatta Bhattacharya and Michal Kouckỳ. Locally consistent decomposition of strings with applica-
tions to edit distance sketching. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pp. 219–232, 2023.

Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and Saeed
Seddighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce.
Journal of the ACM (JACM), 68(3):1–41, 2021.

Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. Improved Sublinear-Time Edit
Distance for Preprocessed Strings. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff
(eds.), 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022),
Leibniz International Proceedings in Informatics (LIPIcs), pp. 32:1–32:20, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algorithms for embedding
and computing edit distance in the low distance regime. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pp. 712–725, 2016a.

Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algorithms for computing
edit distance without exploiting suffix trees. arXiv preprint arXiv:1607.03718, 2016b.

Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In NIPS,
volume 8, pp. 289–296. Citeseer, 2008.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. In The Eleventh
International Conference on Learning Representations, 2023.

Benjamin Coleman and Anshumali Shrivastava. A one-pass distributed and private sketch for kernel
sums with applications to machine learning at scale. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’21, pp. 3252–3265, New York, NY,
USA, 2021. Association for Computing Machinery.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenxin Ding, Gautam Kamath, Weina Wang, and Nihar B. Shah. Calibration with privacy in peer
review. In 2022 IEEE International Symposium on Information Theory (ISIT), 2022.

Jasha Droppo and Alex Acero. Context dependent phonetic string edit distance for automatic speech
recognition. In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing,
2010.

Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages, and
Programming (ICALP), pp. 1–12, 2006.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 486–503. Springer, 2006.

Jonathan G. Fiscus, Jerome Ajot, Nicolas Radde, and Christophe Laprun. Multiple dimension
Levenshtein edit distance calculations for evaluating automatic speech recognition systems during
simultaneous speech. In Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi, Bente Maegaard,
Joseph Mariani, Jan Odijk, and Daniel Tapias (eds.), Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, 2006. European
Language Resources Association (ELRA).

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023.

Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking the
quadratic barrier. ACM Trans. Algorithms, 2018.

Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms for gap edit distance.
In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), 2019.

Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. Does preprocessing help in fast sequence
comparisons? In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pp. 657–670, 2020.

Elazar Goldenberg, Tomasz Kociumaka, Robert Krauthgamer, and Barna Saha. An Algorithmic
Bridge Between Hamming and Levenshtein Distances. In Yael Tauman Kalai (ed.), 14th Innova-
tions in Theoretical Computer Science Conference (ITCS 2023), Leibniz International Proceedings
in Informatics (LIPIcs), pp. 58:1–58:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

Rob Hall, Alessandro Rinaldo, and Larry Wasserman. Differential privacy for functions and functional
data. J. Mach. Learn. Res., 2013.

Richard W Hamming. Error detecting and error correcting codes. The Bell System Technical Journal,
29(2):147–160, 1950.

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversarially
robust streaming algorithms via differential privacy. J. ACM, 69(6), 2022.

Zhexue Huang. Extensions to the k-means algorithm for clustering large data sets with categorical
values. Data Mining and Knowledge Discovery, 2(3):283–304, 1997.

Zhexue Huang and Mingkui Ng. A fuzzy k-modes algorithm for clustering categorical data. IEEE
Transactions on Fuzzy Systems, 7(4):446–452, 1999.

Zhiyi Huang and Aaron Roth. Exploiting metric structure for efficient private query release. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’14, pp. 523–534, 2014.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponen-
tial complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
pp. 604–613, 1998.

Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice.
In 28th USENIX Security Symposium (USENIX Security 19), pp. 1895–1912, 2019.

Ce Jin, Jelani Nelson, and Kewen Wu. An Improved Sketching Algorithm for Edit Distance. In 38th
International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 45:1–45:16,
2021.

Tomasz Kociumaka and Barna Saha. Sublinear-time algorithms for computing & embedding gap edit
distance. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
2020.

Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. Small-space and streaming pattern
matching with k edits. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 885–896. IEEE, 2021.

Michal Kouckỳ and Michael E Saks. Almost linear size edit distance sketch. In Proceedings of the
56th Annual ACM Symposium on Theory of Computing, pp. 956–967, 2024.

Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. Journal of Computer and
System Sciences, 37, 1988.

Gad M. Landau, Eugene Wimberly Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM J. Comput., 27:557–582, 1998.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10:707–710, 1966.

Zelun Luo, Daniel J Wu, Ehsan Adeli, and Fei-Fei Li. Scalable differential privacy with sparse
network finetuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5059–5068, 2021.

Pierre-François Marteau. Time warp edit distance with stiffness adjustment for time series matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1986.

Timothy Naumovitz, Michael Saks, and C Seshadhri. Accurate and nearly optimal sublinear approxi-
mations to ulam distance. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 2012–2031. SIAM, 2017.

Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 2001.

Mohammad Norouzi, Ali Punjani, and David J Fleet. Fast search in hamming space with multi-index
hashing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3108–3115. IEEE, 2012.

Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting. In Com-
binatorial Pattern Matching, pp. 173–182, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Aviad Rubinstein and Zhao Song. Reducing approximate longest common subsequence to approxi-
mate edit distance. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1591–1600. SIAM, 2020.

Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approximation algorithms for lcs
and lis with truly improved running times. FOCS, 2019.

Grigori Sidorov, Helena Gómez-Adorno, Ilia Markov, David Pinto, and Nahun Loya. Computing
text similarity using tree edit distance. In 2015 Annual Conference of the North American Fuzzy
Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft
Computing (WConSC), 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method: efficient
algorithm for low-bandwidth channel and vulnerability. In International Conference on Machine
Learning (ICML), pp. 32365–32417. PMLR, 2023a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy: fast
algorithm for dynamic kronecker projection maintenance. In International Conference on Machine
Learning (ICML), pp. 32418–32462. PMLR, 2023b.

Jiankai Sun, Xin Yang, Yuanshun Yao, Junyuan Xie, Di Wu, and Chong Wang. Dpauc: differen-
tially private auc computation in federated learning. In Proceedings of the Thirty-Seventh AAAI
Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of
Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023.

Reihaneh Torkzadehmahani, Peter Kairouz, and Benedict Paten. Dp-cgan: Differentially private
synthetic data and label generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPR Workshop), 2019.

Aleksei Triastcyn and Boi Faltings. Bayesian differential privacy for machine learning. In Interna-
tional Conference on Machine Learning, pp. 9583–9592. PMLR, 2020.

Esko Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6(1):132–137, 1985.

Tal Wagner, Yonatan Naamad, and Nina Mishra. Fast private kernel density estimation via locality
sensitive quantization. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and Diyue Bu. Efficient
genome-wide, privacy-preserving similar patient query based on private edit distance. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
pp. 492–503, New York, NY, USA, 2015. Association for Computing Machinery.

Ziteng Wang, Chi Jin, Kai Fan, Jiaqi Zhang, Junliang Huang, Yiqiao Zhong, and Liwei Wang.
Differentially private data releasing for smooth queries. Journal of Machine Learning Research,
2016.

Benjamin Weggenmann and Florian Kerschbaum. Syntf: Synthetic and differentially private term
frequency vectors for privacy-preserving text mining. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, pp. 305–314, 2018.

Oliver Williams and Frank McSherry. Probabilistic inference and differential privacy. Advances in
Neural Information Processing Systems (NeurIPS), 23:2451–2459, 2010.

Ruihan Wu, Xin Yang, Yuanshun Yao, Jiankai Sun, Tianyi Liu, Kilian Q Weinberger, and Chong
Wang. Differentially private multi-party data release for linear regression. In The 38th Conference
on Uncertainty in Artificial Intelligence, 2022.

Xin Yang, Jiankai Sun, Yuanshun Yao, Junyuan Xie, and Chong Wang. Differentially private label
protection in split learning. arXiv preprint arXiv:2203.02073, 2022.

Brian Young, Tom Faris, and Luigi Armogida. Levenshtein distance as a measure of accuracy and
precision in forensic pcr-mps methods. Forensic Science International: Genetics, 55:102594,
2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang.
Differentially private fine-tuning of language models. In The Tenth International Conference on
Learning Representations, ICLR 2022, 2022.

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li, Huan Sun, and Sherman S. M. Chow. Differential
privacy for text analytics via natural text sanitization. In Findings, ACL-IJCNLP 2021, 2021.

Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang. Private-knn: Practical differen-
tial privacy for computer vision. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 11854–11862, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS FOR HAMMING DISTANCE DATA STRUCTURE

In this section, we include all proof details in Section 4.

A.1 PROOF OF LEMMA 4.3

Proof of Lemma 4.3. Let E(A), E(A′) be ENCODE(A) and ENCODE(A′). Let #(E(A) = S) be
the number of the same bits between E(A) and S, #(E(A) ̸= S) be the number of the different bits
between E(A) and S. Then the probability that the random flip process transforms E(A) into S is:

Pr[A(A) = S] = (
1

1 + eϵ/(2M1)
)#(E(A) ̸=S)(

eϵ/(2M1)

1 + eϵ/(2M1)
)#(E(A)=S)

=
(eϵ/(2M1))#(E(A)=S)

(1 + eϵ/(2M1))n

Since for each position, ENCODE changes at most M1 bits, and A and A′ only have one different
position. Therefore there are at most 2M1 different bits between E(A) and E(A′). So we have

Pr[A(A) = S]

Pr[A(A′) = S]
≤ (eϵ/(2M1))|#(E(A)=S)−#(E(A′)=S)|

≤ (eϵ/(2M1))2M1

= eϵ

Thus we complete the proof.

A.2 PROOF OF LEMMA 4.4

Proof of Lemma 4.4. h is a hash function randomly drawn from all functions [2n] → [M2]. For
certain j, h(p) = j for all p are independent random variables, each of them equals 1 with probability
1/M2, or 0 with probability 1− 1/M2. So we have

Pr[|Tj | ≥ 10 log k] = Pr[
∑
p∈T

[h(p) = j] ≥ 10 log k]

=

|T |∑
d=10 log k

(
|T |
d

)
(
1

M2
)d(1− 1

M2
)|T |−d

≤
|T |∑

d=10 log k

|T |!
d!(|T | − d)!

(
1

M2
)d

≤
|T |∑

d=10 log k

|T |d

d!
(
1

M2
)d

≤
|T |∑

d=10 log k

1

d!
(
1

2
)d

≤ 1

(10 log k)!

|T |∑
d=10 log k

(
1

2
)d

≤ 1

200k
The fifth step follows from that fact that |T | ≤ k,M2 = 2k.

Therefore, by union bound over all j ∈ [M2], we can show

Pr[∀j ∈ [M2], |Tj | < 10 log k] ≥ 1− 2k · (1

200k
)

= 0.99.

Thus, we complete the proof.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 PROOF OF LEMMA 4.5

Proof of Lemma 4.5. g is a hash function randomly drawn from all functions [2n]× [M1]→ [M3].
For every single i ∈ [M1], define event Ei as the event that the 2|Tj | values in {g(2(p − 1) +
Ap, i) | p ∈ Tj}

⋃
{g(2(p− 1) +Bp, i) | p ∈ Tj} are mapped into distinct positions.

Pr[Ei] =

2|Tj |∏
c=1

(1− c

M3
)

≥ 1−
2|Tj |∑
c=1

c

M3

= 1− 2|Tj |(|Tj + 1|)
M3

> 1− 2(10 log2 k)

400 logk

= 0.5

The fourth step follows from Lemma 4.4. It holds true with probability 0.99.

For different i ∈ [M1], Ei are independent. Therefore, the probability that all Ei are false is
(0.5)M1 < 1/(1000k). By union bound, the probability that for every j ∈ [M2] there exists at least
one i such that Ei is true is at least

1−M2 · 0.5M1 ≥ 1−M2/(1000k) ≥ 0.98.

A.4 PROOF OF LEMMA 4.6

Proof of Lemma 4.6. From Lemma 4.5, for all j, there is at least one i, such that the set {g(2(p −
1) + Ap, i)|p ∈ Tj}

⋃
{g(2(p − 1) + Bp, i)|p ∈ Tj} contains 2|Tj | distinct values. Therefore,

for that i, E(A)i,j,1∼M3
and E(B)i,j,1∼M3

have exactly 2|Tj | different bits. For the rest of i,
the different bits of E(A)i,j,1∼M3

and E(B)i,j,1∼M3
is no more than 2|Tj |. So we have 0.5 ·∑M2

j=1 maxi∈[M1](
∑M3

c=1 |E(A)i,j,c − E(B)i,j,c|) = 0.5 ·
∑M2

j=1 2|Tj | = |T | = Dham(A,B).

B DIFFERENTIALL PRIVATE LONGEST COMMON PREFIX

We design an efficient, ϵ-DP longest common prefix (LCP) data structure in this section. Specifically,
for two positions i and j in A and B respectively, we need to calculate the maximum l, so that
A[i : i + l] = B[j : j + l]. For this problem, we build a differentially private data structure
(Algorithm 3 and Algorithm 4). The main contribution is a novel utility analysis that accounts for the
error incurred by differentially private bit flipping.

B.1 TIME COMPLEXITY

We prove the running time of the three operations above.
Lemma B.1. The running time of INIT and INITQUERY (Algorithm 3) are O(n log n(log k +
log log n))

Proof. From Lemma 4.2, the running time of building node Ti,j is O((n/2i)M1). Therefore the
total building time of all nodes is

logn∑
i=0

2i−1∑
j=0

(n/2i)M1 =

logn∑
i=0

2i · (n/2i)M1 = O(n log n(log k + log log n)).

Thus, we complete the proof.

Lemma B.2. The running time of QUERY (Algorithm 4) is O(log2 n(log k + log log n)).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 3 Differential Private Longest Common Prefix, Part 1

1: data structure DPLCP ▷ Theorem 5.1
2: members
3: TA

i,j , T
B
i,j for all i ∈ [log n], j ∈ [2i]

4: ▷ Ti,j represents the hamming sketch (Algorithm 1) of the interval [i · n/2j , (i+ 1) · n/2j]
5: end members
6:
7: procedure BUILDTREE(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ ∈ R) ▷ Lemma B.3
8: M1 ← log k + log log n+ 10, M2 ← 1, M3 ← 10, ϵ′ ← ϵ/ log n
9: for i from 0 to log n do

10: for j from 0 to 2i − 1 do
11: T ∗

i,j ← DPHAMMINGDISTANCE.INIT(A[j ·n/2i : (j +1) ·n/2i],M1,M2,M3, ϵ
′)

12: ▷ Algorithm 1
13: end for
14: end for
15: return T ∗

16: end procedure
17:
18: procedure INIT(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ ∈ R) ▷ Lemma B.1
19: TA ←BUILDTREE(A,n, k, ϵ)
20: end procedure
21:
22: procedure QUERYINIT(B ∈ {0, 1}n, n ∈ N+, k ∈ N+) ▷ Lemma B.1
23: TB ←BUILDTREE(B,n, k, 0)
24: end procedure
25:
26: procedure INTERVALSKETCH(T, pl ∈ [n], pr ∈ [n])
27: Divide the interval [pl, pr] into O(log n) intervals. Each of them is stored on a node of the

tree T .
28: Retrieve the Hamming distance sketches of these nodes as S1, S2, . . . , St.
29: Initialize a new sketch S ← 0 with the same size of the sketches above.
30: for every position w in the sketch S do
31: S[w]← S1[w]⊕ S2[w]⊕ S3[w]⊕ ...⊕ St[w]
32: end for
33: return S
34: end procedure
35:
36: procedure SKETCHHAMMINGDISTANCE(SA, SB ∈ RM1×M2×M3) ▷ Lemma B.4 and B.5
37: Let M1,M2,M3 be the size of dimensions of the sketches SA and SB .
38: return 0.5 ·

∑M2

j=1 maxi∈[M1](
∑M3

c=1 |SA
i,j,c − SB

i,j,c|)
39: end procedure
40: end data structure

Proof. In QUERY (Algorithm 4), we use binary search. There are totally log n checks. In each check,
we need to divide the interval into log n intervals and merge their sketches of size M1M2M3. So the
time complexity is O(log2 n(log k + log log n)).

B.2 PRIVACY GUARANTEE

Lemma B.3. The data structure DPLCP (Algorithm 3 and Algorithm 4) is ϵ-DP.

Proof. On each node, we build a hamming distance data structure DPHAMMINGDISTANCE that is
(ϵ/ log n)-DP. For two strings A and A′ that differ on only one bit, since every position is in at most
log n nodes on the tree, for any output S, the probability

Pr[BUILDTREE(A) = S]

Pr[BUILDTREE(A′) = S]
≤ (eϵ/ logn)logn = eϵ

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 4 Differential Private Longest Common Prefix, Part 2

1: data structure DPCLP ▷ Theorem 5.1
2: procedure QUERY(i ∈ [n], j ∈ [n]) ▷ Lemma B.2 and B.6
3: L← 0, R← n
4: while L ̸= R do
5: mid← ⌈L+R

2 ⌉
6: SA ← INTERVALSKETCH(TA, i, i+mid) ▷ Algorithm 3
7: SB ← INTERVALSKETCH(TB , j, j +mid) ▷ Algorithm 3
8: threshold← 1.5M1M3/(1 + eϵ/(log k logn))
9: if SKETCHHAMMINGDISTANCE(SA, SB) ≤ threshold then ▷ Algorithm 3

10: L← mid
11: else
12: R← mid− 1
13: end if
14: end while
15: return L
16: end procedure
17: end data structure

Thus we complete the proof.

B.3 UTILITY GUARANTEE

Before analyzing the error of the query, we first bound the error of SKETCHHAMMINGDISTANCE
(Algorithm 3).
Lemma B.4. We select M1 = log k+log log n+10,M2 = 1,M3 = 10 for DPHAMMINGDISTANCE
data structure in BUILDTREE(Algorithm 3). Let z be the true hamming distance of the two strings
A[i : i+mid] and B[i : i+mid]. Let z̃ be the output of SKETCHHAMMINGDISTANCE(Algorithm 3).
When ϵ = +∞(without the random flip process), then we have

• if z = 0, then with probability 1, z̃ = 0.

• if z ̸= 0, then with probability 1− 1/(300k2 log n), z̃ ̸= 0.

Proof. Our proof follows from the proof of Lemma 4.6. We prove the case of z = 0 and z ̸= 0
respectively.

When z = 0, it means the string A[i : i + mid] and B[i : i + mid] are identical. Therefore, the
output of the hash function is also the same. Therefore, the output SA and SB from INTERVALS-
KETCH(Algorithm 3) are identical. Then z̃ = 0.

When z ̸= 0, define set Q := {p ∈ [mid] | A[i + p − 1] ̸= B[j + p − 1]} as the positions where
string A and B are different. |Q| = z. Note that M1 = log k + log log n+ 10,M2 = 1,M3 = 10,
SA, SB ∈ {0, 1}M1×M2×M3 . For every i′ ∈ [M1], the probability that SA

i′ and SB
i′ are identical is

the probability that all c ∈ [M3] is mapped exactly even times from the position set Q. Formally,
define event E as [∀j′, |{p ∈ Q | g(p) = j′}| mod 2 = 0]. Define another event E′ as there is only
one position mapped odd times from set Q1∼z−1. Then the probability equals

Pr[E] =Pr[E′] · Pr[E|E′]

≤ Pr[E|E′]

= 1/M3

The last step is because Pr[E|E′] is the probability that g(Qz) equals the only position that mapped
odd times. There are totally M3 positions and the hash function g is uniformly distributed, so the
probability is 1/M3.

For different i′ ∈ [M1], the event E are independent. So the total probability that z′ ̸= 0 is the
probability that for at least one i′, event E holds true. So the probability is 1 − (1/M3)

M1 =
1− (1/10)log k+log logn+10 > 1− 1/(300k2 log n).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma B.5. Let M1 = log k + log log n + 10,M2 = 1,M3 = 10. Let z be the true hamming
distance of the two strings A[i : i+mid] and B[i : i+mid]. Let z̃ be the output of SKETCHHAM-
MINGDISTANCE(Algorithm 3). With the random flip process with DP parameter ϵ, we have:

• When z = 0, with probability 1 − 1/(300k2 log n), z̃ < (1 + o(1))M1M3/(1 +
eϵ/(log k logn)).

• When z > 3M1M3/(1 + eϵ/(log k logn)), with probability 1 − 1/(300k2 log n), z̃ > (2 −
o(1))M1M3/(1 + eϵ/(log k logn)).

Proof. In the random flip process in DPHAMMINGDISTANCE (Algorithm 1,3), the privacy parameter
ϵ′ = ϵ/ log n. We flip each bit of the sketch with independent probability 1/(1 + eϵ/ logn log k). Then
we prove the case of z = 0 and z > 3M1M3/(1 + eϵ/(log k logn)) respectively.

When z = 0, similar to the proof of Lemma 4.7, we view the flipping operation as random variables.
Let random variable Ri,j,c be 1 if the sketch SA

i,j,c is flipped, otherwise 0. From Lemma B.4, SA and
SB are identical. Then we have

|z − z̃| = max
i∈[M1]

M3∑
c=1

Ri,j,c

≤
M1∑
i=1

M3∑
c=1

Ri,j,c

Since Ri,j,c are independent Bernoulli random variables, using Hoeffding’s inequality (Lemma 3.2),
we have

Pr[|
M1×M3∑

i=1

Ri,j,c −M1M3 E[Ri,j,c]| > L] ≤ e−2L2/(M1×M3)

When L = M1

√
M3,

Pr[|
M1×M3∑

i=1

Ri,j,c −M1M3 E[Ri,j,c]| > L] ≤e−2M2
1M3/(M1M3)

≤ e−2(log k+log logn)

≤ 1/(300k2 log n)

Thus we complete the z = 0 case.

When z > 3M1M3/(1 + eϵ/(log k logn)), the proof is similar to z = 0. With probability
1 − 1/(300k2 log n), we have |z − z̃| < (1 + o(1))M1M3/(1 + eϵ/(log k logn)). Thus z̃ >
(2− o(1))M1M3/(1 + eϵ/(log k logn)).

Lemma B.6. Let w̃ be the output of QUERY(i, j) (Algorithm 4), w be the longest common prefix
of A[i : n] and B[j : n]. With probability 1 − 1/(300k2), we have: 1.w̃ ≥ w. 2. Dham(A[i :
i+ w̃], B[j : j + w̃]) ≤ 3M1M3/(1 + eϵ/(log k logn)).

Proof. In QUERY(i, j) (Algorithm 4), we use a binary search to find the optimal w. In binary
search, there are totally log n calculations of SKETCHHAMMINGDISTANCE. Define threshold :=
1.5M1M3/(1 + eϵ/(log k logn)). Define a return value of SKETCHHAMMINGDISTANCE is good if:
1). when z = 0, z̃ < threshold. 2). when z > 2 · threshold, z̃ < threshold. z and z̃ are defined in
Lemma B.5.

Therefore, by Lemma B.5, each SKETCHHAMMINGDISTANCE is good with probability at least
1 − 1/(k2 log n). There are log n SKETCHHAMMINGDISTANCE in the binary search, by union
bound, the probability that all of them are good is at least 1− 1/(300k2).

When all answers for SKETCHHAMMINGDISTANCE are good, from the definition of binary search,
for any two positions L,R such that Dham(A[i : i+L], B[j, j+L]) = 0, Dham(A[i : i+R], B[j, j+

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

R]) ≥ 2 · threshold, we have L ≤ w̃ ≤ R. Next, we prove w ≤ w̃ and Dham(A[i : i + w̃], B[j :
j + w̃]) ≤ 3M1M3/(1 + eϵ/(log k logn)) respectively.

w is the true longest common prefix of A[i : n] and B[j : n], so we have Dham(A[i : i+L], B[j, j +
L]) = 0. Let L = w, we have w = L ≤ w̃.

Let R be the minimum value that Dham(A[i : i + R], B[j : j + R]) ≥ 2 · threshold. Because
Dham(A[i : i+R], B[j, j +R]) is monotone for R, and w̃ ≤ R, we have Dham(A[i : i+ w̃], B[j :
j + w̃]) ≤ Dham(A[i : i+R], B[j : j +R]) = 2 · threshold = 3M1M3/(1 + eϵ/(log k logn)).

Thus we complete the proof.

20

	Introduction
	Related Work
	Preliminary
	Concentration Bounds
	Differential Privacy

	Differentially Private Hamming Distance Data Structure
	Time Complexity
	Privacy Guarantee
	Utility Guarantee

	Differentially Private Edit Distance Data Structure
	Time Complexity
	Privacy Guarantee
	Utility Guarantee

	Conclusion
	Proofs for Hamming Distance Data Structure
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Lemma 4.6

	Differentiall Private Longest Common Prefix
	Time Complexity
	Privacy Guarantee
	Utility Guarantee

