
DataSP: A Differential All-to-All Shortest Path Algorithm for
Learning Costs and Predicting Paths with Context

Alan A. Lahoud1 Erik Schaffernicht1 Johannes A. Stork1

1Center for Applied Autonomous Sensor Systems (AASS), Örebro University, Örebro, Sweden

Abstract

Learning latent costs of transitions on graphs from
trajectories demonstrations under various contex-
tual features is challenging but useful for path
planning. Yet, existing methods either oversim-
plify cost assumptions or scale poorly with the
number of observed trajectories. This paper intro-
duces DataSP, a differentiable all-to-all shortest
path algorithm to facilitate learning latent costs
from trajectories. It allows to learn from a large
number of trajectories in each learning step without
additional computation. Complex latent cost func-
tions from contextual features can be represented
in the algorithm through a neural network approx-
imation. We further propose a method to sample
paths from DataSP in order to mimic observed
paths’ distributions. We prove that the inferred
distribution follows the maximum entropy prin-
ciple. We show that DataSP outperforms state-of-
the-art differentiable combinatorial solver and clas-
sical machine learning approaches in predicting
paths on graphs. The code is available at https:
//github.com/AlanLahoud/dataSP.

1 INTRODUCTION

Learning routes from demonstrations conditioned on contex-
tual features plays a crucial role in traffic management and
urban planning [Hirakawa et al., 2018, Rossi et al., 2019,
Gao et al., 2018]. The underlying assumption is that agents
performing these demonstrations attempt to optimize a la-
tent cost when trying to reach a destination [Ziebart et al.,
2008a, Finn et al., 2016]. These costs might balance vari-
ables such as trip duration, comfort, toll prices, and distance.

Recovering these latent costs not only allows to model the
underlying decision-making process but also to improve
traffic flow through the anticipation of congestion [Xiong

Figure 1: DataSP facilitates the process of learning from
demonstrations, usually expert’s paths, and contexts like
images. The bottom row shows outputs of our model. The
trained NN infers latent costs, where dark blue is less costly.
DataSP is then used to infer likely paths and destinations,
where darker red indicates a higher likelihood.

et al., 2018], route prediction [Froehlich and Krumm, 2008],
the provision of real-time navigational guidance to drivers
[Liang and Wakahara, 2014], and the facilitation of targeted
advertising strategies [Li et al., 2016].

Inverse reinforcement learning [Ziebart et al., 2008a,b,
Nguyen et al., 2015], which focuses on learning the costs as-
sociated with edges or transitions from observed trajectories,
is one popular way to approach the problem. However, these
methods generally assume a linear latent cost to simplify
the learning process.

Recent approaches use neural networks (NNs) with combi-
natorial solvers to learn from contextual features and com-
binatorial solutions in an end-to-end manner. Pogančić et al.
[2020] apply these to route prediction, assuming trajectories
are optimal and using combinatorial solver blocks as short-
est path solvers. Despite their innovation, these methods
struggle to learn from a large number of trajectories since
they typically need to solve a shortest path problem for each

mailto:<alan.lahoud@oru.se>?Subject=Your UAI 2024 paper
https://github.com/AlanLahoud/dataSP
https://github.com/AlanLahoud/dataSP

observed trajectory, which does not scale favorably.

In this paper, we propose a novel method for learning latent
costs from observed trajectories by encoding these trajecto-
ries into frequencies of observed shortcuts. We achieve this
by differentiating through the Floyd-Warshall (FW) algo-
rithm, leveraging its ability to solve all-to-all shortest path
problems in a single run based on shortcuts. This approach
enables us to learn from a large volume of trajectories with
various starting and target graph nodes. In a single step of
the learning process of a NN, we can capture a substan-
tial amount of information about the latent costs within the
graph structure.

When attempting to differentiate through FW, there are two
issues to address. The first problem is that the gradients
computed from FW’s path solutions with respect to its in-
puts are non-informative (zero almost everywhere), due to
their combinatorial nature [Abbas and Swoboda, 2021]. The
second issue arises because FW provides an exact solution,
implying an expectation for demonstrations to be optimal.
This assumption is unrealistic for data obtained from hu-
man demonstrations, as observed in Ziebart et al. [2008a].
Although the agents producing these trajectories attempt
to optimize paths according to latent costs, we assume ob-
served trajectories are suboptimal due to agents’ imperfect
behavior.

We address both issues by introducing DataSP, a Differen-
tiable all-to-all Shortest Path algorithm, which serves as a
probabilistic and differentiable adaptation of the FW algo-
rithm. By incorporating smooth max and argmax operators
[Nesterov, 2005, Niculae and Blondel, 2017] into DataSP,
we relax the solution to allow for informative backpropaga-
tion. Our proposed method is valuable not only for learning
latent costs but also for predicting likely trajectories. We
demonstrate that the output of DataSP is effective for predict-
ing trajectories between various fixed start and end nodes
across the graph structure in new contexts, and for infer-
ring likely destinations or future nodes given a partial path
in a new context. Figure 1 showcases some of our results,
highlighting the capabilities of our method.

1.1 OUR CONTRIBUTIONS

• We propose a differentiable and probabilistic all-to-all
shortest path algorithm that utilizes smooth approxi-
mations for the min and argmin operators, enabling
backpropagation through shortest paths computation.
This allows connecting neural network architectures
to DataSP to learn non-linear representations of latent
edges’ costs based on contextual features.

• To learn from a substantial amount of information
across various trajectories in each learning step, we
propose a loss function that computes the dissimilarity
between observed and inferred shortcut frequencies.

• Inferred edges’ costs are utilized by the DataSP algo-
rithm to generate paths that mimic the observed behav-
ior, demonstrating that DataSP is not only useful for
learning but also to infer paths. We prove that the prob-
ability distribution of the total cost of the generated
paths follows the maximum entropy principle.

1.2 RELATED WORK

Studies in Inverse Reinforcement Learning (IRL) have fo-
cused on estimating latent costs from suboptimal demonstra-
tions, primarily through the alignment of feature frequencies
across transitions [Ziebart et al., 2008a,b, Henry et al., 2010,
Vasquez et al., 2014, Nguyen et al., 2015]. These approaches
commonly presuppose linear models for latent costs, limit-
ing their flexibility and applicability to complex scenarios.
Finn et al. [2016] introduced the use of nonlinear cost func-
tions articulated through NNs, albeit within the confines of
a continuous trajectory space applied to robotics tasks.

Expanding on this foundation, the domain of Deep Inverse
Reinforcement Learning has seen advancements through
works such as Wulfmeier et al. [2017], Fernando et al.
[2020], which incorporate NNs to estimate latent costs. De-
spite these innovations, such approaches rely on estimating
the gradients based on state visitation frequencies.

Works such as Amos and Kolter [2017], Mensch and Blon-
del [2018], Agrawal et al. [2019], Pogančić et al. [2020]
focus on computing gradients (or an approximation of the
gradients) of optimal solutions for various types of math-
ematical programming, allowing to use NNs to learn la-
tent variables from demonstrations in an end-to-end manner
with an optimization solver component in the loop. This
allows implementations to map context features to optimal
observed demonstrations with automatic differentiation.

Pogančić et al. [2020] propose learning latent costs from op-
timal shortest path solutions by approximating gradient com-
putations of combinatorial solutions. Berthet et al. [2020]
address similar problems by introducing random noise and
utilizing Monte-Carlo methods for gradient computations,
enabling learning from both optimal and suboptimal solu-
tions. However, these methods are applied to single source-
target trajectories and require to call optimization solvers
proportionally to the amount of observed trajectories. As
this implies steep computational costs, our method is instead
designed to learn from multiple trajectories in each iteration
of the learning process, allowing to have more informative
learning steps during the NN optimization process.

1.3 PROBLEM FORMULATION

Here, we formalize the problem of learning the latent costs
from observed trajectories and contextual features. First, we
define the data availability assumption and then formulate

the minimization problem to guide the learning process.

Data. We formulate the problem within a given graph
structure G|V | = (V,E), where the nodes and existing
edges between them are predetermined. The nodes in V are
sorted in ascending order from 0 to |V | − 1. The edge costs
y are unknown and considered latent variables. We assume
we observe c optimal or suboptimal trajectories τn,c from
various start and target nodes, for each respective context
sample xn, represented by features that might influence the
latent costs and trajectory choices. These features can be
represented by tabular data containing variables such as time
of the day, weather, or images. The training data is written
as D = {xn, τn,c}Nn=1. Each trajectory is represented as a
sequence of nodes in the graph, i.e., integer values.

Minimization Problem. Let Fn,c be a variable that en-
codes all the c observed trajectories within the context
xn. Let Pωn be a variable that encodes suboptimal tra-
jectory information inferred from predicted (latent) costs
ŷωn := ŷω(xn), where ω are NN weights. We aim to mini-
mize the following empirical loss:

ω∗ = arg min
ω∈Ω

1

N

N∑
n=1

[
LS(Pωn , Fn,c) + αLP (ŷωn ,y

p)
]
.

(1)
We define both variables P and F in the next section, revis-
iting the loss function LS in more detail. If prior knowledge
about the edges’ cost yp is available, e.g., euclidean distance
between nodes, the loss is regularized by LP , where α is a
hyperparameter to set the regularization factor. Solving this
minimization means that the NN is able to provide useful
edges’ costs, i.e., costs that can be used to mimic observed
trajectories, while keeping the values close to yp.

2 PRELIMINARIES

This section provides important background that we use in
our proposed DataSP algorithm. It includes a brief review
of the classical FW algorithm, and covers techniques for
enabling informative gradient flow through smooth max and
argmax operators.

2.1 FLOYD-WARSHALL ALGORITHM

FW [Floyd, 1962] is a Dynamic Programming [Bellman,
1966] method used to find the shortest paths between all
pairs of vertices in a graph G|V | = (V,E), where V and
E are sets representing nodes and edges, respectively. The
input is a cost matrix M ∈ R|V |×|V | representing the cost
of edges between adjacent nodes in the graph G|V |, which
could signify distance, time, or other metrics. The algorithm
iteratively considers each node k as a potential intermediate
node in the paths between all node pairs, as detailed in Algo-
rithm 1. The three nested loops lead to a time complexity of

Algorithm 1 Floyd-Warshall Algorithm

Input: A cost matrix M ∈ R|V |×|V |+

Output: The optimal distance matrix M and predecessor
matrix R

1: Initialize R based on M
2: for k = 0 to |V | − 1 do
3: for i = 0 to |V | − 1 do
4: for j = 0 to |V | − 1 do
5: M [i, j]← min(M [i, k] +M [k, j],M [i, j])
6: if M [i, k] +M [k, j] < M [i, j] then
7: R[i, j]← R[k, j]
8: end if
9: end for

10: end for
11: end for
12: return M,R

O(|V |3). During each iteration, it checks whether the path
between two vertices i and j can be shortened by including
an intermediate vertex k. If so, it updates the path length
in the matrix with M [i, j]←M [i, k] +M [k, j]. When the
algorithm is finished, M [i, j] contains the optimal cost be-
tween i and j for all pairs. FW also stores the predecessor
matrix R that is used to track predecessor nodes to recover
the optimal path between two given nodes.

2.2 SMOOTH MAX OPERATORS

A particular and important approximation to the max op-
erator that we leverage in this work is represented by the
logsumexp function, making its gradient, the softmax or
gibbs function to serve as an approximation to the argmax
operation [Nesterov, 2005, Niculae and Blondel, 2017]. In
this paper, we use the min version of these smoothed op-
erators as follows to simplify the notation in the following
sections:

minβ : RK → R, minβ(v) = − 1

β
log

K∑
i=1

e−βvi , (2)

Φβ : RK → [0, 1]K , Φβ(v) =
e−βv∑K
i=1 e

−βvi
. (3)

3 METHODS

After introducing the Differentiable all-to-all Shortest Path
(DataSP) algorithm, we will include it in a learning loop
to estimate latent costs, and how to sample paths from the
model.

3.1 DIFFERENTIABLE ALL-TO-ALL SHORTEST
PATHS

Our proposed gradient-informative variant of FW is pre-
sented in Algorithm 2. DataSP diverges from the classical
FW in two key aspects. First, it sequentially updates the cost
matrix M with the smooth min operator minβ . Second, it
stores smooth argmin values denoted by the tensor P , our
desired output of the algorithm.

Theorem 1. Let M (k) denote the value of M after the kth

iteration of the DataSP loop. LetGk be the graph containing
all nodes from 0 to k−1. Let fk

i→j be the vector containing
the costs of all possible paths in the subgraph Gk going
from node i to node j (including i and j). Then, it holds
that: Mk[i, j] = minβ(fk

i→j) ∀i, j, k ∈ V .

The theorem above shows that DataSP process keeps M
consistent to the smooth min operator of the path costs
through all iterations. After DataSP is complete,M contains
the shortest distance matrix for all pairs of nodes in G|V |

smoothed by β. The special case β → ∞ is equivalent of
the classical FW solution. The proof is detailed in Appendix
B.

P is an alternative way to represent paths in a probabilis-
tic fashion. For the iteration k in DataSP, ps evaluates the
likelihood of k to be included in the optimal path using the
smooth argmin operator. In this specific iteration, if node k
is included in the optimal path, then k represents the node
with the highest index in the optimal path between i and j
due to the ascending order of the outer loop, i.e., nodes > k
are not yet evaluated. Therefore, we interpret P [i, j, k] as the
probability that k is the highest intermediate node between
i and j in an optimal path. For the same iteration, P [i, j, c]
is normalized for all c < k and c = i using pd = 1 − ps,
maintaining the previous probabilities proportion while re-
assuring that

∑|V |−1
k=0 P [i, j, k] = 1, making P [i, j] to be a

discrete probability distribution. We interpret P [i, j, i] as the
probability that there is no intermediate nodes when going
from i to j, and we initialize these values with 1, i.e., the
initial guess is that the optimal path from i to j is a direct
path.

Theorem 2. Let P (k) denote the value of P after the kth

iteration of the DataSP loop. Let Gk be the graph contain-
ing all nodes from 0 to k − 1. Let fk′

i→k′→j be a vector
containing the costs of all paths in the subgraph Gk

′
go-

ing from i to j through the node k′. Then, it holds that:

P k[i, j, k′] =
∑
e
−βfk′

i→k′→j∑
e
−βfk

i→j
∀i, j, k ∈ V and k′ <= k.

The theorem shows that P can be expressed in terms of path
costs, i.e., f . These analytical values of P help us to derive
the likelihood of sampling a specific path based on its cost
value, as we detail in Section 3.4. The proof is detailed in
Appendix B.

Algorithm 2 DataSP Algorithm

Input: A cost matrix M ∈ R|V |×|V |+

Output: Shortcut Probabilities P ∈ [0, 1]|V |×|V |×|V |

1: Init P [i, j, k] =

{
1 if i = k and M [i, j] <∞,
0 otherwise

2: for k = 0 to |V | − 1 do
3: for i = 0 to |V | − 1 do
4: for j = 0 to |V | − 1 do
5: (ps, pd)← Φβ(M [i, k] +M [k, j],M [i, j])
6: P [i, j, k]← ps
7: P [i, j, c]← pdP [i, j, c] ∀c < k and c = i
8: M [i, j]← minβ(M [i, k] +M [k, j],M [i, j])
9: end for

10: end for
11: end for
12: return P

3.2 LEARNING WITH DATASP

In this subsection, we introduce the three foundational ele-
ments required to facilitate learning from suboptimal paths
using DataSP: data preprocessing, the loss function, and the
learning algorithm integrating a NN with DataSP.

Encoding observed trajectories. We process each set of
C trajectories into an observed shortcut frequency tensor F .
We define F ∈ [0, 1]|V |×|V |×|V | as the frequency of each
node being the highest intermediate node between any two
nodes in a dataset or in a batch, i.e., F [i, j, k] is the number
of times that k is the highest intermediate node between i
and j divided by the total observed paths (or subpaths) from
i to j. Note that

∑|V |−1
k=0 F [i, j, k] = 1 ∀i, j ∈ V , with all

values greater than 0, making F [i, j] a discrete probability
distribution for all i, j. The processed training data is then
denoted as D = {xn, Fn,C}Nn=1.

Shortcuts Loss Function (LS). We propose the Shortcut
Loss Function LS as a dissimilarity measure computed be-
tween the Shortcut Frequency Tensor F , representing the
distribution of shortcut decisions computed from the ob-
served trajectories in the training data, and the predicted
distribution P of the highest intermediate nodes outputted
from our algorithm DataSP. The comparison of P and F
involves two tensors that encapsulate a large amount of
path information in a single run of DataSP, offering a more
informative feedback than methods attempting to align in-
dividual paths. When P [i, j, :] ≈ F [i, j, :] for all i, j, we
approximately match their path reconstructions, allowing us
to mimic the behavior of observed paths using P in Section
3.4. Although many options of dissimilarity between P and
F are possible, we chose to use the KL divergence in all of
our experiments containing suboptimal observed paths due

to its convexity in the space of probability distributions. So
we write the loss as

LS =
1

|D|
∑

(i,j)∈D

K∑
k=1

F [i, j, k] log
F [i, j, k]

P [i, j, k]
, (4)

where D is a set containing the combinations of source and
target nodes of observed trajectories.

Learning Algorithm. We incorporate DataSP and the
proposed loss function in Algorithm 3. The main motiva-
tion of this algorithm is to optimize the weights of the NN
based on LS . By doing that, the NN is able to infer latent
edges’ costs that can reconstruct observed trajectories. Line
2 of the algorithm is the forward process of the NN to in-
fer the unknown edges’ costs. Line 3 fulfills the unknown
elements of M , while the other elements are infinite due
to lack of direct edges. Using DataSP, Line 4 computes the
learned P for the NN weights ω and the input sample xn.
Finally, line 5 updates the NN’s weights following Equation
1. We use automatic differentiation for the backpropagation
computation. It is noteworthy that increasing the number of
selected trajectories c for a single context does not affect the
complexity of the learning algorithm.

Algorithm 3 Learning with DataSP
Components: NN Parameters ω, Learning Rate η
Component: A connected graph G = (V,E)
Input: Prior edges’ cost yp ∈ R|E|
Input: Training Data {(xn, Fn,c)}N1
Output: Optimized weights ω

1: for n = 1 to N do
2: ŷωn := ŷω(xn) {forward pass of NN}
3: Fill the cost matrix Mω

n = M(ŷωn , G)
4: Pωn ← DataSP

(
Mω
n

)
{Algorithm 2}

5: ω ← ω − η∇LS(Fn,c, P
ω
n)− ηα∇LP (ŷ,yp)

6: end for
7: return ω

3.3 GRAPH SAMPLING

Like the classical FW algorithm DataSP’s time complex-
ity is O(|V |3), which makes the whole learning process in
Algorithm 3 slow. DataSP necessitates a significant mem-
ory allocation to manage the gradients associated with the
shortcut probability tensor P . This means that the algorithm
scales poorly with the number of nodes in the graph.

Besides minimizing redundant computations and vectoriz-
ing DataSP (detailed in Appendix A), we propose using a
simple graph sampling technique during the training process
to control memory usage in DataSP. During each learning
iteration, we randomly sample nodes to be excluded. The
exclusion process involves sequentially removing nodes and
recalculating the connections of their neighboring nodes by

Figure 2: Example of one iteration of node exclusion in
graph sampling: left shows the original graph; right shows
exclusion of node 4 and its edges (in red). The remaining
edges’ costs are updated with local smooth min operations.

determining the shortest paths in a localized section of the
graph solved using the smooth min operator. Solving this
does not have a cubic dependency on the number of nodes
in the graph. Instead, it depends on the number of edges
connected to the excluded nodes. With each exclusion, the
cost matrix’s size is reduced by one element in each dimen-
sion. After a sequence of exclusions, it lowers the number
of nodes to |Vs| < |V |, consequently lowering the memory
demands for backpropagating through DataSP, as its input
will be M ∈ R|Vs|×|Vs|+ and the output P ∈ R|Vs|×|Vs|×|Vs|+ .
An illustrative example of a single iteration in the exclusion
process is depicted in Figure 2.

By implementing this technique with the smooth min opera-
tor, we keep the elements of the resultant M the same as it
would be in the original graph for the set of the remaining
nodes in Vs. This approach aligns with the characteristic of
preserving shortest path distances when simplifying a graph,
as done in [Ruan et al., 2011]. The general idea is to sample
a different set of nodes in each iteration of the learning al-
gorithm. This condenses different portions of the graph into
smaller graphs throughout the learning process, such that in
a long term, the integral information of the original graph is
retained.

It is important to note that for each iteration, we adjust the
loss function LS to only consider the shortcuts of the sam-
pled nodes. To achieve this, we also apply the node exclusion
process in the observed paths from the training data. Specif-
ically, we remove the same nodes from the training data
paths that were excluded in the learning procedure, since
we want the inferred shortcuts to be similar to the observed
shortcuts even after compressing the original graph.

3.4 INFERENCE FROM DATASP

3.4.1 Sampling path between nodes i and j.

The expected path prediction between pairs of nodes i and
j can be found using the predicted edge costs as an input
to any standard SPP algorithm such as Dijkstra. However,

in order to approximately reproduce the distribution of the
observed paths instead of predicting a single path, we pro-
pose sampling paths using Algorithm 4. This sampling algo-
rithm uses the DataSP’s output, P , computed from predicted
edges’ cost, i.e., Pω . The algorithm recursively samples the
highest intermediate node H between two nodes (line 2) in
a subpath and concatenates it to the rest of the path. The
recursion ends when a source node is sampled (lines 3 and
4) indicating a direct edge in the subpath. In lines 6 to 9
we update the values of P based on the sampled H using
the Bayes’ theorem. If H is the highest intermediate node
between i and j, both intermediate nodes between i and H
(PL relates to the left subpath), and between H and j (PR
relates to the right subpath), must be smaller than H . This
sampling algorithm can access paths with limited cycles. In
practice, we remove the sampled walks containing cycles as
we assume we do not observe cycles in the data. We show
examples of this in Appendix C.

Algorithm 4 Sampling Paths Between Nodes

Input: Shortcut Probabilities P ∈ [0, 1]|V |×|V |×|V |

Input: A start and end node (i, j)
Output: τi→j as a seq. of nodes

1: function SampleH(i, j, P)
2: H ∼ P [i, j, :]
3: if H = i
4: return i→ j
5: else
6: PL ← P and PR ← P
7: PL[i,H, k]← 0 ∀k > H and k 6= i
8: PR[H, j, k]← 0 ∀k > H
9: Normalize PL[i,H, :] and PR[H, j, :] to sum 1

10: τi→H ← SampleH(i,H, PL)
11: τH→j ← SampleH(H, j, PR)
12: return Concat(τi→H , τH→j)

Theorem 3. The probability distribution of sampling paths
τi→j from Algorithm 4 is Φβ(f i→j), where f i→j is a vector
containing the costs of all possible DataSP paths going from
i to j in the considered graph.

The proof is found in Appendix B. The theorem shows that
the likelihood of sampling a particular path with Algorithm
4 is proportional to the exponential of the negative cost
associated with that path, matching the maximum entropy
principle as detailed in the Inverse Reinforcement Learning
literature [Ziebart et al., 2008a]. In Appendix C, Table 4,
we show results of a Monte Carlo simulation computing the
frequency of sampled paths in a simple graph to validate
our finding.

3.4.2 Likelihood of future nodes given a partial path.

Given a partial path τ = n1 → n2 → ... → nK and
Pω, we want to compute the probability that nx is a des-

Experiments W W-M2M W-M2M-N

train images 10000 350 350
paths/image 1 30 30
total paths 10000 10500 10500
suboptimal τ? No No Yes

Results DBCS 94.4 (0.4) 82.4 (1.1) 24.1 (0.8)
Results DataSP 94.6 (0.3) 92.2 (0.6) 51.0 (3.0)

Table 1: Percentage of inferred trajectories with optimal
costs. Standard deviation between brackets are computed
over five restarts.

tination for all nx ∈ V . To simplify, we make nK to be
the highest node index in the graph by swapping nK with
|V | − 1 if nK 6= |V | − 1 before running DataSP for in-
ference. This is done by simply swapping the M values
(input of DataSP). By doing that, the calculation of this
conditional probability is Pr(nx|Hτ̃ [n1, nx] = nK), where
Hτ̃ [n1, nx] is the highest intermediate node between n1

and nx in a suboptimal path between them. Applying the
Bayes’ theorem turns the probability to be proportional to
Pr(Hτ̃ [n1, nx] = nK |nx) Pr(nx), where the first factor is
simply P [n1, nx, nK], and the second factor is a prior re-
lated to nx destination likelihood, which can be learned or
given by some knowledge about the paths and the graph.

4 EXPERIMENTS

This section outlines three experiments. The first predicts
Warcraft grid paths using map images. The second assesses
path prediction performance with varying graph sizes and
number of excluded nodes in the graph sampling, using syn-
thetic data. The third applies path prediction to actual taxi
trajectories. We demonstrate our method’s ability to learn
from both optimal and suboptimal trajectories, achieving ef-
ficiency in scenarios with numerous trajectories for identical
or similar contexts. We also provide examples of generated
trajectories between nodes and possible destinations given a
partial paths.

4.1 WARCRAFT MAPS EXPERIMENT

We replicated the experiment from Pogančić et al. [2020] to
predict optimal paths on 18x18 Warcraft grids (V = 324)
using 144x144 (Figure 3a) map images. The base experi-
ment W aims to predict optimal paths from the upper left
to the bottom right corner, similar to the original study. In
W-M2M we input actual terrain weights (Figure 3c) to Di-
jkstra’s algorithm to produce 30 optimal paths (displaying
three in Figure 3b) per image from random nodes on up-
per/left edges to random nodes on the opposite edges, using
the first 350 images for consistent training data volume.
As last step W-M2M-N introduces noise into the terrain

Synthetic (|V | = 30) Synthetic (|V | = 50) Synthetic (|V | = 100) Cabspot (|V | = 355)
Method Jacc (%) Match (%) Jacc (%) Match (%) Jacc (%) Match (%) Jacc (%) Match (%)

PRIOR 44.3 (0.4) 26.7 (0.2) 41.9 (0.8) 17.8 (0.9) 32.5 (0.5) 9.4 (0.4) 26.5 (0.9) 13.5 (0.7)

FCNN 56.9 (0.2) 27.1 (0.6) 51.6 (0.7) 14.0 (1.0) 49.0 (0.3) 5.0 (1.0) 15.7 (0.5) 10.7 (0.4)

DBCS 66.4 (2.1) 45.4 (3.3) 57.2 (2.5) 32.8 (2.1) 34.2 (0.6) 10.0 (0.8) 38.5 (1.2) 15.9 (2.6)

DataSP 76.6 (0.8) 63.9 (1.2) 73.1 (0.6) 52.6 (1.0) 67.7 (0.3) 37.3 (2.0) 47.3 (1.2) 21.5 (1.0)

Table 2: Average of Jaccard Index (edges) and Match, i.e., % of optimal paths, are reported. Optimal paths based on learned
costs are considered. Standard deviations are computed over five random starts in the graph and data generation.

weights (y ← max(0, y(1 + 0.5ε))), generating 30 sub-
optimal paths per image for training. The objective across
the three variants is to predict optimal paths for 1000 test
images from upper left to bottom right as in the original
experiment. Our approach involves graph sampling 100 out
of 324 nodes per learning iteration, comparing it with the
Differentiable Blackbox Combinatorial Solver (DBCS) pro-
posed in Pogančić et al. [2020], and integrating the first five
ResNet18 layers into DataSP (and DBCS), without assum-
ing prior grid cost knowledge (LP = 0). Additional details
and code are in Appendix D and supplementary material.

Results: Optimal Paths After the learning is complete,
ResNet18 is able to reconstruct grid weights, closely match-
ing the actual ones, as shown in Figure 3d compared to 3c.
This allows any exact Shortest Path solver to predict opti-
mal paths based on the inferred costs, as shown in Figure
4c. Table 1 contains the percentage of inferred trajectories
(solved by Dijkstra on the learned edges’ costs) having op-
timal path cost as done in the original experiment. We first
show that our results are competitive to the baseline in a
single source-target setting considering optimal observed
paths. We then show that, while both methods have good
performance considering many to many nodes, the time com-
putation of our method does not increase with the number of
observed trajectories per image, while the baseline increases
linearly. Finally, our method shows to be considerably better
on learning from suboptimal trajectories.

(a) Images as
context features

(b) Observed
paths

(c) True latent
costs

(d) Pred. latent
costs

Figure 3: Algorithm 3 gets several images and paths as
training data to reconstruct the grid costs with the trained
Resnet18.

Results: Path Distribution By inputing the inferred Pω

to Algorithm 4 several times, we do Monte Carlo simulation
to provide an approximation of the distribution of likely

paths from a given start to a given target node, as shown
in Figure 4d. We are also able to provide likely destination
nodes given a new context and a partial path, as shown in
Figure 5. In this case, we provide three different priors of
destination nodes. The first prior is a uniform distribution,
assuming that all the nodes are equally likely to be a des-
tination. In the second we assume distant nodes, in terms
of predicted costs, are exponentially less likely than closer
nodes. In the third, we assume there a uniform distribution
through all nodes in the bottom of the grid. The full se-
quence of destination predictions is provided in Appendix
E, Figure 9.

(a) Test image (b) Pred. costs (c) Pred. path (d) Likely paths

Figure 4: Algorithm 4 gets Pωn as input to provide likely
paths between given source and target nodes,where n repre-
sents the given image and ω the trained Resnet18 weights.

4.2 ROUTES EXPERIMENTS

In this subsection, we present both synthetic and real-dataset
route experiments.

Synthetic Dataset. In our synthetic data generation pro-
cess, we emulate real-world graph complexity. Initially, we
construct a binary adjacency matrix based on node count
and a sparsity-defining scalar, indicating node connectiv-
ity. We then simulate real-world edge cost complexities
using a noisy, nonlinear function with conditional features
from normal distributions, introducing multimodal noise
to mirror cost uncertainties. Subsequently, we apply a bi-
asing technique limiting source-target node pair permuta-
tions, reflecting real-world data patterns. Lastly, using Dijk-
stra’s algorithm, we calculate the shortest path to represent
each ’observed suboptimal path’, considering the gener-
ated edge costs and node pairs. This approach allows us
to control the graph and data properties. We generate three

Figure 5: Given two partial paths and a map as a context in
the test data, we compute the probability of each node to be
a destination based on three different priors.

datasets. The first represents a graph with |V | = 30 and
|E| ≈ 270, the second |V | = 50 and |E| ≈ 750, both
with 5000 training samples of features and respective paths
for a sampled source-target nodes within a limited num-
ber of source-target combinations. The third set contains
|V | = 100 and |E| ≈ 3000, with 15000 training samples.

Real Dataset We used the Cabspotting dataset [Pi-
orkowski et al., 2009]. Our analysis focused on San Fran-
cisco’s central region, selected for its diverse range of
source-target node combinations in the dataset’s observed
paths. To build the graph, we generated a grid over our de-
fined region of interest. Each grid square was considered a
candidate for a node if the number of observed taxi geoloca-
tions (determined by latitude and longitude data) exceeded
a predetermined threshold. Edges between nodes were iden-
tified based on the presence of at least one trip traversing
between the two nodes. Our graph ended up with 355 nodes
and 2178 edges. To ensure comprehensive edge detection,
taxi geolocations were linearly interpolated. We removed
trajectories with cycles for simplicity.

Baselines. We evaluate three primary baselines. The first
is the PRIOR framework, employing the shortest path al-
gorithm with edge costs determined by Euclidean distances
between connected nodes, denoted as yp. The second base-
line is a fully connected neural network (FCNN) that di-
rectly predicts edge usage. Our third baseline is DBCS. We
tuned the hyperparameter λ of DBCS for our experiments.
Additionally, we used their method for prior regularization,
which gave better results in our experiments. We connect
the same FCNN architecture to the DBCS and to DataSP,
which is composed of three hidden layers of 1024 neurons
each, with ReLU activation functions in the hidden layers.
The choice of baselines is further discussed in Appendix
D.1.

Results: Expected Optimal Paths. In Table 2, we com-
pare the expected optimal path from DataSP to the predicted
path of the baselines. The Match metric indicates the per-

Method |Vs|/|V | |V | = 50 |V | = 100

PRIOR - 41.9 32.4
DBCS - 57.2 34.2
DataSP 20% 66.5 58.8
DataSP 30% 67.5 62.3
DataSP 50% 71.4 65.1
DataSP 100% 73.1 67.7

Table 3: DataSP outperforms DBCS even when node sam-
pling is reduced to 20% for memory efficiency.

centage of predicted paths matching exactly with the paired
observed paths in the test data. The Jacc represents the aver-
age Jaccard Index of edges through the test dataset. DataSP
outperforms the baselines and generalizes better for larger
graphs. Similar to the findings in Pogančić et al. [2020],
our work also highlights the limitations of traditional NN
approaches in generalizing for complex and structured pre-
dictions, i.e., they cannot guarantee the edges are connected
and lead from the source to end nodes. FCNN performs even
worse than the considered prior for larger graphs as they are
not able to guarantee path feasibility. Additional results of
path distribution in the graph are illustrated in Appendix E.

Results: Graph Sampling. Table 3 reveals that while re-
ducing node sampling in training lowers performance, our
method still achieves a high Jaccard index compared to base-
line algorithms. This trade-off enables scalability to larger
graphs with minimal performance loss. For instance, in the
100-node experiment, reducing to 30 nodes per iteration
drastically decreases space complexity to 2.7% of the origi-
nal, with a performance drop from 0.677 to 0.623 but still
way above our baseline.

5 CONCLUSION

We proposed DataSP, a differentiable and probabilistic al-
gorithm to solve all to all shortest path problems. We have
shown how to connect this algorithm with neural networks
to allow learning from optimal or suboptimal trajectories.
By learning from these trajectories we are able to infer la-
tent costs of graph connections. We demonstrated that these
costs can be used to either plan an optimal path, or to pre-
dict path distributions with DataSP. We have proven that
smoothing the max and argmax operator in the DataSP leads
the path distribution behavior to be aligned to the maximum
entropy principle. We have also shown that graph sampling
in the learning process can be extremely beneficial to bal-
ance the trade-off between performance and computational
resources. Finally, we outline that DataSP is very efficient
to learn from datasets with big number of trajectories due to
its access to all start and target combinations in a single run.

Acknowledgements

This work has been supported by the Industrial Graduate
School Collaborative AI & Robotics funded by the Swedish
Knowledge Foundation Dnr:20190128, and the Knut and
Alice Wallenberg Foundation through Wallenberg AI, Au-
tonomous Systems and Software Program (WASP).

References

Ahmed Abbas and Paul Swoboda. Combinatorial optimiza-
tion for panoptic segmentation: A fully differentiable
approach. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34,
pages 15635–15649. Curran Associates, Inc., 2021.

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Bus-
seti, and Walaa M Moursi. Differentiating through a cone
program. arXiv preprint arXiv:1904.09043, 2019.

Brandon Amos and J. Zico Kolter. OptNet: Differen-
tiable optimization as a layer in neural networks. In
Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pages 136–145. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
amos17a.html.

Richard Bellman. Dynamic programming. Science, 153
(3731):34–37, 1966.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco
Cuturi, Jean-Philippe Vert, and Francis Bach. Learning
with differentiable pertubed optimizers. Advances in
neural information processing systems, 33:9508–9519,
2020.

Rares Cristian, Pavithra Harsha, Georgia Perakis, Brian L
Quanz, and Ioannis Spantidakis. End-to-end learning for
optimization via constraint-enforcing approximators. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pages 7253–7260, 2023.

Tharindu Fernando, Simon Denman, Sridha Sridharan, and
Clinton Fookes. Deep inverse reinforcement learning
for behavior prediction in autonomous driving: Accurate
forecasts of vehicle motion. IEEE Signal Processing
Magazine, 38(1):87–96, 2020.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided
cost learning: Deep inverse optimal control via policy
optimization. In International conference on machine
learning, pages 49–58. PMLR, 2016.

Robert W Floyd. Algorithm 97: shortest path. Communica-
tions of the ACM, 5(6):345, 1962.

Jon Froehlich and John Krumm. Route prediction from
trip observations. Technical report, SAE Technical Paper,
2008.

Yong Gao, Dan Jiang, and Yan Xu. Optimize taxi driv-
ing strategies based on reinforcement learning. Interna-
tional Journal of Geographical Information Science, 32
(8):1677–1696, 2018.

Peter Henry, Christian Vollmer, Brian Ferris, and Dieter
Fox. Learning to navigate through crowded environments.
In 2010 IEEE international conference on robotics and
automation, pages 981–986. IEEE, 2010.

Tsubasa Hirakawa, Takayoshi Yamashita, Toru Tamaki, and
Hironobu Fujiyoshi. Survey on vision-based path predic-
tion. In Distributed, Ambient and Pervasive Interactions:
Technologies and Contexts: 6th International Conference,
DAPI 2018, Held as Part of HCI International 2018, Las
Vegas, NV, USA, July 15–20, 2018, Proceedings, Part II
6, pages 48–64. Springer, 2018.

Xiang Li, Mengting Li, Yue-Jiao Gong, Xing-Lin Zhang,
and Jian Yin. T-desp: Destination prediction based on
big trajectory data. IEEE Transactions on Intelligent
Transportation Systems, 17(8):2344–2354, 2016.

Zilu Liang and Yasushi Wakahara. Real-time urban traffic
amount prediction models for dynamic route guidance
systems. EURASIP Journal on Wireless Communications
and Networking, 2014(1):1–13, 2014.

Arthur Mensch and Mathieu Blondel. Differentiable dy-
namic programming for structured prediction and atten-
tion. In International Conference on Machine Learning,
pages 3462–3471. PMLR, 2018.

Yu Nesterov. Smooth minimization of non-smooth functions.
Mathematical programming, 103:127–152, 2005.

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick
Jaillet. Inverse reinforcement learning with locally con-
sistent reward functions. Advances in neural information
processing systems, 28, 2015.

Vlad Niculae and Mathieu Blondel. A regularized frame-
work for sparse and structured neural attention. Advances
in neural information processing systems, 30, 2017.

Michal Piorkowski, Natasa Sarafijanovic-Djukic, and
Matthias Grossglauser. Cabspotting dataset, 2009. URL
https://dx.doi.org/10.15783/C7J010.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil,
Georg Martius, and Michal Rolinek. Differentiation of
blackbox combinatorial solvers. In International Confer-
ence on Learning Representations, 2020.

https://proceedings.mlr.press/v70/amos17a.html
https://proceedings.mlr.press/v70/amos17a.html
https://dx.doi.org/10.15783/C7J010

Alberto Rossi, Gianni Barlacchi, Monica Bianchini, and
Bruno Lepri. Modelling taxi drivers’ behaviour for the
next destination prediction. IEEE Transactions on Intelli-
gent Transportation Systems, 21(7):2980–2989, 2019.

Ning Ruan, Ruoming Jin, and Yan Huang. Distance preserv-
ing graph simplification. In 2011 IEEE 11th International
Conference on Data Mining, pages 1200–1205. IEEE,
2011.

Bo Tang and Elias B Khalil. Pyepo: A pytorch-based end-
to-end predict-then-optimize library for linear and integer
programming. arXiv preprint arXiv:2206.14234, 2022.

Dizan Vasquez, Billy Okal, and Kai O Arras. Inverse re-
inforcement learning algorithms and features for robot
navigation in crowds: an experimental comparison. In
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1341–1346. IEEE, 2014.

Markus Wulfmeier, Dushyant Rao, Dominic Zeng Wang,
Peter Ondruska, and Ingmar Posner. Large-scale cost
function learning for path planning using deep inverse
reinforcement learning. The International Journal of
Robotics Research, 36(10):1073–1087, 2017.

Haoyi Xiong, Amin Vahedian, Xun Zhou, Yanhua Li, and
Jun Luo. Predicting traffic congestion propagation pat-
terns: A propagation graph approach. In Proceedings
of the 11th ACM SIGSPATIAL International Workshop
on computational transportation science, pages 60–69,
2018.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse rein-
forcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008a.

Brian D Ziebart, Andrew L Maas, Anind K Dey, and J An-
drew Bagnell. Navigate like a cabbie: Probabilistic rea-
soning from observed context-aware behavior. In Pro-
ceedings of the 10th international conference on Ubiqui-
tous computing, pages 322–331, 2008b.

DataSP: A Differential All-to-All Shortest Path Algorithm for
Learning Costs and Predicting Paths with Context

(Supplementary Material)

Alan A. Lahoud1 Erik Schaffernicht1 Johannes A. Stork1

1Center for Applied Autonomous Sensor Systems (AASS), Örebro University, Örebro, Sweden

A EFFICIENT DATASP

Minimizing Redundant Computations. We incorporate the following simplifications in DataSP to avoid tracking
unnecessary operations for backpropagation with autograd:

• Self-Loop Elimination: When i = j, the cost matrix remains unchanged, as our model presupposes non-negative edge
costs. This is ensured by constraining the learned latent variables in M , representing edge costs, to be strictly positive.

• Direct Path Redundancy: In cases where i = k or k = j, the algorithm evaluates direct paths between nodes i and j.
Since these direct paths are already set in the initialization of M and P , we bypass updates.

• Infinite Path Pruning: If either M [i, k] or M [k, j] holds an infinite value, it indicates the absence of a viable shortcut
path. We then bypass updates as any potential shortcut would not offer a shorter route than the direct path.

Vectorizing DataSP. We also vectorize the inner loops (i, j) leading to a significant reduction in computational time, as
shown in Algorithm 5. This vectorization is feasible because there is no interdependence between the loop values within
each k iteration as we explain below:

• The update of M [i, j] depends on the current values of M [i, k], M [k, j], and M [i, j] itself. The value M [i, j] is not
yet updated in the kth iteration, so there is no interdependency here.

• M [i, k] was already evaluated for update if k < j and the same for M [k, j] if k < i. However, even on these cases, no
actual update occurs becauseM [i, k] relies on the previous value ofM [i, k] itself andM [k, k] only, which is guaranteed
of not having an update based on our avoidance of redundant computations detailed above. This is analogous for
computing M [k, j].

Algorithm 5 Efficient DataSP

Input: A cost matrix M ∈ R|VS |×|VS |+

Output: Shortcut Probabilities P ∈ [0, 1]|VS |×|VS |×|VS |

1: Init P [i, j, k] = 1if i = k and M [i, j] < inf, 0 otherwise
2: for k = 0 to |VS | − 1 ∀i, j without redundancy, in parallel do
3: (ps, pd)← Φβ(M [i, k] +M [k, j],M [i, j])
4: P [i, j, k]← ps
5: P [i, j, c]← pdP [i, j, c] ∀c < k and c = i
6: M [i, j]← minβ(M [i, k] +M [k, j],M [i, j])
7: end for
8: return P

mailto:<alan.lahoud@oru.se>?Subject=Your UAI 2024 paper

B PROOFS

B.1 PROOF OF THEOREM 1

From the vectorized DataSP algorithm, given an initial M0 cost matrix, we compute M1[i, j] in the first iteration as

M1[i, j] = minβ(M0[i, 1] +M0[1, j],M0[i, j]) (5)

The first argument of minβ is the cost of going from i to j through 1, while the second is the cost of going from i to j
without passing through 1, considering only the node 1 as a possible intermediate node. This can be rewritten as

M1[i, j] = minβ(f1
i→j) (6)

where f1
i→j is a vector containing the costs of all possible costs from i to j considering 1 as the only intermediate node.

In the second iteration of DataSP, we have

M2[i, j] = minβ(M1[i, 2] +M1[2, j],M1[i, j])

= minβ(minβ(f1
i→2) + minβ(f1

2→j),minβ(f1
i→j))

= minβ(M0[i, 1] +M0[1, 2] +M0[2, 1] +M0[1, j],

M0[i, 1] +M0[1, 2] +M0[2, j],

M0[i, 2] +M0[2, 1] +M0[1, j],

M0[i, 1] +M0[1, j],

M0[i, 0] +M0[0, j],

M0[i, j])

= minβ(f2
i→j)

(7)

where f2
i→j is a vector containing the costs of all possible costs from i to j considering 1 and 2 as the only intermediate

nodes.

For a general k,
Mk[i, j] = minβ(Mk−1[i, k] +Mk−1[k, j],Mk−1[i, j])

= minβ(minβ(fk−1
i→k) + minβ(fk−1

k→j),minβ(fk−1
i→j))

= minβ(fk
i→j)

(8)

Note that M2[i, j] was calculated using the log ex = x and log(ab) = log a+ log b, which is analogous for any k.

Bias in visited cycles. The resulting paths contains all paths going from i to k without cycles plus paths from k to j without
cycles. However, the concatenation of these paths can result in paths containing cycles, e.g., i→ k−1→ k → k−1→ j. In
practice, we remove cycles to avoid bias, e.g., while the path i→ k−1→ k → k−1→ j is visited, i→ k → k−1→ k → j
is not.

B.2 PROOF OF THEOREM 2

In the kth iteration of the vectorized DataSP, P k[i, j, k] is computed as Φ(−Mk−1[i, k]−Mk−1[k, j],−Mk−1[i, j]). From
1, we can rewrite it as Φ(−fk−1

i→k − fk−1
k→j ,−f

k−1
i→j). Using logarithm and exponential properties, we rewrite it as

P k[i, j, k] =

∑
e−f

k−1
i→k

∑
e−f

k−1
k→j∑

e−f
k−1
i→k

∑
e−f

k−1
k→j +

∑
e−f

k−1
i→j

(9)

In the numerator, applying the distributive multiplication property, the resulting value is the sum of the exponential of all
possible paths going from i to j passing through k considering a subgraph of nodes from 1 to k − 1 in each subpath. Since
we avoid visiting paths with cycles, we can consider also the node k in the subgraph to simplify the formula. We then rewrite
the above equation as

P k[i, j, k] =

∑
e−f

k
i→k→j∑

e−f
k
i→k→j +

∑
e−f

k−1
i→j

(10)

where fk
i→k→j is a vector containing the costs of all paths from i to j passing through k, computed considering only the

subgraph of nodes from 1 to k.

Now, while the first term of the denominator contains all paths from i to j going through k, the second term of the
denominator contains all paths from i to j that does not go through k, because it is computed considering the subgraph of
nodes 1 to k − 1. Thus, the resulting term should contain all the paths from i to j considering the subgraph 1 to k, and we
rewrite the equation above as

P k[i, j, k] =

∑
e−f

k
i→k→j∑

e−f
k
i→j

(11)

Analogously, we can derive the probability that k is not an intermediate node between i and j considering the same subgraph,
which results in

P k[i, j,¬k] =

∑
e−f

k−1
i→j∑

e−f
k
i→j

(12)

To further analyze the formula for a general k′, we first compute the probability that k− 1 is the highest intermediate node in
the kth iteration, which is the product of the probability that k − 1 is the highest intermediate node in the (k − 1)th iteration
and the probability that k is not the highest intermediate node in the kth iteration:

P k[i, j, k − 1] = P k−1[i, j, k − 1]P k[i, j,¬k]

=

∑
e−f

k−1
i→k−1→j∑
e−f

k−1
i→j

∑
e−f

k−1
i→j∑

e−f
k
i→j

=

∑
e−f

k−1
i→k−1→j∑
e−f

k
i→j

(13)

For the node k′ = k − C, considering C < k, we have

P k[i, j, k′] = P k
′
[i, j, k′]

C−1∏
c=1

P k−c[i, j,¬(k − c)] (14)

The terms are simplified and we finally have

P k[i, j, k′] =

∑
e−f

k′
i→k′→j∑

e−f
k
i→j

. (15)

The proof above omitted β without loss of generality, as we could simply replace f to βf .

B.3 PROOF OF THEOREM 3

Given a graph with |V | nodes, it is direct from theorem 2 that the probability to sample the node H from i to j in Algorithm

4 is
∑
e
−fH

i→H→j∑
e
−f
|V |
i→j

. If H = i, the sampling process ends indicating a direct path from i to j. Otherwise, the sampling process

continues recursively. The next sampling iteration are splint into two subpaths: between i and H , and between H and j.

Again, the probability to sample the nodeHL from i toH is
∑
e
−f

HL
i→HL→H∑
e−fH

i→H
. Analogously, the probability to sample the node

HR from H to j is
∑
e
−f

HR
H→HR→j∑
e
−fH

H→j
. After this iteration, the probability to have a sampled path i→ HL → H → HR → j

is the product of the probabilities above:

∑
e−f

H
i→H→j∑

e−f
|V |
i→j

∑
e
−fHL

i→HL→H∑
e−f

H
i→H

∑
e
−fHR

H→HR→j∑
e−f

H
H→j

. (16)

Using logarithm properties, we conclude that
∑
e−f

H
i→H

∑
e−f

H
H→j =

∑
e−f

H
i→H→j , simplifying the equation above to

∑
e
−fHL

i→HL→H
∑
e
−fHR

H→HR→j∑
e−f

|V |
i→j

(17)

After splitting the path into c subpaths, we have

∏C
c=1

∑
e
−fNc

Nc−1→NHc→Nc∑
e−f

|V |
i→j

(18)

where N0 = i and NC = j.

This process is done until NHc = Nc−1 for all c in the path, representing a direct subpath, indicating the end of the sampling
process in the branch. The direct edges cost can be denoted by the initial cost matrix M of the DataSP algorithm. Replacing
the vector −fNc

Nc−1→Nc→Nc+1
with −M [c − 1, c + 1], the sum in the numerator is no longer useful. Leveraging the

property that the product of exponentials are the exponentials of the sum, we can finally write the probability to sample a
path N0 → N1 → ...→ NC as

e−
∑C
c=1M [c−1,c]∑
e−f

|V |
i→j

. (19)

The proof above omitted β without loss of generality, as we could simply replace f to βf .

Figure 6: Illustrative example of graph to evaluate the space visited paths in DataSP.

C ILLUSTRATIVE EXAMPLE OF PATH SAMPLING

Illustrative graph. We run a simple demonstration on the graph of Figure 6 to show the frequency of the sampled paths to
go from node 0 to node 3. The edges’ cost are set as Mij = |i− j| for all nodes i 6= j and∞ if i = j. We first run DataSP
with the described M and β = 1 to obtain P . Then, we run Algorithm 4 10000 times.

Paths frequency. The frequency of paths sampled from it is described in Table 4. The frequency is aligned with the
theoretical probability derived in Theorem 3.

Intuition of non-visited cycles. Consider H[i, j] the highest intermediate node between i and j. Note that the walk
0 → 2 → 0 → 2 → 3 has cost 7 and is not a visited cycle (not shown in Table 4). If we try to reach this walk in the
sampling, we first need to set H[0, 3] = 2 leading it to 0→ 2→ 3. We can only expand the left part with either H[0, 2] = 1
or H[0, 2] = 0. The first does not match with our desired walk while the second terminates the recursion in Algorithm 4.
We can only expand the right part with H[2, 3] = 0, H[2, 3] = 1, or H[2, 3] = 2. H[2, 3] = 2 terminates the recursion
while H[2, 3] = 1 does not match with our desired walk. By choosing H[2, 3] = 0 we can’t have any other additional node
between 2 and 3 since 0 would be the highest one, so it leads to the end of the recursion as well without reaching the desired
path. In practice, we do not consider walks containing cycles. In Table 4, for instance, the only desired paths to sample is the
first four paths.

D IMPLEMENTATION DETAILS

NNs were trained on Nvidia GeForce RTX 4070 GPU. We used Pytorch with Adam optimizer in all implementations. To
have approximately the same results as in the paper, the hyperparameters in Table 5 should be followed. To further reproduce
the numbers one should choose the "seed" input values from 0 to 5 together with those hyperparameters, selecting the best
model according to validation set results, which were then reported on the test set.

For the Warcraft experiments, we did not use any prior knowledge for the latent costs, while in the Route experiments, we
used. In the Cabspotting dataset, we used the euclidean distance between nodes to be the yp. For the methods with yp 6= 0,
we set the neural network to learn the difference between yp and the latent cost. We have also used the prior in the DBCS
for a fair comparison, as ir resulted in a better performance than not using it.

For the baseline DBCS, we had to iteratively compute the shortest path between different start and end nodes, increasing the
time computation even when having various trajectories for each context.

For the route experiments, each trajectory was connected to a single contextual feature. To aggregate c trajectories to each
context, we aggregated paths for similar contexts. For example, trajectories happened in Saturday at 10:00 and Saturday at
10:05 would be probably set together in the same batch of trajectories. More specifically, for each context sample feature, we
select the top 1% most similar x samples to a particular xn, and then we pick their respective trajectories to be encoded by
the same batch through F . We computed the similarity by calculating the euclidean distance between features in continuous

τ0→3 Cost Freq. exp(-Cost)
Z

0→ 3 3 .2153 .2136
0→ 1→ 3 3 .2141 .2136
0→ 2→ 3 3 .2119 .2136
0→ 1→ 2→ 3 3 .2097 .2136
0→ 1→ 0→ 2→ 3 5 .0310 .0289
0→ 1→ 2→ 1→ 3 5 .0298 .0289
0→ 2→ 1→ 3 5 .0293 .0289
0→ 1→ 0→ 3 5 .0288 .0289
0→ 1→ 2→ 0→ 1→ 3 7 .0050 .0039
0→ 1→ 0→ 2→ 1→ 3 7 .0050 .0039
0→ 2→ 0→ 3 7 .0042 .0039
0→ 1→ 2→ 1→ 0→ 3 7 .0038 .0039
0→ 2→ 1→ 0→ 3 7 .0035 .0039
0→ 2→ 0→ 1→ 3 7 .0032 .0039
0→ 1→ 2→ 0→ 3 7 .0031 .0039
0→ 1→ 0→ 2→ 0→ 1→ 3 9 .0010 .0005
0→ 2→ 0→ 1→ 0→ 3 9 .0005 .0005
0→ 1→ 2→ 0→ 1→ 0→ 3 9 .0003 .0005
0→ 1→ 0→ 2→ 0→ 3 9 .0003 .0005
0→ 1→ 0→ 2→ 1→ 0→ 3 9 .0002 .0005

Table 4: Comparison between the Monte Carlo simulation through DataSP to approximate paths’ distribution and the
theoretical values coming from the maximum entropy principle.

Hyperparams/Exp W W-M2M W-M2M-N Synthetic Cabspotting

Learning Rate 0.0002 0.001 0.001 0.0001 0.0001
β 100 100 30 1 30
Batch size 24 16 8 16 32
|Vs|/|V | 70/324 100/324 100/324 Varied 70/355
c 1 30 30 1% Data 1% Data
α 0 0 0 10−5 10−5

Table 5: Hyperparameters used to report results in the paper.

space and hamming distance for discrete features.

For the graph sampling, instead of selecting the nodes totally randomly, we select half nodes to be connected to each other
(connected subgraph), and the other half randomly based on its frequency of appearance in the training data. Here, the
heuristics was arbitrary. The performance using this strategy was slightly better than choosing totally random nodes. Note
that by sampling nodes, we have to make sure that paths called during the training data go through at least 2 of these nodes,
which is done by simply filtering paths using this rule.

D.1 CHOICE OF BASELINES

We opted to choose a differentiable combinatorial blackbox (DBCS) from Pogančić et al. [2020] as a baseline, that has
demonstrated to be efficient to approximately differentiate through the Dijkstra algorithm, as it is an efficient algorithm to
solve the shortest path problem. This baseline allows us to capture the limitation of other works, which is not focusing on
multiple source and target nodes.

As discussed with the reviewers, we have also explored other baselines without success in our experiments. A differentiable
linear programming version of the shortest path led to significant convergence issues, preventing us from presenting those
results. Our efforts here were based on the same linear programming formulation used in Cristian et al. [2023] with
differentiable cvxpy layers.

Another potential baseline would be the perturbed Fenchel-Young loss (PFYL) proposed in [Berthet et al., 2020]. However,
their implementation is already quite time-consuming on a 12x12 grid for a single source-target scenario, as evidenced by
running the collection of differentiable algorithms from Tang and Khalil [2022]. This time consumption likely arises from
the perturbation sampling process during the training procedure.

E ADDITIONAL RESULTS

Figure 7: Examples of path predictions in Cabspotting. Green paths represent the most likely path prediction from DataSP
given test contextual features. Red are observed paths for the same contextual features. Black are paths computed from
PRIOR. Edges orientation were omitted for better visualization.

Figure 8: Examples of path distribution predictions. Green paths represent predicted distribution from DataSP given test
contextual features, the darker the green, the more likely is the prediction. Red are observed paths for the same contextual
features. Edges orientation were omitted for better visualization.

Figure 9: A sequence of simulations to compute likely destinations given a partial path (first column). Second, third, and
fourth columns represent different priors on destination likelihood. Second column with uniform, third with expneg, and
fourth with uniform only in the bottom grid row.

	Introduction
	Our Contributions
	Related Work
	Problem Formulation

	Preliminaries
	Floyd-Warshall Algorithm
	Smooth Max Operators

	Methods
	Differentiable all-to-all Shortest Paths
	Learning with DataSP
	Graph Sampling
	Inference from DataSP
	Sampling path between nodes i and j.
	Likelihood of future nodes given a partial path.

	Experiments
	Warcraft Maps Experiment
	Routes Experiments

	Conclusion
	Efficient DataSP
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Illustrative example of path sampling
	Implementation Details
	Choice of baselines

	Additional Results

