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ABSTRACT

This paper presents a novel approach to addressing the underexplored challenge
of human pose prediction in dynamic target domains that simultaneously con-
tain in-distribution (ID) and out-of-distribution (OOD) data. Existing test-time
adaptation (TTA) techniques predominantly focus on OOD data, neglecting the
fact that ID data, which closely resembles the training distribution, is often en-
countered during real-world deployment, leading to significant degradation in ID
performance. To address this, we introduce In-Distribution Knowledge Reten-
tion (IDKR), a continual TTA framework designed to preserve critical knowledge
about ID data while adapting to unseen OOD sequences. Our method introduces
an ID-informative subgraph learning strategy that leverages the structural charac-
teristics of human skeletal data to compute a structural graph Fisher Information
Matrix (SG-FIM). Unlike prior work, IDKR simultaneously considers both node
and edge features in the skeletal graph, with edge features, representing the invari-
ant bone lengths between parent-child joint pairs, being essential for maintaining
structural consistency across poses. These edge features are key to extracting re-
liable SG-FIM parameters, enabling the model to retain parameters critical for ID
performance while selectively updating those needed for OOD adaptation. Ex-
tensive experiments on multiple benchmark datasets demonstrate that IDKR con-
sistently outperforms state-of-the-art methods, particularly in scenarios involving
mixed ID and OOD data, setting a new standard for robust human pose prediction
in dynamic environments.

1 INTRODUCTION

3D human pose prediction (HPP) is a fundamental task in computer vision and machine intelligence,
with applications in human-robot interaction, and robotics (Lou et al., 2024; Yan et al., 2024). The
goal of HPP is to predict future human poses based on a sequence of observed 3D poses.

State-of-the-art HPP methods predominantly follow a data-driven deep learning approach, where
models are trained on large-scale datasets and directly applied to unseen target data (Guo et al.,
2023; Chen et al., 2023; Wang et al., 2023). However, a key challenge for these models is domain
shift, where a model trained on a source domain performs poorly when deployed in a new, unseen
target domain. Domain shifts occur due to differences in body shapes, proportions, and motion
patterns between the training and test data (Liang et al., 2024; Zhang et al., 2023). To address this
issue, recent studies (Cui et al., 2023b;a) have proposed TTA techniques, which dynamically adjust
the pre-trained model during inference to better accommodate target domain shifts.

Despite these advancements, current TTA methods exhibit two notable limitations when applied to
real-world HPP scenarios:

• Unrealistic Stationary Target Domain Assumption: Existing TTA-based HPP methods
(Cui et al., 2023a;b) assume that the distribution shift between the source and target do-
mains remains static, which is unrealistic in real-world dynamic environments.

• In-Distribution and Out-of-Distribution Data in the Target Domain: Current TTA
methods (Wang et al., 2020; 2022; Brahma & Rai, 2023) do not adequately address the
coexistence of in-distribution (ID) data, which resembles the training data, and out-of-
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distribution (OOD) data, which differs from it. This results in suboptimal performance
when both ID and OOD data are present in the target domain.

It is noteworthy that in real-world HPP deployments, the operational environment is dynamic, with
individual behavioral patterns evolving over time, thus leading to a non-stationary target domain
(Wang et al., 2022; Sanyal et al., 2023). This ongoing change of the target domain results in a
perpetual distribution shift, which is not adequately addressed by existing TTA-based HPP meth-
ods. More importantly, in practical settings, alongside the OOD data, the deployment phase will
inevitably encounter ID sequences that closely align with the distribution of the source domain (Sun
et al., 2022; Li et al., 2022b; Mao et al., 2024), as evidenced in Appendix-B. However, existing
methods often assume that the target domain is exclusively OOD, thus overlooking the presence of
ID sequences, which limits their generalization performance.

To address these challenges, we propose a novel continual TTA framework, IDKR, which is specifi-
cally designed to handle evolving target domains that contain both ID and OOD data. Our framework
not only enhances performance on OOD data but also retains key parameters critical for ID recog-
nition, ensuring robust performance across both types of motion sequences. Our approach builds
on the insight that human motion can be represented as a graph, where nodes correspond to human
joints and edges represent skeletal connections. Recent advances in Graph Invariant Learning (GIL)
have demonstrated the effectiveness of extracting informative subgraph structures for downstream
tasks by filtering out irrelevant elements (Chen et al., 2024b; Li et al., 2022c). For example, in
distinguishing between walking and running, the movements of the legs and arms provide more
significant discriminatory information than the torso. Building on this, we integrate the Graph In-
formation Bottleneck (GIB) framework (Wu et al., 2020) into GIL theory, proposing a novel method
for in-distribution subgraph learning that compresses the original skeleton graph into an informative
subgraph relevant to the ID labels (You et al., 2020). Once the ID-informative subgraph is identi-
fied, we incorporate this structure into the model’s continual adaptation process. The in-distribution
subgraph is used to guide the model’s parameter updates during test-time adaptation. By aligning
the model’s focus on this subgraph, we ensure that the knowledge specific to ID data is preserved
throughout the adaptation process, even as the model learns to handle OOD data.

Considering the skeletal topology of motion sequence, instead of the standard Fisher Information
Matrix (FIM), we introduce an innovative ID-parameter estimation strategy–Structural Graph Fisher
Information Matrix (SG-FIM), which quantifies the importance of model parameters based on both
node and edge features within the ID-informative subgraph. The edge features, which represent the
invariant bone lengths between parent and child joints, are crucial for maintaining structural consis-
tency across different poses. This invariance is essential for accurately extracting SG-FIM, allowing
the model to retain parameters critical for ID data while updating others for OOD adaptation. The
SG-FIM serves as an ID knowledge retention regularization, integrated into the TTA optimization
process via self-supervised loss (Tian & Lyu, 2024; Brahma & Rai, 2023), ensuring that ID-specific
knowledge is preserved while the model adapts to the evolving target domain. This allows our ap-
proach to dynamically adapt to both ID and OOD data, achieving optimal predictive performance in
a variety of deployment scenarios.

Our contributions can be summarized as follows: 1) We introduce the first framework that explic-
itly addresses the challenge of mixed ID and OOD target domains in HPP, overcoming a critical
limitation of current TTA approaches. 2) We propose a novel IDKR that leverages ID-informative
subgraph learning and SG-FIM to identify and retain ID-specific parameters while adapting to OOD
data. 3) Extensive evaluations show that IDKR significantly outperforms state-of-the-art HPP mod-
els, particularly in non-stationary target domains containing both ID and OOD data.

2 RELATED WORKS

2.1 HUMAN POSE PREDICTION (HPP)

Early approaches to HPP primarily rely on RNN-based models, treating the task as a sequence-to-
sequence generation problem by mapping historical poses to future predictions (Ruiz et al., 2018;
Gui et al., 2018). While RNNs capture temporal correlations, they exhibit limitations such as static
pose prediction and discontinuities between frames. To address these shortcomings, graph convo-
lutional networks (GCNs) gain prominence due to their ability to model the semantic relationships
within 3D skeleton structures (Dang et al., 2021; Li et al., 2022d; Chen et al., 2024a). Recent works
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also emphasize the effectiveness of transformer-based architectures (Martı́nez-González et al., 2021;
Aksan et al., 2021; Dai et al., 2023) and multilayer perceptrons (MLP) (Guo et al., 2023; Bouazizi
et al., 2023) in capturing long-term dependencies, offering greater flexibility in motion prediction.

Despite these advancements, most methods operate under the assumption that training and test data
come from the same distribution, which is unrealistic in real-world applications where target do-
mains often exhibit domain shifts (Brahma & Rai, 2023; Yuan et al., 2023; Zhao et al., 2023). To
address this discrepancy, recent studies (Cui et al., 2023b;a) introduce TTA techniques, which are
constrained by their assumption of a stationary target domain. As a result, they struggle to handle
continuously evolving environments or mixed ID and OOD samples within the target domain. Our
approach explicitly tackles these limitations by providing a framework capable of adapting to both
ID and OOD data in dynamic settings, improving the model’s generalization across domains.

2.2 TEST-TIME ADAPTATION (TTA) AND CONTINUAL TTA (CTTA)

TTA represents a widely adopted source-free domain adaptation technique (Wang et al., 2020; Liu
et al., 2021a; Gong et al., 2022a; Su et al., 2023; Zhao et al., 2023; Sreenivas et al., 2024), enabling
pre-trained models to fine-tune themselves on individual test samples, thereby customizing their
predictions post-deployment. In the context of HPP, TTA-based approaches (Cui et al., 2023a;b)
have achieved promising results. However, standard TTA often assumes that the target distribution
is static, which is unrealistic in dynamic real-world HPP settings.

Continual TTA (CTTA) extends TTA by allowing the model to adapt incrementally to dynamic target
domains (Gong et al., 2022b; Sójka et al., 2023; Sanyal et al., 2023; Tian & Lyu, 2024). Methods
like CoTTA (Wang et al., 2022) use a teacher-student framework with random restoration to mitigate
catastrophic forgetting, while PETAL (Brahma & Rai, 2023) employs probabilistic modeling to
stabilize updates during inference. However, most existing CTTA methods overlook the coexistence
of ID and OOD data in the target domain, leading to performance degradation on ID sequences,
particularly during long-term adaptation. Our method addresses this gap by explicitly identifying
and preserving ID-specific parameters during adaptation, ensuring sustained performance on ID data
throughout continual adaptation processes.

2.3 OUT-OF-DISTRIBUTION (OOD) DETECTION

OOD detection is crucial for distinguishing ID from OOD data in the target domain. These methods
can be broadly classified into supervised and unsupervised categories, with supervised approaches
being particularly relevant in our case, as all source data are labeled as ID during training (Sun et al.,
2022; Li et al., 2022b; Mao et al., 2024). However, identifying ID samples in graph-structured data,
such as human skeletons, presents unique challenges for conventional OOD detection techniques.

To address it, we propose a GIL-based OOD detection method that leverages the inherent graph
structure of human skeletons. GIL allows us to compress subgraphs based on ID-specific infor-
mation (Li et al., 2022c; Chen et al., 2024b). Unlike traditional OOD detection methods, which
typically require explicit OOD labels, our approach does not depend on these labels. Instead, we
focus on extracting ID-informative subgraphs that guide the subsequent identification and retention
of ID-specific parameters, ensuring more robust performance across both ID and OOD data.

2.4 GRAPH INVARIANT LEARNING (GIL)

GIL aims to capture invariant relationships between graph features and labels while filtering out spu-
rious correlations. Recent research in GIL, particularly in causal learning (Wu et al., 2022; Liu et al.,
2022) and graph manipulation (Li et al., 2022c; 2023), has demonstrated its effectiveness in OOD
generalization and detection. In particular, the Graph Information Bottleneck (GIB) framework has
been shown to learn robust graph representations by optimizing mutual information between sub-
graphs and their corresponding labels (Wu et al., 2020; Wang et al., 2024).

Building on these advances, our approach uses GIB to extract the most informative subgraph that
captures ID patterns. This subgraph plays a crucial role in retaining in-distribution knowledge during
continual adaptation, ensuring that the model maintains high performance on ID data while adapting
to evolving OOD data. Unlike prior methods, which fail to retain ID-specific knowledge, our frame-
work guarantees the continual relevance of ID parameters, providing superior performance across
both ID and OOD samples in real-world scenarios.
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3 PROPOSED APPROACH

3.1 PROBLEM FORMULATION

Let P (x) be the distribution of the source training data {x(i)}|S|
i=1, i.e., x(i) ∼ P (x), and

{x(i), y(i)}|S|
i=1 be the labeled data with |S| pairs. We note that x = {x1,x2, ...,xT } is the historical

poses of a person, and y = {y1,y2, ...,y∆T } is the corresponding future poses, with each frame
xt and yt containing the 3D coordinates of the J human joints (Dang et al., 2021; Li et al., 2022d;
Wang et al., 2023). Given a base model fΘ(0) trained on the source domain {x(i), y(i)}|S|

i=1, the dis-
tribution shift is inevitable in practice, where the model frequently encounter the out-of-distribution
data x ∼ Q(x), with Q(x) ̸= P (x) (Su et al., 2023; Wang et al., 2020). Under this situation, the
prediction of the base model fΘ(0)(x) will significantly degrade.

To this end, TTA aims to adapt the model to the target domain, and boost the performance of out-
of-distribution data (Brahma & Rai, 2023; Cui et al., 2023b;a). Concretely, given a batch of test
sequences {x(i)}Bi=1, x(i) ∼ Q(x), TTA methods fine-tune the model fΘ(0) to achieve fΘ∗ ← fΘ(0)

to adapt to the target distribution Q(x). One can achieve this by minimizing some self-supervised
loss Lself on the target sequences (Liu et al., 2021b; Tomar et al., 2023; He et al., 2021), defined as:

min
Θ∗
Lself (x; Θ), x ∼ Q(x). (1)

We note that the existing TTA-based HPP models (Cui et al., 2023a;b) assume that the target domain
is stationary, i.e., Q(x) = Q(x1) = Q(x2) = ... = Q(xn), and all target sample are drawn from
out-of-distribution, i.e., Q(x) ⊂ Qood(x) and Qood ̸= P (x). This work breaks this assumption and
proposes a novel paradigm, which includes the following distinctions:

• Owing to environmental changes and individual behavioral habits, the target domains will
constantly change, i.e., Q(x) ̸= Q(x1) ̸= Q(x2) ̸= ... ̸= Q(xn), n > 1. It necessitates the
model to continually adapt to the changing target domain.

• In HPP scenarios, the target domain Q(x) contains both ID and OOD data, that is, Q(x) =
Qood(x) ∪Qid(x), where Qood(x) ̸= P (x) and Qid(x) ≈ P (x). Simply making adaptation
to the OOD data may lead to significant performance degradation on ID test sequences.

Our proposed framework, IDKR, addresses these challenges through several key innovations: 1)
We introduce an in-distribution (ID) informative subgraph learning method tailored for graph-like
human skeleton structures, which extracts the most relevant subgraph with respect to the ID labels.
2) We employ a structural graph Fisher information regularization to quantify the importance of
model parameters based on the informative subgraph. Higher values indicate ID-specific parameters,
while lower values correspond to OOD-specific parameters. 3) We integrate this regularization into
the self-supervised loss function to preserve ID-specific knowledge while allowing other parameters
to adapt during the continual adaptation process.

3.2 IN-DISTRIBUTION INFORMATIVE SUBGRAPH LEARNING

Consider a skeleton sequence x represented as an undirected graph G = (x,A), where x ∈ RK×d

denotes the joint features, with K = ∆T × J . The adjacency matrix A ∈ {0, 1}K×K en-
codes connections between parent-child joint pairs and between corresponding joints across ad-
jacent frames. The graph label Y indicates whether the sequence is in-distribution (ID, Y = 0)
or out-of-distribution (OOD, Y = 1). Building on recent advances in Graph Invariant Learning
(GIL) (Chen et al., 2024b; Li et al., 2022c), which focus on extracting critical subgraph structures
while ignoring non-essential elements, we propose a GIL-based method to detect OOD data by iso-
lating subgraphs correlated with the ID label. Our approach identifies these invariant subgraphs,
which capture essential ID-specific patterns across motion sequences. To achieve this, we intro-
duce a graph manipulator M = (Mx,MA), where Mx ∈ RK×d and MA ∈ RK×K serve as
binary masks, enabling the extraction of informative subgraph structures. The resulting subgraph
Z = G ⊙M = (G ⊙Mx,G ⊙MA) encapsulates the necessary information for OOD detection,
while irrelevant or detrimental features are removed (Mao et al., 2024).

GIB (Wu et al., 2020; Ding et al., 2024) further refines this process by compressing graph informa-
tion, retaining only what is most valuable for distinguishing ID data. Inspired by GIB, our objective
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Figure 1: Illustration of in-distribution informative subgraph learning. Given a graph G, we learn a manipula-
tor M that filters out the irrelevant elements and extracts the most informative subgraph Z . This ID-informative
subgraph stores the invariant information of G w.r.t. in-distribution knowledge. gψ is graph representation learn-
ing model—GraphCL (You et al., 2020), and trained the source domain data annotated as ID labels. Moreover,
although the training objective is LGIB of the predicted label and actual one, at test time, the predicted label is
not required, but the informative subgraph w.r.t. the ID label is used to identify the ID-specific parameters.

is to maximize the mutual information between the compressed subgraph Z and the ID label Y ,
while minimizing the mutual information between Z and the original graph G:

max
Z

I(Z,Y)− αI(Z,G), (2)

where α = 0.3 is a Lagrange multiplier balancing these two objectives. To efficiently solve this
problem, we introduce a variational lower bound on mutual information, reformulating Eq. 2 as:

LGIB =
1

B

B∑
i=1

[− log q(Yi|Zi) + αDKL (q(Zi|Gi)||p(Zi))] ,

≈ LCE(p(Yi|Zi),Yi) + αDKL (q(Zi|Gi)||p(Zi)) , (3)

where LCE represents cross-entropy loss, and B is the batch size. After training, the graph ma-
nipulator M extracts ID-informative subgraphs Z from test graphs G. The illustration of the in-
distribution informative subgraph learning is shown in Figure 1. Detailed optimization steps from
Eq. 2 to Eq. 3 are provided in Appendix-A.

For extracting the latent features of subgraphs, we utilize GraphCL (You et al., 2020), a well-
established graph representation learning model. GraphCL is applied to the subgraph Z , which
is trained on source domain data (labeled as Y = 0). Consistent with conventional OOD detection
methods (Sun et al., 2019; Sehwag et al., 2021), our OOD detector employs a parametric Maha-
lanobis distance approach (Sun et al., 2022) for identifying OOD samples.

3.3 STRUCTURAL GRAPH FISHER REGULARIZATION

Let fΘ(0) denote the underlying human pose prediction (HPP) model, where Θ ∈ RP (Ma et al.,
2022; Dang et al., 2021; Xu et al., 2023; Lou et al., 2024). During the continual test-time adapta-
tion (CTTA) process, for a given sample x(t) and the adapted model fΘ(t−1) from the previous step,
the Structural Graph Fisher Information Matrix (SG-FIM) is designed to identify and retain key pa-
rameters for in-distribution (ID) sequences. This ensures the preservation of ID-specific knowledge
while dynamically updating other parameters, leading to the model’s adaptation fΘ(t) ← fΘ(t−1) .

SG-FIM extends the classical Fisher Information Matrix (FIM) (Vedantam et al., 2021; Tian & Lyu,
2024; Brahma & Rai, 2023) by incorporating the graph structure and features of the human skeleton.
Unlike traditional FIM, which measures parameter sensitivity on regular data, SG-FIM is tailored to
the characteristics of human motion data, as follows:

• Graph topology consideration: While FIM generally overlooks the data’s inherent struc-
ture, SG-FIM explicitly accounts for the geometric topology of the human skeleton, reflect-
ing the structural relationships between joints and their temporal dependencies.

• Edge feature integration: SG-FIM is able to analyze both node (joint) and edge (bone)
features. The edges, representing the fixed bone lengths between parent and child joints,
are particularly important in human motion, as these lengths remain invariant regardless
of pose. This invariance provides a stable reference for motion prediction, improving the
accuracy of SG-FIM in estimating ID-specific parameters. Traditional graph methods often
ignore such constraints, making SG-FIM uniquely suited for skeletal data.
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Figure 2: Overview of the proposed IDKR. Given a human skeleton sequence x at test time, the ID-informative
subgraph Z is learned. For each joint v and edge e within Z , we compute the node feature xv and edge feature
Ev , followed by the calculation of gradients with respect to the model parameters Θ. These gradients are then
used to construct the Structural Graph Fisher Information Matrix (SG-FIM), which quantifies parameter impor-
tance based on both node and edge sensitivities. The diagonal elements of SG-FIM highlight the parameters
most critical for retaining in-distribution (ID) knowledge—those with higher values (depicted in green) are
prioritized for preservation during adaptation. This IDKR regularization mechanism ensures that ID-specific
parameters (indicated by shorter arrows) are retained, while non-essential parameters (represented by longer
arrows) are updated during the continual adaptation process.

• Refinement of ID-specific parameters: Instead of calculating parameter sensitivity with
respect to the raw input data, SG-FIM evaluates sensitivity in relation to the ID-invariant
subgraph. This refinement allows the model to more accurately pinpoint parameters critical
for retaining ID knowledge during adaptation, thus ensuring robust performance in ID-
targeted domains.

As illustrated in Figure 2, given that our objective is to identify ID-specific parameters, we apply
the compressed subgraph Z—obtained via the ID-informative subgraph learning process—instead
of the original full skeleton graph G. For each joint v and edge e in the subgraph Z , we compute the
gradient of the current model’s output fΘ(t−1) with respect to the node and edge features:

∇v,Θ =
∂L(ỹ, fΘ(t−1)(x))

∂xv
, ∇e,Θ =

∂L(ỹ, fΘ(t−1)(x))
∂Ev

, (4)

where ỹ = fΘ(0)(x) is the surrogate label generated by the source-trained model, xv denotes the
features of the v-th joint, and Ev represents the edge connecting the v-th joint to its adjacent node.
The loss function L is computed as the L2 distance.

Next, we construct the FIM matrices with respect to the nodes and edges, denoted as Fv and Fe,
respectively, by computing the outer products of the gradients:

Fv = EZ
[
∇v,Θ∇Tv,Θ

]
, Fe = EZ

[
∇e,Θ∇Te,Θ

]
. (5)

The overall SG-FIM is obtained by aggregating the contributions of all nodes and edges in the sub-
graph Z . For computational efficiency and enhanced interpretability, we assume the independence
of model parameters and focus on the diagonal elements of SG-FIM to assess parameter importance:

FΘ = Diag
[∑

v∈V
Fv(Θ) +

∑
e∈E
Fe(Θ)

]
. (6)

Here, F(Θ) ∈ RP has the same dimensionality as the parameter vector Θ. The diagonal elements
capture the sensitivity of each parameter to changes in the ID data, indicating the parameter’s con-
tribution to the model’s predictive performance on ID sequences.

By incorporating the fixed bone lengths and graph topology into the sensitivity analysis, SG-FIM
provides a more accurate estimation of the parameters crucial for ID-targeted human pose predic-
tion. The ability to leverage both joint and edge features makes it particularly effective for motion
data, where spatial relationships between joints remain invariant across different poses. This method
significantly enhances model robustness in continuously adapting to new environments while pre-
serving ID knowledge. Given its flexibility and generalizability, consistent with (Cui et al., 2023b),
we adopt siMPLE (Guo et al., 2023) as the base HPP model fΘ.
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3.4 CONTINUAL ADAPTATION WITH ID KNOWLEDGE RETENTION

After obtaining the diagonal SG-FIM, we propose a novel weighted Fisher regularization termed
In-Distribution Knowledge Retention (IDKR). This mechanism is specifically designed to mitigate
catastrophic forgetting, particularly addressing the performance degradation on in-distribution (ID)
motion sequences (Wang et al., 2024). By introducing a regularization term based on SG-FIM into
the TTA optimization process, we ensure that the parameters critical for ID sequences are preserved
during continual adaptation (Tian & Lyu, 2024; Saharia et al., 2022; Press et al., 2024).

The diagonal SG-FIM reflects the contribution of each parameter to the model’s predictive ability on
ID data: larger values indicate parameters that have a greater impact on ID performance and should
be retained, while smaller values suggest minimal impact and thus should be updated (Sanyal et al.,
2023; Sójka et al., 2023). During parameter updates from time step t−1 to t, we adjust the magnitude
of each parameter update by weighting it with the corresponding IDKR regularization:

Rid(Θ(t−1),Θ(0)) =

P∑
i=1

F(θ(t−1)
i )∥θ(t−1)

i − θ(0)i ∥
2, (7)

where Θ(0) represents the parameter set of the base model fΘ(0) , and θi ⊆ Θ denotes an individual
parameter. The term F(θi) is the i-th element of the diagonal SG-FIM matrix, indicating the im-
portance of θi for ID sequences. To achieve continual adaptation with ID knowledge retention, we
integrateRid into the self-supervised loss Lself (from Eq. 2) as follows:

min
Θ
Lself (x; Θ(t−1)) + βRid(Θ(t−1),Θ(0)), (8)

where β = 0.2 is a trade-off parameter, and Lself represents the self-supervised loss function.

Instead of knowledge distillation (Cui et al., 2023b) or auxiliary learning (Cui et al., 2023a) where
the accuracy of pseudo-labels degrades as adaptation progresses, we employ self-supervised loss
functions to adapt the model to incoming test data in an online fashion, using both spatial and
temporal smoothness constraints to ensure stable predictions. Moreover, we notice that for time-
series prediction task of HPP, not all frames contribute equally to the prediction; instead, more
recent frames carry more relevant information to the prediction, while older ones are less relevant.
This motivates us to introduce the time-weighted term to form the time-weighted spatial loss (LTWS)
and time-weighted temporal loss (LTWT), which assign different weights to each frame based on its
temporal distance to the current frame. The spatial loss LTWS is grounded in the observation that the
relative positions of adjacent joints and bone lengths remain consistent across poses:

LTWS =
1

T (J − 1)

∑T

t=1

∑J

j=1
wt · |lobst,j − l

pred
t,j |, (9)

where lobst,j and lpredt,j are the observed and predicted bone lengths of joint j in frame t, respectively.
The weight wt = exp (γt)/

∑T
t=1 exp (γt) is a time-weighted function, and γ = 0.7 is a tunable

parameter that controls the rate of exponential decay.

The time-weighted temporal loss LTWT is introduced to enforce coherence across consecutive
frames, minimizing abrupt changes in the adjacent predicted frames:

LTWT =
1

T − 1

∑T

t=1
wt · ∥ŷt+1 − ŷt − (xt+1 − xt)∥2 . (10)

Both self-supervised terms are integrated into the TTA optimization process to enable continual
adaptation with ID knowledge retention:

Θ(t)←Θ(t−1)−η∇Θ

[
LTWS(x, ŷ; Θ(t−1))+LTWT(ŷ; Θ(t−1))+βRid(Θ(t−1),Θ(0))

]
, (11)

where η = 0.001 is the learning rate, and ŷ represents the predicted sequence from the model
fΘ(t−1) . The final prediction sequence is generated by the adapted model fΘ(t) .

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOLS

Datasets: IDKR framework is evaluated on three widely-used human pose prediction benchmarks:
(1) CMU MoCap (cmu, 2003) is a representative dataset, including 8 action categories; (2) H3.6M
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Table 1: Setup-N: evaluation of general predictive ability. We highlight the best results in bold, and the second
best in underlined. † indicates that the results are from Xu et al. (2023), ‡ indicates the re-implementation, and
others are from the original paper. To distinguish, we mark our method as IDKR∗ with a star. For the baselines
without the PCK@150 metric, we re-statistic the results.

H3.6M CMU Mocap GRAB
milliseconds 80 160 400 1000 80 160 400 1000 200 400 600 1000

M
PJ

PE

LTD† 12.7 26.1 63.5 114.3 9.9 18.0 41.0 81.9 38.3 68.7 101.6 197.3
PGBIG† 10.3 22.7 58.5 110.3 8.2 15.4 37.3 76.7 30.1 53.9 92.2 157.2
SPGSN† 10.4 22.3 58.3 109.6 8.3 14.8 37.0 77.8 27.4 50.6 91.3 144.5
siMLPe 9.6 21.7 57.3 109.4 8.3 14.6 37.2 76.6 27.1 51.5 88.4 137.5
H/P-TTP‡ 9.8 21.1 55.6 103.7 8.0 13.1 35.3 74.4 26.5 47.4 85.5 138.0
IDKR∗ 8.9 18.6 54.0 100.4 7.7 11.1 33.1 70.5 22.5 44.4 81.4 131.7

PC
K

@
15

0

LTD† 79.9 77.3 70.4 66.0 84.2 81.5 77.2 75.2 81.8 77.3 71.3 62.9
PGBIG† 88.5 84.2 77.3 69.6 88.8 83.2 78.0 77.0 84.3 82.2 75.8 66.4
SPGSN† 87.8 84.7 80.1 71.2 88.4 85.1 77.9 76.4 87.1 80.4 77.0 67.8
siMLPe 88.4 86.6 83.4 72.7 90.0 88.2 83.7 77.5 86.9 82.6 82.1 69.1
H/P-TTP‡ 91.2 89.4 85.1 74.6 91.3 89.4 84.7 79.4 88.0 82.3 81.1 70.4
IDKR∗ 92.3 90.2 87.0 77.1 93.5 91.0 86.8 81.7 88.0 84.7 83.3 72.5

(Ionescu et al., 2014) contains ≈ 3.6M frames of 7 subjects performing 15 actions; (3) GRAB
(Taheri et al., 2020) is newly-introduced with ≈1.6M poses of 29 actions from 10 human subjects.
Compared with H3.6M, the pose sequences in GRAB are more diverse and involve interaction with
the physical world, making it a more challenging dataset. For all 3 datasets, each pose is specified
by 3D coordinates of 17 joints, and normalized to [−1, 1]. All methods are implemented to predict
the next 1 second, with the observed length of 1 second.

Protocols: (1) Mean Per Joint Position Error (MPJPE) (Lou et al., 2024; Ma et al., 2022) mea-
sures the average Euclidean distance between the predicted and ground-truth 3D joint positions;
(2) Percentage of Correct Keypoints (PCK) (Habibie et al., 2019) computes the percentage of cor-
rectly predicted keypoints within a certain threshold of the ground-truth keypoints. Following the
literature, we use the threshold of 150mm, termed as PCK@150.

4.2 EXPERIMENTAL SETUPS AND BASELINES

Experimental Setups: It contains 4 similar experimental setups, including Setup-N, Setup-C+,
Setup-S+ and Setup-D+, as in the previous literature (Cui et al., 2023b;a), along with 2 newly-
designed experimental setups, i.e., Setup-C+− and Setup-S+−, as follows:

(1) Setup-N: While IDKR aims to solve the domain-shift issue in HPP, the normal data split is also
required for the generative prediction ability, which is termed as Setup-N (’N’ means ’Normal’); (2)
Setup-C+ consider adapting the model to unseen motion categories, where ’C+’ denotes ’New Cat-
egory’; Similarly, (3) Setup-S+ is designed to evaluate the model’s performance on unseen subjects;
Considering that real deployment scenarios contain OOD and ID data, we design two new experi-
mental setups: Setup-C+− and Setup-S+−. (4) Setup-C+− differs from Setup-C+ in that it assigns
10% of the source domain data from Setup-C+ to the target domain; and similarly, (5) Setup-S+−

assigns 10% of Setup-S+ to its target test domain. Both Setup-C+− and Setup-S+− simulate a mix
of ID and OOD data for subjects and categories in the target domain. (6) Setup-D+: we also further
introduce a challenging setup to make the model adapt to new dataset, where the source data is from
H3.6M and the target data is from GRAB. Since the target domain is a new dataset, Setup-D+ covers
Setup-C+− and Setup-S+− and is more challenging.

Baselines: Five state-of-the-art approaches emerged in recent years are selected as the baselines,
including 1) GCN-based LTD (Mao et al., 2019), PGBIG Ma et al. (2022), and SPGSN (Li et al.,
2022d); 2) MLP-based siMLPe (Guo et al., 2023); 3) TTA-based H/P-TTP (Cui et al., 2023b).

4.3 RESULTS AND ANALYSIS

General Predictive Ability Analysis: While our IDKR mainly focuses on the scenario of distribu-
tion shift of HPP, due to the inherent diversity and flexibility of human motion, there may includes
a certain degree of difference between the training and test data within the same dataset. Therefore,
it is necessary to evaluate the general predictive ability of the proposed method on the three datasets
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Table 2: Setup-C+ and Setup-S+: prediction evaluation for new categories/subjects.

Results on Setup-S+ Results on Setup-C+

H3.6M GRAB H3.6M CMU Mocap GRAB

milliseconds 80 160 400 1000 200 400 600 1000 80 160 400 1000 80 160 400 1000 200 400 600 1000
M

PJ
PE

SPGSN† 13.7 27.2 58.3 107.0 31.2 56.8 94.2 159.3 12.8 26.3 63.6 115.6 12.3 14.8 43.6 88.5 34.7 56.4 97.0 150.8
siMLPe 13.0 25.6 55.3 102.5 30.1 57.2 94.1 155.9 11.8 25.3 60.5 112.8 11.4 15.8 44.9 84.7 36.4 57.8 96.7 151.4
H/P-TTP‡ 12.5 24.7 56.4 102.8 28.6 52.3 88.9 135.5 12.1 24.7 53.6 102.5 9.8 13.4 41.0 77.9 31.1 51.2 89.4 140.2
IDKR∗ 12.6 22.3 52.3 97.1 26.3 49.1 83.9 128.5 10.0 21.3 50.5 99.7 9.1 13.1 38.8 74.6 30.8 49.2 85.0 135.2

PC
K

@
15

0 SPGSN † 80.2 76.4 70.8 66.4 81.8 73.3 70.4 66.5 81.7 76.6 74.0 67.8 78.7 74.8 72.1 71.3 81.0 75.9 75.2 65.4
siMLPe 83.8 80.1 75.2 68.5 84.0 80.0 76.4 67.7 80.0 75.3 73.1 68.9 80.3 77.7 74.2 71.0 80.2 77.5 73.6 67.8
H/P-TTP‡ 85.3 80.5 74.3 70.9 83.5 79.4 76.8 69.6 86.3 79.0 75.1 73.3 90.0 83.6 81.4 75.3 84.4 81.3 78.7 70.4
IDKR∗ 87.5 83.5 78.0 74.5 85.1 83.0 79.3 73.1 89.0 83.2 79.7 75.2 92.1 85.8 83.0 78.7 86.4 83.2 81.7 72.6

Table 3: Setup-C+−and Setup-S+−: prediction evaluation for a hybridization of ID and OOD data.

Results on Setup-S+− Results on Setup-C+−

H3.6M GRAB H3.6M CMU Mocap GRAB

milliseconds 80 160 400 1000 200 400 600 1000 80 160 400 1000 80 160 400 1000 200 400 600 1000

M
PJ

PE

SPGSN† 14.9 28.3 61.0 109.7 32.4 57.3 96.0 162.1 13.4 26.2 65.1 117.0 12.5 15.6 45.2 90.4 35.1 57.7 99.4 153.2
siMLPe 12.4 26.7 62.8 114.3 31.4 58.6 95.0 156.7 13.3 27.1 56.8 105.7 11.6 16.1 45.7 85.2 38.5 59.5 98.4 155.0
H/P-TTP‡ 12.9 25.5 58.0 104.2 29.7 53.0 89.7 136.2 12.5 25.3 54.7 104.0 10.1 14.7 42.5 79.5 32.0 53.0 91.4 143.1
IDKR∗ 12.7 22.9 52.7 99.0 27.1 49.3 85.2 130.5 10.3 22.5 52.1 101.4 9.4 13.7 40.2 76.0 31.5 50.3 88.0 137.5

PC
K

@
15

0 SPGSN † 81.4 77.6 72.1 68.8 82.4 74.5 72.7 68.3 82.4 77.9 75.1 69.2 79.3 76.0 74.2 74.7 81.5 76.7 77.0 67.5
siMLPe 82.0 78.7 73.9 67.2 83.5 78.9 75.0 66.0 79.3 73.9 72.7 68.2 79.7 76.4 73.1 70.2 79.4 75.8 72.9 67.0
H/P-TTP‡ 83.7 80.0 73.1 68.7 82.8 78.0 75.2 68.4 85.6 78.3 73.3 71.7 89.7 82.9 80.8 74.6 84.0 80.4 77.5 68.8
IDKR∗ 87.1 82.8 76.9 72.8 84.7 81.4 77.7 71.9 87.9 81.0 77.4 72.8 91.3 83.3 82.2 76.7 85.2 82.1 80.9 71.2

using the common data split, i.e., Setup-N. The results are shown in Table 1, where two metric,
i.e., MPJPE [mm] and PCK@150 [%], are used to evaluate the performance of 6 baselines across
different time intervals. From the results,, compared with siMLPe, IDKR achieves better perfor-
mance across all datasets and time intervals, with a reduction of 1.5%, 2.1%, and 1.8% in MPJPE
on H3.6M, CMU Mocap, and GRAB, respectively. It evidences that the common data split exists
distribution shift with varying degrees, which is the main reason for the superiority of TTA-based
H/P-TTP and our IDKR. Moreover, IDKR achieves the best performance against other baselines,
which demonstrates the effectiveness of our method in handling the distribution shift in HPP.

Predictive Ability Analysis of Unseen Subjects/Categories: Next, referring to Setup-C+ and
Setup-S+, we evaluate the performance for unseen subjects and action categories. This experiment
simulates the real-world scenario where the new human subjects or action categories are inevitable.
The model is expected to adapt to a new subject or category during the test phase, and trained on the
other domains. We note that due to the significant performance on Setup-N, we only compare our
IDKR with siMLPe, SPGSN, and H/P-TTP. Table 2 reports the average results of different adap-
tation for all sequences of each subject and category. From the results, we observe that either for
Setup-C+ or Setup-S+, our IDKR performs well, and achieves the best performance on almost time
intervals. It indicates that IDKR is able to calibrate the domain shift in HPP imposed by new sub-
jects, motion patterns, and even novel action categories through continual TTA with in-distribution
knowledge retention. It also evidences its potential to be applied in various real-world scenarios.

Predictive Ability Analysis for a mix of ID and OOD data: We note that in the real-world de-
ployment scenario, the target domain is unknown in advance, typically containing both ID and OOD
data, where the former distribution is similar to the source domain, and the latter is different. Con-
sidering ths mixture of properties, TTA-based methods require to not only adapt to the OOD test
sequence, but also maintain the predictive ability for the ID sequences. This compatibility of ID
and OOD performance is not considered in the standard or TTA-based HPP systems. To investigate
the performance of this scenario, the proposed IDKR and the comparison baselines are evaluated on
Setup-C+− and Setup-S+−, where the base source model is trained on 90% of the training data, and
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Table 4: Setup-D+: prediction evaluation for new dataset (trained on H3.6M, adaptation to GRAB).

A1 passing A2 eating A3 drinking A4 lifting A5 squeeze
milliseconds 200 400 800 1000 200 400 800 1000 200 400 800 1000 200 400 800 1000 200 400 800 1000

M
PJ

PE

SPGSN† 43.7 75.6 110.0 146.7 35.6 75.3 122.8 171.4 33.4 45.7 92.2 153.5 37.1 60.3 115.7 158.4 23.5 30.7 55.4 101.3
siMLPe 40.2 69.7 109.2 140.5 34.5 70.4 118.5 172.1 34.7 46.8 90.4 147.9 37.8 67.3 119.4 162.2 22.1 33.2 57.3 103.6
H/P-TTP‡ 30.1 45.4 89.8 121.4 29.7 53.1 98.7 152.4 27.7 39.6 76.3 133.6 31.0 44.7 91.2 138.5 18.0 29.5 50.2 96.3
IDKR∗ 26.5 42.4 83.5 117.1 27.0 47.4 95.3 146.9 25.8 36.7 71.6 127.9 27.1 41.4 86.2 132.0 16.4 25.6 47.5 91.7

PC
K

@
15

0 SPGSN† 63.2 56.8 55.0 51.4 58.8 53.4 51.0 49.6 57.8 56.0 50.7 49.7 57.3 51.4 47.0 45.6 72.2 67.8 64.6 62.7
siMLPe 62.3 57.7 54.3 50.3 61.2 55.3 53.3 51.6 58.3 55.7 52.4 50.4 56.3 50.5 46.9 44.3 73.5 68.9 65.2 63.5
H/P-TTP‡ 67.2 63.5 62.3 57.8 65.2 57.4 56.6 55.2 63.3 60.7 57.7 55.8 60.0 55.8 49.7 47.7 80.2 75.3 71.4 67.7
IDKR∗ 70.3 65.7 63.2 61.0 66.7 60.5 59.0 57.2 65.1 62.3 60.6 58.4 63.1 58.4 53.0 51.0 78.4 76.7 73.4 70.5

the remaining 10% is merged into the original target domain for adaptation. The results are reported
in Table 3, and it is observed that our IDKR obtains the better prediction results compared to the
other baselines. Moreover, even for TTA-based H/P-TTP, IDKR achieves a significant improve-
ment in MPJPE and PCK@150, attributed to the IDKR’s ability to retain the ID-specific knowledge.
Therefore, during long-term TTA process, our approach exhibits a superior adaptation ability of
OOD data, while bringing better performance on ID data, which is crucial for real-world deploy-
ment scenarios. The separate results of the specific ID and OOD data are presented in Appendix-C.

Predictive Ability Analysis for New Dataset: Finally, we evaluate the performance of the proposed
IDKR on Setup-D+, where the source domain is H3.6M and the target domain is GRAB. Note that
the acquisition environments of H3.6M and GRAB are completely different, where the former is
typically used to the standard action analysis tasks, and the latter is captured in object manipulation
scenarios. Moreover, the human subjects and action categories in the two datasets are different.
Therefore, Setup-D+ can be considered as a composite of the previous experimental setups, i.e.,
Setup-C+− and Setup-S+−, and is more challenging. For simplicity, we categorize the sub-actions
of the GRAB dataset into 5 cases according to the similarity of the action types, including A1
passing, A2 eating, A3 drinking, A4 lifting, and A5 squeeze. The results are presented in Table 4,
statistic the average results across all sequences of each sub-action. We observe that IDKR achieve
the best performance, which is mainly attributed to the fact that the new GRAB dataset, although
collected from a different condition, contains both similar ID distribution as H3.6M, as well as a
differential OOD distribution. Our IDKR is able to adapt to the specific properties of the OOD
sequences, while also perform well well for the ID distribution during continual TTA procedure.

Visualization: In addition to the numerical evaluation, we also visualize the prediction of our IDKR
and the state-of-the-art H/P-TTP of the ’airplane-fly’ activity under Setup-D+. As shown in Figure
4 of Appendix-D, the prediction of our IDKR is more accurate, and closer to the ground truth.

Ablation Studies: We also conduct ablation studies to investigate the effectiveness of the proposed
IDKR. Please refer to the Appendix-F for the detailed analysis.

5 CONCLUSION

In this work, we address a more realistic TTA scenario for human pose prediction, wherein both in-
distribution and out-of-distribution motion sequences are present in the target deployment domain.
To tackle this challenge, we propose a novel continual TTA method incorporating an in-distribution
knowledge retention mechanism. Our approach utilizes the Graph Information Bottleneck frame-
work to compress the most informative subgraph relative to in-distribution for any target skeleton
sequence, which facilitates filtering out irrelevant elements or structures. Using this subgraph, we
calculate a structural graph fisher information matrix to identify parameters that significantly con-
tribute to the prediction of in-distribution sequences. It is then constructed an in-distribution knowl-
edge retention regularization, which is integrated into the TTA optimization process to control the
preservation of in-distribution parameters during continual TTA. Extensive experiments demonstrate
that the proposed IDKR outperforms state-of-the-art methods across various real-world experimen-
tal setups, thereby evidencing its practicality and effectiveness.
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Appendix

A OPTIMIZATION OF MINIMIZING THE MUTUAL INFORMATION

In this sub-section, we provide the detailed optimization process of the graph information bottleneck
(GIB) as in Eq. 2. Recently, graph information bottleneck (GIB) has been integrated into GIL theory,
where the bottleneck is engineered to compress the original graph information, preserving what is
useful for detecting the ID. Inspired by this, given a graph G and its label Y , our objective is to
learn a compressed subgraph Z that maximizes the mutual information with the ID label Y while
containing minimal mutual information with the original graph G. For the sake of convenience, we
re-write the GIB objective in Eq. 2 as follows:

max
Z

I(Z,Y)− αI(Z,G). (12)

α is the Lagrange multiplier. Once the invariant subgraph Z is obtained, it can be fed into a GNN
model gψ to extract the latent node and edge feature.

It is difficult to directly optimize the mutual information I(Z;Y) due to the intractability of the
marginal distribution p(Z) and p(G) (Shen et al., 2021; Higgins et al., 2016; Covert et al., 2023).
Therefore, for the sake of convenience, we propose to maximize the lower bound of the mutual
information to simplify the optimization process (Cha et al., 2022; Li et al., 2022a). To be specific,
we introduce a variational distribution q(Z|G), controlled by the learnable parameter ϕ, which given
the graph G, denotes the distribution of the compressed subgraph Z . Then, our objective is to seek
a distribution q(Z|G) that maximizes I(Z;Y) while minimizing I(Z;G). For this purpose, we
introduce a variational lower bound of the mutual information, which can be formulated as:

I(Z;Y) ≥ Eq(Z|G) [log p(Y|Z)−DKL (q(Z|G)||p(Z))] , (13)

where DKL(q(Z|G)||p(Z)) is the Kullback-Leibler divergence between the variational distribution
q(Z|G) and marginal distribution p(Z). Then, the objective of GIB in Eq. 12 can be rewritten as:

max
ψ,ϕ

Eq(Z|G;ϕ) [log p(Y|Z;ψ)− αDKL (q(Z|G;ϕ)||p(Z))] , (14)

where ψ is the learnable parameter of the GNN model gψ for p(Y|Z). For simplicity, ϕ is imple-
mented as the gaussian distribution. Eq. 14 can be further optimized by the following loss function:

LGIB =
1

B

B∑
i=1

[− log q(Yi|Zi) + αDKL (q(Zi|Gi)||p(Zi))] ,

≈ LCE(p(Yi|Zi),Yi) + αDKL (q(Zi|Gi)||p(Zi)) , (15)

where LCE is the cross-entropy loss, and B is the batch size. Once the training is completed,
for a test human skeleton graph G, the graph manipulatorM is used to obtain the ID-informative
subgraph Z .

To achieve graph OOD detection, gψ is implemented as GraphCL (You et al., 2020) which is a
representative graph representation learning model, and can be used to extract the latent feature of
any graph structure. Note that the model follows the open-source weights and is trained on our
source domain data, where the training data only contains the source domain, labeled as Y = 0.
Consistent with typical methods (Sun et al., 2019; Sehwag et al., 2021), the OOD detector D is
designed as parametric approach Mahalanobis distance (Sun et al., 2022). Eq. 15 is able to obtain a
OOD score/label and the compressed subgraph Z; however, the latter is only used for the structural
graph Fisher information matrix calculation in the IDKR framework.

B PROOF OF CONCEPT FOR HYBRIDIZATION OF ID AND OOD DATA IN
HUMAN POSE PREDICTION TASK

Through the experimental results presented in the main manuscript, we have demonstrated the effec-
tiveness of the proposed IDKR framework in addressing the distribution shift challenges in human
pose prediction (HPP). Specifically, IDKR excels in scenarios involving a mixture of ID and OOD
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Figure 3: t-SNE visualization of the source domain (blue dots) and target domain of various exper-
imental setups (c.f. Section 4.2). In each subfigure, 8192 source points and 1024 target points are
uniformly sampled from the training and test set in different experiment setups. We note that the tar-
get domain includes both ID (green) and OOD (red) samples with distinct distributions. It needs to
adapt to the OOD sequences while retaining the relevant knowledge to ensure optimal performance
on target ID data in continual adaptation process.

data. This appendix provides a proof of concept to highlight the presence of such hybridization of ID
and OOD data in HPP tasks. Our motivation is to confirm that real-world human motion prediction
tasks indeed face a combination of ID and OOD samples alongside continuously evolving domain
shifts, thereby justifying the development of IDKR.

Recent research has attempted to tackle domain shifts in HPP tasks using TTA, assuming a static
target domain distribution that differs entirely from the source domain. However, this assumption
deviates from practical scenarios where target domain distributions are dynamic and often comprise
a combination of ID and OOD data. In real-world deployment, it is common to encounter data
resembling the source domain (ID data) as well as data that deviates from it (OOD data). We define
this as the hybrid ID and OOD human pose prediction problem, which is a novel and more realistic
problem setting for HPP tasks. To this end, we propose leveraging an In-Distribution Knowledge
Retention mechanism to preserve ID-specific knowledge during continual TTA.

To validate our motivation, we present a proof of concept illustrating the presence of hybrid ID and
OOD data in the HPP task. Specifically, we utilize 6 experimental setups (c.f. Section 4.2), namely
Setup-N, Setup-C+, Setup-S+, Setup-C+−, Setup-S+−, and Setup-D+. These setups encompass
standard HPP data splits, scenarios with a mixture of ID and OOD data, and even new dataset
conditions. For each experimental setup, we uniformly sample 8192 source data points and 1024
target data points from both the source and target domains. We then apply t-SNE to visualize these
data points in a three-dimensional space, where each point represents a skeleton sequence. Source
domain data points are depicted in blue, while target domain data points are shown in green and
red, representing ID and OOD data, respectively. The distinction between ID and OOD data is
determined using the OOD detection method described in the main manuscript.

The visualization results, as illustrated in Figure 3, clearly show varying degrees of hybridization
between ID and OOD data across all experimental setups. Even in the relatively less complex
Setup-N (Figure 3(a)), we observe the presence of both ID and OOD data. On the other hand,
the Setup-D+, as in Figure 3(f), which involves adapting the base model to a new data acquisition
environment, exhibits the most significant hybridization of ID and OOD data. This setup reflects a
realistic application scenario where a model trained on one dataset is applied to another, a common
issue in practical deployment scenarios.

The proof of concept substantiates the following conclusions: 1) Hybridization of ID and OOD data
is inherent in current HPP tasks. 2) To be effectively deployed, a motion prediction model must be
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capable of adapting to both ID and OOD data simultaneously. This indicates that the motivation
behind our IDKR method is sound and has practical relevance in real-world applications.

C SEPARATE RESULTS OF ID AND OOD DATA FROM TARGET DOMAIN

In the main manuscript, we construct two new experimental setups, Setup-C+− and Setup-S+−, by
randomly selecting 10% of the data from Setup-C+ and Setup-S+ as target domain data to simulate
a scenario involving mixed ID and OOD data. The results for these two setups are presented in Table
3, where the ID and OOD data from the target domain are aggregated for evaluation. However, since
this experimental setup is manually constructed, the ID and OOD attributes of each target domain
sample are known. Consequently, it is feasible to separate and analyze the performance of the
model on ID and OOD data individually. Such an analysis is crucial to understanding whether our
proposed model maintains its predictive capability for ID samples while adapting to OOD samples,
as compared to baseline methods.

Table 5 and Table 6 report the separate performance results for ID and OOD data in the Setup-C+−

and Setup-S+− configurations. From the separate results, our IDKR consistently achieves the best
predictive results for both ID and OOD data. For the OOD data, our proposed method performs
slightly better than the H/P-TTP method across both datasets. Notably, for the ID samples in the
target domain, our method demonstrates significant improvements at all time scales. This indicates
that our approach effectively retains the predictive capability for ID data while adapting to OOD
data, which is a crucial ability for HPP system in real-world deployment scenarios.

Table 5: Setup-C+−and Setup-S+−: Prediction evaluation for a mix of ID and OOD data.

Results on Setup-S+−

ID (H3.6M) OOD (H3.6M) ID (GRAB) OOD (GRAB)

milliseconds 80 160 400 1000 80 160 400 1000 200 400 600 1000 80 160 400 1000

M
PJ

PE

SPGSN† 13.2 27.1 58.5 105.4 17.4 29.3 64.1 109.0 30.1 55.5 94.3 158.7 33.4 58.2 98.7 163.2
siMLPe 11.7 24.6 60.3 112.7 14.3 27.1 63.2 114.0 30.5 56.9 93.1 153.5 31.4 57.9 96.3 158.4
H/P-TTP‡ 11.8 24.6 56.2 103.4 12.3 25.6 57.1 105.0 29.7 53.0 89.7 136.2 30.7 55.1 91.5 138.6
IDKR∗ 12.1 21.4 51.9 98.3 12.7 22.6 52.7 99.8 27.1 49.3 85.2 130.5 28.4 51.0 86.4 132.0

Table 6: Setup-C+−and Setup-S+−: Prediction evaluation for a mix of ID and OOD data.

Results on Setup-C+−

ID (H3.6M) OOD (H3.6M) ID (GRAB) OOD (GRAB)

milliseconds 80 160 400 1000 80 160 400 1000 200 400 600 1000 80 160 400 1000

M
PJ

PE

SPGSN† 13.1 25.6 64.7 115.9 13.6 26.8 66.8 117.0 34.3 55.8 97.6 151.4 35.5 57.1 99.4 154.2
siMLPe 13.0 26.5 57.1 103.9 13.5 27.8 59.3 105.1 36.9 57.5 97.2 154.4 37.4 59.4 99.7 157.3
H/P-TTP‡ 12.1 24.5 53.0 103.4 12.6 26.1 55.7 105.7 31.1 52.2 89.9 141.3 33.2 54.7 83.1 144.0
IDKR∗ 10.0 21.7 51.5 100.6 10.7 22.5 53.0 98.9 30.8 49.7 87.6 135.9 32.6 52.4 90.5 138.7

D VISUALIZATION OF PREDICTION RESULTS

In this section, we present the visualization of the prediction results for the ’lift-on’ and ’fly-on’
activities from the GRAB dataset. To thoroughly demonstrate the predictions of different methods,
all visualizations are conducted under the Setup-D+ experimental configuration. Instead of visu-
alizing all baseline methods, we focus on comparing the predictions of the H/P-TTP method (Cui
et al., 2023a) and our IDKR method, as H/P-TTP is the most representative HPP approach in the
comparison, utilizing test-time adaptation.

As illustrated in Figure 4, the top sub-figure display the prediction results for the ’lift-on’ activity,
while the bottom sub-figure show the ’airplane-fly’ activity. In each sub-figure, the upper illustrates
the results of the H/P-TTP method, and the lower shows the results of our IDKR method. For
clarity, the predictions within 1 second are divided into 2 time intervals: 0-500ms and 500-1000ms,
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Figure 4: Visualization of the prediction results for the ’airplane-fly’ activities from the GRAB
dataset under the Setup-D+ experimental configuration. We highlight the contrasting segments using
orange circles, indicating the significant differences between the predictions made by H/P-TTP and
our IDKR method. From the result, it is evident that our IDKR method generates more accurate
predictions, especially in long-term predictions.

corresponding to short-term and long-term predictions. In each animation frame, the deep blue
skeleton represents the ground truth, while the green-red skeleton denotes the predicted results. The
orange circles highlight segments where the differences between the two methods are pronounced.

From the visualization results, it is evident that the predictions made by our IDKR method are closer
to the ground truth, especially in long-term predictions. This further demonstrates the superiority of
our IDKR method in generating accurate prediction outcomes.

E COMPARISON WITH OTHER TTA METHODS FROM NON-HPP TASKS

To further investigate the impact of our IDKR method, we compare it with other TTA methods that
do not focus on HPP tasks. Concretely, 2 standard TTA methods, i.e., TENT and PETAL, and 1 con-
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tinual TTA method, i.e., CoTTA, are selected for comparison: 1) TENT commences with a source
model and exclusively updates the trainable BN parameters; 2) PETAL proposes a probabilistic
CTTA, which regularizes the model updates at inference time to prevent model drift; 3) CoTTA is a
continual TTA methods that utilize teacher-student learning to adapt model to the target domain.

We note that all experiments are conducted on the experimental Setup-D+, as described in Section
4.2, where the source domain is H3.6M and the target domain is GRAB. Other experimental configu-
rations are similar to the experimental setup in the main paper. As shown in Table 7, the performance
of the proposed IDKR method achieves the best performance in terms of MPJPE, which evidences
our method’s effectiveness in addressing the distribution shift challenges and the hybridization of
ID and OOD data in HPP tasks.

Table 7: Evaluation of the proposed IDKR method compared with other TTA or CTTA methods
from non-HPP tasks on the Setup-D+ experimental configuration.

200ms 400ms 800ms 1000ms

TENT (Wang et al., 2020) 31.4 42.4 83.2 137.3
PETAL (Brahma & Rai, 2023) 31.0 40.5 79.4 133.4

CoTTA (Wang et al., 2022) 26.4 40.7 80.1 129.5
IDKR∗ (Ours) 24.6 38.7 76.8 123.1

F ABLATION STUDIES

To investigate the influence of different components in our IDKR method, we conduct the ablation
studies under the experimental setup Setup-D+. Notably, only the MPJPE is used as the evaluation
metric, and the other metrics are not used in the ablation studies.

Effect of IDKR Regularization: The IDKR regularization is designed to preserve in-distribution
knowledge during continual test-time adaptation, thereby mitigating catastrophic forgetting of ID-
specific parameters. As shown in Table 8 the model performance our proposed method (w/ IDKR
regularization) significantly surpasses that w/o IDKR across. This demonstrates the effectiveness
of the regularization in maintaining the predictive capability for ID samples, while simultaneously
adapting to out-of-distribution (OOD) data. This improvement is attributed to the IDKR’s ability
to selectively update parameters based on the structural graph Fisher information matrix (SG-FIM),
which accurately identifies and retains the essential parameters for ID data. In contrast, the ab-
sence of IDKR leads to a uniform update of all model parameters, causing significant performance
degradation on ID sequences, especially in scenarios with mixed ID and OOD data.

ID-informative Subgraph v.s. ID Label for Fisher Information Matrix: This ablation study
evaluates the effectiveness of using the ID-informative subgraph versus the direct use of ID labels
in computing the Structural Graph Fisher Information Matrix (SG-FIM). As shown in Table 9, the
performance of the model using the ID-informative subgraph significantly outperforms that of the
model using ID labels. Specifically, the use of ID-informative subgraphs yields a lower MPJPE,
indicating a more accurate capture of ID-specific parameters and improved model performance.

The ID-informative subgraph, derived from the GIL framework, effectively compresses the skeleton
graph to retain only the most relevant substructures related to ID sequences. This selective represen-
tation allows the SG-FIM to focus on parameters that are crucial for ID data, enhancing the model’s
ability to preserve ID knowledge during adaptation. In contrast, directly using ID labels for SG-FIM
computation leads to a less precise identification of ID-specific parameters, as the model cannot
leverage the structural dependencies within the skeleton sequences. This results in suboptimal pa-
rameter updates and a notable increase in prediction error. This finding underscores the importance
of structural representation learning in enhancing the effectiveness of continual TTA frameworks,
particularly in complex scenarios with mixed ID and OOD data.

Node Feature v.s. Edge Feature for SG-FIM construction: Table 10 shows that using both node
and edge features for SG-FIM construction significantly outperforms using either feature alone.
Node features capture local joint characteristics, while edge features encode relational information
between joints. Combining both provides a more comprehensive understanding of the skeleton
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Table 8: Effect of in-distribution knowledge retention regularization.

In-distribution knowledge retention regularization 200ms 400ms 800ms 1000ms

no 32.5 44.2 83.7 140.2
yes 24.6 38.7 76.8 123.1

Table 9: Effect of ID-informative subgraph v.s. ID label for Fisher Information Matrix construction.

ID-Informative Subgraph ID label 200ms 400ms 800ms 1000ms

× ✓ 26.8 40.4 80.1 129.5
✓ × 24.6 38.7 76.8 123.1

Table 10: Effect of using node feature, edge features, or both, of the subgraph, for SG-FIM con-
struction.

Node Edge 200ms 400ms 800ms 1000ms

× ✓ 25.7 59.3 78.4 126.0
✓ × 27.0 60.1 79.4 129.5
✓ ✓ 24.6 38.7 76.8 123.1

structure, resulting in better identification of ID-specific parameters, thus facilitating the ID-specific
knowledge preservation. This confirms that the joint use of these nodes and edges in the compressed
subgraph is essential for achieving accurate and robust predictions.

Self-supervised Losses: Table 11 indicates that using both spatial and smoothness losses together
significantly improves prediction performance compared to using each loss independently. The spa-
tial loss ensures that bone lengths between observed and predicted poses remain consistent, preserv-
ing the structural integrity of the human skeleton and preventing unrealistic predictions. On the other
hand, the smoothness loss enforces temporal consistency by minimizing sudden changes between
consecutive frames, which is crucial for generating natural and coherent motion sequences. When
combined, these two losses complement each other by capturing both the spatial relationships be-
tween joints and the temporal evolution of poses, resulting in more accurate and stable predictions.
This comprehensive approach effectively reduces MPJPE, confirming that the joint use of spatial
and smoothness losses is essential for achieving robust performance, particularly in scenarios with
mixed ID and OOD data.

Hyperparameters Analysis of α and β: This ablation study aims to evaluate the impact of differ-
ent hyperparameter settings on the performance of our IDKR method. Specifically, we analyze the
effect of varying the α parameter, which controls the importance of the Graph Information Bottle-
neck (GIL) loss, and the β parameter, which dictates the weight of the IDKR regularization term.
The objective is to find the optimal combination of α and β that provides the best balance between
capturing informative subgraph features and preserving ID-specific knowledge during adaptation.
The results in Table 12 shows that using α = 0.3 and β = 0.2 achieves the best performance. A
higher α excessively filters information, potentially losing critical ID features, while a lower α is
insufficient for distinguishing ID from OOD data. Similarly, a high β over-constrains the model,
reducing its flexibility, whereas a low β results in the loss of ID-specific knowledge during adapta-
tion. The selected values of α = 0.3 and β = 0.2 provide the optimal trade-off, leading to improved
MPJPE and robust model performance. Proper tuning of α and β is essential for maximizing the
effectiveness of IDKR, enabling it to retain crucial ID knowledge while adapting to OOD data. This
configuration ensures optimal model performance across various scenarios.

Effect of the Time-weight Parameter γ: In the context of human motion prediction, the time-
weight parameter γ plays a crucial role in determining the relative importance of different frames
in the observed sequence. Since human motion prediction is inherently a time-series task, it is
important to assign greater weight to more recent frames, which carry more relevant information for
predicting near-future poses. Conversely, earlier frames, though still useful for providing context,
should contribute less to the prediction.
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Table 11: Effect of the supervised losses.

LTWS LTWT 200ms 400ms 800ms 1000ms

× ✓ 27.0 59.5 80.0 127.8
✓ × 25.2 58.3 78.1 125.6
✓ ✓ 24.6 38.7 76.8 123.1

Table 12: Investigation of the impact of different hyperparameter settings on the performance.

α β 200ms 400ms 800ms 1000ms

0.25 0.2 26.4 41.1 79.4 126.0

0.3
0.15 25.3 38.4 78.5 124.7
0.2 24.6 38.7 76.8 123.1
0.25 25.0 40.1 77.7 125.2

0.35 0.2 24.5 39.2 77.3 124.8

Table 13: Effect time-weight parameter γ.

γ 200ms 400ms 800ms 1000ms

0.6 26.1 42.1 82.5 127.3
0.7 24.6 38.7 76.8 123.1
0.8 24.9 40.1 79.2 126.5

By applying an exponential weighting function controlled by γ, we modulate the impact of each
frame in the sequence on the model’s loss calculation. The exponential nature of the weighting
ensures that smaller values of γ distribute the importance more evenly across frames, while larger
values of γ sharply increase the focus on recent frames. Therefore, the choice of γ has a direct
impact on how the model balances short-term accuracy with long-term stability. As shown in Table
13, at γ = 0.7, the model achieves the best performance. This value of γ provides the ideal trade-off
between prioritizing recent frames and retaining sufficient context from earlier frames. The MPJPE
for short-term predictions reached its lowest value, indicating that the model was highly accurate in
capturing recent motion dynamics, while maintaining stability in longer sequences. This suggests
that at γ = 0.7, the model effectively balances immediate responsiveness to recent frames with the
ability to leverage the broader temporal context.

G LIMITATION

The proposed IDKR model is designed to tackle the distribution shift challenges in human pose
prediction tasks, particularly in scenarios involving a mixture of ID and OOD data. Our approach is
grounded in the concept of retaining ID-specific knowledge during continual Test-Time Adaptation
(TTA). This is achieved by compressing the most informative subgraph relative to the in-distribution
for any given target skeleton sequence. The methodology behind our IDKR model involves extract-
ing the invariant subgraph from the original human skeleton graph and utilizing this ID-informative
subgraph to identify the most relevant parameters for in-distribution sequences.

To effectively preserve ID-specific knowledge, the model incorporates a gradient computation pro-
cess, which introduces some computational overhead. Specifically, on a single NVIDIA RTX 4090
GPU with PyTorch 2.1.0, our model requires approximately 121ms to adapt to a new target se-
quence. This computational overhead is relatively small, allowing our method to achieve state-of-
the-art performance in terms of Mean Per Joint Position Error (MPJPE). Although this adaptation
time is slightly longer than the standard HPP method—siMLPe (84.3ms), it is faster than the state-
of-the-art H/P-TTP method (130ms). Therefore, we believe that the proposed method is still efficient
enough for practical applications, taking only 121 ms to predict a 1000 ms motion sequence.
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