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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) is a widely used ap-
proach to align large-scale AI systems with human values. However, RLHF typi-
cally assumes a single, universal reward, which overlooks diverse preferences and
limits personalization. Variational Preference Learning (VPL) seeks to address
this by introducing user-specific latent variables. Despite its promise, we found
that VPL suffers from posterior collapse. While this phenomenon is well known
in VAEs, it has not previously been identified in preference learning frameworks.
Under sparse preference data and with overly expressive decoders, VPL may cause
latent variables to be ignored, reverting to a single-reward model. To overcome this
limitation, we propose Swap-guided Preference Learning (SPL). The key idea is
to construct fictitious swap annotators and use the mirroring property of their pref-
erences to guide the encoder. SPL introduces three components: (1) swap-guided
base regularization, (2) Preferential Inverse Autoregressive Flow (P-IAF), and (3)
adaptive latent conditioning. Experiments show that SPL mitigates collapse, en-
riches user-specific latents, and improves preference prediction. Our code and data
are available at https://anonymous.4open.science/r/SPL-0111

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has emerged as a prominent method for
aligning large-scale AI systems with human values in various fields, particularly natural language
processing (Ouyang et al., 2022). In RLHF, a reward model is first trained on human comparison
data, and then a policy is optimized with reinforcement learning. This approach aligns model be-
havior more closely with human evaluations, improving performance, accuracy, and fairness across
diverse domains (Leike et al., 2018; Ji et al., 2023).

However, most existing RLHF approaches (Christiano et al., 2017; Ouyang et al., 2022) are based
on the single-reward assumption that all human preferences can be represented by a universal re-
ward function. This assumption is originated from the Bradley–Terry–Luce (BTL) model (Bradley
& Terry, 1952), which is commonly used to model pairwise comparisons and treats preferences
as if they were generated from a shared scoring function. While mathematically convenient, this
single-reward assumption is problematic in practice. Human preferences are not homogeneous but
plural and often diverge across individuals or groups. Recent studies have shown that collapsing
diverse perspectives into a single reward function introduces systematic bias in favor of majority
preferences, overlooking groups and reducing fairness (Prabhakaran et al., 2021; Feffer et al., 2023;
Casper et al., 2023). Consequently, models trained under this assumption may disadvantage under-
represented populations, even when their preferences are valid and important.

To address this issue, researchers have begun exploring what we refer to as personalized alignment
(pluralistic alignment) (Sorensen et al., 2024). Instead of forcing all preferences into a single univer-
sal reward function, personalized alignment seeks to align different reward functions with different
individuals according to their preferences, thereby capturing the heterogeneity of human values. One
leading approach is Variational Preference Learning (VPL) (Poddar et al., 2024), which encodes
user-specific latent variables from preference data and decodes them into corresponding rewards.
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Figure 1: Overview of SPL. We propose Swap-guided Preference Learning (SPL), a new framework
for personalized alignment. RLHF (Ouyang et al., 2022) cannot adequately reflect user diversity. To
overcome this limitation, VPL (Poddar et al., 2024) encodes text data consisting of a prompt x
and response y into a single latent embedding. However, this encoding process is highly prone to
collapse. In contrast, SPL leverages the structural properties of preference data through guiding
mechanisms and a Preferential Inverse Autoregressive flow, allowing the latent space to capture
user-specific characteristics.

This framework allows AI systems to flexibly adapt to diverse users without relying on predefined
groupings or rigid categorization.

Despite its promise, we found in our experiments that VPL suffers from practical failure mode:
posterior collapse. This phenomenon is sometimes observed in VAEs (Bowman et al., 2016; Chen
et al., 2016; He et al., 2019; Lucas et al., 2019; Wang et al., 2021) but has not previously been
identified in preference learning frameworks. When combined with a strong reward decoder, this
posterior collapse can cause the encoder’s latent variable to become uninformative and effectively
ignored. In such cases, the latent variable fails to capture user-specific information, and the decoder
explains preferences without relying on it. Training then reduces to an implicit single reward model,
ignoring minority preferences and undermining the goal of personalized alignment.

To overcome this, we introduce Swap-guided Preference Learning (SPL), an expressive variational
framework for personalized alignment that explicitly leverages the structural properties of prefer-
ence pair data. To the best our knowledge, we are the first to report and address posterior collapse in
preference learning. Our approach improves user-latent encoding and reward decoding through three
key innovations: (i) Swap-guided Base Regularization, which encouraging latent space shows mir-
rored characteristics under preference swapping; (ii) Preferential-Inverse Autoregressive Flow,
which disentangles swap-reversal and swap-invariant signals, conditioning a inverse autoregressive
flow on them to yield improved latent representations without collapse; and (iii) Adaptive Latent
Conditioning, which dynamically adjusts the contribution of the latent variable to reward predic-
tion. Together, these mechanisms consistently reduce posterior collapse and enable more faithful
and pluralistic preference modeling.

2 PRELIMINARY FUNDAMENTALS

Reinforcement Learning from Human Feedback For post-training of Large Language Models
(LLM), RLHF relies on a dataset of N human preference pairs, D = {(xi, yiw, yil)}Ni=1, where x is a
prompt and (yw, yl) denote the chosen(winning) and rejected(losing) responses, respectively. RLHF
assumes an single universal reward function rϕ(x, y), optimized by maximizing the log-likelihood
of observed preferences:

E(x,yw,yl)∼D

[
log pϕ(yw ≻ yl | x)

]
. (1)
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The preference probability pϕ(yw ≻ yl | x) is typically modeled via the Bradley–Terry–Luce (BTL)
model (Bradley & Terry, 1952):

pϕ(yw ≻ yl | x) =
exp

(
rϕ(x, yw)

)
exp

(
rϕ(x, yw)

)
+ exp

(
rϕ(x, yl)

) = σ
(
rϕ(x, yw)− rϕ(x, yl)

)
, (2)

where σ denotes the logistic function. Thus, the reward function rϕ is trained to explain human-
preferred outcomes, and the learned reward model is subsequently used to optimize a policy aligned
with human judgments.

Variational Approach for Personalized Alignment A central direction in personalized align-
ment is to condition reward models and policies on user-specific information (Oh et al., 2024; Pod-
dar et al., 2024; Bose et al., 2025; Shenfeld et al., 2025; Gong et al., 2025). Among these approaches,
Variational Preference Learning (VPL) (Poddar et al., 2024) is particularly influential. Inspired by
variational autoencoders (VAEs) (Kingma et al., 2013), VPL introduces a user-specific latent vari-
able z ∈ Rd inferred from each user h’s preference dataset Dh = {(xi, yiw, yil)}ni=1 ⊂ D. The
encoder produces an approximate posterior qψ(z | Dh), while the decoder predicts rewards for
prompt–response pairs (x, y) conditioned on z, denoted as rϕ(x, y, z).

Formally, VPL extends the objective in Eq.(1) by adding a variational regularization term. This
yields an evidence lower bound (ELBO):

E
h∼H

[
E

z∼qψ(z|Dh)
(x,yw,yl)∼Dh

[log pϕ(yw ≻ yl | x,z)]− βDKL

[
qψ(z | Dh)∥p(z)

]]
, (3)

where β is KL divergence weight and the log p(z) represents the prior distribution’s log-density, se-
lected as N (0, I). This objective maximizes the conditional log-likelihood of preferences while reg-
ularizing the user-specific posterior toward the prior, thereby preventing overfitting and encouraging
generalizable latent structure. By leveraging z, VPL provides flexibility in modeling personalized
traits and has shown strong empirical performance in capturing diverse preferences. However, recent
work (Nam et al., 2025) indicates that compressing rich textual preference data into a single latent
embedding z remains highly challenging.

Inverse Autoregressive Flow Normalizing flows (Rezende & Mohamed, 2015) is a framework
for constructing flexible posterior distributions by applying a sequence of invertible transformations.
Among them, Inverse Autoregressive Flow (IAF) (Kingma et al., 2016) is specifically designed to
enrich the expressivity of variational posteriors while preserving computational tractability. The pro-
cedure begins with a base latent variable z0 ∈ Rd and context vector c ∈ Rdc drawn from encoder
(i.e., qψ(z0 | x) = N (µ,σ2) with additional output c), followed by a series of parameterized,
invertible transformations fk. After K step transformations, the final variable zK acquires a more
complex distribution:

z0 ∼ qψ(z0 | x), zk = fk(zk−1, c), k = 1, . . . ,K

When each fk admits a tractable Jacobian determinant, the density of zK can be computed efficiently
via the change-of-variables formula:

log qψ(zK | x) = log qψ(z0 | x)−
K∑
k=1

log det

∣∣∣∣ ∂zk
∂zk−1

∣∣∣∣ . (4)

In practice, IAF employs autoregressive neural networks to parameterize shift and scale functions:
zk = µk(zk−1, c) + σk(zk−1, c)⊙ zk−1, (5)

where µk and σk are autoregressively conditioned on the preceding dimensions of zk−1. This au-
toregressive structure ensures a lower-triangular Jacobian, making the determinant easy to compute:

log det

∣∣∣∣ ∂zk
∂zk−1

∣∣∣∣ = d∑
j=1

log
∣∣∣σjk∣∣∣ , (6)

with σjk denoting the j-th element of the scale function.

As a result, IAF enables parallelizable sampling and yields a substantially richer posterior qψ(zK |
x) that captures inter-dimensional dependencies and non-Gaussian structures (e.g., skewness, heavy
tails) beyond the capacity of the base posterior (Kingma et al., 2016; Papamakarios et al., 2021).
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(a) Pets, Llama-3.2-3B (b) UF-P-2, Llama-3.2-3B (c) UF-P-4, Llama-3.1-8B

Figure 2: Posterior collapse in Variational Preference Learning. We visualize latent embeddings
z from the VPL encoder using 2D UMAP (McInnes et al., 2018). Each point denotes a user, colored
by their preference type. (a) User preference types are distinctly separated, indicating non-collapse.
(b), (c) Latent collapse occurs, making preference types indistinguishable.

3 MOTIVATION

In this section, we explain the posterior collapse that we observed in preference learning and identify
some guidance by comparing collapse and non-collapse cases. Fig. 2 illustrates this phenomenon
that we observed in VPL. The simple dataset Pets simulates multi-modal user preferences over pets
(e.g., dog, cat) given a single shared prompt. In contrast, the more complex UF-P datasets contain 2
or 4 preference types (e.g., helpfulness, honesty, instruction-following, and truthfulness) and include
diverse prompts and responses. In Fig. 2a, two user types (in different colors) are clearly separated in
the latent space for the Pets. However, in UF-P, users merge into a single cluster, losing separation
as shown in Fig. 2b and 2c.

This collapse appears to stem from two factors: (1) noisy and ambiguous human feedback, together
with the difficulty of compressing diverse, complex textual preferences in the encoder, often leads
to unstable latent learning, which in turn causes the reward decoder to ignore the z pathway; and
(2) the reward decoder already receives sufficient information from the complete prompt–response
pair, allowing it to maximize the likelihood in Eq.(3) without relying on z. This leads to the latent
variable failing to capture user-specific information and becoming uninformative. Further evidence
of posterior collapse is presented in Appendix A.

(a) RMSE between original and swap (b) µ between original and swap

Figure 3: Differences in posterior distribution between original and swapped inputs. We test
how the VPL encoder’s posterior responds when each preference pair is inverted to simulate a
user with opposite choices, using the simple dataset Pets. (a) Average RMSE between original and
swapped inputs across posterior mean µ and log-variance ℓ. Collapse appears in Llama-3.1-8B (or-
ange), where both parameters remain unchanged, whereas Llama-3.2-3B (green) shows distinct be-
havior. (b) Plot µ vs. µswap for Llama-3.2-3B; µ+µswap is in the lower panel. Initially, the curves are
similar, but their difference grows and stabilizes as learning continues, resulting in a sign-reversal.
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Figure 4: Preference encoding process of SPL

To address the posterior collapse in VPL, we examine the information captured in the posterior dis-
tribution when user preferences are successfully encoded, and use this insight to guide the design
of an effective user-latent space. To this end, we conduct a simple swap experiment. For a user h
with dataset Dh, suppose the encoder outputs qψ(z | Dh) = N (µ,σ2), where µ, σ2 ∈ Rd. We
then construct a fictitious user hswap with the opposite preference of h by swapping the chosen and
rejected responses in every pair, as shown in the right part of Fig. 1. Feeding these swapped pairs
into the encoder yields qψ(z | Dhswap) = N (µswap,σ

2
swap). Fig. 3a visualizes the RMSE between

µ and µswap, and between ℓ = logσ2 and ℓswap = logσ2
swap, over the course of training for both

collapse and non-collapse cases. In the collapse case, the RMSE converges to zero for both µ and ℓ,
i.e., µ ≈ µswap and ℓ ≈ ℓswap, indicating that the latent variable carries no user-specific signal and
is effectively ignored by the decoder. In the non-collapse case, however, the RMSE of µ converges
to a non-zero value, implying a clear separation between the original user h and the fictitious user
hswap. In particular, µ and µswap exhibit a sign-reversal, µ ≈ −µswap, as shown in Fig. 3b, while the
log-variance remains invariant to swaps, ℓ ≈ ℓswap, i.e., the posterior distribution exhibits a ”mir-
rored” distribution when swapped. This structural division implies that µ captures swap-reversal
information, whereas ℓ captures swap-invariant information. Such disentanglement makes the la-
tent variable essential for the decoder. In the next section, we use this insight to develop our new
preference learning framework.

4 METHOD

We propose Swap-guided Preference Learning (SPL), a new framework for preference learning that
regularizes the encoder with guidance from preference swapping. This approach consistently reduces
posterior collapse while ensuring that user-specific information is faithfully encoded in the latent
variable z. To achieve this, we introduce three components: (i) Swap-guided Base Regularization,
(ii) Preferential Inverse Autoregressive Flow (P-IAF), and (iii) Adaptive Latent Conditioning.

4.1 ENCODING USER PREFERENCES INTO A LATENT

To encourage our SPL to encode user preferences into a latent z, we introduce two strategies in this
section. The first is to enforce the output from the encoder to satisfy the mirroring of preference
swaps, thereby mitigating posterior collapse. We call the encoder’s Gaussian output is termed the
base distribution and denoted as z0. The second strategy is to transform z0 using an Inverse Autore-
gressive Flow (IAF), warping the Gaussian z0 into a richer distribution zK . In this second strategy,
we also control the flow from the base z0 to the transformed distribution zK with guidance from the
mirroring of preference swaps. The two strategies are illustrated in Fig. 4. We now explain them one
by one.

Swap-guided Base Regularization Based on the mirroring of preference swaps in section 3, the
encoder is trained to learn user preferences by generating mirrored distributions for annotators h
and hswap. Specifically, given an annotator h and its fictitious opposite annotator hswap, with encoder

5
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outputs N (µ, ℓ) and N (µswap, ℓswap), respectively, we train the encoder so that the two means µ
and µswap exhibit a sign-reversal, while the two log-variances ℓ and ℓswap remain invariant. This is
achieved by applying the guidance loss Lguide defined by

cos(µ,µswap) =
µ⊤µswap

(∥µ∥+ ε)(∥µswap∥+ ε)
, cos(ℓ, ℓswap) =

ℓ⊤ℓswap

(∥ℓ∥+ ε)(∥ℓswap∥+ ε)
,

and define the encoder qψ training guidance loss as:

Lguide = E
h∼H

[
1
2

(
1 + cos(µh,µhswap)

)
+ η 1

2

(
1− cos(ℓh, ℓhswap)

)]
. (7)

η balances mean and variance; ε > 0 ensures stability.

Preferential Inverse Autoregressive Flow The next step is to apply IAF to warp the Gaussian z0
into a multi-modal distribution zK . Unlike the base regularization, we cannot enforce the mirroring
property of preference swaps in this transformation, because zK is no longer Gaussian and cannot be
characterized in terms of mean and variance. In other words, the flow from z0 to zK under a standard
IAF cannot be directly controlled to satisfy the mirroring property of preference swaps. To address
this limitation, we propose Preferential Inverse Autoregressive Flow (P-IAF), which decomposes the
context vector c into swap-reversal and swap-invariant components. Intuitively, the swap-reversal
context cd captures the directional preference signals that reflect the mirroring of swaps, while the
swap-invariant context cs captures the background information. Our P-IAF is defined by

zk = fkψ(zk−1, cd, cs) = µk(zk−1, cd) + σk(zk−1, cs)⊙ zk−1, (8)

where k = 1, . . . ,K. We form cd and cs by a swap-reversal and swap-invariant decomposition of
the encoder’s additional output c (from Dh) and cswap (from swapped counterpart Dhswap ) as follows:

cd ≜ 1
2 (c− cswap), cs ≜ 1

2 (c+ cswap),

which guarantees c = cd + cs, cswap = −cd + cs. By feeding cd only to the shift function µk
and cs only to the scale function σk, P-IAF reduces cross-context coupling between swap-reversal
and swap-invariant signals, thereby preserving pair-derived user preference more effectively while
retaining IAF’s expressivity from the autoregressive composition. See Appendix B for details and
proof.

Substituting Eq.(8) into Eq.(4) yields the overall log posterior after K flow steps

log qψ(zK | Dh) = log qψ(z0 | Dh)−
K∑
k=1

d∑
j=1

log |σjk|, (9)

and the KL divergence of Eq.(3) is given by1:

DKL = E
h∼H

[
log qψ(zK | Dh)− log p(zK)

]
, (10)

where log qψ(zK | Dh) is given in Eq.(9).

4.2 DECODING PERSONALIZED REWARDS FROM LATENTS

The decoder scores a prompt–response (x, y) conditioned on the user-latent zK , yielding
rϕ(x, y,zK), and is trained to satisfy rϕ(x, yw, zK) > rϕ(x, yl, zK). Extending Eq.(2) about zK ,
the decoder training objective over users h ∼ H:

E
h∼H

[
E

zK∼qψ(zK |Dh)
(x,yw,yl)∼Dh

[
log pϕ(yw ≻ yl | x, zK)

]]
(11)

where pϕ(yw ≻ yl | x,zK) = σ
(
rϕ(x, yw, zK)− rϕ(x, yl, zK)

)
which means preference probabil-

ity conditioned on zK .
1For notational simplicity, we denote all learnable parameters by ψ. In practice, ψ includes both (i) encoder

parameters ψenc and (ii) flow parameters ψflow = {ψµk , ψσk}
K
k=1 corresponding to the shift and scale function

in each flow transformation step k.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Adaptive Latent Conditioning Inspired by feature modulation (Perez et al., 2018), we design a
per-user modulation decoder that adapts prompt-response embeddings based on the user-latent em-
bedding zK , allowing dynamic influence adjustment when predicting input rewards. For example,
when the latent embedding provides strong signals of user preference, its contribution to reward pre-
diction is amplified, whereas when the preference signal is uncertain, the contribution is attenuated.
Detailed modeling of this adaptive conditioning mechanism is provided in Appendix C.

4.3 OBJECTIVE FUNCTION OF SPL

Maximize the log-likelihood term from Eq.(11) while minimizing the KL divergence term in
Eq.(10), the ELBO of SPL is defined across the entire user H as:

ELBO = E
h∼H

[
E

zK∼qψ(zK |Dh)
(x,yw,yl)∼Dh

[log pϕ(yw ≻ yl | x, zK)]− β(log qψ(zK | Dh)− log p(zK))

]
(12)

We regularize the base posterior qψ(z0 | Dh) using the guidance loss in Eq.(7). The final objective
minimizes:

L(ϕ, ψ) = −ELBO + λLguide (13)

where λ controls the strength of the guidance loss term. Consequently, the reward model explicitly
conditions on the user-latent zK , yielding a personalized reward rϕ(·, ·,zK); optimizing the policy
under this reward personalizes behavior and thus achieves personalized alignment.

5 EXPERIMENTS

In this section, we evaluate the performance of SPL. First, we examine whether SPL can construct a
meaningful latent space without posterior collapse. Second, we evaluate whether SPL effectively im-
proves preference-prediction accuracy. SPL remains stable across different KL divergence weights
β, unlike the earlier approach (Poddar et al., 2024) in our experiments. Moreover, SPL consistently
outperforms baselines in preference-prediction accuracy. Before presenting these results, we de-
scribe our experimental setup.

Baselines We compare our method against the following baselines:

• BTL (Ouyang et al., 2022): The standard RLHF based on Bradley–Terry–Luce model.

• DPL (Siththaranjan et al., 2023): Distributional Preference Learning, which captures im-
plicit context across the entire preference dataset and models the reward as a distribution
but doesn’t consider individual user preferences.

• VPL (Poddar et al., 2024): Variational Preference Learning, which employs the user-latent
embedding with a simple Gaussian posterior distribution, without swap-guided encoding
and latent conditioning.

• SPL (Ours): Our proposed method.

For all methods, we use supervised fine-tuned LLMs based on Llama-3 (Dubey et al., 2024), specif-
ically two variants: Llama-3.2-3B and Llama-3.1-8B.

Datasets We conduct experiments on two datasets: a simple preference dataset Pets and a complex
preference dataset UltraFeedback-P (UF-P) (Poddar et al., 2024) derived from Ultrafeedback (Cui
et al., 2023), featuring user types pursuing values like helpfulness, honesty, instruction-following,
and truthfulness.

The Pets dataset uses a single shared prompt, ”Please talk about one kind of pets.” and response is
a description of one of four animals (dog, cat, rabbit and bird). The dataset defines two user types
that agree on the most- and least-preferred animals (bird and rabbit, respectively) but disagree on the
relative ordering of the middle options (dog vs. cat), inducing a multi-modal distribution over user
preferences.

7
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The UF-P dataset assumes that each user h belongs to one of several preference types P (e.g.,
p ∈ P = {helpfulness, honesty}). It is constructed from the Ultrafeedback prompt–response data,
where responses are labeled by GPT-4 (Achiam et al., 2023) with scores for each type p. For each
prompt, the winning and losing responses are selected according to the score associated with the
target preference type p. Specifically, UF-P-2 contains two preference types focusing on helpful-
ness and honesty, while UF-P-4 contains four preference types focusing on helpfulness, honesty,
instruction-following, and truthfulness. Due to its diverse preference modes and a wide variety of
prompt–response pairs, the UF-P dataset is highly ambiguous and challenging.

In all datasets, one sample Dh corresponds to a user h with a user type p. This type information is
used only when constructing Dh (to determine winning and losing responses from Ultrafeedback)
and for qualitative evaluation (to verify whether user types are well-separated). Importantly, the la-
tent embedding relies on user preference data Dh, not on type p. Additional details about experiments
are provided in Appendix E.

5.1 RESULTS

We first demonstrate that our method effectively reduces posterior collapse and encodes a stable la-
tent space. To diagnose collapse quantitatively, we evaluate using the Active Units (AU) metric from
prior work (Burda et al., 2015). AU counts latent dimensions with variability exceeds a small thresh-
old δ; a dimension u is considered active if its posterior mean responses show sufficient variability
across the evaluation set Deval.

AU = |{u : VarDeval

(
µψ,u(Deval)

)
> δ}|

Thus, AU=0 means all latent dimensions are unresponsive across evaluation data. In these runs, the
encoder outputs fixed posterior means and variances with AU=0, indicated as posterior collapse
and shaded gray in tables. Accuracy is the ratio of evaluation samples where predicted rewards match
user preferences (i.e., winning responses have higher rewards).

Table 1: Accuracy and active units across β

Model β Method UF-P-2 UF-P-4

Acc. [%] AU [%] Acc. [%] AU [%]

Llama-3.2-3B

3× 10−7 VPL 62.04 ± 0.16 0.00 ± 0.00 56.91 ± 0.12 0.00 ± 0.00
SPL 62.59 ± 0.37 73.05 ± 4.69 61.52 ± 0.27 76.89 ± 7.89

3× 10−6 VPL 62.37 ± 0.15 88.22 ± 7.72 57.03 ± 0.10 0.00 ± 0.00
SPL 63.28 ± 0.13 93.07 ± 3.18 61.56 ± 0.03 82.32 ± 3.18

3× 10−5 VPL 62.29 ± 0.19 14.03 ± 6.93 57.00 ± 0.07 0.00 ± 0.00
SPL 62.69 ± 0.20 70.05 ± 8.15 61.62 ± 0.18 77.15 ± 9.12

Llama-3.1-8B

3× 10−7 VPL 62.46 ± 0.08 0.00 ± 0.00 57.25 ± 0.22 0.00 ± 0.00
SPL 63.58 ± 0.14 92.19 ± 2.25 61.92 ± 0.08 93.75 ± 4.67

3× 10−6 VPL 62.66 ± 0.23 91.05 ± 4.43 57.14 ± 0.05 0.00 ± 0.00
SPL 63.71 ± 0.18 97.10 ± 1.14 62.21 ± 0.06 96.19 ± 2.33

3× 10−5 VPL 62.54 ± 0.15 90.79 ± 7.96 57.18 ± 0.11 0.00 ± 0.00
SPL 63.43 ± 0.04 90.07 ± 2.98 62.46 ± 0.07 85.90 ± 3.40

Table 1 shows results for VPL and SPL across a range of KL-divergence weights β under three
distinct random seeds. Prior methods require careful tuning of β to avoid collapse. In contrast, SPL
exhibits no posterior collapse in any of the tested settings. The advantage is most evident on highly
multi-modal preference datasets UF-P-4, where VPL collapses under all tested β values, but SPL
consistently maintains high AU. Notably, SPL is much less sensitive to β.
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Table 2: Preference-prediction accuracy (%) compared with baselines

Model Method Pets UF-P-2 UF-P-4

Llama-3.2-3B

BTL 57.48 ± 2.37 62.25 ± 0.03 57.07 ± 0.01
DPL 62.02 ± 1.92 62.22 ± 0.03 57.04 ± 0.05
VPL 99.67 ± 0.38 62.37 ± 0.15 57.03 ± 0.10
SPL (Ours) 100.0 ± 0.00 63.28 ± 0.13 61.56 ± 0.03

Llama-3.1-8B

BTL 60.74 ± 0.49 62.59 ± 0.04 57.40 ± 0.28
DPL 61.03 ± 0.25 62.74 ± 0.03 57.66 ± 0.14
VPL 75.33 ± 0.63 62.66 ± 0.23 57.14 ± 0.05
SPL (Ours) 100.0 ± 0.00 63.71 ± 0.18 62.21 ± 0.06

Next, Table 2 compares preference-prediction accuracy against baselines. For fairness, we fix β =
3×10−6—a setting under which VPL is comparatively more stable—and report the mean ± standard
deviation over three distinct random seeds for all methods. Across all datasets and models, SPL
achieves higher preference-prediction accuracy than competing baselines. These results mean swap-
guided base regularization and P-IAF are effectively encoding user preference to identifiable user-
latent. Furthermore, SPL improves accuracy and prevents collapse without requiring substantial
additional computation or memory. We measured training computation and memory costs on the
UF-P-4 dataset. As shown in the Table 3, SPL achieves these gains with only minimal computational
and memory overhead.

Table 3: Training computation and memory costs on UF-P-4

Model Method sample/s GPU hour peak memory

Llama-3.2-3B VPL 6.070 13.363 6.25GB
SPL 5.952 13.590 6.65GB

Llama-3.1-8B VPL 3.370 23.791 11.37GB
SPL 3.355 23.945 11.76GB

We further examine the learned latent spaces qualitatively. Fig. 5 visualizes the encoded user-latent
for the UF-P dataset using Llama-3.1-8B. SPL yields more compact and distinctly separated em-
beddings compared to VPL. This shows that swap-guided base regularization and P-IAF of SPL
effectively encode user preferences in the latent space. Further analysis of additional experiments is
provided in Appendix D.

(a) VPL (UF-P-2) (b) SPL (UF-P-2) (c) VPL (UF-P-4) (d) SPL (UF-P-4)

Figure 5: Latent embeddings learned on the UF-P dataset. We visualize latent embeddings z from
baselines and SPL (Ours) encoder using 2D t-SNE (Maaten & Hinton, 2008). Each point denotes a
user, colored by their preference type. Compared to the VPL, SPL yields much clearer separation in
the latent space.

6 CONCLUSION

We proposed Swap-guided Preference Learning (SPL), a framework that overcomes the failure mode
in preference learning on complex textual preference data. Across all experiments, SPL consistently
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improves prediction accuracy over baselines and prevents collapse. These results suggest that com-
bining our swap-guided base regularization, P-IAF, and adaptive latent conditioning effectively en-
codes user-specific latents from complex textual preferences, even with sparse preference signals.
Consequently, by explicitly conditioning the reward on the user latent and optimizing the policy un-
der this reward, our framework enables user-specific behaviors, achieving personalized alignment.

Limitation Our study focuses on encoding user preferences from independent, single-turn com-
parison data. This data requirement can be burdensome and may feel unnecessary from a user per-
spective. We believe our framework can be extended to preferences expressed over natural, multi-
turn dialogue; we consider this for future work.
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APPENDIX

A EVIDENCE FOR COLLAPSE VIA POSTERIOR–PRIOR RESPONSE
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Figure 6: Evidence of posterior collapse in preference learning

We provide evidence that VPL causes the latent to collapse, preventing meaningful encoding during
training. Fig. 6a contrasts decoder outputs from a approximate posterior latent and a noise vector ϵ
from the prior N (0, I). Specifically, we compute[

log pϕ(yw ≻ yl | x,z)− log pϕ(yw ≻ yl | x, ϵ)
]
.

In non-collapsing runs (e.g., with our SPL), the difference persists, indicating z’s informative signal.
Conversely, under VPL, the difference remains negligible during training. In this regime, Fig. 6b
shows that the encoder’s µ and ℓ = logσ2 initially carry signal but soon drift toward µ ≈ 0
and logσ2 ≈ 0, making the posterior almost the same as the prior. The encoded z lacks helpful
information for the decoder’s reward decision, resulting in a trivial solution that reduces the KL
penalty to zero.

B JUSTIFICATION FOR P-IAF

For a prompt-response pair (x, yw, yl) and a latent z ∈ Rd, let us define

∆rϕ(z) ≜ rϕ(x, yw, z)− rϕ(x, yl, z),

which is the part inside the sigmoid σ in Eq.(2). In the swap-guided base regularization, we reg-
ularize our encoder qψ so that µ = −µswap and σ = σswap. Assuming opposite coupling for the
fictitious annotator hswap, i.e., ϵswap = −ϵ, the latent samples become

z = µ+ σ ⊙ ϵ, zswap = µswap + σswap ⊙ ϵswap,

respectively. Consequently, we obtain

z0 = −z0,swap. (14)

from the encoder qψ in Fig. 4 under swapping. Finally, we regularize the base posterior for proba-
bility consistency

pϕ(yw ≻ yl | x,z0) = pϕ(yl ≻ yw | x,z0,swap). (15)

However, unlike the base posterior z0, we cannot directly regularize after transforming z = z0 into
zK :

pϕ(yw ≻ yl | x,zK) = pϕ(yl ≻ yw | x,zK,swap), (16)

because IAF entangles dimensions and contexts, so the posterior’s mirrored structure need not be
preserved after the flow. However, by supplying cs and cd to the µk and σk functions as input

13
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arguments separately, we can obtain similar results as base regularization indirectly. We will show
it in this appendix. First, let us define swap probability error of transformed distribution zK by

δp ≜ σ
(
∆rϕ(zK)

)
− σ

(
−∆rϕ(zK,swap)

)
. (17)

Further, we assume that (A1) z 7→ ∆rϕ(z) is Lipschitz; (A2) opposite coupling is used for the base
noise, i.e., ϵ = −ϵswap; (A3) each step k-th scale function σk is bounded by ∥σk(·)∥∞ ≤ ρk;

The key idea behind our justification of P-IAF is to demonstrate that the mirroring of preference
swaps is realized in the transformed posterior zK by showing that the swap probability error δp of
our P-IAF is smaller than that of IAF.
Lemma 1. Let us suppose that z0 and z0,swap are warped to zK and zK,swap respectively, by P-IAF.
Then, the swap probability error δp given in Eq.(17) is bounded by

|δp| ≤ 1
4 δr,K + 1

4 Lr ∥δz,K∥. (18)

where the reward violation δr,K ≜
∣∣∆rϕ(zK) + ∆rϕ(−zK)

∣∣ and the latent mismatch δz,K ≜
zK,swap + zK .

Proof. For all a, b ∈ R, the logistic satisfies |σ(a)− σ(b)| ≤ 1
4 |a− b|, the swap probability error δp

is bounded by

|δp| =
∣∣σ(∆rϕ(zK))− σ(−∆rϕ(zK,swap))

∣∣
≤ 1

4

∣∣∆rϕ(zK) + ∆rϕ(zK,swap)
∣∣.

Using the triangle inequality, we obtain

|δp| ≤ 1
4

∣∣∆rϕ(zK) + ∆rϕ(zK,swap)
∣∣

= 1
4

∣∣∆rϕ(zK) + ∆rϕ(−zK) + ∆rϕ(zK,swap)−∆rϕ(−zK)
∣∣

= 1
4

∣∣∆rϕ(zK) + ∆rϕ(−zK)
∣∣︸ ︷︷ ︸

= δr,K

+
∣∣∆rϕ(zK,swap)−∆rϕ(−zK)

∣∣ (19)

Further, using the Lipschitz assumption (A1),∣∣∆rϕ(zK,swap)−∆rϕ(−zK)
∣∣ ≤ Lr∥zK,swap − (−zK)∥ = Lr∥δz,K∥.

Then we obtain Eq.(18) by combining reward violation and latent mismatch.

Lemma 2. Let us suppose that the base posterior is given by qψ(z0 | Dh) = N (µ,σ2) and
qψ(z0 | Dhswap) = N (µswap,σ

2
swap). When we sample the latent z0 and z0,swap based on assumption

(A2), the base mismatch defined by

δz,0 ≜ z0,swap + z0 = (µ+ µswap) + (σ − σswap)⊙ ϵ.

And also bounded by

E∥δz,0∥ ≤ ∥µ+ µswap∥+ 1
2 exp (ℓ(∞)

max / 2) ∥ℓ− ℓswap∥, (20)

where σ = exp(ℓ/2).

Proof.
E∥δz,0∥ ≤ ∥µ+ µswap∥+ ∥σ − σswap∥, (21)

since E∥Aϵ∥ ≤
√

E∥Aϵ∥2 = ∥A∥ where A ≜ diag(σ − σswap) ∈ Rd×d.

Moreover, σ = exp(ℓ/2), by the mean value theorem for g(t) = exp(t/2), then, |g(a) − g(b)| =
1
2exp(ξ/2)|a− b| ≤ 1

2exp(max{a, b} / 2)|a− b| for some ξ between a and b.

∥σ − σswap∥ ≤ 1
2 exp(ℓ(∞)

max / 2) ∥ℓ− ℓswap∥, ℓ(∞)
max ≜ max{∥ℓ∥∞, ∥ℓswap∥∞}. (22)
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Hence, base regularization Eq.(7) directly decreases the base mismatch ∥δz,0∥.

From now on, we will compute the swap probability errors of our P-IAF and IAF methods one by
one. Before deriving the swap probability errors of the two normalizing flows P-IAF and IAF, let us
consider context vector c, which is an additional output of encoder qψ . For further development, we
decompose the context vector c into a swap-reversal context cd and swap-invariant context cs as:

cd = 1
2 (c− cswap), cs = 1

2 (c+ cswap), c = cd + cs,

which ensures cd,swap = −cd and cs,swap = cs.

Assumption (A4). Let µk, σk denote the k-th step shift and scale function. There exist non-
negative constants 2

Lzµ,k, Lcdµ,k, Lcsµ,k, Lzσ,k, Lcdσ,k, Lcsσ,k

such that, for all (z, cd, cs) and (z′, c′d, c
′
s) in the valid input space,

∥µk(z, cd, cs)− µk(z
′, c′d, c

′
s)∥ ≤ Lzµ,k ∥z − z′∥+ Lcdµ,k ∥cd − c′d∥+ Lcsµ,k ∥cs − c′s∥,

∥σk(z, cd, cs)− σk(z
′, c′d, c

′
s)∥ ≤ Lzσ,k ∥z − z′∥+ Lcdσ,k ∥cd − c′d∥+ Lcsσ,k ∥cs − c′s∥.

Lemma 3 (Transformed mismatch of P-IAF). Let us consider a normalizing flow P-IAF given by

zk = µk(zk−1, cd) + σk(zk−1, cs)⊙ zk−1

If we define the transformed mismatch δz,k at the k-th step as:

δz,k ≜ zk,swap + zk

Then, the mismatch δz,k of P-IAF is bounded by

∥δz,k∥ ≤
(
ρk + Lzµ,k + Lzσ,k ∥zk−1∥

)
∥δz,k−1∥

+ ∥δµ,k(cd)∥︸ ︷︷ ︸
swap-reversal violation (µ)

+ ∥δσ,k(cs)∥∞ ∥zk−1∥︸ ︷︷ ︸
swap-invariant violation (σ)

(23)

where we define the µ swap-reversal violation and σ swap-invariant violations at step k as:

δµ,k(c) ≜ µk(zk−1, c)+µk(−zk−1, cswap), δσ,k(c) ≜ σk(zk−1, c)−σk(−zk−1, cswap). (24)

Proof. In the P-IAF, the outputs from the k-th step is given by

zk = µk(zk−1, cd) + σk(zk−1, cs)⊙ zk−1,

zk,swap = µk(zk−1,swap, cd,swap) + σk(zk−1,swap, cs,swap)⊙ zk−1,swap.

Then, the transformed mismatch δz,k at the k-th step is given by

δz,k =
[
µk(zk−1, cd) + µk(−zk−1, cd,swap)

]
+
[
σk(zk−1, cs)⊙ zk−1 + σk(−zk−1, cs,swap)⊙ (−zk−1)

]
+
[
µk(zk−1,swap, cd,swap)− µk(−zk−1, cd,swap)

]
+
[
σk(zk−1,swap, cs,swap)⊙ zk−1,swap − σk(−zk−1, cs,swap)⊙ (−zk−1)

]
.

The first bracket equals δµ,k(cd) by Eq.(24), hence contributes ∥δµ,k(cd)∥.

For the second bracket, by Eq.(24) and ∥a⊙ b∥ ≤ ∥a∥∞∥b∥:

∥δσ,k(cs)∥∞∥zk−1∥.

For the third bracket, by (A4) in z:

∥µk(zk−1,swap, cd,swap)− µk(−zk−1, cd,swap)∥ ≤ Lzµ,k ∥δz,k−1∥ .
2The shift and scale networks are compositions of affine maps and smooth activations; hence they are locally

Lipschitz on the working domain considered here.
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For the fourth bracket, insert-delete σk(zk−1,swap, cs,swap)⊙ zk−1:

σk(zk−1,swap, cs,swap)⊙ (zk−1,swap + zk−1)

+
(
σk(zk−1,swap, cs,swap)− σk(−zk−1, cs,swap)

)
⊙ (−zk−1).

Bound the first term using (A3):

∥σk(zk−1,swap, cs,swap)⊙ (zk−1,swap + zk−1)∥ ≤ ρk ∥zk−1,swap + zk−1∥ = ρk ∥δz,k−1∥ .

Bound the second term using (A4) in z:(
σk(zk−1,swap, cs,swap)− σk(−zk−1, cs,swap)

)
⊙ (−zk−1) ≤ Lzσ,k ∥δz,k−1∥ ∥zk−1∥

Collecting the bounds yields Eq.(23).

Lemma 4 (Transformed mismatch of IAF). Let us consider a normalizing flow IAF given by

zk = µk(zk−1, c) + σk(zk−1, c)⊙ zk−1,

where c = cd + cs. Then, the mismatch δz,k of IAF is bounded by

∥δz,k∥ ≤ (ρk + Lzµ,k + Lzσ,k∥zk−1∥) ∥δz,k−1∥
+ ∥δµ,k(cd)∥︸ ︷︷ ︸

swap-reversal violation (µ)

+ 2Lcsµ,k∥cs∥︸ ︷︷ ︸
leak (cs→µ)

+ ∥δσ,k(cs)∥∞ ∥zk−1∥︸ ︷︷ ︸
swap-invariant violation (σ)

+ 2Lcdσ,k∥cd∥ ∥zk−1∥︸ ︷︷ ︸
leak (cd→σ)

.

(25)

Proof. The derivation mirrors the proof in Eq.(23) except for two aspects. First, we replace δµ,k(cd)
and δσ,k(cs) with δµ,k(c) and δσ,k(c) respectively using definition Eq.(24). Decompose these terms
via insert–delete step:

δµ,k(c) = µk(zk−1, cd, 0) + µk(−zk−1, cd,swap, 0)︸ ︷︷ ︸
δµ,k(cd)

+
[
µk(zk−1, cd, cs)− µk(zk−1, cd, 0)

]︸ ︷︷ ︸
∆

(s)
1

+
[
µk(−zk−1, cd,swap, cs,swap)− µk(−zk−1, cd,swap, 0)

]︸ ︷︷ ︸
∆

(s)
2

,

δσ,k(c) = σk(zk−1, 0, cs)− σk(−zk−1, 0, cs,swap)︸ ︷︷ ︸
δσ,k(cs)

+
[
σk(zk−1, cd, cs)− σk(zk−1, 0, cs)

]︸ ︷︷ ︸
∆

(d)
1

+
[
σk(−zk−1, 0, cs,swap)− σk(−zk−1, cd,swap, cs,swap)

]︸ ︷︷ ︸
∆

(d)
2

.

For the ∆ terms, by the (A4),

∥∆(s)
1 ∥ ≤ Lcsµ,k∥cs∥, ∥∆(s)

2 ∥ ≤ Lcsµ,k∥cs∥,

∥∆(d)
1 ∥ ≤ Lcdσ,k∥cd∥, ∥∆(d)

2 ∥ ≤ Lcdσ,k∥cd∥.

Therefore, we obtain

∥δµ,k(c)∥ ≤ ∥δµ,k(cd)∥+ 2Lcsµ,k ∥cs∥,
∥δσ,k(c)∥ ≤ ∥δσ,k(cs)∥+ 2Lcdσ,k ∥cd∥.

Collecting the bounds yields Eq.(25).

Bound-Level Comparison between P-IAF and IAF Assume (A1)–(A4) hold and that P-IAF
and IAF share the same architecture and training hyperparameters so that they admit the same upper
bounds on the local Lipschitz constants {Lzµ,k, L

cd
µ,k, L

cs
µ,k, L

z
σ,k, L

cd
σ,k, L

cs
σ,k}, the same scale bounds

ρk, the same reward Lipschitz constant Lr, and the same initial mismatch ∥δz,0∥. By Lemma 3
and Lemma 4, the IAF per-step bound contains two additional non-negative leak terms, 2Lcsµ,k ∥cs∥
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and 2Lcdσ,k ∥cd∥ ∥zk−1∥, that are absent in P-IAF. Consequently, by induction over K starting from
Lemma 2,

UB
(
∥δz,K∥

)(P-IAF) ≤ UB
(
∥δz,K∥

)(IAF)
,

where UB(·) denotes the upper bound under the shared constants above.

Suppose in addition that the reward violation δr,K admits a common bound across the two flows,
i.e., δ(P-IAF)

r,K ≤ Cr and δ(IAF)
r,K ≤ Cr for some Cr ≥ 0. Combining this with Lemma 1, yields the

following bound-level comparison.

UB
(
|δp|

)(P-IAF) ≤ UB
(
|δp|

)(IAF)
.

Thus, P-IAF attains a tighter bound on |δp| than the IAF bound.

Remarks (i) Swap-guided base regularization to encoder output reduces ∥µ + µswap∥ and
∥ℓ − ℓswap∥, thereby directly decreasing the expected base mismatch in Eq.(20). (ii) P-IAF’s swap-
guided split (cd → µk, cs → σk) eliminates leak terms in a shared context, tightening the swap-
probability error bound.

C DETAILS OF ADAPTIVE LATENT CONDITIONING

We detail the adaptive latent conditioning applied in the decoder. As illustrated in Fig. 7a, the user-
latent z is mapped to a scale γ and shift β that modulate the incoming tokenized prompt-response
embedding e in a FiLM-style manner. Concretely, the decoder computes a latent conditioned repre-
sentation by applying dimension-wise scaling and shifting to e using γ and β, respectively.

(a) SPL decoder block (b) Validation accuracy during training

Figure 7: Details and training dynamics of the SPL decoder

Empirically, we also observe a training acceleration effect from adaptive latent conditioning.
Fig. 7b reports preference-prediction accuracy evaluated periodically during training on UF-P-4
with Llama-3.1-8B. The curve indicates that adaptive latent conditioning improves early-stage accu-
racy, suggesting that the reward model captures preferences more quickly with fewer samples. This
is beneficial in data-scarce settings with minority preferences.

When the user-latent encodes preference information clearly (i.e., is low-uncertainty), the decoder
leverages it via the modulation to personalize the reward. When the latent is uncertain or uninfor-
mative, the decoder naturally reduces the effective contribution of z, behaving closer to the base
model. This adaptability ensures robustness across users with different feedback levels and consis-
tency, while allowing strong personalization when reliable signals are available.
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D ADDITIONAL EXPERIMENTS

P-IAF vs. IAF We empirically test whether P-IAF yields better encoding performance than a
standard IAF. To this end, we introduce two variants:

• VPL-IAF: An extension of VPL with a basic IAF posterior, used to examine the effect of
a basic multi-modal posterior within a variational framework.

• SPL-IAF: Identical to SPL but replacing P-IAF with a standard IAF, serving as an ablation
to evaluate the contribution of P-IAF.

These variants are not based on prior work; we design them specifically to compare our P-IAF with
an IAF-based multi-modal posterior and to quantify the performance gains from P-IAF.

Table 4: Preference-prediction accuracy (%)

Model Method UF-P-2 UF-P-4

Llama-3.2-3B

VPL 62.37 ± 0.15 57.03 ± 0.10
VPL-IAF 62.35 ± 0.11 58.01 ± 0.43
SPL-IAF 63.09 ± 0.14 59.50 ± 0.07
SPL (Ours) 63.28 ± 0.13 61.56 ± 0.03

Llama-3.1-8B

VPL 62.66 ± 0.23 57.14 ± 0.05
VPL-IAF 62.82 ± 0.13 58.65 ± 0.09
SPL-IAF 63.26 ± 0.09 60.56 ± 0.34
SPL (Ours) 63.71 ± 0.18 62.21 ± 0.06

Simply adding IAF to VPL (VPL-IAF) does not yield robust encodings and often fails to prevent
collapse. Likewise, replacing the P-IAF component in SPL with IAF (SPL-IAF) noticeably reduces
accuracy. Nevertheless, SPL-IAF still achieves higher accuracy than VPL-IAF. Collectively, these
results show that swap-guided base regularization and P-IAF effectively encode user preferences
into identifiable user-latent variables.

(a) VPL (b) VPL-IAF (c) SPL-IAF (d) SPL

Figure 8: Latent embeddings learned on the UF-P-4 dataset. We visualize 2D UMAP of latent
embeddings z from VPL, SPL, and their IAF variants (VPL-IAF and SPL-IAF), using Llama-3.1-
8B to compare P-IAF against a standard IAF.

Fig. 8 visualizes the 2D UMAP projections of latent embeddings z on the UF-P-4 dataset. For
VPL, the embeddings collapse into a single, non-identifiable cluster across preference types. For
VPL-IAF, the embeddings do not collapse but remain scattered, concentrating in several dense re-
gions. SPL-IAF likewise prevents collapse, with slightly lower accuracy than SPL. Its embeddings
are less scattered than VPL-IAF while still constructing a complex posterior. In contrast, SPL most
clearly separates preference types in latent space. Together, these observations suggest that a stan-
dard IAF allocates its modeling capacity to complex, unconstrained transformations of the latent
space rather than to swap-derived structure. In contrast, our P-IAF preserves the expressivity of IAF
while constraining it through swap-guided encoding, reducing unnecessary complexity and yielding
more identifiable user-latent embeddings.
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Effect of Components We evaluate the effects of (i) base regularization Lguide, (ii) P-IAF, and (iii)
adaptive latent conditioning through an ablation on UF-P-4 with Llama-3.1-8B. Table 5 summarizes
results.

Table 5: Effect of each component

Lguide P-IAF z cond. Acc. [%] Active Units [%]

✓ 57.18 0.00
✓ 59.10 11.03

✓ 56.95 0.00
✓ ✓ 56.87 0.00
✓ ✓ 62.14 94.24

✓ ✓ 62.08 93.07
✓ ✓ ✓ 62.21 96.19

First, regarding the swap-guided base regularization (Lguide), it was originally designed to guide P-
IAF to learn an effective multi-modal posterior. Thus, the base regularization used alone without
P-IAF, its effect naturally becomes modest because the model continues to generate a unimodal
Gaussian posterior, which limits its ability to capture complex preference patterns. However, when
combined with P-IAF, its effect is greatly enhanced: accuracy increases from 59.10% to 62.14%,
and active units from 11.03% to 94.24%. We further evaluate swap-guided base regularization for
preference encoding on the UF-P-4 dataset using Llama-3.2-3B, comparing it with the baselines.
The results are summarized in Table 6.

Table 6: Effect of the swap-guided base regularization

Model Method Accuracy [%] Active Units [%]

Llama-3.2-3B

BTL 57.07 -
VPL 57.03 0.00
VPL w/ Lguide 57.56 45.61
VPL-IAF 58.01 39.45
SPL (Ours) 61.56 82.32

The performance of VPL with base regularization lies between that of the original VPL and VPL-
IAF. This shows that swap-guided base regularization improves VPL accuracy. Although improve-
ment is smaller than that achieved by the IAF, this outcome is reasonable because the base regulariza-
tion alone still produces a unimodal Gaussian posterior, while the IAF generates a multi-modal pos-
terior. A unimodal posterior has limited capacity to capture complex preference structures, whereas
a multi-modal posterior can represent richer and more diverse patterns. However, our design goal
was not for swap-guided base regularization to serve as a strong preference encoder on its own, but
rather to guide the construction of a multi-modal posterior in P-IAF by leveraging the structure of
preference pair data. Nevertheless, the gains observed in some settings suggest that base regulariza-
tion can also be effective as a stand-alone method for preference encoding.

Second, regarding adaptive latent conditioning, its primary role, as discussed in Appendix C, is
to accelerate training and provide more stable optimization. Beyond these benefits, adaptive latent
conditioning also helps models become more robust to noisy preference labels. To demonstrate
this, we also evaluate robustness to noise, where the annotator occasionally selects the opposite or
unrelated label. This type of noise can frequently arise in real-world settings. Concretely, on the
UF-P-4 dataset, we construct a noisy variant where 75% of preference pairs are unchanged and 25%
are flipped, so the originally preferred response becomes less preferred. Table 7 shows results for
Llama-3.2-3B.
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Table 7: SPL accuracy and active units with noise on UF-P-4

Model Method Accuracy [%] Active Units [%]

Llama-3.2-3B

SPL 61.41 82.62
SPL w/o z cond. 58.08 80.37
SPL w/o Lguide, z cond. 56.92 0.00
VPL 56.98 0.00

The results show that adaptive latent conditioning is essential for training noise-robust models. In
the noisy setting, SPL achieves nearly the same preference-prediction accuracy as in the noise-
free setting. Without adaptive latent conditioning, posterior collapse does not occur, but accuracy
drops substantially. Moreover, if we additionally remove base regularization, the model exhibits
collapse. For VPL, collapse occurs regardless of label noise. These findings show that swap-guided
base regularization and adaptive latent conditioning together enable robust learning under noisy user
feedback, making them essential for real-world settings with inherently noisy user choices. Across
all ablations, these experiments show that combining these modules prevents collapse, produces
informative user-latent variables, and achieves the best overall performance.

Effect of P-IAF Depth We explore the effect of P-IAF depth K on SPL. Each step updates the
entire latent vector, allowing P-IAF to model high-dimensional structures using fewer steps. Using
this property, we limit the range to shallow stacks and evaluate K ∈ {1, 2, 4}. Table 8 indicates that
K = 2 yields the best performance. Thus, K = 2 is our default for all experiments. A single step
prevents collapse and improves accuracy. With K = 4, performance drops, suggesting unnecessary
expressivity reduces preference-prediction accuracy, similar to standard IAF.

Table 8: Effect of P-IAF depth K on UF-P-4

K Accuracy [%] Active Units [%]

1 60.58 91.60
2 62.21 96.19
4 61.92 93.16

Preference Learning with fewer preference pairs We evaluate preference learning on the UF-
P-4 dataset when only a few preference pairs are provided to the model. Specifically, compared to
the default setting, we randomly supply fewer pairs (n ∈ {2, 3, 4}) to Llama-3.2-3B and measure
preference-prediction accuracy. As summarized in Table 9, SPL effectively encodes user preferences
even under such limited preference signal. By contrast, VPL mitigates collapse with fewer pairs but
captures user preferences poorly, resulting in accuracy similar to standard RLHF.

Table 9: Accuracy and active units with fewer preference pairs

Model Method Accuracy [%] Active Units [%]

Llama-3.2-3B
BTL 56.94 -
VPL 56.92 31.35
SPL (Ours) 58.12 61.13

Hyperparameter ablations We study the effect of the guidance loss hyperparameters λ and η.
The coefficient λ controls the overall strength of the swap-guided base regularization term in Eq. (7),
while η balances the mean and standard deviation components within this loss. Their effects on
preference-prediction accuracy on UF-P-4 using Llama-3.2-3B are summarized in Tables 10 and 11.
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Table 10: Effect of guidance loss weight λ

λ Accuracy [%] Active Units [%]

1.0× 10−3 61.19 ± 0.40 81.05 ± 4.98
1.0× 10−4 60.90 ± 0.20 79.33 ± 0.69
1.0× 10−5 61.56 ± 0.03 82.32 ± 3.18
1.0× 10−6 59.74 ± 0.09 72.01 ± 1.62
w/o Lguide 58.53 ± 0.13 78.58 ± 1.59

Table 11: Effect of guidance balancing weight η

η Accuracy [%] Active Units [%]

0.10 61.56 ± 0.03 82.32 ± 3.18
0.25 61.49 ± 0.11 83.11 ± 2.50
0.50 61.18 ± 0.18 78.22 ± 0.98
1.00 61.44 ± 0.06 83.50 ± 2.98

These results show that λ = 1.0× 10−5 and η = 0.1 achieve the best performance. While η affects
accuracy only minimally, λ has a more notable influence, which is expected since it directly controls
the contribution of the guidance loss during optimization.

Table 1 shows that SPL is robust across a wide range of β values, and Tables 10 and 11 indicate that
coarse manual tuning of λ and η is sufficient to obtain stable performance. Thus, the overall tuning
effort for SPL is no greater than that of standard preference learning methods.

E IMPLEMENTATION DETAILS

E.1 HYPERPARAMETER SETTINGS

We detail the hyperparameters used in our experiments. Table 12 specifies the settings for generating
the Pets and UF-P datasets. Table 13 specifies the training and evaluation hyperparameters. All
experiments were run on a single NVIDIA RTX 4090 GPU and completed within two days.

Table 12: Hyperparameters for data generation

Hyperparameter Value
Token embedding dimension 3072 (Llama-3.2-3B-instruct), 4096 (Llama-3.1-8B-instruct)
Max length 1024
Max preference pairs per sample n 8
survey size for UF-P 16
Token data type bfloat16
Training samples in dataset 4,000 (for Pets), 55,636 (for UF-P-2), 111,272 (for UF-P-4)
Evaluation samples in dataset 400 (for Pets), 6,042 (for UF-P-2), 12,084 (for UF-P-4)
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Table 13: Hyperparameters for experiments

Hyperparameter Value
Encoder input dimension 3072 (Llama-3.2-3B-instruct), 4096 (Llama-3.1-8B-instruct)
Latent dimension d 1024
Learning rate 1.0 × 10−4

Learning rate scheduler cosine with 3% warm-up steps
Epoch 2
P-IAF flow step K 2
Batch size 32 (for Pets), 64 (for UF-P)
Optimizer AdamW(with weight decay = 0.001)
KL Divergence weight β 1.0× 10−4 (for Pets), 3.0× 10−6 (for UF-P)
KL annealing scheduler cosine cyclical from 0 to 1 (period = 10,000 steps)
Guidance loss weight λ 1.0× 10−5

Guidance balancing weight η 0.1
Active units threshold δ 0.005

E.2 ALGORITHMS

Algorithm 1 Swap-guided Preference Learning (SPL)

Require: Preference Data D = {Dh1
, · · · ,Dhm}

Require: Encoder qψ , K-step P-IAF FKψ , Reward Model rϕ, prior p(zk)
1: while not done do
2: Sample Dh = {xi, yiw, yil}ni=1 ∼ D
3: Tokenize ei(·) = LLMSFT(xi, yi(·))

4: Compute µ, ℓ, c = qψ({eiw, eil}ni=1), µswap, ℓswap, cswap = qψ({eil, eiw}ni=1)
5: Sample z0 ∼ N (µ, ℓ)
6: Compute cd =

1
2 (c− cswap), cs =

1
2 (c+ cswap)

7: Compute zK = FKψ (z0, cd, cs)
8: Compute rewards: rw = rϕ(ew, zK) and rl = rϕ(el, zK)
9: Compute reconstruction loss: Lrecon = − log(σ(rw − rl))

10: Compute KL-loss: LKL = β ·DKL

(
log qψ(zk | Dh)∥p(zK)

)
11: Compute guidance loss: Lguide = λ ·

[
1
2

(
1 + cos(µ,µswap)

)
+ η 1

2

(
1− cos(ℓ, ℓswap)

)]
12: Compute total loss: Ltotal = Lrecon + LKL + Lguide
13: Update E, qψ , FKψ and rϕ by optimizing Ltotal
14: end while

F POTENTIAL AND SOCIAL EFFECTS

We address the tendency of standard RLHF to bias rewards toward majority preferences by encoding
a user preference from a small number of comparisons and conditioning the policy on a user-latent,
yielding a personalized policy πθ(y | x, zk). We post-train the policy with

max
πθ

E
h∼H

[
E
x∼D

y∼πθ(y|x)
zk∼qψ(zk|Dh)

[
rϕ(x, y,zk)

]
− βDKL

[
πθ(y | x, zk) || πSFT(y | x)

]]
, (26)

which trains and deploys distinct behaviors conditioned on zk inferred from the user’s own choices.
This differs from approaches that keep a single global policy and simply change the input x via a
user context: here, the conditional policy itself learns to act differently under different latents, rather
than relying on prompt-only adaptation (Dong et al., 2022).

The scheme in Eq.(26) naturally extends to implicit-reward objectives such as Direct Preference
Optimization (DPO) (Rafailov et al., 2023) by conditioning the policy and implicit reward surrogate
on zk.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Plus, conditioning policy on user-latent is not limited to LLMs: Our swap-guided encoding and
adaptive latent conditioning can be used when preferences are difficult to summarize, including in
generative models or control settings (Poddar et al., 2024; Wang et al., 2025; Ng et al., 2025).

G NOTATIONS

Table 14: Notations

Notation Meaning Notation Meaning
Indices & counts Embeddings, latents & contexts

i preference-pair index ew embedding of yw
n number of preference-pair in sample el embedding of yl
N total number of preference-pair z latent embedding
j dimension index µ mean
k flow step σ standard deviation
K total flow step ℓ log-variance
d latent dimension ϵ random noise

c shared context
cd swap-reversal context
cs swap-invariant context

Users & sets Models & functions
h a user (annotator) q(·) encoder / variational posterior
H user population r(·) decoder / reward function
D full preference dataset p(·) preference probability
Dh user h’s preference dataset f(·) autoregressive transform
p a preference type µk(·) shift function at step k
P set of preference types σk(·) scale function at step k

Prompt & response Parameters & weights
x prompt ψ learnable params (encoder & flow)
y response ϕ learnable params (decoder)
yw chosen (winning) response β KL-divergence weight
yl rejected (losing) response λ guidance loss weight

η guidance balancing weight

Norms Throughout, ∥ · ∥ denotes the Euclidean norm for vectors and the Frobenius norm for
matrices. We use ∥ · ∥∞ for the entrywise max norm when needed.

THE USE OF LARGE LANGUAGE MODELS

We employed an LLM-assisted search to identify prior work on posterior collapse in VAEs and user-
representation policies across domains. All retrieved items were manually reviewed by the authors
to confirm their relevance before citation.
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