
Combining Case-Based Reasoning with Deep Learning:
Context and Ongoing Case Feature Learning Research

David Leake, Zachary Wilkerson, David Crandall
Luddy School, Indiana University, Bloomington, IN 47405, USA

{leake, zachwilk, djcran}@indiana.edu

Abstract

Case-based reasoning (CBR) and neural network models
have complimentary strengths. Neuro-Symbolic hybrids of
the two are promising for leveraging the inherently inter-
pretable CBR process with capabilities of neural systems, fa-
cilitating processing of nonsymbolic inputs such as images
and increasing system accuracy. Such hybrids also can help
alleviate challenges for pure neural systems by facilitating ex-
planation of system behavior and integrating domain knowl-
edge. This paper briefly surveys prior directions in combin-
ing CBR with deep neural networks and summarizes ongoing
research on combining CBR and deep learning to generate
indices for case retrieval. This work focuses especially on se-
lecting network architectures and feature extraction locations
within a network to improve generation of CBR-useful fea-
tures.

Introduction
The success of neural methods, notably learning with deep
neural networks, has transformed AI. However, as is well
known, such models have limitations as well, such as the
need for large sets of training information and the difficulty
of explaining their behavior. Much research has focused on
addressing explainability as an add-on, with post-hoc ex-
planations of deep learning (DL) models, but limitations of
such approaches have prompted arguments for using inher-
ently interpretable models (Rudin 2019). The complemen-
tary strengths of neural and symbolic models have led to ex-
tensive research on combining paradigms to achieve benefits
of both (e.g., Hitzler, Sarker, and Eberhart, 2023).

This short paper highlights one area of neurosymbolic
integration: combining case-based reasoning (CBR) with
learning with deep neural networks. Computer models of
CBR are inspired by the human behavior of reasoning by re-
membering and adapting solutions to prior problems (Leake
1998). CBR systems reason from specific experiences: they
solve new problems by retrieving past cases of similar pre-
vious problems and adapting the corresponding solution
to fit the new problem (Kolodner and Leake 1996). Case-
based reasoning offers three main benefits. First, CBR is
interpretable; human subjects studies support that present-
ing retrieved cases is effective for justifying CBR model
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decisions (Cunningham, Doyle, and Loughrey 2003; Gates,
Leake, and Wilkerson 2023). Second, its ability to analogize
from past cases can facilitate solving problems with struc-
tured solutions and enable successful reasoning from few
examples. Third, it provides multiple opportunities for in-
tegrating existing knowledge into the reasoning process, be-
cause of the capability to incorporate retrieval knowledge,
similarity knowledge, and case adaptation knowledge.

Knowledge used by CBR has traditionally been acquired
from domain experts via knowledge engineering. Collecting
such knowledge may be difficult or expensive, or it can be
infeasible for domains such as image classification. Conse-
quently, integrating CBR with a DL system for tasks such
as identifying features for indexing cases could facilitate the
application of CBR to nonsymbolic tasks, and the combined
systems can provide interpretability and easy knowledge in-
tegration, both of which are challenging for DL alone.

DL-CBR integrations have received attention both for im-
proving network performance and explainability (Li et al.
2018; Chen et al. 2019; Barnett et al. 2021; Kenny and
Keane 2019; Koch, Zemel, and Salakhutdinov 2015; Vinyals
et al. 2016; Sani et al. 2018; Sung et al. 2018; Turner et al.
2018, 2019) and improving CBR system performance (Sani,
Wiratunga, and Massie 2017; Ye et al. 2020; Amin et al.
2020; Hoffmann et al. 2020). This short paper highlights
some of this foundational work and summarizes current
work by the authors on refining DL-based index generation
for accurate CBR retrieval (Wilkerson, Leake, and Crandall
2021; Leake, Wilkerson, and Crandall 2022; Leake et al.
2023).

Case-Based Reasoning
CBR systems generate solutions to new problems by retriev-
ing and adapting the solutions to similar prior problems, and
learn by storing the results in a “case base” of prior cases
(Kolodner and Leake 1996). Given a new problem, the CBR
system retrieves the stored case for the most similar prior
problem (e.g., based on weighted Euclidean distance for
problems described by a feature vector). It then adapts the
prior solution to the differences between the two problems.
The adapted solution is applied to the new problem or other-
wise evaluated for effectiveness, is annotated with the prob-
lem description and result (e.g., was it successful/correct?),
and is added to the case base as a new case. CBR systems



perform lazy learning, storing cases without generalization.

Research Currents for DL-CBR Integrations
DL-CBR integrations have been realized in multiple ways.
We examine three directions: applying CBR case-oriented
design to make the networks more explainable, learning sim-
ilarity metrics to improve CBR similarity assessment, and
using DL to extract feature information for a CBR system.

Increasing DL Interpretability and
Explaining DL Results
Case-oriented network design has been applied to increase
the interpretability of network component/hidden-layer pro-
cesses (Li et al. 2018; Chen et al. 2019; Barnett et al.
2021). In this work, prototype networks incorporate data
sub-component knowledge (e.g., wings, beaks, etc. for bird
species classification) directly into the neural architecture
as prototype features to encourage learning to align with
human-understandable concepts. The networks calculate
similarity scores between outputs from one hidden layer and
the set of prototypes, which in turn are passed into the later
layers that inform the classification. Such models require
knowledge that other DL models do not, but they make de-
cisions on a smaller set of more explainable features.

CBR has also been used to provide post-hoc explanations
of otherwise black-box DL systems (Bach and Mork 2020;
Kenny and Keane 2019). DL-CBR “twin systems” combine
DL networks with CBR models applying the same feature
data, to enable explanation of network decisions based on
cases that are similar according to factors important to the
network output (Kenny and Keane 2019).

Using Networks for CBR Similarity Assessment
Neural metric learners predict the likelihood that two exam-
ples belong to the same class. Approaches include Siamese
networks (Koch, Zemel, and Salakhutdinov 2015), rela-
tional networks (Sung et al. 2018), and matching networks
(Vinyals et al. 2016). CBR systems can leverage such ap-
proaches for similarity calculations using neural models in-
stead of traditional methods (Mathisen et al. 2020). Such
methods have been applied to integrations in a variety of do-
mains (e.g., natural language processing (Amin et al. 2020)
and workflow processing (Hoffmann et al. 2020)); addition-
ally, using neural systems both for similarity and case adap-
tation enables both methods to be tuned in combination to
maximize overall performance (Ye et al. 2020).

DL Feature Extraction for CBR
Many CBR systems use feature-vector problem representa-
tions for similarity calculations (e.g., via Euclidean distance
between vectorized feature sets), with features determined
by a domain expert. Feature extraction from the outputs
of DL hidden layers is appealing as an alternative method
to augment existing domain knowledge (e.g., (Turner et al.
2018, 2019; Sani, Wiratunga, and Massie 2017)), including
for generating features for hard-to-analyze data such as im-
ages. Such feature extraction models leverage the effective-
ness of DL models for condensing multi-dimensional input

Figure 1: Feature extraction dataflow from the DL model
(right) to the CBR cycle (bottom left, after Aamodt and
Plaza (1994)). In our approach, features are extracted prior
to the output layer of the DL model and combined with any
existing knowledge-engineered (KE) features to form a fea-
ture vector for CBR retrieval. The figure illustrates feature
extraction from a convolutional neural network structure but
may be generalized to other DL models from which feature
vectors may be extracted. Figure is from Leake et al. (2023).

data into feature vectors for CBR retrieval. This can inform
relative classification on example images to support a DL
classifier when it is not confident in its decision, by en-
abling the system to group a query with other similar exam-
ples in the case base (Turner et al. 2018, 2019). Addition-
ally, nearest-neighbor classification with features extracted
from a network can outperform handcrafted features in do-
mains with complex feature data (e.g., Sani, Wiratunga, and
Massie, 2017).

Recent Research on Extraction of DL Network
Features to Use for CBR Retrieval

Recent research develops methods for extracting features
from deep neural networks to use for case retrieval, with
the goal of generating features that result in higher CBR
system accuracy for a classification task. The aim is to ex-
ploit neurally-generated information to maximize CBR per-
formance in order to provide effective and interpretable clas-
sification. Figure 1 illustrates the extraction dataflow. Our
work studies how the quality of DL-extracted features for
CBR is influenced by factors such as the DL model archi-
tecture and the layers from which features are extracted.

Many factors affect the interplay between DL and CBR
systems combined for DL-CBR integrations. One is train-
ing procedure. Many DL-CBR systems train the DL model
independently and use the CBR system for testing; this re-
duces training cost by avoiding repeated CBR retrievals dur-
ing training, but systems that consider CBR performance
during training may have the potential to generate higher-
quality features. We plan to explore this in our future work.

Feature quality could also be influenced by DL system pa-
rameters, either at the model level (e.g., architecture choice,



Figure 2: Classification accuracy by number of features ex-
tracted, for the Animals with Attributes data set (Xian et al.
2018). Each series shows a different feature extraction lo-
cation (i.e., after convolution layers or densely-connected
layers) or structure (i.e., Multi-net), compared against the
baseline network model. Figure from Leake, Wilkerson, and
Crandall (2022).

feature extraction location, etc.) or the layer level (e.g., num-
ber of features extracted, activation function, etc.). CBR re-
trieval is often (but not always) based on comparison of flat
feature vectors. Consequently, our current work focuses on
extracting flat feature vectors (in contrast to, for example,
multi-dimensional feature maps outputted by convolutional
layers). Extracting flat feature vectors from convolution or
similar layers could be difficult. Overall the range of possi-
ble layers and desirability of extraction from other types of
layers remains a question for future study.

One of our investigations concerns choice of layers from a
CNN from which to extract feature information. Each of the
previously described feature extraction models makes the
plausible assumption that, when using a convolutional neu-
ral network as the feature extractor, features should be ex-
tracted immediately after the convolution layers. While this
makes sense given the conceptualization of convolution as
isolating atomic features (e.g., shapes in images) from multi-
dimensional data, newer work hypothesizes that the densely-
connected neural network layers combine these atomic fea-
tures into more complex indices that are more suitable for
CBR retrieval (Leake, Wilkerson, and Crandall 2022). This
explores the following choices and their effects on feature
quality (Figure 2):

1. Feature extraction location. We found that extracting
features from the penultimate layer (i.e., using the out-
puts of the layer prior to the output layer) of the network
generated higher-quality features, evidenced by higher
classification accuracy.

2. Number of features extracted. For a given data set, there
appears to be an optimal number of features to extract
from the network for feature quality; we hypothesize that

using too few hinders DL model convergence, and using
too many leads to performance degradation due to the
“curse of dimensionality” for nearest-neighbor retrieval.

3. Multi-net architecture for improved feature quality. We
found that, in contrast to training a single N -class classi-
fier, training N binary classifiers to differentiate between
examples from each class versus all other classes led to
better feature quality. Multi-net also had a smaller opti-
mal number of features extracted, which could help fa-
cilitate explanation, at a cost of more expensive training.

How Network Architecture
Affects Feature Quality

Our initial work on feature extraction for CBR retrieval
considers only feature extraction from a single DL archi-
tecture, AlexNet (Krizhevsky, Sutskever, and Hinton 2012).
However, there exist many DL models, including those with
classification accuracy superior to AlexNet. Consequently,
we tested other models–VGG-19, DenseNet121, and Incep-
tion V3 (Khan et al. 2019)—as feature extractors, evaluat-
ing their impact on feature quality. We draw the following
conclusions from experimental results reported in Leake et
al. (2023), as well as preliminary data conducted using pre-
trained versions of the same models:

1. CBR-based classification does not mitigate network
overfitting on small-data scenarios. AlexNet and
DenseNet feature extractors appeared most resistent to
overfitting in our tests, but the classification accuracy for
all models exhibited overfitting for limited data. In some
cases, even the training accuracy was low, suggesting the
model did not have enough training data for convergence.

2. Transfer learning can enable high DL-CBR perfor-
mance. Preliminary data using pre-trained versions of
the same models suggests that accuracy is significantly
higher, and that overfitting is less pronounced. In particu-
lar, it appears that more complex models (e.g., Inception)
produce higher-quality features when pre-trained.

Using Extracted and Knowledge-Engineered
Features in Concert

DL-based feature extraction can produce useful knowledge
for CBR systems for domains for which knowledge engi-
neering is costly or inaccurate. However, sometimes use-
ful hand-crafted symbolic indices are already available.
We have explored the effects of combining knowledge-
engineered features injected with varying degrees of random
noise with extracted features for retrieval versus retrieval us-
ing either feature set individually (Wilkerson, Leake, and
Crandall 2021). The results of these experiments suggest
that neural model extraction of features from data can use-
fully supplement existing knowledge-engineered features,
providing the greatest benefit when knowledge-engineered
features are potentially inaccurate (Wilkerson, Leake, and
Crandall 2021; Leake et al. 2023). In addition, knowledge-
engineered features can help offset the suboptimal quality of
features extracted from networks that have not converged or
that overfit to their training data (Leake et al. 2023).



Conclusions
This short paper presented a survey of research that com-
bines a symbolic method (CBR) with DL systems for greater
performance, flexibility, and explainability. After sketching
out some of the landscape of DL-CBR integrations, we de-
scribed our ongoing research on DL-based feature extrac-
tion for CBR retrieval applied to image classification. We
believe that opportunities exist to increase feature quality
by coupling neural models and CBR more closely, espe-
cially through further focus on determining which network
structures and locations are most suitable for feature extrac-
tion, on the application of knowledge-engineered and ex-
tracted features in concert, and integrating CBR system per-
formance criteria into backpropagation training.
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