
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VISUAL AGENTS AS FAST AND SLOW THINKERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Achieving human-level intelligence requires refining cognitive distinctions be-
tween System 1 and System 2 thinking. While contemporary AI, driven by large
language models, demonstrates human-like traits, it falls short of genuine cogni-
tion. Transitioning from structured benchmarks to real-world scenarios presents
challenges for visual agents, often leading to inaccurate and overly confident re-
sponses. To address the challenge, we introduce FAST, which incorporates the
Fast and Slow Thinking mechanism into visual agents. FAST employs a switch
adapter to dynamically select between System 1/2 modes, tailoring the problem-
solving approach to different task complexity. It tackles uncertain and unseen
objects by adjusting model confidence and integrating new contextual data. With
this novel design, we advocate a flexible system, hierarchical reasoning capabil-
ities, and a transparent decision-making pipeline, all of which contribute to its
ability to emulate human-like cognitive processes in visual intelligence. Empir-
ical results demonstrate that FAST outperforms various well-known baselines,
achieving 80.8% accuracy over V QAv2 for visual question answering and 48.7%
GIoU score over ReasonSeg for reasoning segmentation, demonstrate FAST’s
superior performance. Extensive testing validates the efficacy and robustness of
FAST’s core components, showcasing its potential to advance the development of
cognitive visual agents in AI systems. The code is available at this link.

1 INTRODUCTION

Q1: Which holiday do you 
think they are celebrating?

Q2: Is the telephone on the left 
or right side of the hand lamp?

Ans: Maybe it’s 
Christmas! 

Ans: The telephone 
is on the right.

Slow

Fast

<seg>
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✅
Segment the evidence

[Clue]
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Q1: Which holiday do you 
think they are celebrating?

Q2: Is the telephone on the left 
or right side of the hand lamp?
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SlowFast✅ ✅
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The Telephone is 

likely on the table.
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Chain of Evidence Construction
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Figure 1. Working Pipeline. FAST represents a
solution rooted in system switching, demonstrating
pronounced capabilities in hierarchical reasoning
and ad-hoc explainability.

In the field of artificial intelligence, System 2 de-
lineates a cognitive mode distinguished by delib-
erate, analytical, and consciously reasoned pro-
cesses (Wei et al., 2022; Wang et al., 2023d; Ze-
likman et al., 2022; Zhou et al., 2023; Hua &
Zhang, 2022). This mode is juxtaposed to System
1, which embodies intuitive, automatic, and uncon-
scious cognition. Achieving human-level intelli-
gence in AI systems necessitates the deliberate cul-
tivation and refinement of these cognitive distinc-
tions. This process is crucial for the development
of advanced reasoning and decision-making capa-
bilities (Zhang et al., 2023d;e; Hao et al., 2023).

The emergence of foundation models marks a sig-
nificant turning point, where Large Language Mod-
els (LLMs) based agents have made remarkable
strides in many areas, showcasing human-like in-
telligence across diverse tasks (Brown et al., 2020;
Kojima et al., 2022; Ge et al., 2023). However,
this achievement is primarily attributed to some fea-
tures of foundation models: overparameterization and the availability of vast, general-purpose
datasets (Kaplan et al., 2020; OpenAI, 2024). It is imperative to note that while these models ex-
hibit human-like traits (e.g., inductive and deductive reasoning (Huang & Chang, 2023b; Dasgupta
et al., 2022; Jin et al., 2024)), these characteristics do not equate to the processes of System 1/2
thinking (Nye et al., 2021; Yao et al., 2023b) and are far less intelligent than human thinking.
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In practice, visual agents often encounter challenges when moving from controlled, structured
benchmarks to complex, real-world environments (Wu & Xie, 2024; Ge et al., 2023). This prob-
lematic circumstance will result in spurious reasoning pathways, akin to hallucinations, where they
struggle to acknowledge their limitations or uncertainties (Gunjal et al., 2024; Chen et al., 2023c).
Such an issue arises from the absence of explicit modeling of the fast and slow cognitive processes,
reminiscent of human System 1 and System 2 thinking (Yao et al., 2023b; Kahneman, 2011). Con-
sequently, when faced with intricate inquiries, the Multimodal Large Language Model (MLLM)
frequently offers overly confident yet inaccurate responses (Wu & Xie, 2024; Chen et al., 2024b;
Tong et al., 2024a). Addressing this problem entails reassessing MLLM algorithms to incorporate
insights from the interplay between fast and slow thinking (System 1 and System2) observed in hu-
man cognition. Our design philosophy guides us to incorporate human qualities into our work.

In this study, we introduce the Fast and Slow Thinking (FAST) mechanism into visual agents. More
concretely, we design a switch adapter to determine whether the encountered problems are best ad-
dressed using which thinking mode. Simple tasks require only fast thinking (System 1) for a straight-
forward problem-solving pipeline, while complex tasks necessitate the slow, deliberate processing of
System 2 (see Fig. 1). Specifically, System 2 is triggered when we encounter visual challenges that
have: ① Uncertainty: When the model has low confidence in directly identifying the object to which
the complex query is referring. For example, the query asks “the appliance for storing and cooling
food” instead of “refrigerator,” and ② Invisibility: When dealing with minuscule-sized objects that
evade detection by standard visual encoders, where normal visual agents cannot tell what it is. This
switch adapter is achieved by designing negative contextual data to re-adjust the model’s confidence
and ignite world knowledge (as detailed analysis in §3.2). Subsequently, a proposal adapter is en-
gaged to outline regions that are related to the questions. This allows visual agents to leverage the
newly acquired data, thereby facilitating a more detailed and precise response. Further, if the inquiry
necessitates detailed insights into particular instances, a seg adapter provides segmentation masks,
offering additional contextual information for deeper analysis (as detailed analysis in §3.3).

FAST enjoys a few attractive qualities. ❶ Flexible system: Building on a foundation that explicitly
models System 1/2 thinking, our proposed method adeptly handles complex visual tasks, demon-
strating competitive performance in a streamlined pipeline (see §2.1). FAST’s core epistemology
combines an intuitive mechanism for straightforward cases with deliberate analytics for more intri-
cate scenarios, thereby enhancing the development of a human-like visual agent. ❷ Hierarchical
reasoning: FAST perceives visual tasks with a top-down granularity, encompassing image-level
cues, box-level candidates, and pixel-level targets (see Fig. 2). This progressive approach facili-
tates a sensible understanding of visual content, starting from global concepts, progressing through
region-specific candidate assessment, and culminating in precise target identification. Each stage in-
volves developing concrete ideas and establishing a coherent “chain of evidence” to support the final
inference. ❸ Transparent pipeline: FAST’s decision-making process embodies a neuro-symbolic
essence in System 2 mode, yielding intermediate step outputs as interpretable symbols (e.g., bound-
ing boxes or masks), facilitating direct visual inspection by humans. This inherent reasoning mech-
anism enables ad-hoc explainability of the model’s behavior (see Fig. 3), distinguishing FAST from
prior approaches (Liu et al., 2024a) that lack precise explication of their operational mechanisms.

We conducted a series of experiments to validate the efficacy of our proposed method. In §3.1.1,
we apply FAST to visual question answering and multimodal benchmarks. FAST demonstrates
significantly improved performance over baselines such as LLaVA-v1.5 (Liu et al., 2024a), achiev-
ing performance gains on benchmarks like TextVQA (Singh et al., 2019) with a 2.5% increase in
accuracy and a total score improvement of 6.7 on MME (Fu et al., 2024). In §3.1.2, we explore
the versatility of our approach through its application to tasks such as referring and reasoning seg-
mentation, with performance gains including an increase of 4.1% CIoU with LLaVA-v1.5, and
improvements of 3.2% CIoU and 2.7% GIoU on the ReasonSeg dataset over LISA-7B (Lai et al.,
2024). The robustness and effectiveness of the core components of our FAST framework are further
substantiated through a series of ablation studies, as elaborated in §3.3.

2 METHODS

Notation. The integration of components in visual agents F (based on the Large Language Model)
typically involves a visual encoder, denoted as EV , a nature language encoder, represented by EL,
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and a Language Language Model such as Vicuna (Chiang et al., 2023). Initially, the visual agent is
presented with an image I and an accompanying textual prompt Q, which could be a question or
instruction. Then the visual agent combines these multimodal tokens into a united space. Finally,
the visual agent outputs a textual response R given the textual and image input. The generation
process can be expressed as Eq. 1:

R = F [EV (I), EL(Q)] (1)

Definition 1 (System 1 and System 2) System 1 and 2 are two different systems of thinking proposed
by Nobel Laureate Daniel Kahneman in his book Thinking, Fast and Slow (Kahneman, 2011).

System 1 (Fast Thinking): Unconscious, automated thinking processes, fast, intuitive, effortless
responsible for automatic responses and basic cognitive operations in daily activities, vulnerable to
heuristic biases and errors, e.g., recognizing familiar faces, and knowing the location of objects.

System 2 (Slow Thinking): Conscious, energetic thinking processes, slow, effortful, logical, and
analytical, responsible for complex calculations, reasoning, and decision-making, can monitor and
control System 1 processes, e.g. filling out a tax form, finding the position of a word in a sentence.

2.1 FAST

We present FAST (see Fig. 2), a novel framework designed to efficiently handle both simple and
complex visual queries. FAST features a dynamic system switch mechanism that enables rapid re-
sponses to straightforward questions (System 1) and accommodates deliberate reasoning for intricate
scenarios (System 2). During slow thinking, the system uses contextual clues to identify a relevant
region, facilitated by a proposal adapter. The adapter generates a bounding box around the target
object, and if needed, a pixel-level mask adapter refines the proposal for further details. Finally, we
summarize the gathered information from the whole system to provide a comprehensive answer.

System Switch. Current works on visual agents mostly rely on visual question-answering data,
which gives direct answers (System 1) after inquiry as Eq. 1. However, attempting to answer ques-
tions directly in this way can compromise the reliability of the responses. Agents tend to hallucinate
over questions that require more deliberate reasoning and visual details. To reduce hallucination
and make the model reliable, we utilize a system switch trigger to tell when to require more visual
information. Specifically, for a question Q and an image I, we define a MLLM with switch adapter
S and formulate the fast Ffast and slow thinking process Fslow. When the query is easy, the frame
does not need the switch adapter Sadapter and only output result R by Ffast as Eq. 2.

R = Ffast [EV (I), EL(Q)] (2)

Remark 2.1 (Switching-friendly dataset) A Negative Data for Target Objects Reasoning Dataset
D of 100,000 (image, question, answer) triples was constructed to facilitate the identification of
target regions or objects required to answer a question. The dataset constructs questions about
the absence or details of certain objects, deliberately made too small to be perceived by the visual
encoder. Section A for more details.

Remark 2.2 (Switch Adapter) A light-weight adapter that is fine-tuned with both positive fast-
thinking data and negative data (Remark. 2.1) to acquire system switching capability. When the
adapter encounters harder questions, the switch mechanism will be triggered for later slow think-
ing.

Note that a slow thinking process is not always activated. The system switch adapter as Remark. 2.2
Sadapter will determine whether the question for the particular image is sufficient to give a direct
answer. If so, the fast mode Ffast will give a quick and direct response as Equation 2. If there is any
missing information about the question that current agent cannot solve, the switch adapter will be
activated and find the pattern to elicit all the possible missing objects Omissing related to question
and context clues Cclue which is the possible location of the missing objects as Equation 3.

Omissing, Cclue = Sadapter [EV (I), EL(Q)] (3)

Specifically, we use negative data that contain missing objects Omissing and context clues Cclue for
training the system switch adapter for triggering the slow mode as Remark. 2.2. The slow mode

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Object Missing: Sorry, the current visual 
information is not enough. I need to find 
the [umbrella, traffic light] first.

Context Clue: [umbrella is held by people
, traffic light is beside the street]

Traffic Light Umbrella

The umbrella is on 
the right side of 
the traffic light.

Slow Thinking Template 
Context Clue

🔥

🔥

🔥

Is the umbrella 
on the left or 
right side of the 
traffic light? 

Slow AnswerQueryImage

(Remark 3.2)Switch Adapter 

(Remark 3.3)
Proposal Adapter 

(Remark 3.4)
Seg Adapter 

Chain of Evidence
(Remark 3.5)

Vision-Language
Model 

Switch Adapter 🔥

Seg Instances

Figure 2. Slow Thinking Mode of FAST. Our slow thinking mode comprises three core modules: Switch
Adapter, which selectively activates a slow and analytical thinking mode when encountering complex visual
queries, supplementing with extensive world knowledge to provide missing objects and contextual clues; Pro-
posal Adapter, which identifies and emphasizes regions of interest within the visual inputs; Seg Adapter, which
delivers precise pixel-level segmentation, enhancing depth of the visual analysis. The outputs from each mod-
ule are integrated into a chain of evidence (see Fig. 3), providing a methodical and accurate response. FAST
represents a neural-symbolic approach that combines the strengths of symbolic reasoning, ensuring that our
system is effective and interpretable.

should deal with question-image pairs that are 1) uncertain in pinpointing the specific object in
question, and 2) too small to perceive for the standard visual encoder. So we utilize triplet data in
dataset Remark. 2.1 (image, question, answer) as where the question requires objects that are not in
the image or too small to be perceived by the visual encoder. The threshold is set to be 20× 20. We
require the model to tell that certain objects are missing instead of a direct answer, and we utilize the
world knowledge to list all the objects and also the context information for later deliberate reasoning.

2.2 PRELIMINARY

Hierarchical Reasoning. We use a top-down scheme to reason over multi-scale granularity images
effectively in order to reason and take advantage of world knowledge progressively. Similar to
humans would look for some context clue to find specific objects relating to questions and zoom
in if they think the answer lies in a particular region, we model this process with system switch
adapters as Eq. 2.2 to focus on the context clue Cclue generated from the switch adapter as Eq. 3.

We denote the MLLM as a proposal adapter Padapter (visual agent). In System 2, FaST uses many
visual agents to accomplish hierarchical reasoning. The frame tries to narrow down the search space
by using the question Q and the previously obtained clue Cclue to let the proposal adapter output a
region Region that aligns with the question and the context clue as Eq. 4.

Region = Padapter [EV (I), EL(Q), Cclue] (4)

After getting the region, the visual agents Padapter will be asked to focus on a more specific target
with a bounding box [Bboxes] complemented by the context clue Cclue and region Region get from
Eq. 4. This process can reveal the step-by-step reasoning and be modeled as Eq. 5.

[Bboxes] = Padapter [EL(Q),Region, Cclue ] (5)

Remark 2.3 (Proposal Adapter) A lightweight adapter that is fine-tuned with proposal data to ac-
quire the capability of finding the corresponding region given the context clue or object name.

Remark 2.4 (Pixel-level mask decoder) The Pixel-level mask decoder is the decoder of segment
anything(SAM (Kirillov et al., 2023)). The pixel-level mask decoder is fine-tuned to produce target
masks based on the hidden embeddings.
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When we have a more specific target proposal(bounding box [Bboxes]), FAST will apply a fine-
grained pixel-level mask decoder PSeg as Eq. 6 to output the specific mask part [Mask] of the
target proposal [Bboxes] to focus on as Eq. 6. We name this whole process from Region to [Mask]
chain of evidence as Remark. 2.5 similar to thinking more and more deeply by humans.

[Mask] = Pseg [EL(Q), [Bboxes],Omissing] (6)

Remark 2.5 (Chain of Evidence) Chain of evidence is like the chain of thought in a Large Language
Model. But we define it as a deeper and deeper step of thinking based on correct evidence in our
frame FAST. The completion of the chain of evidence needs many visual agents to work together.

Context Clue

Seg Instance 

Chain of Evidence

Slow 
Answer

Large Language Model

Query 

ImageCLIP
Vision

Encoder

Switch Adapter 🔥

Figure 3. Chain of Evidence. FAST represents
a solution rooted in switching, demonstrating
pronounced capabilities in hierarchical reason-
ing and ad-hoc explainability.

After getting the target proposal (bounding box
[Bboxes]) from context clue Cclue with proposal
adapter and specific mask part [Mask] by missing
objects with seg adapter, a chain of evidence is con-
structed as Remark 2.5 and Fig. 3. Our FAST frame-
work then summarizes all this information (I and Q)
and the chain of evidence with switch adapter to give
the final correct reasoning answer Ans as Eq. 7

Ans = FSlow [EL(Q), EV (I), [Bboxes/Mask]] (7)

The decision-making process in FAST is distinguished
by its neuro-symbolic nature, which generates in-
termediate outputs as easily interpretable symbols,
including region-of-interest (RoI) driven boxes and
object-driven masks. This capability allows humans to
perform direct visual inspections, thereby augmenting
the transparency of the model’s operations. Moreover,
the intrinsic reasoning mechanism of FAST enhances
the ad-hoc explainability of its behavior, see Fig. 2.

2.3 IMPLEMENTATION DETAILS

The framework of FAST(as Fig. 2)’s implementation details are shown in this section below.

• Visual Agents. We choose the architecture and configuration of LLaVA-v1.5 (Liu et al., 2024a) as
our visual agent. The most important component in a visual agent is the visual encoder EV (I): A
CLIP-ViT-L-336px model (Radford et al., 2021) is used, where input images are resized or padded
to 336 ∗ 336 pixels, learning to associate visual features with corresponding textual descriptions.
An MLP projection with channels of [256, 4096, 4096] is used for connecting image representations
into the word embedding space.

• Mask Decoder. The mask decoder Pseg architecture is identical to SAM. Besides, it is fully
fine-tuned with a collection of semantic segmentation (Caesar et al., 2018; Zhou et al., 2017; Ra-
manathan et al., 2023; He et al., 2022; Chen et al., 2014) and referring segmentation (Mao et al.,
2016; Kazemzadeh et al., 2014) datasets to efficiently map the <seg>token representations to a
mask if the FAST need to segment.

• Chain of Evidence. When we apply the chain of evidence as Remark 2.5 in the LLM to get the
answer as the final step like Eq. 7. The whole sequence of the chain of evidence is too long to load
in the FSlow. So FAST needs a visual sampler based on cross-attention that is trained to decrease
the number of image tokens to a suitable length (from 256 to 32), apart from MLP projection.

3 EXPERIMENT

We utilize eight popular benchmarks to evaluate our framework FAST comprehensively, catego-
rized into general visual question answering (VQA) datasets and multimodal benchmarks. The
VQA benchmarks include VQA-v2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), Sci-
enceQA (Lu et al., 2022), and TextVQA (Singh et al., 2019) which focus on optical character recog-
nition. For multimodal benchmarks evaluation, we use the hallucination benchmark POPE (Li et al.,
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2023c), along with comprehensive benchmarks such as MME (Fu et al., 2024), MM-Vet (Yu et al.,
2024), and SEED (Li et al., 2024). We compare our model with the baseline LLaVA-v1.5 (Liu et al.,
2023a), and other multimodal large language models. To thoroughly assess our model’s understand-
ing of pixel-level instances, we evaluate its performance on referring segmentation and grounding
benchmarks, including refCOCO (Kazemzadeh et al., 2014), refCOCO+ (Kazemzadeh et al., 2014),
and refCOCOg (Caesar et al., 2018). Further, to examine the model’s reasoning capabilities on
FAST framework, we consider the Reasoning Segmentation benchmark (Lai et al., 2024).

3.1 MAIN RESULTS

3.1.1 EXPERIMENTS ON VQA AND MULTIMODAL BENCHMARKS

Training. In developing the Switch Adapter, we employed the LLaVA-v1.5 (Liu et al., 2024a)
framework, conforming strictly to its established training protocols. We incorporated negative sam-
ples from V ∗ (Wu & Xie, 2024) with contextual cues to enhance system switching capability to
amplify multimodal inferential and world knowledge. This augmented dataset was combined with
LLaVA-v1.5’s supervised dataset and trained for one epoch. For the Proposal Adapter, we aug-
mented the LLaVA-v1.5 dataset with region-specific bounding boxes based on contextual cues and
queries, then fine-tuned for one epoch to optimize proposal generation. The Segmentation Adapter
utilized the LISA (Lai et al., 2024) architecture integrated with the LLaVA-v1.5, employing SAM
as the mask decoder. The adapter was fine-tuned using the same datasets as Lisa, including se-
mantic segmentation, referring segmentation, and reasoning segmentation. This fine-tuning process
involved 10,000 steps to improve the model’s segmentation capabilities. Throughout developing the
Switch Adapter, Proposal Adapter, and Segmentation Adapter, we employed the LoRA (Low-Rank
Adaptation) technique (Hu et al., 2022). By leveraging LoRA, we introduce minimal additional
parameters while preserving the original multimodal large language model’s architecture and effi-
ciency. All experiments used 8 NVIDIA TESLA A100-80GB GPUs.

Metric. In model evaluation across diverse datasets, various performance metrics are utilized.

Accuracy. The primary evaluation metric utilized in the V QAv2, GQA, TextVQA, ScienceQA, and
SEED benchmarks is accuracy. Accuracy is a performance measure that quantifies the exact match
percentage between predicted and acceptable ground truth answers, indicating a model’s precision.

F1 Score. The POPE dataset uses the F1 Score to balance precision and recall, providing a compre-
hensive assessment by harmonizing the trade-off between positive prediction accuracy and recall.

Total Score. The MME evaluation metrics include accuracy (based on individual questions) and ac-
curacy+ (considering both questions per image), reflecting a stricter and more comprehensive model
understanding. Random accuracies for these metrics are 50% and 25%, respectively. Perception
scores, calculated as the sum of these metrics across subtasks, total 2000 for perception.

GPT-Evaluation. In the MM-Vet dataset, performance is evaluated by GPT-4 through a comparative
analysis of predicted and ground truth answers, generating a score to quantify alignment.

MM-Vet GQA TextVQA POPE
Dataset

0

20

40

60

80

100

Sc
or

es

45.546.1
49.0

45.1

65.2
71.172.5

64.7
69.771.1

80.8

69.2

87.287.8
91.1

86.6

Model Performance Across Datasets
CoVLM
CogCoM
FaST
LLaVA-1.5

Figure 4. The Comparison with CoVLM and
CogCoM. These models use the more powerful vi-
son encoder.

Results. As depicted in Table 1, FAST demon-
strates superior performance across multiple VQA
datasets and multimodal benchmarks when com-
pared to established methods. To ensure fairness
in comparison, all methods in Table 1 share the
same visual encoder: basic CLIP (Radford et al.,
2021). Remarkably, FAST consistently surpasses
the LLaVA-v1.5 model, achieving significant im-
provements in performance across all evaluated
datasets. Specifically, in VQA datasets, our model
outperforms LLaVA-v1.5 by 2.3% in V QAv2,
1.8% in GQA, and 2.5% in V QAT . Additionally,
FAST excels in multimodal benchmarks, with no-
table increases of 6.7 in the MME score, 1.5 in the
SEED score, and 0.5 in the MM-Vet score, high-
lighting its versatility and effectiveness in handling
a broad range of domains. These results underscore the robustness of FAST, particularly in tackling
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VQA Datasets Multimodal BenchmarksMethod LLM
V QAv2 GQA V QAT SQAI POPE MME SEED MM-Vet

BLIP-2[ICML23] Vicuna-13B 65.0 32.3 42.5 61.0 85.3 1293.8 46.4 22.4
InstructBLIP[NeurIPS24] Vicuna-13B - 49.5 50.7 63.1 78.9 1212.8 53.4 25.6

Qwen-VL-Chat[arXiv23] Qwen-7B 78.2 57.5 61.5 68.2 - 1487.5 58.2 -
mPLUG-Owl2[CVPR24] LLaMA-7B 79.4 56.1 58.2 68.7 - 1450.2 61.6 36.2

Monkey[CVPR24] Qwen-7B 80.3 60.7 - 69.4 67.6 - - -
LLaVA-v1.5[CVPR24] Vicuna-7B 78.5 62.0 58.2 66.8 85.9 1510.7 58.6 30.5

Chain of Spot [arXiv24] Vicuna-7B 80.7 63.7 60.9 68.2 86.4 1501.1 59.7 30.8
V*[CVPR24] Vicuna-7B - - - - 82.4 1128.9 41.7 27.7

Visual CoT[arXiv24] Vicuna-7B - 63.1 77.5 - - - - -
FAST (Ours) Vicuna-7B 80.8 63.8 60.7 68.9 86.4 1517.4 60.1 31.0

∆ (vs LLaVA-v1.5) Vicuna-7B +2.3 +1.8 + 2.5 +2.1 +0.4 +6.7 + 1.5 + 0.5

Table 1. Main results on eight VQA and multimodal benchmarks. Our FAST consistently outperforms the
baseline LLaVA1.5 model across all evaluated benchmarks, denoted with line ∆.

complex visual and textual tasks. Moreover, Fig. 4 showcases a direct comparison between FAST,
CoVLM (Wang et al., 2023b), and CogCoM (Qi et al., 2024), both of which employ the more power-
ful EVA2-CLIP-E (Sun et al., 2023) model as their visual encoder. As expected, these models exhibit
stronger performance due to their enhanced encoder. To align with this, we replaced our original
vision encoder with EVA2-CLIP-E, which resulted in further improved performance, ensuring a
more rigorous and fair comparison with state-of-the-art methods. This two-tiered comparison—first
with basic CLIP and then with the more advanced EVA2-CLIP-E—provides a balanced and com-
prehensive evaluation of FAST against leading approaches, reinforcing its effectiveness in diverse
and challenging tasks.

3.1.2 EXPERIMENTS ON REFERRING AND REASONING SEGMENTATION

Training. The training settings for the Switch Adapter and Proposal Adapter remain consistent with
those previously described as §3.1.1. During the training phase of the Segmentation Adapter, certain
specific datasets are intentionally omitted to uphold an unbiased evaluation of referring and reason-
ing segmentation datasets. This strategic exclusion is a crucial measure implemented to prevent any
potential data leakage, thereby ensuring the integrity and reliability of the evaluation results.

Metric. Following prior research on segmentation (Kazemzadeh et al., 2014; Mao et al., 2016),
two evaluation metrics are employed: Generalized Intersection over Union (GIoU ) and complete
Intersection over Union (CIoU ).

CIoU . The CIoU is calculated based on the cumulative intersection over the cumulative union
across all images in the dataset. This approach can introduce a significant bias towards larger objects
or images with more objects, as they contribute more to the cumulative union area.

GIoU . The GIoU is computed as the average per image IoU , where the IoU is calculated for each
image, and then the average is taken across all images in the dataset. This metric provides a balanced
assessment by treating all images equally, regardless of their size or the number of objects.

Referring Segmentation Reasoning Segmentation
Method refCOCO refCOCO+ refCOCOg ReasoSeg

CIoU CIoU CIoU CIoU GIoU
LAVT[CVPR22] 72.7 62.1 61.2 - -

OVSeg[CVPR23] - - - 28.5 18.6
GRES[CVPR23] 73.8 66.0 65.0 22.4 19.9

X-Decoder[CVPR23] - - 64.6 22.6 17.9
SEEM[NeurIPS24] - - 65.7 25.5 21.2

LISA-7B[CVPR24] 74.1 62.4 66.4 44.4 46.0
LLaVA w Seg Adapter 70.8 57.5 64.0 43.0 41.0

FAST (Ours) 73.3 64.4 67.0 47.6 48.7

Table 2. Main results on referring and reasoning segmentation bench-
marks. Our FAST exhibits competitive results in referring segmentation
tasks like refCOCOg+ while showcasing superior performance in reason-
ing segmentation, particularly when evaluated against LISA-7B.

Results. Table 2 illustrates
the performance of FAST
compared to recent visual
agents like LISA on refer-
ring and reasoning segmen-
tation benchmarks. FAST
notably outperforms LISA-7B
on the refCOCO+ and ref-
COCOg benchmarks by 2.0%
and 0.6% CIoU , respectively.
For the more complex reason-
ing segmentation task, FAST
shows even stronger results,
with a 3.2% CIoU gain and a
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2.7% GIoU improvement over LISA. The results highlight FAST’s superior performance and its ro-
bustness in handling both straightforward and complex visual reasoning segmentation benchmarks.

3.2 ANALYSIS OF SYSTEM SWITCHING ADAPTER

System 1 

Answer

41%

System 2 

Answer

59%

MME

System 1 

Answer

64%

System 2 

Answer

36%

GQA
64.7%

A
C
C

5
2
.2
%

AC
C 70.2%

A
C
C 5

6
.8
%

AC
C

Figure 5. System 1 Mode Analysis. We investigate
the system switching ratio, along with fast thinking
performance on easy or hard queries defined by the
switch adapter.

Our study investigates the efficacy of the switch
adapter mechanism in balancing accuracy and com-
putational efficiency. As depicted in Fig.5, our
analysis illustrates the system’s adeptness in dis-
cerning between the System 1 and System 2 cog-
nitive modes triggered by query complexity. For
queries requiring System 2 reasoning, the adapter
dynamically combines System 1 reasoning for sim-
pler subcomponents with System 2 reasoning for
more complex aspects. Consequently, the reported
accuracy rates under System 2 mode (52.2% for
MME and 56.8% for GQA) reflect a combination
of reasoning outcomes, emphasizing the adapter’s ability to differentiate query complexities and
optimize task performance accordingly. This highlights the importance of maintaining System 1
reasoning for prompt and confident responses while effectively utilizing System 2 reasoning for
complex problem-solving.

MME GQAMethod
Runtime Result Runtime Result

System 1 Only 734ms 1508.7 737ms 61.9
System 2 Only 2938ms 1518.6 2937ms 64.0

OURS 2023ms 1517.4 1475ms 63.8

Table 3. Runtime Analysis and Comparison on only
System 1 (fast), our FAST and only System 2 (slow).

Table 3 compares runtime across system con-
figurations. System 1 Only, using a switch
adapter, operates efficiently with one-time in-
ference, while System 2 Only, which constructs
a chain of evidence for every query, is sig-
nificantly more resource-intensive. In con-
trast, FAST balances efficiency and perfor-
mance, running 31% faster than System 2 Only
on MME and 50% faster on GQA, with comparable results. This highlights FAST’s ability to opti-
mize cognitive task processing while conserving computational resources.

3.3 ABLATION STUDY

Algorithm Component GQA POPE MME
BASELINE 62.1 85.7 1509.2
+ Proposal Adapter 63.2 86.0 1516.5
+ Seg Adpater 62.8 85.8 1514.4
OURS (both) 63.8 86.2 1517.4

Table 4. Key Component Analysis

Output Component MME refCOCOg
BASELINE* 1511.8 66.0
+ Missing Objects 1513.4 66.8
+ Context Clue 1516.6 66.4
OURS (both) 1517.4 67.0

Table 5. Switch Adapter Output Analysis

Key Component Analysis. We undertake a detailed investigation into the core elements of our
novel framework, FAST, with particular emphasis on the proposal adapter for contextual region
localization and the seg adapter for pixel-level mask segmentation. To establish a comparative base-
line, we design a model configuration that excludes both the proposal and seg adapters, instead
relying solely on a switch adapter to provide missing objects and context clues. This baseline model
serves as the foundation for evaluating the impact of the individual and combined components of the
framework. As demonstrated in Table 4, the introduction of the proposal adapter, the seg adapter, or
both, results in progressive and substantial improvements in performance across various evaluation
metrics. For instance, accuracy on the V QAv2 dataset improves from 62.1% to 63.8%, showcasing
the considerable value these components add. This underscores the pivotal roles of the proposal and
seg adapters in enhancing the model’s overall capability, further affirming their importance within
the FAST framework.

Further, we evaluate the switch adapter’s role in incorporating missing objects and context clues
using a variant BASELINE*, which omits these features. Table 5 shows that adding missing objects
or context clues improves metrics like MME and refCOCOg, with the best performance achieved

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

when both are included. These results confirm the importance of all components in optimizing
FAST’s effectiveness.

3.4 QUALITATIVE COMPARISONS OF FAST

Clue: The jar is most likely to appear 
on the kitchen counter.

What are the jars sitting on top of?

Chain of Evidence

Query

A Coffee maker.

Ans: Stove.Proposal  + <seg> 

Clue: The item is likely 
on the table.

What items should you find when you are 
hungry?  Please output the seg mask.

LISA-7BChain of Evidence

Query

Sure, it’s <seg>.

Proposal

Clue: The monitor is likely on the roof. 

Is the monitor on top of a person?

<seg> 

LLaVA-v1.5 

Chain of Evidence

Query

No. The monitor is below the person.

Ans: Yes.Proposal  + <seg> 

LLaVA-v1.5 

Clue: The container is 
likely on the desk.

Segment out the containers that make 
me feel energized after drinking.

LISA-7BChain of Evidence

Query

Proposal

<seg> 

Sure, it’s <seg>.

Figure 6. Qualitative Comparisons of FAST. The top row shows the VQA results on FAST compared to
LLaVA-v1.5. The bottom row presents the segmentation results compared to LISA-7B.

In Fig.6, we present qualitative comparisons that highlight the enhancements introduced by FAST.
The top row, above the dotted line, shows results from the VQA task, comparing FAST with LLaVA-
v1.5. LLaVA-v1.5 often fails to focus on key areas within the image, leading to incorrect or incom-
plete responses. In contrast, FAST builds a chain of evidence by identifying key objects and elements
(e.g., detecting a woman on the street or a monitor on the roof) and then applying object-level pixel
masks to accurately determine the focus areas. This enables FAST to provide more precise and
deliberate answers. The bottom row, below the dotted line, shows segmentation results, comparing
FAST with LISA-7B. LISA-7B struggles with segmenting smaller objects or those requiring more
complex reasoning, often causing confusion. In contrast, FAST excels at isolating relevant objects
with greater accuracy and granularity, particularly with smaller or less obvious items. This demon-
strates FAST’s superior performance in both VQA and segmentation tasks, showcasing its ability to
handle a wide range of visual and reasoning challenges more effectively than its counterparts.

4 RELATED WORKS

LLM as Visual Agents. With the capabilities that LLMs have demonstrated in language under-
standing and generation (Ouyang et al., 2022; OpenAI, 2024; Zheng et al., 2023; Touvron et al.,
2023a;b; Wang et al., 2024a), the research community has progressed to explore how LLMs can
be enhanced with vision input for multimodal tasks as visual agents (Alayrac et al., 2022; Driess
et al., 2023; Li et al., 2023a; Ge et al., 2023; Dai et al., 2024; Liu et al., 2023b; 2024a). There are
two paradigms for LLM-based visual agents: end-to-end based and tool-using visual agents. Fol-
lowing the principle of instruction tuning, end-to-end visual agents are trained with a curated visual
instruction tuning dataset to digest features from multi-modality, unlocking the capability to answer
visual questions (Huang et al., 2023; Luo et al., 2023; Zhu et al., 2023a; Bai et al., 2023; Zhang
et al., 2023b;c; Chen et al., 2024a; Ye et al., 2023; Singh et al., 2019). For other visual tasks (e.g.,
Segmentation, Detection, etc), end-to-end trained tailored agents can further perform downstream
tasks (Pi et al., 2023; Peng et al., 2024; Lai et al., 2024; Chen et al., 2023b; Wang et al., 2023c;
Dai et al., 2024; Wang et al., 2024b; 2023b; Jiang et al., 2023; Chen et al., 2023a). Recent research
has focused on leveraging improved vision encoders and fostering more detailed visual understand-
ing, yielding promising results (Fan et al., 2024; Xu et al., 2024a; Shi et al., 2024). While these
approaches can be implemented with direct instruction tuning data, they represent a ‘System 1’ type
of training. This type of training primarily relies on the dataset’s quality and tends to provide direct
answers that are prone to hallucinations, a consequence inherent to the nature of System 1 instruc-
tion tuning data. For the second paradigm, tool-using models are built on top of a frozen LLM with
access to pretrained visual perception tools (Surı́s et al., 2023; Shen et al., 2023; Lu et al., 2023a). In
this scenario, the LLM first selects visual tools and then decides by thoroughly analyzing the fine-
grained information extracted by visual tools (Lu et al., 2023a; You et al., 2023; Wu et al., 2024).
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While external visual tools enhance the interpretability of the reasoning process, their complexity
can introduce inaccuracies. Moreover, the abundance of information generated during reasoning
may overshadow key details relevant to the query, resulting in incorrect answers.

Our research introduces a novel and adaptable framework designed to enhance response accuracy
by adopting distinct slow thinking cognitive modes. Unlike traditional end-to-end visual agents,
our framework, FAST, systematically assesses information sufficiency, thereby mitigating the risk
of overconfidence. When System 2 (slow, analytical thinking) is activated, FAST employs multiple
experts to construct a coherent chain of evidence. This approach ensures the generation of accurate
and interpretable responses, significantly advancing the reliability and transparency of visual agents.

System 2 in AI. Recently, LLMs have been engineered to produce text that mimics the step-by-step
reasoning process characteristic of human cognition, akin to the analytical and deliberate thought
processes associated with what is termed as System 2 in the human cognition process (Qiao et al.,
2023; Huang & Chang, 2023a; Wang et al., 2023a; Shaikh et al., 2023; Shao et al., 2024). The sys-
tematic approach to problem-solving is a hallmark across various domains, including mathematical
word problems (Kojima et al., 2022; Wang et al., 2023d; Lightman et al., 2023; Cobbe et al., 2021;
Liu et al., 2023c; Zhu et al., 2023b; Lu et al., 2023b), logical reasoning (Yao et al., 2023d;a; Besta
et al., 2024; Wen et al., 2023; Lei et al., 2023; Cheng et al., 2024; Jin et al., 2024), and multi-modal
reasoning (Chen et al., 2024d; You et al., 2023; Wu & Xie, 2024). In Explainable AI, this system-
atic method is emulated by the model as it generates a text-based elucidation of its reasoning and
decision-making process through step by step reasoning process (e.g., chain of thought) (Han et al.,
2024; Zhao et al., 2024; Jacovi & Goldberg, 2020; Hua & Zhang, 2022). However, it is crucial to
recognize that LLMs, while powerful, are not exempt from encountering challenges when facing
complex problems. One such challenge is the issue of hallucination (Zhou et al., 2024; Cui et al.,
2023; Li et al., 2023b; Zhang et al., 2023a; Chen et al., 2024c; Guan et al., 2024a), which can dis-
tort the model’s reasoning process and lead to inaccuracies in the explanations provided. Initially,
LLM reasoning is seen as only a linear chain of thoughts, where each step in the reasoning pro-
cess is clearly articulated. As models evolve, they adopt more complex structures like hierarchical
trees (Geng et al., 2023; Yao et al., 2023b) and intricate graphs (Besta et al., 2024), which enable
them to handle much more complex problems but also restrict their general applicability because
of increased topological complexity (Yao et al., 2023b;a; Besta et al., 2024; Lei et al., 2023; Wen
et al., 2023). Moreover, these complex structures can lead to errors propagating through the model’s
reasoning, causing a cascade of mistakes (Xu et al., 2024b). To counter this, incorporating feedback
from intermediate reasoning steps and employing iterative refinement, which is similar to human re-
flection, could help mitigate errors (Chu et al., 2023; Tong et al., 2024b; Guan et al., 2024b; Madaan
et al., 2023; Yuan et al., 2024; Wu & Xie, 2024). In unsupervised scenarios, such feedback is vital
for enhancing the reasoning capabilities of LLMs and reducing errors (Yao et al., 2023c).

Our key contribution is the introduction of the chain of evidence within multimodal reasoning frame-
works. This methodology enriches each reasoning step with accurate, image-based cascading in-
formation, effectively mirroring human visual and System 2 cognitive processes. Our approach
enhances accuracy and significantly improves interpretability and generalization capabilities.

5 CONCLUSION

In this study, we introduced FAST, a framework that combines System 1 (which is fast and intu-
itive) and System 2 (which is slow and deliberate) thinking to improve visual agents’ reasoning and
decision-making. FAST adapts to queries of varying complexity with a flexible system switch, deliv-
ering quick responses for simple tasks and using hierarchical reasoning for more complex scenarios.
The FAST leverages neuro-symbolic decision-making transparent pipeline delivering interpretable
intermediate outputs that enable explainability. Our results show significant improvements across
benchmarks, demonstrating the effectiveness of FAST’s chain of evidence in reducing hallucina-
tions and improving interpretability. Furthermore, ablation studies highlight the critical importance
of contextual clues, symbolic reasoning, and pixel-level adapters in refining visual reasoning and
understanding, marking a step forward in creating more reliable and accurate AI cognition.
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6 ETHICAL SAFEGUARDS

In our paper introducing a novel framework FAST, we implement rigorous ethical measures to
prevent potential misuse and promote responsible application. These measures are delineated in
comprehensive protocols accompanying the final release of models and datasets. Our protocols en-
compass stringent usage guidelines, access controls, incorporation of safety filters, and monitoring
systems. These concerted efforts reflect our steadfast dedication to upholding the utmost ethical
standards in scientific exploration. Our objective is to protect the rights and privacy of all stakehold-
ers involved, thereby fostering a culture of responsible and ethical research within our community.

7 REPRODUCIBILITY

Our FAST framework is implemented in PyTorch (Paszke et al., 2019). All the experiments are
conducted on eight NVIDIA A100-80GB GPUs. Our full implementation shall be publicly released
upon paper acceptance to guarantee reproducibility. The codes are available at the anonymous link
https://anonymous.4open.science/r/Sys2-LLaVA-8B0F/ for the review process.

All Experiments are conducted on eight NVIDIA A100-80GB SXM GPUs1. Reproducing the fine-
tuning process would require approximately 15 A100 GPU days.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2025 submission, titled “Visual Agents as
Fast and Slow Thinkers”. The appendix is organized as follows:

• §A provides Implementation Details and Pseudo Code.

• §B reports more Results for Different Thinking Modes.

• §C reports more Quantitative Results for Visual Question Answering.

• §D shows more Quantitative Results for Segmentation.

• §E analyzes Failure Case.

• §F examines the Limitation and Future Work of our research.

• §G discusses the Social Impact of our research.

• §H offers Ethical Guard or our dataset.

• §I claims Reproducibility of our approach.

• §J supplies Data License for the methods we used for comparison.

A IMPLEMENTATION DETAILS AND PSEUDO-CODE OF FAST

Visual Resampler. The resampler (Alayrac et al., 2022) compresses high-dimensional visual fea-
tures into a fixed-size latent space using a cross-attention mechanism. It begins with a set of learn-
able latent embeddings, which query the vision encoder’s output features through scaled dot-product
attention. Each latent embedding attends selectively to the most relevant visual tokens, guided by
attention weights computed via the query-key interaction. The process iterates across multiple lay-
ers of cross-attention, followed by feedforward transformations, refining the latent representations
at each step. This approach ensures efficient dimensionality reduction while retaining critical infor-
mation, producing a compact set of visual tokens for downstream tasks.

Hyper-parameters. We follow established methodologies and utilize LLaVA-v1.5 (Liu et al.,
2024a) as the foundational visual agent. The image resolution is preprocessed to 336 × 336 pixels
to accommodate the clip-vit-large-patch14-336 vision encoder (Radford et al., 2021). The AdamW
optimizer (Loshchilov & Hutter, 2019) is employed with the DeepSpeed ZeRO 2 2 configuration
for fine-tuning the switch, proposal, and segmentation adapters with LoRA (Hu et al., 2022). For
the LoRA configuration, we set the rank to 128 and alpha to 256, consistent with the settings of
LLaVA-v1.5. Additionally, we adjust the learning rate of the vision encoder projection layer to
2e-5 to achieve better alignment. An MLP projection with channels of [256, 4096, 4096] is used to
connect image representations into the word embedding space for the projection layer. An additional
resampler projection layer is used to reduce the number of image tokens.

Training Data for Switch Adapter. Consistent with the pretraining stage of LLaVA-v1.5, we
initially pretrain Vicuna-v1.5 as a base frozen large language model and for the MLP projection
layer and sampler layer of the CLIP vision encoder using a 558K subset of the LAION-CC-SBU
dataset 3 with BLIP (Li et al., 2022) captions. During the fine-tuning stage, we integrate the negative
dataset acquired from V ∗ (Wu & Xie, 2024) and PixelLM (Ren et al., 2024) and with the original
LLaVA-v1.5 instruction tuning 665k data4 for LoRA based finetuning.

Specifically, The dataset for fine-tuning the switch adapter was carefully constructed to emphasize
scenarios requiring precise object recognition and complex reasoning. For the GQA subset of the
167k VQA data, we specifically targeted questions where the annotated objects mentioned in the
query were critical for deriving the correct answer. Initially, the InstructBLIP model was used to
evaluate GQA questions with annotated objects. Only questions that the model could correctly an-
swer were retained. To ensure the importance of these annotated objects, we applied the LaMa
image inpainting model to erase the mentioned objects from the corresponding images. The modi-
fied images were re-evaluated using InstructBLIP, and only questions that the model failed to answer

2https://github.com/microsoft/DeepSpeed
3https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain
4https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K
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after object removal were included. This process ensured that the curated subset focused exclusively
on questions where the annotated objects were essential, forming a robust component of the VQA
data.

For the VAW object attribution dataset, both open-ended and binary questions about object attributes
were synthesized. Open-ended questions were formulated around attributes such as “color,” “mate-
rial,” and “pose,” while binary questions incorporated additional attributes like “state” and “optical
property.” Answer formats adhered to predefined structures to ensure consistency. The same ob-
ject removal and re-evaluation strategy as used in the GQA subset was applied, filtering the data to
include only questions where the absence of objects rendered the query unanswerable.

From the LLaVA-80K instruction tuning data, noun phrases were extracted from the text of questions
or instructions and matched with object category names defined by COCO, augmented with common
synonyms such as “man” and “woman” for the “person” category. Images were retained only if the
identified categories had annotated instances with bounding boxes. These annotated instances, along
with their bounding box coordinates, were used as target objects during training.

In addition, we incorporated a data generation approach inspired by LISA, utilizing GPT-4 and
GPT-4V to expand and diversify the dataset. Initially, LLAVA was used for image captioning, and
GPT-4 generated questions about multiple regions in the image. While this approach utilized pre-
existing mask annotations to reduce costs, its diversity was limited to the scope of the captions. To
address these limitations, we refined the pipeline with GPT-4V, leveraging its advanced capabilities
in visual understanding. Image captions, object names, and bounding box coordinates were input
into GPT-4V, which, using dynamically crafted prompts, autonomously selected instances and gen-
erated nuanced question-answer pairs tailored to the image content. This refinement significantly
improved the diversity and contextual relevance of the data. An illustrative example of such prompts
is provided below:

Prompt: Imagine you need to query a machine agent about an
image. The image has a height of 720 pixels and a width of
1280 pixels. You are given several entities described by a
list, each identifying an object in the image along with its
location. The class names and corresponding coordinates are
as follows:
• Dog at [350.12, 450.45, 480.89, 600.67];
• Ball at [200.33, 300.22, 250.78, 350.56];
• Grass at [0.0, 500.0, 1280.0, 720.0];

Coordinates are represented as (top-left x, top-left
y, bottom-right x, bottom-right y). The question must
incorporate at least two of these objects and require
reasoning about the relationships or interactions between
them. Additional requirements for the generated question are
as follows:
1.The answer to the question must explicitly reference each
included object or its equivalent and avoid implying the
presence of any other objects not listed.
2.The question must be precise, meaningful, and avoid being
overly general.
3.The question should frame a single cohesive activity
or relationship rather than merely combining independent
sub-queries.
4.When answering, the class names should be rephrased to
indicate their position, role, or interaction in the image.

This multi-faceted dataset construction process ensured the generation of diverse and challenging
samples, providing a robust foundation for fine-tuning the switch adapter on complex reasoning
tasks.
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Training Data for Proposal Adapter To determine the corresponding region for a query, we use
LRP++ (Chefer et al., 2021) for data construction, similar to Chain of Spot (Liu et al., 2024b). Our
initial prompt is as follows:

<Image>
To answer the question: [Q],
where is the region of interest in the image based on [C]?

Ans.str[w0, w1, h0, h1]

The question Q and the context clue C are formatted to get the answer in terms of a bounding box.
In this format, w0, w1 represent the left and right boundaries, respectively, while h0, h1 denote the
upper and lower boundaries. To identify the correct region, we sampled one question per image
from the LLaVA instruction tuning data, consisting of a total of 665k data for proposal finetuning.

Training Data for Seg Adapter. Adopting an approach similar to LISA Lai et al. (2024), the
training data for our model comprises three distinct segments: a semantic segmentation dataset, a
referring segmentation dataset, and a reasoning segmentation dataset. We deliberately exclude vi-
sual question-answering datasets to enhance the model’s segmentation performance. The semantic
segmentation segment includes the ADE20K (Zhou et al., 2017), COCO-Stuff (Caesar et al., 2018),
and LVIS-PACO (Ramanathan et al., 2023) part segmentation datasets. The referring segmentation
datasets encompass refCOCOKazemzadeh et al. (2014), refCOCO+ (Kazemzadeh et al., 2014), re-
fCOCOg (Caesar et al., 2018), and refCLEF (Rohrbach et al., 2016). The reasoning segmentation
dataset includes ReasonSeg (Lai et al., 2024). It is important to note that the referring segmentation
and reasoning segmentation datasets are carefully excluded during the evaluation of the segmenta-
tion benchmarks to prevent any potential data leakage.

Pseudo-code Implementation. The pseudo-code of FAST is given in Pseudo-code 1.

B MORE RESULTS FOR DIFFERENT THINKING MODES

As shown in Table 6, FaST demonstrates strong performance in both System 1 and System 2 rea-
soning on VQA datasets, outperforming baseline methods in most cases. Notably, FaST achieves
the highest accuracy in challenging System 2 tasks across GQA, V QAT , and SQAI , which require
advanced reasoning capabilities. This highlights the effectiveness of the switch adapter mechanism
in dynamically allocating tasks based on complexity. While maintaining competitive performance in
simpler System 1 tasks, FaST leverages its adaptive architecture to excel in more complex scenarios,
as evidenced by its superior System 2 results.

Further, in Table 7, FaST’s robustness extends to reasoning segmentation tasks, where it achieves
significant improvements in System 2 performance compared to baseline models such as LLaVA
with segmentation and LISA-7B. For example, in the ReasonSeg dataset, FaST records a remarkable
48.2 CIoU in System 2 tasks, significantly outperforming LISA-7B and LLaVA, which achieve 43.3
CIoU and 42.4 CIoU, respectively. This result underscores FaST’s ability to generalize effectively
across diverse task families and reasoning paradigms.

Overall, the results validate the universal applicability and robustness of the FaST framework. By
effectively utilizing the switch adapter to allocate tasks dynamically, FaST demonstrates a strong
capability to balance performance across both simple and complex reasoning tasks, making it a
reliable solution for diverse real-world applications.

C MORE QUALITATIVE RESULTS FOR VISUAL QUESTION ANSWERING

Figure 7 presents additional qualitative results for Visual Question Answering (VQA). Our FAST
framework consistently demonstrates remarkable performance across various challenging scenarios.
Notably, in the bottom right corner of Figure 7, our FAST leverages extensive world knowledge to
identify the keyboard, which subsequently aids in discovering the hidden computer mouse and pro-
viding the correct answer. This ability to integrate and utilize contextual information showcases the
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Algorithm 1: Pseudo-code of FAST in a PyTorch-like style.

class FaST:
def __init__(self, switch_llm, proposal_llm, seg_llm):

self.switch_llm = switch_llm
self.proposal_llm = proposal_llm
self.seg_llm = seg_llm

def get_contextual_clues(self, image, question):
# Get missing objects and context clues using switch adapter
return self.switch_llm(image, question)

# Construct Chain of Evidence
def construct_coe(self, image, question, context_clues, missing_objects):

# Step 1: Get region proposals
region = self.proposal_llm(image, question, context_clues)

# Step 2: Get pixel-level mask for the missing objects
mask = self.seg_llm(region, missing_objects)

return (context_clues, region, missing_objects, mask)

# Main Function
def forward(self, image, question):

# Get initial answer
initial_answer = self.switch_llm(image, question)

# Check if slow thinking is needed based on the initial answer
if "sorry, i can not answer" in initial_answer.lower():

# Perform slow thinking
missing_objects, context_clues = initial_answer[’obj’], initial_answer

[’clue’]
chain_of_evidence = self.construct_coe(image, question, context_clues,

missing_objects)

# Generate the final answer using the constructed chain of evidence
final_answer = self.switch_llm(image, question, chain_of_evidence)

else:
# Perform fast thinking
final_answer = initial_answer

return final_answer

V QAv2 GQA V QAT SQAI

Method LLM
Sys 1 Sys 2 Sys 1 Sys 2 Sys 1 Sys 2 Sys 1 Sys 2

BLIP-2 Vicuna-13B 67.3 53.1 37.8 22.4 44.3 39.7 63.4 59.2
LLaVA-v1.5 Vicuna-7B 81.2 68.0 70.3 47.0 61.1 53.7 68.4 65.7

Chain of Spot Vicuna-7B 82.1 74.5 70.9 50.7 62.1 59.0 68.6 67.8
FAST (Ours) Vicuna-7B 81.1 75.5 70.2 52.3 61.2 60.2 68.2 70.2

Table 6. System 1 and System 2 performance on VQA datasets. FaST demonstrates superior performance
in both reasoning modes compared to baselines.

model’s advanced capabilities and highlights its potential for practical applications. The qualitative
results further underscore FAST’s robustness and versatility in handling diverse VQA tasks.

D MORE QUALITATIVE RESULTS FOR SEGMENTATION

Figure 8 showcases further qualitative results for the Segmentation task. Our FAST model excels in
various challenging scenarios, accurately locating difficult targets and performing complex reason-
ing for more demanding queries. For instance, in the bottom right corner, the model successfully
identifies an appliance that can be turned on when feeling hot by recognizing relevant contextual
clues that suggest the appliance should probably appear on the wall, thereby resulting in the correct
answer. This example demonstrates the model’s advanced understanding, adaptability, and preci-
sion.
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refCOCOg ReasonSegMethod Sys 1 Sys 2 Sys 1 Sys 2
LISA-7B 70.2 63.4 46.6 43.3

LLaVA w Seg 68.4 60.2 44.2 42.4
FaST (Ours) 70.8 64.1 46.4 48.2

Table 7. System 1 and System 2 performance on reasoning segmentation tasks. FaST achieves strong per-
formance across both tasks, demonstrating its robustness and effectiveness in dynamic task allocation between
System 1 and System 2.
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Figure 7. More qualitative results for Visual Question Answering.
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Figure 8. More qualitative results for Visual Question Answering.

E FAILURE CASE

In Figure 9, we present an overview of the most notable failure cases, providing insights into the
distinct patterns that lead to suboptimal outputs in our FAST model. These challenges include dif-
ficulty in triggering the System 2 thinking mode, constructing adequate contextual clues, generating
appropriate proposals, and providing accurate pixel masks. The model often fails to recognize the
need for deliberate reasoning, relying instead on System 1 thinking, which leads to incorrect re-
sponses, as seen in Figure 9a. Inadequate contextual clues generated by the switch adapter impair
the model’s focus on the correct region, resulting in vague or incorrect responses, as illustrated in
Fig. 9b. The proposal adapter’s inaccurate identification of regions of interest, as shown in Figure
9c, leads to proposals that do not correspond to the query. Additionally, the segmentation adapter
struggles with producing precise masks, particularly for small or occluded objects, causing erro-
neous conclusions, as highlighted in Figure 9d. These failure cases underscore the urgent need
for refinement in our FAST framework, emphasizing the importance of significantly enhancing the
precision of the system switch adapter, improving contextual clue construction, and optimizing the
proposal and segmentation adapters to achieve more reliable and consistently accurate responses in
complex visual and textual tasks.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Is this a picture of Canelles de Baix 
(la Vall de Binya)? 

Fast Answer

Query

Ans: Yes.❌

What is the rope attached to?
Query

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The yellow shoes is most likely 
to appear on the feet of the players.

Are there any yellow shoes 
in the image?

GT Answer
Ans: No.

Does the flower look yellow?

Fast Answer

Query

Ans: Yes, the flower is yellow.❌

GT Answer
Ans: No.

GT Answer
Ans: No.

Ans: Yes.❌

GT Answer
Ans: Coat.

Clue: The rope is most likely to appear 
not present in the image.

Chain of Evidence

Proposal  + <seg> Ans: Hat.❌

Is this artwork displayed in St. vitus's 
cathedral, Prague?

Query

GT Answer
Ans: No.

Clue: The St. vitus's cathedral, Prague 
is most likely to appear near the cliff.

Chain of Evidence

Proposal  + <seg> Ans: Yes.❌

\

What is the color of the dog?
Query

GT Answer
Ans: White.

Clue: The dog is most likely to appear 
next to a person.

Chain of Evidence

Proposal  + <seg> Ans: Black.❌

Is the blue luggage on the left or right 
side of the bus?

Query

GT Answer
Ans: Right.

Clue: The blue luggage, bus is most 
likely to appear inside the bus.

Chain of Evidence

Proposal  + <seg> Ans: Left.❌

\

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The cars and lamp is most 
likely to appear on the street.

Is the lamp to the right or 
to the left of the car?

GT Answer
Ans: Left.

Ans: Right.❌

(a) The model fails to trigger System 2 thinking mode.

Is this a picture of Canelles de Baix 
(la Vall de Binya)? 

Fast Answer

Query

Ans: Yes.❌

What is the rope attached to?
Query

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The yellow shoes is most likely 
to appear on the feet of the players.

Are there any yellow shoes 
in the image?

GT Answer
Ans: No.

Does the flower look yellow?

Fast Answer

Query

Ans: Yes, the flower is yellow.❌

GT Answer
Ans: No.

GT Answer
Ans: No.

Ans: Yes.❌

GT Answer
Ans: Coat.

Clue: The rope is most likely to appear 
not present in the image.

Chain of Evidence

Proposal  + <seg> Ans: Hat.❌

Is this artwork displayed in St. vitus's 
cathedral, Prague?

Query

GT Answer
Ans: No.

Clue: The St. vitus's cathedral, Prague 
is most likely to appear near the cliff.

Chain of Evidence

Proposal  + <seg> Ans: Yes.❌

\

What is the color of the dog?
Query

GT Answer
Ans: White.

Clue: The dog is most likely to appear 
next to a person.

Chain of Evidence

Proposal  + <seg> Ans: Black.❌

Is the blue luggage on the left or right 
side of the bus?

Query

GT Answer
Ans: Right.

Clue: The blue luggage, bus is most 
likely to appear inside the bus.

Chain of Evidence

Proposal  + <seg> Ans: Left.❌

\

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The cars and lamp is most 
likely to appear on the street.

Is the lamp to the right or 
to the left of the car?

GT Answer
Ans: Left.

Ans: Right.❌

(b) The model fails to construct adequate contextual clues.

Is this a picture of Canelles de Baix 
(la Vall de Binya)? 

Fast Answer

Query

Ans: Yes.❌

What is the rope attached to?
Query

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The yellow shoes is most likely 
to appear on the feet of the players.

Are there any yellow shoes 
in the image?

GT Answer
Ans: No.

Does the flower look yellow?

Fast Answer

Query

Ans: Yes, the flower is yellow.❌

GT Answer
Ans: No.

GT Answer
Ans: No.

Ans: Yes.❌

GT Answer
Ans: Coat.

Clue: The rope is most likely to appear 
not present in the image.

Chain of Evidence

Proposal  + <seg> Ans: Hat.❌

Is this artwork displayed in St. vitus's 
cathedral, Prague?

Query

GT Answer
Ans: No.

Clue: The St. vitus's cathedral, Prague 
is most likely to appear near the cliff.

Chain of Evidence

Proposal  + <seg> Ans: Yes.❌

\

What is the color of the dog?
Query

GT Answer
Ans: White.

Clue: The dog is most likely to appear 
next to a person.

Chain of Evidence

Proposal  + <seg> Ans: Black.❌

Is the blue luggage on the left or right 
side of the bus?

Query

GT Answer
Ans: Right.

Clue: The blue luggage, bus is most 
likely to appear inside the bus.

Chain of Evidence

Proposal  + <seg> Ans: Left.❌

\

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The cars and lamp is most 
likely to appear on the street.

Is the lamp to the right or 
to the left of the car?

GT Answer
Ans: Left.

Ans: Right.❌

(c) The model fails to generate appropriate proposals.

Is this a picture of Canelles de Baix 
(la Vall de Binya)? 

Fast Answer

Query

Ans: Yes.❌

What is the rope attached to?
Query

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The yellow shoes is most likely 
to appear on the feet of the players.

Are there any yellow shoes 
in the image?

GT Answer
Ans: No.

Does the flower look yellow?

Fast Answer

Query

Ans: Yes, the flower is yellow.❌

GT Answer
Ans: No.

GT Answer
Ans: No.

Ans: Yes.❌

GT Answer
Ans: Coat.

Clue: The rope is most likely to appear 
not present in the image.

Chain of Evidence

Proposal  + <seg> Ans: Hat.❌

Is this artwork displayed in St. vitus's 
cathedral, Prague?

Query

GT Answer
Ans: No.

Clue: The St. vitus's cathedral, Prague 
is most likely to appear near the cliff.

Chain of Evidence

Proposal  + <seg> Ans: Yes.❌

\

What is the color of the dog?
Query

GT Answer
Ans: White.

Clue: The dog is most likely to appear 
next to a person.

Chain of Evidence

Proposal  + <seg> Ans: Black.❌

Is the blue luggage on the left or right 
side of the bus?

Query

GT Answer
Ans: Right.

Clue: The blue luggage, bus is most 
likely to appear inside the bus.

Chain of Evidence

Proposal  + <seg> Ans: Left.❌

\

Chain of Evidence

Query

Proposal  + <seg> 

Clue: The cars and lamp is most 
likely to appear on the street.

Is the lamp to the right or 
to the left of the car?

GT Answer
Ans: Left.

Ans: Right.❌
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Figure 9. Failure cases of Our FAST system.
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F LIMITATION AND FUTURE WORK

While the FAST framework has demonstrated significant advancements in emulating human-like
cognitive processes in visual AI through its fast and slow thinking mechanisms, several limitations
warrant attention. Firstly, the system’s reliance on a predefined set of negative data for training
the switch adapter may not encapsulate the full spectrum of real-world complexities. Firstly, this
could lead to suboptimal performance when faced with novel or unexpected scenarios. Secondly,
despite its fine-grained analysis capability, the pixel-level mask decoder might struggle with highly
textured or patterned images where segmentation becomes challenging. Lastly, the generalizability
of FAST across various domains and tasks necessitates further validation to ensure its robustness and
reliability in diverse applications. We plan to develop advanced learning mechanisms that will allow
the model to generalize more effectively beyond the predefined negative dataset. Additionally, we
will focus on optimizing it for real-time applications to reduce computational overhead and response
times.

For the recent large reasoning model like OpenAI o1 model, while these models leverage reinforce-
ment learning and internal chains of thought to achieve scalability, they often require significant
computational resources, making them less efficient.

In contrast, FaST is designed to prioritize multimodal reasoning with a clear focus on transparency
and adaptability. The use of interpretable reasoning modes (System 1 and System 2) ensures that
FaST provides insights into its decision-making processes, which is critical for applications requir-
ing explainability. Additionally, FaST’s modular design allows it to balance computational effi-
ciency and accuracy dynamically, making it suitable for diverse and resource-constrained environ-
ments. These strengths highlight FaST’s unique contributions and its complementary potential to
scalable reasoning approaches.

G SOCIAL IMPACTS

The development and deployment of FAST significantly advance AI by enhancing the human-like
cognitive abilities of LLM-based visual agents. Positively, FAST enables sophisticated applications
in areas like vision-based dialogues and security surveillance, while its transparent decision-making
fosters trust and ethical AI practices. However, reliance on large models and extensive datasets risks
perpetuating biases, potentially leading to unjust or discriminatory outcomes. Addressing these
ethical concerns and establishing responsible usage guidelines are essential for the responsible de-
ployment of such advanced AI systems.

H ETHICAL SAFEGUARDS

In our paper introducing a novel framework FAST, we implement rigorous ethical measures to
prevent potential misuse and promote responsible application. These measures are delineated in
comprehensive protocols accompanying the final release of models and datasets. Our protocols en-
compass stringent usage guidelines, access controls, incorporation of safety filters, and monitoring
systems. These concerted efforts reflect our steadfast dedication to upholding the utmost ethical
standards in scientific exploration. Our objective is to protect the rights and privacy of all stakehold-
ers involved, thereby fostering a culture of responsible and ethical research within our community.

I REPRODUCIBILITY

Our FAST framework is implemented in PyTorch (Paszke et al., 2019). All the experiments are
conducted on eight NVIDIA A100-80GB GPUs. Our full implementation shall be publicly released
upon paper acceptance to guarantee reproducibility. The codes are available at the anonymous link
https://anonymous.4open.science/r/Sys2-LLaVA-8B0F/ for the review process.
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All Experiments (switch, proposal, and seg adapter) are conducted on eight NVIDIA A100-80GB
SXM GPUs5. Reproducing the fine-tuning process would require approximately 15 A100 GPU
days.

J LICENSES FOR EXISTING ASSETS

All the methods we used for comparison are publicly available for academic usage. The switch
adapter is implemented based on the released code (https://github.com/penghao-wu/
vstar) with an MIT license. The proposal adapter is implemented on the released code (https:
//github.com/dongyh20/Chain-of-Spot) with an Apache-2.0 license. The seg adapter
is implemented on the released code (https://github.com/dvlab-research/LISA)
with an Apache-2.0 license.

5https://www.nvidia.com/en-sg/data-center/a100/
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