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ABSTRACT

Large language models require significant computational resources for deploy-
ment, making quantization essential for practical applications. However, the main
obstacle to effective quantization lies in systematic outliers in activations and
weights, which cause substantial LLM performance degradation, especially at
low-bit settings. While existing transformation-based methods like affine and ro-
tation transformations successfully mitigate outliers, they apply the homogeneous
transformation setting, i.e., using the same transformation types across all lay-
ers, ignoring the heterogeneous distribution characteristics within LLMs. In this
paper, we propose an adaptive transformation selection framework that systemat-
ically determines optimal transformations on a per-layer basis. To this end, we
first formulate transformation selection as a differentiable optimization problem
to achieve the accurate transformation type for each layer. However, searching
for optimal layer-wise transformations for every model is computationally ex-
pensive. To this end, we establish the connection between weight distribution
kurtosis and accurate transformation type. Specifically, we propose an outlier-
guided layer selection method using robust z-score normalization that achieves
comparable performance to differentiable search with significantly reduced over-
head. Comprehensive experiments on LLaMA family models demonstrate that our
adaptive approach consistently outperforms the widely-used homogeneous trans-
formation settings. For example, our method achieves an improvement of up to
4.58 perplexity points and a 2.11% gain in average six-task zero-shot accuracy
under aggressive W3A3K2V2 quantization settings for the LLaMA-3-8B model
compared to the current best existing method, FlatQuant, demonstrating the ne-
cessity of heterogeneous transformation selection for optimal LLM quantization.

1 INTRODUCTION

Large language models (LLMs) (Wei et al., 2022; Touvron et al., 2023; Zhang et al., 2022), have
gained significant attention due to their remarkable performance in handling complex natural lan-
guage tasks (Hendrycks et al., 2020), such as language generation, translation, question answering,
and text summarization. However, their billion-parameter scale requires significant computational
resources for inference and deployment (Frantar et al., 2023; Lin et al., 2023). Quantization, espe-
cially Post-Training Quantization (PTQ), has emerged as the dominant compression technique, sig-
nificantly reducing both memory footprint and computational requirements while preserving model
capabilities (Dettmers et al., 2022; Xiao et al., 2023).

The primary obstacle to quantize LLMs effectively is the presence of outliers (An et al., 2025)
of activations and weight parameters. For example, Wei et al. (2023) points out that activation
values that exceed the mean by 10-100 standard deviations appear consistently at specific channels
across different inputs. This causes significant quantization degradation, especially when quantized
to extreme low-bit. Several methods have been proposed to address this challenge. In (Ashkboos
et al., 2024a; Cui & Wang, 2024; Kim et al., 2023), they propose mixed-precision, which assigns
some of the channels to higher precision and less sensitive channels to lower precision to balance
accuracy and efficiency. Another approach is to apply transformations to the weights and activations
to mitigate the outliers problem. SmoothQuant (Xiao et al., 2023), OmniQuant (Shao et al., 2024)
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apply per-channel scaling to balance activation and weight magnitudes. However, these methods
cannot effectively quantize the LLMs to 4-bit weights and activations. Affine transformation (Ma
et al., 2024; Sun et al., 2025) and rotation transformation (Ashkboos et al., 2024b; Liu et al., 2025;
Hu et al., 2025) are proposed to mitigate the outliers problem effectively and successfully quantize
the LLMs to 4-bit setting. Rotation transformation-based approaches (Ashkboos et al., 2024b; Liu
et al., 2025; Hu et al., 2025) apply orthogonal matrices to spread outliers across dimensions to
mitigate the outliers problem. Meanwhile, affine transformation-based approaches (Ma et al., 2024;
Sun et al., 2025) apply learnable matrices to flatten the distribution to mitigate the outliers problem.
While affine transformations theoretically offer greater flexibility than rotation transformations for
handling outliers, the original AffineQuant (Ma et al., 2024) approach has practical limitations. It
learns a full transformation matrix that can only be applied to output projection layers for weight-
activation quantization, where it merges with preceding linear layers to avoid overhead. Other layers
must use per-channel scaling, limiting the method’s broader applicability across model architectures.
FlatQuant(Sun et al., 2025) uses the Kronecker product to decompose the transformation into two
smaller matrices, significantly reducing the number of learnable parameters and achieving the best
performance among the existing transformation-based approaches for PTQ for LLMs. Even though
these approaches successfully quantize LLMs to 4 bits with slight performance degradation, they
apply the same type of transformation across all layers, ignoring the distribution characteristics of
each layer within LLMs.

Our key insight is that different layers exhibit fundamentally different statistical properties that de-
termine their optimal transformation. Each layer has its own distribution characteristics; therefore,
the optimal transformation type could be different for different layers. Specifically, we propose an
approach using differentiable search to find the optimal transformation type for each layer. However,
this approach is computationally expensive and not practical for large-scale models. To that end, we
propose using outliers as a critical statistical measure for transformation selection. Specifically, we
leverage Kurtosis (DeCarlo, 1997) to analyze weight outliers and scrutinize the relationship between
kurtosis and the optimal transformation types. We observe that layers with high kurtosis contain
concentrated outliers that benefit from rotation’s redistribution capability, while layers with low kur-
tosis have naturally flat distributions where efficient affine transformations suffice. We empirically
found that attention layers typically exhibit high outliers, often favor rotation, while certain FFN
layers show lower outliers compared to attention layers, often favor affine transformations. Based
on this insight, we propose an outlier-guided transformation selection approach that leverages the
kurtosis-based insights to efficiently identify the best transformation type for each layer.

In summary, the main contributions of this paper are as follows.

• Unlike existing transformation-based approaches for handling outliers in LLM quantiza-
tion, which typically apply the same transformation types across all layers, we introduce
the novel idea of using layer-specific transformations and demonstrate the superior perfor-
mance across multiple model architectures and quantization settings.

• We provide the connection between weight outliers and the optimal transformation type and
propose an efficient heuristic outlier-guided transformation selection method that achieves
comparable performance to differentiable search with significantly reduced computational
overhead, making it practical for large-scale models where differentiable search becomes
computationally prohibitive.

2 RELATED WORKS AND BACKGROUND

2.1 RELATED WORKS

Post-Training Quantization. Post-training quantization (PTQ) has become the dominant ap-
proach for compressing LLMs due to its efficiency and practicality compared to quantization-aware
training. These methods apply quantization to pre-trained models using minimal calibration data,
avoiding expensive retraining. GPTQ (Frantar et al., 2023) pioneered layer-wise quantization us-
ing second-order Hessian information for error compensation, achieving impressive compression
rates. AWQ (Lin et al., 2023) advances weight-only quantization by incorporating activation aware-
ness, identifying salient weight channels based on activation magnitudes. Other notable PTQ meth-
ods include ZeroQuant (Yao et al., 2022), which proposes fine-grained quantization schemes, and
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OWQ (Lee et al., 2024), which improves upon AWQ’s activation-aware approach. Recent works
like QuIP (Chee et al., 2023) and QuIP# (Tseng et al., 2024) introduce vector quantization with
incoherent processing, though at the cost of additional computational overhead.

Transformation-Based Approaches Transformation-based methods that modify model weights
and activations are the most effective approaches for mitigating outliers in LLM quantization.
SmoothQuant (Xiao et al., 2023) applies per-channel scaling to balance quantization difficulty be-
tween activations and weights. Rotation transformations offer several key advantages for outlier
mitigation. They preserve the Euclidean norm of weight vectors, maintaining the geometric struc-
ture of the original model. Additionally, they redistribute concentrated outliers across multiple di-
mensions through orthogonal matrix multiplication, effectively flattening the distribution without
information loss. QuaRot (Ashkboos et al., 2024b) is the first to apply rotation transformation in
post-training quantization (PTQ) for LLMs and successfully quantizes LLMs to 4-bit weights and
activations. Specifically, they adopt the Hadamard transform to redistribute outliers across dimen-
sions. SpinQuant (Liu et al., 2025) and OSTQuant (Hu et al., 2025) further improve performance
by learning optimal orthogonal matrices to better mitigate the outlier problem. Meanwhile, affine
transformations provide greater flexibility in reshaping distributions compared to rotation trans-
formations. AffineQuant (Ma et al., 2024) is the first to propose learnable affine transformations
for outlier mitigation. FlatQuant (Sun et al., 2025) further improves this approach by proposing a
Kronecker-based affine transformation to reduce the number of learnable parameters and achieve
significant improvements, becoming the best existing transformation-based approach.

Statistical Analysis in Quantization Understanding the statistical properties of weight and activa-
tion distributions is fundamental to effective quantization design. Prior work has shown that outliers
in LLMs exhibit systematic patterns (Wei et al., 2023), consistently emerging in specific channels
across different inputs, with their magnitude and frequency strongly correlating with model scale
and becoming increasingly pronounced beyond 6.7B parameters. However, existing research fo-
cuses primarily on outlier identification rather than understanding how statistical properties should
guide transformation selection. Our work addresses this gap by investigating how the statistical
characteristics of outliers can be used to guide transformation selection. While kurtosis has been
recognized as an indicator of distribution tailedness, the relationship between distribution character-
istics and optimal transformation selection remains largely unexplored. We address this limitation
by establishing kurtosis as the critical statistical measure for transformation selection.

2.2 BACKGROUND

Given a pre-trained LLM with full-precision, a layer of weights W ∈ Rm×n and an input activations
X ∈ Rb×m, quantization maps these to lower-precision representations. The quantized output of
the layer is given by:

Ŷ = Qa(X) · Qw(W), (1)
where Qa and Qw denote the quantization functions of the activations and weights, respectively.
For a k-bit quantization, these functions can be expressed as follows:

Q(Z) = s · clip
(

round
(
Z

s

)
,−2k−1, 2k−1 − 1

)
, (2)

where s is the quantization scaling factor.

Affine (Ma et al., 2024; Sun et al., 2025) and rotation (Ashkboos et al., 2024b; Liu et al., 2025;
Hu et al., 2025) are the two important transformation approaches to deal with the outliers for post-
training quantization for LLMs. The affine transformation flattens distributions using a learnable
matrix:

ŶA = Qa(XA)Qw(A
−1W), (3)

where A is a learnable affine transformation matrix.

The rotation transformation uses orthogonal matrices for outlier redistribution:

ŶR = Qa(XR)Qw(R
⊤W), (4)

where R ∈ Rm×m satisfies R⊤R = I.
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We demonstrate that different layers exhibit distinct statistical properties that make them more suit-
able for different transformation types. This motivates our adaptive selection approach.

3 PROPOSED METHOD

We present a novel transformation selection framework for post-training quantization (PTQ) of large
language models (LLMs). We first present the motivation for adaptive transformation selection, then
introduce a layer-wise transformation selection method using differentiable search. While effective,
this approach is computationally expensive and impractical for large-scale applications. To address
this limitation, we analyze the differentiable search results to identify correlations between weight
distribution characteristics and selected transformation types. These insights enable us to develop a
more efficient heuristic approach that not only maintains effectiveness but is also practical for large-
scale models. Our approach combines both insights from statistical analysis and practical techniques
to achieve state-of-the-art quantization performance.

3.1 PRELIMINARY ANALYSIS ON THE IMPACT OF THE TRANSFORMATION SELECTION

Table 1: Comparison of the performance of adaptive transformation selection using LLaMA-2-7B
for W3A3K3V3 quantization setting. We report the mean and standard deviation of the performance
over 20 random sets of the transformation selection as well as the best result from 20 random trials.

Configuration WikiText-2 (↓) C4 (↓) Zero-shot Avg (↑)
FP16 5.47 7.26 69.79

Fixed Affine Transformation 7.54 9.76 59.89
Fixed Rotation Transformation 7.99 10.90 58.91
Random Transformation Selection 7.61 ± 0.36 9.96 ± 0.59 59.64 ± 0.75

Best result 7.26 9.42 61.15

We conduct a preliminary analysis to study the effect of transformation matrices in post-training
quantization (PTQ) for LLMs. We use the released code from FlatQuant (Sun et al., 2025) to
quantize LLaMA-2-7B with the Affine transformation. To study the effect of the transformation
matrices, we randomly assign 50% of layers of attention and feedforward layers to use the Affine
transformation and the remaining 50% to use the Rotation transformation. As shown in Table 1, the
best result among 20 runs improves over the setting using all Affine transformations by 0.28 and
0.16 perplexity scores on WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020), respectively.
Moreover, the performance on average accuracy across six zero-shot tasks significantly improves by
1.26 points. This implies that performance can be significantly improved by carefully selecting the
transformation for each layer when performing post-training quantization for LLMs.

3.2 DIFFERENTIABLE SEARCH FOR ACCURATE TRANSFORM SELECTION

To preliminarily assess the potential performance of layer-wise adaptive transformation, we formu-
late the transformation selection as a differentiable search problem. For each layer l, the parameters
α(l) = [α

(l)
A , α

(l)
R ]⊤ control the mixture between affine and rotation transforms.

The quantized output for layer l is:

Ŷ(l) = π
(l)
A · Ŷ(l)

A + π
(l)
R · Ŷ(l)

R , (5)

where π
(l)
t = exp

(
α
(l)
t

)
/
∑

t′ exp
(
α
(l)
t′

)
are softmax weights ensuring π

(l)
A + π

(l)
R = 1.

We optimize a loss function that combines reconstruction error and entropy regularization:

L =
∑
l

[
L(l)

recon + λentropyH(π(l))
]
, (6)

where L(l)
recon = ∥Y(l) − Ŷ(l)∥2F measures the reconstruction error between the full-precision layer

output Y(l) and the quantized output Ŷ(l), H(π(l)) = −
∑

t π
(l)
t log π

(l)
t is the entropy regulariza-

tion that encourages the softmax weights to converge toward binary values (zero or one), and λentropy
is a hyper-parameter weighting the contribution of the entropy.
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(a) Kurtosis of Attention layers in LLaMA-2-7B
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(b) Kurtosis of FFN layers in LLaMA-2-7B

Figure 1: Kurtosis scores across layers for attention and FFN components with corresponding se-
lected transformations using differentiable search. Blue circles indicate layers where rotation trans-
formation was selected, while red squares indicate layers where affine transformation was selected
based on differentiable search.

After convergence, we discretize the selection:

T(l) =

{
A(l) if argmaxt π

(l)
t = A

R(l) if argmaxt π
(l)
t = R.

(7)

While differentiable search can achieve accurate transformation selection, its computational over-
head makes it impractical for large-scale models. Therefore, we develop an efficient statistical
framework to guide transformation selection based on layer-specific distribution properties.

3.3 CORRELATION BETWEEN KURTOSIS AND TRANSFORMATION SELECTION

While differentiable search yields accurate per-layer transform choices, it is computationally ex-
pensive for large models and potentially unnecessary. To that end, we propose an outlier-guided
layer-wise transformation selection that leverages the kurtosis – a statistical measure of a distribu-
tion’s “tailedness” – as an indicator to efficiently choose the best transformation for each layer.

We compute kurtosis as a metric to characterize weight distribution properties. For layer l with
weights W(l), the excess kurtosis is:

κ(l) =
E[(vec(W(l))− µ(l))4]

(σ(l))4
− 3, (8)

where µ(l) and σ(l) are the mean and standard deviation of the vectorized weights and vec(.) is the
function flattening a matrix into a vector.

A high value of the kurtosis (i.e., leptokurtic distributions) indicates heavy tails and the presence of
outliers, while a low value of the kurtosis (i.e., platykurtic distributions) suggests a more uniform
distribution (DeCarlo, 1997). We adopt kurtosis because it is tail-sensitive, directly reflects outliers,
and correlates with the transformation choices found via differentiable search. This makes kurtosis
a practical diagnostic for anticipating which layers benefit most from rotation or affine transforms.

To quantify the relationship between outliers and transformation selection, we compute kurtosis
scores for each layer type. For attention layers, we calculate the sum of the kurtosis score of Query
(Q), Key (K), and Value (V) layers, while for feedforward (FFN) layers, we compute the kurtosis
score of the Gate/Up projection layer using Eq. 8. These kurtosis scores capture the concentration of
extreme values in each layer type and provide a quantitative basis for understanding the correlation
between statistical properties and transformation selection.

Specifically, Figure 1 highlights a correlation between the kurtosis scores and the selected transfor-
mation. For the attention layers, layers with higher kurtosis scores are more likely to be selected
for the affine transformation, while most layers with kurtosis scores less than 2.0 are selected for
the rotation transformation. Conversely, for the FFN layers, layers with higher kurtosis scores are
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more likely to be selected for the rotation transformation, while most layers with kurtosis scores less
than 0.2 are selected for the affine transformation. Additionally, for each type of layer, the rotation
or affine transformations are selected on both high and low kurtosis scores, indicating that kurtosis
provides guidance rather than strict thresholds for transformation selection.

To bridge the gap between statistical understanding and practical implementation, we propose an
outlier-guided layer-wise transformation selection that leverages the kurtosis metric as an indicator
to efficiently identify the best transformation for each layer.

3.4 OUTLIER-GUIDED TRANSFORMATION SELECTION

Given the model comprises n sequential attention (or feedforwad) layers indexed i ∈ {0, . . . , n−1},
we treat kurtosis value as an outlier indicator and set oi = |κ(i)|, which is the absolute value of the
kurtosis score of the layer as the layer’s outlier score. Our goal is to leverage {oi} to select L
(1 ≤ L ≤ n) layer indices as the rotation transformation selection and the remaining n − L layer
indices as the affine transformation selection.

Robust normalization. To achieve scale- and skew-robustness, we convert the absolute kurto-
sis scores {oi} to the robust z-scores (Iglewicz & Hoaglin, 1993) via the median and the median
absolute deviation (MAD):

õi =
oi −median(o)

1.4826MAD(o) + ε
, MAD(o) = median|o−median(o)|, (9)

with a small value ε > 0 (e.g., 10−12) for numerical stability. The factor 1.4826 scales MAD to be
comparable to a standard deviation under normality.

Empirically, rotation transformations are concentrated in both high and low kurtosis scores, with a
prevalence in higher kurtosis scores for FFN layers and a prevalence in lower kurtosis scores for
attention layers. We therefore allocate a fraction β of the L layers as the rotation transformation to
the higher part of kurtosis scores:

Khigh =
⌊
βL

⌉
, Klow = L−Khigh, (10)

where ⌊.⌉ denotes the rounding-to-nearest function.

Optionally, β can be set by the positive-vs-absolute z-mass: For rotation transformation selection at
attention layers, we set βattn as:

βattn = clip

(∑
i: õi>0 õi∑

i |õi|
, 0.1, 0.3

)
. (11)

For rotation transformation selection at FFN layers, we set βffn as:

βffn = clip

(∑
i: õi>0 õi∑

i |õi|
, 0.7, 0.9

)
. (12)

We define upper and lower thresholds using order statistics of the outlier scores {õi}n−1
i=0 . For the

upper tail, we select the (n−Khigh)-th largest value as the threshold:

τhigh =

{
(n−Khigh)-th largest value in {õi}n−1

i=0 if Khigh > 0

+∞ if Khigh = 0
(13)

Similarly, for the lower tail, we select the (Klow)-th smallest value:

τlow =

{
(Klow)-th smallest value in {õi}n−1

i=0 if Klow > 0

−∞ if Klow = 0
(14)

The candidate index set for the selection of rotation transformation is the union of the two tails:
C =

{
i : õi ≥ τhigh

}
∪

{
i : õi ≤ τlow

}
. (15)

The heuristic seamlessly integrates with existing quantization approaches, requiring only statistical
classification to determine transform types and then applicable for large-scale models compared to
the differentiable search.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. We evaluate on the LLaMA family: LLaMA-2 (7B, 13B, 70B) (Tou-
vron et al., 2023) and LLaMA-3 (8B, 70B), covering diverse model scales. Following previ-
ous works (Shao et al., 2024; Ashkboos et al., 2024b), we report perplexity (PPL) on Wiki-
Text2 (Merity et al., 2016) and C4 (Raffel et al., 2020) test sets for language modeling evaluation.
For downstream task evaluation, we assess model performance on six zero-shot tasks using the
lm-evaluation-harness framework, including ARC-Easy and ARC-Challenge (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), LAMBADA (Paperno et al., 2016), PIQA (Bisk et al., 2020),
and WinoGrande (Sakaguchi et al., 2021). We report the average accuracy across six zero-shot tasks
as the primary evaluation metric for downstream performance. For calibration, we randomly sample
128 sequences, each containing 2048 tokens, from the WikiText-2 dataset (Merity et al., 2016).

Baselines. We compare against state-of-the-art PTQ methods representing different transforma-
tion approaches: SmoothQuant (Xiao et al., 2023), affine transformation methods FlatQuant (Sun
et al., 2025), and rotation-based transformation methods QuaRot (Ashkboos et al., 2024b), Spin-
Quant (Liu et al., 2025), and OSTQuant (Hu et al., 2025). These baselines represent the spectrum
of current PTQ approaches, from traditional weight quantization to advanced transformation-based
methods.

Implementation Details. Our method is implemented in PyTorch with HuggingFace Transform-
ers. For the rotation transformation, we initialize the rotation matrix with random orthogonal matri-
ces and adopt RiemannAdam (Becigneul & Ganea, 2019) as the optimizer for the learnable rotation
matrix. For the learnable affine transformation, we use the same implementation as FlatQuant (Sun
et al., 2025). We use the AdamW optimizer with a learning rate of 5 × 10−3. For differentiable
search, we set the entropy regularization to λentropy = 0.01. We employ symmetric per-channel
weight quantization and per-token activation quantization with GPTQ weight quantizers following
existing approaches (Sun et al., 2025; Hu et al., 2025). Following (Sun et al., 2025), we also em-
ploy the combination of scaling transformation with the selected transformation and adopt learnable
clipping thresholds (Shao et al., 2024) for weights and activations to eliminate outliers. For all
experiments, we empirically set βattn = 0.1 and βffn = 0.9 for the outlier-guided transformation
selection method. The parameter L in Eq. 10 is set to 0.7× n for attention layers and set to 0.5× n
for feedforward layers, where n is the number of model attention (or feedforward) layers. We con-
duct an ablation study on these hyperparameters in Appendix A.1. The notation W4A4K4V4 denotes
quantization with 4-bit weights and 4-bit activations, where K4 and V4 indicate 4-bit quantization
for the key and value projection layers in attention modules, respectively. For the positioning of
the adaptive transformation, we selectively apply the proposed affine transformation to QKV layers
in attention modules and up-gate layers in FFN modules. For all other linear layers, we follow the
FlatQuant approach (Sun et al., 2025). This selective design choice preserves runtime speedup while
achieving significant performance improvements over FlatQuant.

4.2 EXPERIMENTAL RESULTS

Evaluation on generation datasets with perplexity. In this section, we compare our pro-
posed adaptive transformation selection method against state-of-the-art PTQ approaches, including
QuaRot (Ashkboos et al., 2024b), SpinQuant (Liu et al., 2025), FlatQuant (Sun et al., 2025), and
OSTQuant (Hu et al., 2025). The results of these methods are reproduced using their official imple-
mentations and are cited from FlatQuant (Sun et al., 2025). Table 2 presents the comparative results
of our proposed method and other state-of-the-art approaches when evaluating on WikiText-2 and
C4 datasets. Our results are obtained using the proposed efficient heuristic outlier-guided transfor-
mation selection approach. We conduct experiments across multiple quantization configurations:
W4A4K4V4, W3A3K3V3, W4A4K2V2, and W3A3K2V2. In general, our proposed method out-
performs the state-of-the-art methods across various model architectures and quantization settings.
Compared to the best existing method, FlatQuant (Sun et al., 2025), our proposed method consis-
tently outperforms FlatQuant in all bit-width configurations. The improvement is clearer in extreme
quantization settings, with improvements over FlatQuant of 0.55 and 0.80 points for LLaMA-3-
8B in the W3A3K3V3 setting on WikiText-2 and C4 datasets respectively. Under the extreme
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Table 2: Perplexity scores (↓) on WikiText-2 and C4 datasets for various quantization settings on
LLaMA models.

Setting Method WikiText-2 (↓) C4 (↓)

2-7B 2-13B 3-8B 2-7B 2-13B 3-8B

FP16 5.47 4.88 6.14 7.26 6.73 9.45

W4A4KV4

QuaRot 6.10 5.40 8.16 8.32 7.54 13.38
SpinQuant 5.96 5.24 7.39 8.28 7.48 12.19
OSTQuant 5.91 5.25 7.29 – – –
FlatQuant 5.78 5.11 6.90 7.86 7.11 11.21
Ours 5.61 4.97 6.89 7.58 6.74 10.08

W3A3K3V3
OSTQuant 8.32 6.86 13.59 11.42 9.45 21.06
FlatQuant 7.54 6.14 10.62 9.76 8.15 16.20
Ours 7.22 6.02 10.07 9.43 8.08 15.40

W4A4K2V2
OSTQuant 8.32 6.65 12.88 11.14 9.03 19.84
FlatQuant 7.51 5.98 8.73 9.87 8.11 13.86
Ours 6.98 5.79 8.25 9.04 7.66 12.59

W3A3K2V2
OSTQuant 12.28 8.97 26.48 17.36 12.65 43.62
FlatQuant 11.51 7.86 16.38 15.89 10.91 27.29
Ours 9.83 7.15 13.74 13.35 9.76 22.71

Table 3: Zero-shot QA task results of 4-bit and 3-bit weight & activation quantized LLaMA models.

Model Method ARC-C (↑) ARC-E (↑) HellaSwag (↑) LAMBADA (↑) PIQA (↑) WinoGrande (↑) Avg (↑)
W4A4KV4 Settings

LLaMA-2-7B

FP16 46.16 74.54 75.98 73.92 79.05 69.06 69.79

QuaRot 42.32 68.35 72.53 65.40 76.33 65.11 65.01
SpinQuant 41.72 69.28 72.90 71.28 76.17 66.06 66.23
FlatQuant 43.00 71.21 73.31 72.06 77.53 67.72 67.47
Ours 43.94 72.31 73.66 71.38 77.64 68.35 67.88

LLaMA-2-13B

FP16 49.15 77.44 79.39 76.73 80.47 72.14 72.55

QuaRot 45.48 73.27 76.03 69.01 79.05 70.64 68.91
SpinQuant 49.15 77.19 76.86 73.86 78.67 69.85 70.93
FlatQuant 48.38 76.94 77.88 76.40 79.65 70.56 71.64
Ours 49.91 75.93 77.92 76.03 79.71 70.64 71.69

LLaMA-3-8B

FP16 53.50 77.57 79.12 75.51 80.74 72.93 73.23

QuaRot 45.73 70.83 72.97 62.70 75.35 67.17 65.79
SpinQuant 47.27 74.20 74.55 70.29 77.37 68.51 68.70
FlatQuant 50.51 75.88 76.49 73.20 79.00 72.93 71.33
Ours 51.45 78.16 76.50 72.50 78.89 72.38 71.65

W3A3K3V3 Settings

LLaMA-2-7B
OSTQuant 30.72 55.09 60.21 57.05 68.44 57.77 54.88
FlatQuant 36.35 60.82 66.20 60.59 73.29 59.43 59.45
Ours 36.52 63.17 66.42 62.91 74.43 63.61 61.18

LLaMA-2-13B
OSTQuant 37.37 61.41 66.44 62.12 71.98 58.01 59.56
FlatQuant 40.96 70.41 71.92 71.41 77.20 68.90 66.80
Ours 42.83 71.97 72.33 71.71 76.77 66.14 66.94

LLaMA-3-8B
OSTQuant 31.83 52.15 56.72 45.64 66.49 55.09 51.32
FlatQuant 37.46 63.09 64.86 55.54 71.17 61.40 59.01
Ours 38.05 65.19 65.71 52.73 73.29 62.98 59.66

W3A3K2V2 Settings

LLaMA-2-7B
OSTQuant 26.54 46.46 48.11 34.45 64.58 52.64 45.46
FlatQuant 30.89 50.63 56.79 32.95 67.08 52.72 48.51
Ours 32.85 57.37 59.89 47.45 71.98 54.46 54.00

LLaMA-2-13B
OSTQuant 31.66 52.69 58.43 45.41 67.36 53.28 51.47
FlatQuant 36.18 64.18 65.80 52.57 73.72 59.12 58.60
Ours 37.71 65.82 66.65 58.49 73.23 60.14 60.34

LLaMA-3-8B
OSTQuant 24.74 38.89 40.18 18.07 56.75 49.01 37.94
FlatQuant 33.02 56.23 55.48 25.79 69.31 56.75 49.43
Ours 34.64 56.90 57.86 32.25 69.75 57.85 51.54

low-bitwidth W3A3K2V2 quantization setting, our proposed method demonstrates substantial gains
over FlatQuant with improvements of 1.68 and 2.54 perplexity points for LLaMA-2-7B, and 2.64
and 4.58 points for LLaMA-3-8B on WikiText-2 and C4 datasets respectively, which confirms the
effectiveness of our adaptive transformation selection approach.

Evaluation on downstream tasks. Table 3 presents the comparative results of our proposed
method and other state-of-the-art approaches across different quantization settings. The table eval-
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uates performance on six tasks: ARC-Challenge, ARC-Easy, HellaSwag, LAMBADA, PIQA, and
WinoGrande, with results averaged across all tasks. Under the W3A3K3V3 setting, our method
demonstrates significant improvements over existing approaches. For LLaMA-2-7B, our approach
achieves an average accuracy of 61.18%, representing a substantial 1.73% improvement over
FlatQuant and a 6.30% improvement over OSTQuant. The improvement is clearer in extreme
W3A3K2V2 quantization settings, with improvements of 5.49% and 8.54% for LLaMA-2-7B in
the W3A3K2V2 setting compared to FlatQuant and OSTQuant, respectively. For LLaMA-2-13B,
our method achieves 60.34%, outperforming FlatQuant by 1.74% and OSTQuant by 8.87%. These
results highlight the effectiveness of our adaptive transformation selection method in preserving
model performance on downstream tasks, especially under extreme quantization scenarios.

4.3 ABLATION STUDIES

The comparison between the proposed heuristic and the differentiable search selection. Ta-
ble 4 shows that the proposed outlier-guided transformation selection achieves 87.5% and 85.0%
agreement with learned selection for LLaMA-2-7B and LLaMA-2-13B, respectively. Importantly,
the proposed heuristic significantly reduces the training time by approximately 3× compared to the
learned selection while maintaining competitive performance.

Table 4: Comparison of the proposed heuristic and differentiable search selection on LLaMA-2-7B
and LLaMA-2-13B with W3A3K3V3 settings.

Model WikiText-2 PPL C4 PPL Zero-shot Avg Selection Agreement Training Time (h)
Learned Heuristic Learned Heuristic Learned Heuristic Layers Percentage Learned Heuristic

LLaMA-2-7B 7.18 7.22 9.35 9.43 61.45 61.18 28/32 87.5% 11 hours 4 hours
LLaMA-2-13B 5.99 6.02 8.03 8.08 67.04 66.94 34/40 85.0% 22 hours 7.5 hours

Table 5: Prefill and decoding speedup comparison on LLaMA2-7B

(a) Prefill speedup compared to FP16 for different in-
put sequence lengths at batch size 1

Prefill Length INT4 QuaRot FlatQuant Ours
2048 1.36 × 1.19 × 1.37 × 1.32 ×
4096 1.44 × 1.34 × 1.48 × 1.46 ×
8192 1.94 × 1.79 × 1.92 × 1.89 ×

(b) Decoding speedup compared to FP16 for different
KV cache lengths at batch size 64

KV Cache Length INT4 QuaRot FlatQuant Ours
256 1.089× 1.036× 1.058× 1.047×
512 1.121× 1.071× 1.090× 1.083×

1024 1.140× 1.087× 1.115× 1.090×
2048 1.167× 1.106× 1.141× 1.117×

Speedup across sequence lengths. Tables 5a and 5b present detailed prefill and decoding speedup
results for LLaMA-2-7B under different prefill sequence lengths and KV cache lengths. All exper-
iments were conducted on A100 GPUs. As shown, for prefill, our method achieves up to 1.89×
speedup at sequence length 8192, nearly matching FlatQuant’s 1.92× performance. For decoding,
we achieve up to 1.117× speedup at KV cache length 2048, surpassing QuaRot. These results
demonstrate that our adaptive transformation selection approach effectively balances quantization
performance and speedup efficiency across different prefill sequence lengths and KV cache lengths.

5 CONCLUSION

In this paper, we introduce a novel adaptive framework that selects the optimal transformation on
a layer-wise basis. Specifically, we present a differentiable search that formulates the problem as
an optimization task to automatically find the best transformation for each layer, and then propose
an efficient heuristic method. The heuristic leverages the connection between weight distribution
characteristics and the optimal transformation type, achieving performance comparable to the dif-
ferentiable search with significantly less computational overhead. This makes our approach practi-
cal for even the largest models. Our comprehensive experiments on the LLaMA family of models
demonstrate the superiority of our adaptive approach. Compared to state-of-the-art methods like
FlatQuant, our technique achieves a notable improvement, reducing perplexity by up to 4.58 points
on the LLaMA-3-8B model under an aggressive W3A3K2V2 quantization setting. These results
validate the importance of layer-specific transformations for effective LLM quantization and offer a
scalable solution for practical deployment.
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The statement on the use of large language models. Large Language Models (LLMs) were
used solely for grammar correction and language polishing of this manuscript. All research ideas,
experimental design and data analysis were conducted entirely by the authors, and the use of LLMs
does not impact the reproducibility or validity of our findings.

A APPENDIX

A.1 ABLATION STUDIES OF HYPER-PARAMETERS βATTN , βFFN , AND L

We conduct ablation studies to analyze the impact of the hyper-parameters βattn and βffn in Eq. 11 and
Eq. 12, respectively, in our adaptive layer-wise transformation scheme for post-training quantization
of large language models. These parameters control the percentage of layers that select rotation
transformations in the upper tail of z-scores of the attention and feed-forward layers.

Table A.1: Ablation studies for the hyper-parameter βattn of the in Eq. 11. Results are on the LLaMA-
2-7B model using W4A4K2V2 quantization.

βattn 0.1 0.3 0.4 0.5 0.7 0.9
WikiText2 PPL (↓) 7.05 7.07 7.09 7.11 7.13 7.22
C4 PPL (↓) 9.12 9.12 9.16 9.12 9.22 9.37
six zero-shot avg (↑) 61.40 61.11 61.20 60.09 60.70 61.05

Ablation studies for the hyper-parameter βattn in Eq. 11. For βattn, we vary the values from 0.1
to 0.9 and evaluate the model performance on WikiText-2 and C4 datasets using perplexity (PPL)
scores, as well as the average zero-shot performance across six downstream tasks. As shown in
Table A.2, smaller values of βattn (0.1-0.3) generally yield better performance, with βattn = 0.1
achieving the best results across all metrics. This suggests that in attention layers, most selected
rotation transformations are from the lower tail of the z-scores distribution.

Table A.2: Ablation studies for the hyper-parameter βffn of the in Eq. 12. Results are on the LLaMA-
2-7B model using W4A4K2V2 quantization.

βffn 0.1 0.3 0.5 0.7 0.8 0.9
WikiText2 PPL (↓) 7.30 7.26 7.25 7.21 7.23 7.08
C4 PPL (↓) 9.54 9.46 9.41 9.41 9.42 9.37
six zero-shot avg (↑) 60.83 61.07 61.16 61.19 61.26 61.30

Ablation studies for the hyper-parameter βffn in Eq.12. For βffn, we test values ranging from 0.1
to 0.9. As shown in Table A.1, larger values of βffn (0.7-0.9) generally yield better performance. The
results indicate that βffn = 0.9 provides the optimal balance, achieving the lowest perplexity scores
and highest zero-shot performance. This finding suggests that the feed-forward layers benefit from
selecting rotation transformations predominantly from the upper tail of the z-scores distribution.

Ablation studies for the hyper-parameter L in Eq. 10. For the number of layers selecting the
rotation transformation parameters L, we vary the value of L from 0 × n to 1.0 × n, where n is
the total number of layers. For attention layers, as shown in Table A.3, the best performance is
achieved when L is set to 0.7 × n, indicating that selecting rotation transformations for 70% of
the total number of attention layers yields best performance. Meanwhile, selecting all the attention
layers using rotation transformation could significantly degrade performance. For the feedforward
layers, as shown in Table A.4, the best performance is achieved when L is set to 0.5× n, indicating
that selecting rotation transformations for 50% of the total number of feedforward layers yields
best performance. Similar to attention layers, selecting all the feedforward layers using rotation
transformation could also degrade performance.
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Table A.3: Ablation studies for the number of selected rotation transformations L for attention layers
of the in Eq. 10. Results are on the LLaMA-2-7B model using W3A3K3V3 quantization.

L 0× n 0.5× n 0.7× n 1.0× n
WikiText2 PPL (↓) 7.54 7.35 7.29 8.71
C4 PPL (↓) 9.76 9.66 9.62 12.01
six zero-shot avg (↑) 59.89 60.09 60.37 57.67

Table A.4: Ablation studies for the number of selected rotation transformations L for feedforward
(FFN) layers of the in Eq. 10. Results are on the LLaMA-2-7B model using W3A3K3V3 quantiza-
tion.

L 0× n 0.3× n 0.5× n 0.7× n 1.0× n
WikiText2 PPL (↓) 7.54 7.45 7.41 7.49 7.51
C4 PPL (↓) 9.76 9.67 9.51 9.78 9.80
six zero-shot avg (↑) 59.89 59.96 60.26 59.87 59.82
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(a) Kurtosis of Attention layers in LLaMA-2-13B
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(b) Kurtosis of FFN layers in LLaMA-2-13B

Figure A.1: Kurtosis scores across layers for attention and FFN components with corresponding
selected transformations using differentiable search. Blue circles indicate layers where rotation
transformation was selected, while red squares indicate layers where affine transformation was se-
lected based on differentiable search.

A.2 CORRELATION BETWEEN OUTLIERS AND TRANSFORMATION SELECTION USING
DIFFERENTIABLE SEARCH

We provide additional analysis on the correlation between outlier statistics, specifically kurtosis
scores, and the selected transformations using differentiable search in LLaMA-2-13B model. Specif-
ically, Figure A.1 highlights a correlation between the kurtosis scores and the selected transforma-
tion. For the attention layers, layers with higher kurtosis scores are more likely to be selected for
the affine transformation, while most layers with kurtosis scores less than 1.6 are selected for the
rotation transformation. Conversely, for the FFN layers, layers with higher kurtosis scores are more
likely to be selected for the rotation transformation, while most layers with kurtosis scores less than
0.25 are selected for the affine transformation. Additionally, for each type of layer, the rotation or
affine transformations are selected on both high and low kurtosis scores, indicating that kurtosis
provides guidance rather than strict thresholds for transformation selection.
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